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Abstract—Multifractal analysis is a reference tool for the
analysis of data based on local regularity and has proven useful
in an increasing number of applications involving univariate data
(scalar valued time series or single channel images). Recently the
theoretical ground for a multivariate multifractal analysis has
been explored, showing its potential for capturing and quantify-
ing transient higher-order dependence beyond correlation among
collections of data. Yet, the accurate estimation of the para-
meters associated with these multivariate multifractal models is
challenging. Building on these first formulations of multivariate
multifractal analysis, the present work proposes a Bayesian model
and studies an estimation framework for the parameters of a
quadratic model for the joint multifractal spectrum of bivariate
time series. The approach relies on a novel joint Gaussian model
for the logarithm of wavelet leaders and leverages on a Whittle
approximation and data augmentation for the matrix-valued
parameters of interest. Monte Carlo simulations demonstrate the
benefits of the method with respect to previous formulations. In
particular, we obtain significant performance improvements at
only moderately larger computational cost, for large ranges of
sample size and multifractal parameter values.

I. INTRODUCTION

Multifractal analysis. Over the last decades, multifractal
analysis has grown into a standard signal processing tool,
characterizing data in terms of its pointwise regularity [1], [2].
This is theoretically achieved via the so-named multifractal
spectrum, which describes geometrically the fluctuations of
pointwise regularity in time or space. On average, these
regularity fluctuations lead to scale-free statistics. These can
be efficiently modeled and analyzed through the paradigm
of scale-invariance and are in practice used to produce an
upper-bound estimate L for the multifractal spectrum. In the
past, multifractal analysis has led to significant successes in
many real-world applications in very different contexts [3]–[8].
However, because the methodology remained fundamentally
univariate, multifractal analysis has essentially been tied to
the independent analysis of individual univariate time se-
ries/images. This severely impairs its use for data consisting
of several jointly registered components, for which crucial in-
formation is potentially hidden in the coupling and dependen-
cies between different components. While this limitation had
been recognized early on and partially addressed in specific
applicative contexts [9], [10], the theoretical foundation for the
multifractal analysis of multivariate data was laid only recently
[11], [12] (see Sec. II-A for a definition of the bivariate

multifractal spectrum). Its first practical uses showed that the
multivariate multifractal spectrum can effectively capture and
quantify transient, local dependencies in data that cannot be
accounted for by second order statistics such as the correlation
function [13]–[15].
Multifractal parameter estimation. The state-of-the-art for
multifractal analysis relies on the use of wavelet leaders,
defined through a nonlinear transformation of wavelet coef-
ficients, see Section II-B and [16] for definitions and pointers
to alternative formalisms. In essence, these estimation frame-
works rely on simple log-log regressions for computing power
law exponents of sample moments or cumulants. However,
such estimators can lead to significant estimation variance, in
particular for small sample size. To overcome this issue, in
[17], [18] a Bayesian model has been proposed for univariate
multifractal analysis. It relies on a Gaussian model for the joint
statistics of log-leaders, which yields significant performance
improvements for univariate multifractal parameter estimates.
The estimation of multivariate multifractal parameters has
first been explored in [13]–[15] in bivariate settings using
sample moments and cumulants of wavelet leaders. However,
as in the univariate case, log-log regression-based multifractal
parameter estimates yield modest statistical performance that
limit the actual use of such features in applications.
Goals, contributions and outline. The present contribu-
tion aims to empower multivariate multifractal analysis by
complementing it with a statistical framework that leads to
improved estimation performance. To this end, we make use
of the quadratic (i.e., second order) model for the bivariate
multifractal spectrum that is proposed and studied in [13], [14]
(briefly recalled in Sec. II-B). Our contributions are as follows.
First, the Bayesian model for log-leaders defined in [17] is
generalized to the bivariate setting by including an appropriate
modeling of the cross-statistics, cf. Sec. III, and an adequate
modification of the prior distributions for the parameters.
Second, we design an efficient Gibbs sampling algorithm for
estimating the multifractal parameters under this model. This is
achieved by building on the Whittle approximation [19] and by
proposing a data augmentation scheme for the matrix-valued
parameters of interest, see Sec. IV. Finally, we report results
for extensive Monte Carlo simulations using the synthetic bi-
variate multifractal process defined in [13], [14], validating the
proposed estimation framework and demonstrating its practical



benefits in terms of estimation performance, at moderate extra
computational cost.

II. BIVARIATE MULTIFRACTAL ANALYSIS

A. Multifractal spectrum

The goal of multifractal analysis is the quantification of the
fluctuations along time of the regularity of a signal or function
X(t) ∈ R at position t ∈ R, where pointwise regularity is
usually measured by the Hölder exponent, h(t) ≥ 0. The
closer h(t) is to 0, the more irregular X is around t, see,
e.g., [1] for details. Let h(t) , (h1(t), h2(t)) denote the
Hölder exponents of the components of the bivariate signal
X(t) = (X1(t), X2(t)) ∈ R2. The bivariate multifractal
spectrum D(h1, h2) of X is defined as the collection of
Hausdorff dimensions dimH of the sets of points t ∈ R at
which (h1(t), h2(t)) take on the values h = (h1, h2)

D(h1, h2) , dimH

{
t : (h1(t), h2(t)) = (h1, h2)

}
, (1)

(see [9], [11], [12] for details). It provides a global, geometri-
cal description of the pointwise regularity of X . Specifically,
its precise shape, width, and orientation with respect to the
h1, h2 axes quantify the degree and coupling of the local
fluctuations of the regularity of the components of X . The
state-of-the-art procedure for its estimation is constructed from
the multiscale statistics of wavelet leaders [1], [2], [11], [12].

B. Bivariate multifractal formalism using wavelet leaders

Wavelet leaders. Let ψ denote the mother wavelet, an osci-
llating reference pattern that is characterized by its number
of vanishing moments Nψ , a positive integer defined as
ψ ∈ CNψ−1 and ∀n = 0, . . . , Nψ − 1,

∫
R t

nψ(t)dt ≡ 0 and∫
R t

Nψψ(t)dt 6= 0. The mother wavelet is designed such that
the collection {ψj,k(t) = 2−j/2ψ(2−jt − k)}(j,k)∈Z2 of its
dilated and translated templates forms an orthonormal basis
of L2(R) [20]. The L1 normalized discrete wavelet transform
coefficients dX(j, k) of a time series X ∈ R are defined
as dX(j, k) = 2−j/2〈ψj,k|X〉. Then, the wavelet leaders of
X are defined as LX(j, k) , supλ′⊂3λj,k |dX(λ′)|, where
λj,k = [k2j , (k + 1)2j) denotes the dyadic interval of size
2j and 3λj,k stands for the union of λj,k with its 2 neighbors;
they reproduce Hölder exponents in the limit of fine scales,
LX(j, k) ∼ C2−jh(t) for 2j → 0, k2−j ∼ t (t fixed) [1], [2].
Bivariate multifractal formalism. The bivariate cumu-
lants Cp1p2(j) of the vector of log-leaders `X(j, k) =
(lnLX1

(j, k), lnLX2
(j, k)) ∈ R2 at scale 2j can be shown

to take the form [13], [21]

Cp1p2(j) = c0p1p2 + j cp1p2 ln 2, p1 + p2 ≥ 1. (2)

The coefficients cp1p2 yield an approximation of D(h)

L(h1, h2) ≈ 1 +
c02b

2

(
h1 − c10

b

)2

+
c20b

2

(
h2 − c01

b

)2

− c11b
(
h1 − c10

b

)(
h2 − c01

b

)
, (3)

where b , c20c02 − c211 ≥ 0 [14] and
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Fig. 1. Gamma plots for the empirical log-leaders joint distribution, at scales
j = 3, 5 (left column and right column), associated with 100 independent
copies of a bMRW for N = 210. The closer to the red line, the better the
approximation of the distribution by a bivariate normal distribution.

- (c10, c01) indicate the position of the maximum of D(h)
- c20, c02 quantify the amount of regularity fluctuations for

each component independently
- c11 characterizes the coupling between the components’

regularity fluctuations.

III. STATISTICAL MODEL FOR BIVARIATE LOG-LEADERS

The estimation of the coefficients of L(h1, h2) relies on
linear regressions for sample cumulants as in (2). This proce-
dure can lead to large estimation variance, in particular for
the second order cumulants c02, c20, c11 [13]–[15]. Instead,
we propose here a Bayesian model and estimators for these
parameters.

A. Time domain model

Our model is inspired by and generalizes a model for
univariate data studied in [17], [18]. In particular, it was shown
that the distribution of the collection of scalar log-leaders
lnLX(j, ·) at scale 2j can be reasonably well approximated
by a Gaussian distribution.
Bivariate marginal distributions. Let denote lX(j, k) the
vector of log-leaders `X at scale 2j , k = 1, . . . , nj , after
centering. We empirically show, using numerical simulations
for synthetic bivariate multifractal processes as defined in
Sec. V-A, for large ranges of sample size and multifractal
parameter values, that lX(j, k) can be well modeled as a
Gaussian random vector. Illustrative examples are given in
Fig. 1, which shows bivariate gamma plots [22], [23] for scales
j = 3, 5 and for several different parameter settings, providing
numerical evidence of bivariate normality.
Covariance. In our previous work, we have shown that the
covariance of scalar log-leaders of multifractal processes has
an asymptotic log-linear decay, see, e.g., [17], [18]. Here we
propose a generalization to the bivariate case by amending the
covariance model in [17], [18] with a cross-term describing the
covariance between log-leaders of different components. Let
Sj(r) , E

{
lX(j, k)T lX(j, k + r)

}
, r , |∆k|, denote the

covariance matrix of lX(j, k) at a fixed scale 2j . Extensive
numerical simulations indicate that

Sj(r) ≈ Σ1f1(j, r) + Σ2f2(j, r), (4)
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Fig. 2. Comparison between the proposed model (blue line) and the sample
covariance (red line) at two scales j = 3, 4, averaged over 100 independent
realizations of a bMRW for N = 215, (λ1, λ2) = (

√
0.04,

√
0.08) and

ρmf = 0.6. Plots (a), (b) and (c) correspond to each covariance matrix element.

with Σ1 =

(
v20 v11
v11 v02

)
, Σ2 =

(
v020 v011
v011 v002

)
, v20 =

−c20, v02 = −c02, v11 = −c11, f1(j, r) = max(0,− ln((r +
1)/(rj + 1)) and f2(j, r) = max (0, 1− ln(r + 1)/ ln 4) with
rj = bnj/5c, where b·c truncates to integer values. Illustrative
examples of this covariance model are provided in Fig. 2.
Theoretically, c20, c02 < 0 and c20c02 − c211 > 0, hence
v20, v02 > 0, v20v02−v211 > 0 and thus Σ1 is positive definite
(p.d.). Moreover, for all i ∈ {1, 2} and scales j, fi(j, ·) is
a non-negative function. Therefore, assuming that Σ2 is p.d.
ensures that S(r) is positive semi-definite (p.s.d.) ∀r, as it is
the sum of two p.s.d. matrices [24]. Finally, Σ1 and Σ2 are
the two matrix-valued parameters to be estimated.
Likelihood. Denote as yj =

[
lX1

(j, ·)T , lX2
(j, ·)T

]T
the

2nj × 1 vector resulting from the concatenation of the
component-wise column vectors of centered log-leaders
lX(j, ·) at scale 2j . We assume independence of leaders at
different scales j′ 6= j. Together with the above model, the
likelihood of the vector y =

[
yTj1 , . . . ,y

T
j2

]T
of the log-leaders

at scales j = j1, . . . , j2 given Σ1 and Σ2 reads

p(y | Σ1,Σ2) =
∏j2

j=j1
p(yj | Σ1,Σ2)

∝
∏j2

j=j1
(det Ξj)

−1/2
exp

(
−1

2
yTj Ξ−1j yj

)
, (5)

where Ξj = Σ1⊗F 1j + Σ2⊗F 2j is a 2nj × 2nj covariance
matrix, ⊗ is the Kronecker product, the matrices F ij are
defined element-wise as [F ij ]u,v = fi(j, |ku − kv|), i = 1, 2.
For all i ∈ {1, 2} and scales j, the positive definiteness of Fij
can only be assessed numerically to check that Σi ⊗F ij and
Ξij are p.d.

B. Whittle approximation

The numerical evaluation of the likelihood (5) being proble-
matic for large sample size (in particular requiring compution
of the matrix inverses Ξ−1j ), we resort to a Whittle appro-
ximation [19], [25]. This standard technique approximates the
time-domain likelihood (5) in the frequency domain as

pW (yj | Σ1,Σ2) ∝
∏

m∈Ij

(
det S̃j(ωm)

)−1
exp

(
−zHj (ωm)S̃

−1
j (ωm)zj(ωm)

)
, (6)

where ·H denotes the conjugate transpose operator and
zj(ωm) is the bivariate discrete Fourier transform (DFT) coe-

fficient zj(ωm) =
1
√
nj

nj∑
k=1

[
lX1

(j, k)
lX2(j, k)

]
exp (−ikωm), with

ωm = 2πm/
√
nj and Ij = J−d√nj/2e+ 1, b√nj/2cK \ {0}.

Moreover, the power spectral matrix S̃j(ωm) forms a Fourier
pair with the covariance matrix Sj(r), which can be appro-
ximated using a discrete Fourier transform (DFT)

S̃j(ωm) = Σ1f
DFT
1 (j, ωm) + Σ2f

DFT
2 (j, ωm), (7)

where fDFT
i (j, ·) denote the DFT of fi(j, ·), i = 1, 2.

C. Data augmentation

Equation (6) suggests that pW (yj | Σ1,Σ2) is equivalent to
modeling zj = [zj(ω1), . . . ,zj(ωNI )]

T with NI = card(Ij)
by a random vector with a non-degenerate centered circular-
symmetric complex Gaussian distribution (CN ). Thus, we con-
sider the collection of Fourier coefficients z =

[
zTj1 , . . . ,z

T
j2

]T
as the observed data. The likelihood of z is given by

p(z | Σ1,Σ2) =
∏j2

j=j1
p(zj | Σ1,Σ2)

∝ (det Ω)−1 exp
(
−zHΩ−1z

)
, (8)

where Ω , Σ1 ⊗ G1 + Σ2 ⊗ G2 is a real-valued block
diagonal p.d. covariance matrix, with Gi , diag(gi), gi ,
[gij1 , . . . , gij2 ]T , gij , (fDFT

i (j, ωm))m∈Ij , for i = 1, 2.
Model (8) is simple and cheap to evaluate numerically. Its

main inconvenience regarding the estimation of Σ1 and Σ2

is that these matrices are additively tied together in Ω so that
it is not possible to design conjugate priors leading to simple
conditional distributions. To bypass this difficulty we use data
augmentation and introduce a complex-valued vector of latent
variables u defining the conditional distributions

z | u,Σ1 ∼ CN (u,Σ1 ⊗G1), u | Σ2 ∼ CN (0,Σ2 ⊗G2),

leading to the augmented likelihood

p(z,u | Σ1,Σ2) ∝ p(z | u,Σ1)p(u | Σ2). (9)

By construction, the likelihood (8) is obtained by marginali-
zing (9) with respect to u.

IV. BAYESIAN ESTIMATION

In this section, a Bayesian model and a procedure for the
estimation of Σ1 and Σ2, are described.

A. Likelihood, priors and posterior

The proposed Bayesian model is based on the augmented
likelihood (9), which is the product of two circular symmetric
complex Gaussian distributions having Σ1 and Σ2 as cova-
riance matrices. The natural conjugate prior for these matrices
is the inverse Wishart (IW) prior [26], Σi ∼ IW(νi,Λi), i =
1, 2. The posterior distribution built on the augmented likeli-
hood and the IW priors is

p(Σ1,Σ2,u | z) ∝ p(z,u | Σ1)p(u | Σ2)p(Σ1)p(Σ2).

(10)



B. Bayesian estimators

The posterior distribution (10) can be used to define the
marginal minimum mean square error (MMSE) estimator
ΣMMSE
i = E [Σi | z] , i = 1, 2, approximated here via a

Markov chain Monte Carlo (MCMC) algorithm (Gibbs sam-
pler). For details about MCMC, see, e.g., [27].

C. Gibbs sampler

The Gibbs sampler successively generates samples{
uλ,Σλ

1 ,Σ
λ
2

}Nmc

λ=1
according to the conditional distributions

of (10), i.e., a complex Gaussian distribution p(u | Σ1,Σ2, z),
and two inverse Wishart distributions p(Σ1 | z,u), p(Σ2 | u).
After a burn-in period, where the first Nbi samples
are discarded, the MMSE estimator is approximated by
ΣMMSE
i ≈ (Nmc −Nbi)

−1∑Nmc
λ=Nbi+1 Σλ

i , i = 1, 2.

V. ESTIMATION PERFORMANCE ASSESSMENT

In this section, we compare the proposed Bayesian approach
using IW priors, denoted as MMSE, to the weighted linear
regression-based method (see, e.g., [2]) denoted as WLR. The
comparison is performed applying both methods on a large
number of independent realizations of a synthetic bivariate
multifractal process described next.

A. Bivariate multifractal random walk (bMRW)

The construction of bMRW [13] requires two pairs
of stochastic processes: a pair of increments of fBm,
(G1(t), G2(t)), which is determined by two self-similarity
parameters H1 and H2 and a point covariance Σss, and a
pair of Gaussian processes (ω1(t), ω2(t)) with prescribed co-
variance function Σmf , with entries given by [Σmf ]iv (k, l) =

[ρmf ]iv λiλv log
(

T
|k−l|+1

)
, i, v = 1, 2, for |k − l| ≤ T − 1

and 0 otherwise, where T is an arbitrary integral scale. To
simplify notations, we consider [ρmf ]11 = [ρmf ]22 = 1,
and [ρmf ]12 = ρmf . Both pairs of processes are numerically
synthesized as described in [28]. Each component i = 1, 2
of bMRW is then defined as Xi(t) =

∑t
k=1Gi(k)eωi(k).

Following [13], [29], the bivariate multifractality parameters
of bMRW are given by c10 = H1 + λ21/2, c01 = H2 + λ22/2,
c20 = −λ21, c02 = −λ22, and c11 = −ρmfλ1λ2. Moreover,
cp1p2 ≡ 0, ∀(p1, p2) such that p1 + p2 ≥ 3.

B. Monte Carlo simulations and parameter setting

The parameters of the process are set to (H1, H2) =
(0.6, 0.8), (λ1, λ2) = (

√
0.02,

√
0.02), ρss = 0 and

ρmf = 0.5. The considered sample sizes are N =
{28, 210, 212, 214, 216} and the integral scale is set to T = N .
A wavelet analysis is conducted with a Daubechies least
asymmetric wavelet, with Nψ = 3 and scale ranges j1 = 3 and
j2 = {5, 7, 9, 10, 10}. The Gibbs sampler uses Nmc = 2000
and Nbi = 1000. The hyperparameters of the IW priors are
selected from the literature [30] and fixed to νi = 4 and
Λi = I2×2, for i = 1, 2. The estimation performance is ana-
lyzed through Monte Carlo simulations over 100 independent
copies of bMRW and evaluated via the sample mean or bias,

TABLE I
BMRW ESTIMATION PERFORMANCE FOR N = {28, 210, 212, 214, 216},
j1 = 3 AND j2 = {5, 7, 9, 10, 10}. BEST RESULTS ARE MARKED IN BOLD.

N 28 210 212 214 216

−
c 2

0
=

0
.0
2

pb
p WLR 0.0190 0.0025 0.0042 0.0075 0.0070

MMSE 0.0620 0.0211 0.0127 0.0078 0.0056

s WLR 0.0662 0.0288 0.0155 0.0083 0.0048
MMSE 0.0142 0.0058 0.0043 0.0029 0.0020

r WLR 0.0689 0.0289 0.0161 0.0112 0.0085
MMSE 0.0636 0.0219 0.0134 0.0083 0.0060

−
c 0

2
=

0
.0
2

pb
p WLR 0.0199 0.0064 0.0026 0.0047 0.0051

MMSE 0.0704 0.0308 0.0173 0.0113 0.0082

s WLR 0.0998 0.0371 0.0176 0.0083 0.0054
MMSE 0.0142 0.0066 0.0047 0.0033 0.0020

r WLR 0.1017 0.0377 0.0178 0.0096 0.0075
MMSE 0.0718 0.0315 0.0180 0.0118 0.0084

−
c 1

1
=

0
.0
1

pb
p WLR 0.0004 0.0005 0.0002 0.0001 0.0004

MMSE 0.0065 0.0056 0.0035 0.0011 0

s WLR 0.0485 0.0198 0.0121 0.0061 0.0031
MMSE 0.0080 0.0040 0.0029 0.0021 0.0012

r WLR 0.0485 0.0198 0.0121 0.0061 0.0031
MMSE 0.0103 0.0069 0.0046 0.0024 0.0012

TABLE II
BMRW ESTIMATION PERFORMANCE FOR N = 214 , j1 = 3, j2 = 10 AND
−c02 = {0.02, 0.04, 0.06, 0.08, 0.10}. BEST RESULTS ARE MARKED IN

BOLD.

−c02 0.02 0.04 0.06 0.08 0.10
−
c 2

0
=

0
.0
2

pb
p WLR 0.0075 0.0066 0.0067 0.0062 0.0064

MMSE 0.0078 0.0072 0.0070 0.0072 0.0066

s WLR 0.0083 0.0070 0.0080 0.0081 0.0080
MMSE 0.0029 0.0030 0.0029 0.0029 0.0030

r WLR 0.0112 0.0096 0.0104 0.0102 0.0102
MMSE 0.0083 0.0078 0.0075 0.0078 0.0072

−
c 0

2

pb
p WLR 0.0047 0.0067 0.0069 0.0082 0.0097

MMSE 0.0113 0.0114 0.0065 0.0042 0.0010

s WLR 0.0083 0.0132 0.0145 0.0178 0.0207
MMSE 0.0033 0.0051 0.0066 0.0078 0.0089

r WLR 0.0096 0.0148 0.0161 0.0195 0.0228
MMSE 0.0118 0.0125 0.0092 0.0089 0.0090

−c11 0.0100 0.0141 0.0173 0.0200 0.0224

−
c 1

1

pb
p WLR 0.0001 0.0007 0.0002 0.0010 0.0010

MMSE 0.0011 0.0021 0.0032 0.0048 0.0054

s WLR 0.0061 0.0070 0.0076 0.0081 0.0095
MMSE 0.0021 0.0027 0.0031 0.0034 0.0036

r WLR 0.0061 0.0071 0.0076 0.0081 0.0095
MMSE 0.0024 0.0034 0.0045 0.0058 0.0065

the sample standard deviation (STD) and the root mean square
error (RMSE) across realizations of the estimates for θ ∈
{−c20,−c02,−c11}, defined as m(θ̂) = Ê[θ̂], b(θ̂) = m(θ̂)−θ,

s(θ̂) =

√
V̂ar[θ̂] and r(θ̂) =

√
b(θ̂)2 + s(θ̂)2.

C. Results

Table I summarizes the estimation performance of WLR
and MMSE estimators (using IW priors) for bMRW for a
range of sample sizes N . Overall, it is observed that the
MMSE estimator tends to have larger bias than WLR, which
decreases when the sample size N increases, as expected.
On the other hand, the Bayesian estimator yields significantly
reduced standard deviations, with those of WLR being more
than 2.5 times larger. These estimation variance reductions,
which are more pronounced for small sample size, influence



directly the overall RMSE values, which are in general smaller
for MMSE than for WLR. These performance gains are
particularly important for the parameter c11 measuring joint
multifractality, for which RMSE values are twice as large for
WLR. The price to pay with this performance improvement
is an increased, yet reasonable, computational cost of 16s for
the Bayesian estimator for N = 214 (versus 10−4s for WLR).

Table II contains the estimation performance of the WLR
and MMSE estimators for bMRW process with sample
size N = 214 for a range of weak to strong mul-
tifractality for the second component X2, i.e., −c02 =
{0.02, 0.04, 0.06, 0.08, 0.10}. One can observe that the bias
of the MMSE estimator of −c02 decreases if −c02 increases
and drops below 10% of the value of −c02 for −c02 > 0.06.
Conversely, the bias of the MMSE estimator of −c11 increases
if −c02 increases, which reflects a dependence between the
estimation of these parameters. In terms of STD, the MMSE
estimator shows again reduced values as compare to WLR,
which has overall twice as large STD. Likewise, the RMSE
values for the MMSE estimator remain below those of WLR.

VI. CONCLUSION

This paper proposed a Bayesian estimation procedure for
the multifractal parameters c02, c20, c11 given a bivariate time
series. It relies on a novel joint Gaussian model for a
bivariate vector of centered logarithms of wavelet leaders,
based on a Whittle approximation and data augmentation
for the matrix-valued parameters of interest. Monte Carlo
simulations demonstrated the benefits of the method with
respect to alternative estimators (weighted linear regression).
In particular, the proposed Bayesian estimator showed a sig-
nificant reduction of variance and mean square error when
compared to the linear regression method, especially for the
parameter of joint multifractality c11. An increase in bias was
observed for c02, c20 close to zero, as well as dependence
between the estimator of c11 and the diagonal elements of Σ1,
both potentially induced by the inverse Wishart priors used
here. Future work will include the study of alternative prior
distributions, generalization of our model to texture (images),
and applications to real-world data.
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