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Abstract
Understanding the factors that drive the dynamics of populations of long‐lived species presents a unique challenge for 
conservation management. Here, we investigated long-term change in the body condition of adult northern rockhopper 
penguins Eudyptes moseleyi at Amsterdam Island, southern Indian Ocean, which hosts 5–10% of the global population of 
this endangered species. Analysis of a long‐term dataset (1994–2016), concurrent to the population’s rapid decline, revealed 
no trend in adult northern rockhopper penguin body condition over time at the stages considered in this study, i.e. breeding 
and moulting. However, body condition varied between years and sexes and part of this variation was explained by envi-
ronmental factors. Males were on average in better condition than females whatever the stage and individuals on average 
were in better condition during the moulting compared to the breeding period. The environmental conditions [sea surface 
temperature anomaly (SSTa), Subtropical Indian Ocean Dipole (SIOD) and Southern Annular Mode (SAM)] appeared to 
impact non-linearly the body condition. Overall, females were in better condition for negative values of SAM, SIOD and 
SSTa. The body condition of males exhibited similar but less complex and more significant patterns, with decreasing body 
condition for increasing SAM, SIOD and SSTa. The absence of long-term trends in male and female body condition suggests 
that the very low reproductive output and declining population since 1997 is probably not the result of environmental condi-
tions during pre-breeding and pre-moult and necessitates further research into possible drivers during the breeding season.

Introduction

Understanding the factors that drive changes in wildlife 
populations is central to population ecology and conserva-
tion biology, being the first step permitting robust prediction 
of population trends. In a context of global warming, the 
marine environment has changed during recent decades and 
climate scenarios predict changes to continue (Parmesan and 
Yohe 2003; Cabré et al. 2015). As a consequence, processes 

controlling primary productivity are affected resulting in 
modification of food availability in some marine ecosystems 
(Moline et al. 2004). Food resources are known to affect 
body mass of individuals with potential effect on reproduc-
tive investment and/or survival (Boutin and Larsen 1993; 
Kitaysky et al. 1999; Oro and Furness 2002; Altmann and 
Alberts 2005). In response, morphological traits of animals 
(i.e., body mass of consumers / higher trophic level preda-
tors) were found to be partly sensitive to global warming 
(Weimerskirch et al. 2012) as well as phenological traits, i.e. 
timing of biological events, such as reproduction or migra-
tion (Radchuk et al. 2019).

As diving and flightless seabirds, penguins are particu-
larly sensitive to oceanographic changes and have been 
identified as marine sentinels of ecosystems (Boersma 2008; 
Bost et al. 2015; Iles et al. 2020). Penguins are important top 
consumers in the Southern Ocean food web and the South-
ern Ocean hosts more than 90% of all penguins (Croxall 
and Lishman 1987; Guinet et al. 1996). Penguins (Sphenis-
cidae) are also amongst the three most threatened groups of 
seabirds, with 10 of 18 species classified as Endangered or 
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Vulnerable (Dias et al. 2019). Eudyptes are the largest genus 
by number of species, and are amongst the most threatened 
with six of seven species being globally threatened (Bor-
boroglu and Boersma 2013; BirdLife International 2018). 
Most Eudyptes penguin species are endangered exhibiting 
recent dramatic population decline mainly due to climate-
induced reduction in prey availability or quality, causing 
nutritional stress and low demographic rates (BirdLife Inter-
national 2018; Crawford et al. 2009; Hiscock and Chilvers 
2014; Trathan et al. 2015; Morrison et al. 2015; Barbraud 
et al. 2020). Among the major current threats identified for 
Eudyptes penguins are climate change (increasing sea sur-
face temperature, wind regime changes or extreme weather 
conditions) and environmental variability often resulting in 
shifts in marine food webs (Guinard et al. 1998; Barlow 
et al. 2002; Hilton et al. 2006; Dehnhard et al. 2013a, b; 
Horswill et al. 2014; Demongin et al. 2010; Wolfaardt et al. 
2012), although the availability of resources exploited by 
fisheries and the increase in predation pressure (i.e., by giant 
petrels Macronectes spp. and fur seals Arctocephalus spp.) 
may play a role in some sites (Cuthbert et al. 2009; Morri-
son et al. 2015). Other factors, such as diseases, could also 
be implicated in population declines (De Lisle et al. 1990; 
Cooper et al. 2009; Horswill et al. 2014; Jaeger et al. 2018).

The global population of northern rockhopper penguins 
(Eudyptes moseleyi, Mathews and Iredale, 1921), an endan-
gered species breeding on seven remote islands in the tem-
perate South Atlantic and southern Indian oceans, experi-
enced severe declines during recent decades (57% over the 
past 37 years; Cuthbert et al. 2009; Birdlife International 
2018; Barbraud et al. 2020). The population of northern 
rockhopper penguins breeding at Amsterdam Island (37°50′ 
S; 77°33′ E), southern Indian Ocean, has been declining 
at an average rate of 3–4% per year since the early 1970s 
(Guinard et al. 1998; Barbraud et al. 2020) in line with a sig-
nificant decline of the breeding success since 1997 (Fig. 1, 
Jaeger et al. 2018). In this study, we focus on the Amster-
dam Island population only. Northern rockhopper penguins 
are exposed to epizooties, namely to the erysipelas diseases 
(Erysipelothrix rhusiopathiae) and potentially to avian 
cholera (Pasteurella multocida), and although it has been 
hypothesized that this may be one of the causes believed 
to be responsible for the population decline, their impact 
remains unknown (Jaeger et al. 2018).

Eudyptes penguins body mass and phenology are sen-
sitive to climate conditions, i.e. increasing or changing 
ocean temperatures may reduce nutrients/productiv-
ity and ultimately alter food availability, which in turn 
has been shown to be a known driver of body mass and 
reproductive success (Dehnhard et  al. 2015a, b). Low 
body mass or body condition in penguins generally nega-
tively affects reproductive success (Robinson et al. 2005; 
Crawford et al. 2006, 2008). Indeed, Eudyptes penguins 

exhibit an extremely long courtship-incubation fast 
(35–49 days) with males assuming an incubation/guard 
fast of 31–40 days (Williams 1995). Both sexes were found 
to alter their provisioning and foraging efforts in relation 
to poor food conditions, with males provisioning less food 
to their chicks during the crèche stage than females (Mor-
rison et al. 2016).

One ecological hypothesis (food resources hypothesis) to 
explain the dramatic decline of the northern rockhopper pen-
guin could be modification of food resources at sea (through 
reduction or displacement of prey) encountered by the birds 
throughout their annual cycle, as a result of environmental 
changes. Since northern rockhopper penguins mainly feed 
on low trophic level prey (euphausiid Thysanoessa gregaria, 
small fish and juvenile squid (Tremblay and Cherel 2003)), 
this makes them potentially sensitive to changes in oceano-
graphic conditions that affect primary productivity within 
their foraging range. Furthermore, penguins are capital 
breeders, i.e. organisms that accumulate energy reserves for 
breeding before reproductive events (Cherel et al. 1988a; 
Meijer and Drent 1999). Consequently the birds need to 
acquire the necessary body reserves for reproduction before 
the breeding period, but also before the moulting period, 
which is particularly energy-demanding in penguins due 
to a prolonged fasting period during a catastrophic moult 
(Cherel et al. 1988b; Adams and Brown 1990). For southern 
rockhopper penguins E. chrysocome, it has been suggested 
that the pre–post-moult period could be critical for adult sur-
vival, the environmental conditions during this period being 
correlated with adult survival (Dehnhard et al. 2013a, b).

Based on this knowledge and under the hypothesis that 
declines in breeding success and abundance of northern 
rockhopper penguins at Amsterdam Island are caused by 
a changing of food resources at sea, we used data from a 

Fig. 1  Breeding success of adult northern rockhopper penguin on 
Amsterdam Island from 1997 to 2016. Linear regression (dash-dotted 
line; r2 = 0.70) with 95% confidence intervals (dotted lines) are shown
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23-year (1994–2016) study of northern rockhopper penguins 
at Amsterdam Island to estimate male and female adult body 
condition at two key stages of their annual cycle (the onset 
of breeding and moulting) to test this hypothesis. Using 
this dataset, we addressed the following questions: (1) does 
male and female body condition show a temporal trend? 
(2) are male and female body condition and breeding suc-
cess affected by climatic factors? We predicted a relation-
ship between body condition, breeding success and climate 
factors known to affect primary productivity in the species’ 
foraging areas.

Materials and methods

Study area and species

Northern rockhopper penguins were studied at Amsterdam 
Island (37°50′ S; 77°33′ E) in the southern Indian Ocean, 
located just north of the SubTropical Front (STF; Graham 
and De Boer 2013). The entire population of Amsterdam 
Island (12, 000 breeding pairs representing 5–10% of global 
population and 62% of the Indian Ocean population; Bird-
Life International 2018; Barbraud et al. 2020) breeds in 
several and separate sub-colonies in the area of the Entreca-
steaux cliffs (Jaeger et al. 2018). Males arrive at the breeding 
colonies during the second half of July and females during 
the first half of August (Duroselle and Tollu 1977; Tollu 
1978; Thiebot et al. 2014b). After laying in early Septem-
ber, both parents incubate the two eggs alternately until 
hatching. Incubation is generally divided in three shifts, 
the first shared between males and females, the second by 
female and the third by male. Incubation lasts 33–39 days. 
Hatching takes place in October. Only males are guarding 
the chick, which leads to a prolonged fasting period after 
incubation (17–26 days; Williams 1995). At best, only one 
chick per pair reaches the crèche stage, when both parents 
forage simultaneously and leave their chick unguarded in 
October–November. The chicks fledge in late December, 
about 60–70 days after hatching. Then both adults depart 
on their pre-moult trip for 3 to 4 weeks (up to 8 weeks) and 
return to the breeding colony in March for a prolonged fast-
ing period to moult.

Northern rockhopper penguins are opportunistic for-
agers, hunting in different areas during the breeding and 
non-breeding seasons. The foraging range of northern rock-
hopper penguins has been investigated during the breeding 
period on Amsterdam Island (Heerah et al. 2019; C. A. Bost, 
unpublished data) and during the non-breeding period (Thie-
bot et al. 2012). Incubating penguins perform looping trips, 
with a mean foraging range of 230 km south of Amsterdam, 
although some breeders may forage as far as 410 km off their 
colony. Brooding birds usually forage much closer to the 

colony, staying within the region of the shelf (8–80 km; C. A 
Bost, unpublished data). Tracking data further revealed that 
birds disperse after moult over an area stretching to the East 
of Amsterdam (approx. 47° S and 110° E), performing long-
range movements of up to 2200 km away from the colony, 
without any return to land (Thiebot et al. 2012). The major-
ity of birds head South-east, along the Indian Ridge and 
forage south of the southern boundary of the SubTropical 
Front using deep waters (3000–3500 m) with very hetero-
geneous sea surface temperature anomalies and chlorophyll 
concentrations (Thiebot et al. 2012).

Northern rockhopper penguins are relying mainly on 
pelagic crustaceans, in particular euphausiids (Cherel et al. 
1999) and juvenile squid at Amsterdam Island (Tremblay 
and Cherel 2003). Dietary studies from Amsterdam Island 
show seasonal changes in diet with crustaceans and cepha-
lopods, respectively, dominating the diet during the early 
crèche stage, while fish being the main prey item in the later 
stages of chick-rearing (Tremblay et al. 1997; Tremblay 
and Cherel 2003). Isotopic values of blood collected at the 
arrival in the colony in spring indicate that adult birds also 
forage in subtropical waters in late winter (Thiebot et al. 
2012).

Biometry and breeding success

Body size measurements (culmen length (± 0.1 mm) using 
calipers, and body mass (± 50 g) using a  Pesola® spring 
balance) were obtained annually since 1994 on a sample of 
adults (263 ± 37 individuals each year) captured on arrival 
at their colony at two key phases of their annual cycle. First, 
on arrival at the colony at the onset of the breeding season 
(July–August; hereafter named breeding), when individuals 
return from their non-breeding grounds. Second, after their 
pre-moult trip (hereafter named moulting) between 8 and 20 
February, when they return to the colony to moult following 
the breeding period. Individuals were sexed according to 
their arrival date at the colony after winter migration (males 
20 July–3 August; females 10–26 August). The frequency 
distribution of the culmen length of sexed birds was then 
used to determine a culmen length threshold used to sex 
individuals captured during the moulting period when both 
sexes arrive together (Warham 1970; Steinfurth et al. 2019). 
Since there is a slight overlap between male and female cul-
men length, we removed individuals belonging to the 90th 
percentile of the culmen length frequency distribution for 
females and the 15th percentile for males to remove potential 
sexing errors. This resulted in removing 15.4% and 14.5% of 
females and males, respectively. A threshold value of 46 mm 
was used to sex individuals captured during the moulting 
period (males ≥ 46 mm, females < 46 mm). Since our sexing 
method excluded the smaller males and the larger females, it 
may have biased our results. We thus conducted a sensitivity 
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analysis by creating another dataset where the 15% largest 
males and the 15% smallest females were removed and re-
ran the analyses.

Breeding success was calculated since 1997 on a sample 
of 14–170 nests depending on the year, as the ratio between 
the number of chicks counted in December just before their 
departure at sea and the number of incubating adults (i.e. 
number of breeding pairs) counted in the first half of Sep-
tember to coincide with the peak egg laying.

Environmental variables

Three environmental covariates were considered to explain 
inter-annual variations in body condition. The local sea 
surface temperature anomaly (SSTa) and two climate indi-
ces: the Subtropical Indian Ocean Dipole (SIOD) and the 
Southern Annular Mode (SAM), which are major modes 
of climate variability in the southern Indian Ocean (Behera 
and Yamagata 2001; Hall and Visbeck 2002; Hermes and 
Reason 2005; Terray 2011). As detailed below, these three 
environmental covariates were chosen as they likely char-
acterize the marine environment used by the penguins at the 
times of interest from the local, regional and global scales, 
respectively (Thiebot et al. 2012).

We considered two periods for the climate indices: (i) 
between the end of the breeding period and the beginning 
of the moulting period (pre-moult; December of year t-1 to 
January of year t) to test for an effect of climate conditions 
on body condition prior to moulting, (ii) between the end 
of the moulting period and the beginning of the following 
breeding period (pre-breeding; March to July of year t) to 
test for effects of climate conditions on body condition prior 
to the breeding period and on breeding success.

Sea surface temperature (SST) plays a fundamental role 
in net primary production (Behrenfeld et al. 2006), which 
may have an effect on the distribution and abundance of 
northern rockhopper preys. SST is known to affect body 
condition and demographic parameters in several seabird 
and penguins species (Le Bohec et al. 2008; Barbraud et al. 
2012; Dehnhard et al. 2013b; Horswill et al. 2014; Bost 
et al. 2015). SSTa is regulated by different climate pro-
cesses/modes operating at different spatial scales (e.g. local, 
regional and global scales).

Monthly in situ SSTa data were obtained from https ://
iridl .ldeo.colum bia.edu/SOURC ES/.NOAA/.NCEP/.EMC/.
CMB/.GLOBA L/.Reyn_Smith OIv2/.month ly/.ssta/. To take 
into account the variation in the spatio-temporal distribution 
of adult northern rockhopper penguins, SSTa was extracted 
during the pre-moult (from December of year t-1 to January 
of year t) for the sector 37°–44° S, 75°–82° E, and during the 
pre-breeding (wintering from March to July of year t) for the 
sector 37°–40° S, 75°–90° E when birds use a larger foraging 
area (Thiebot et al. 2012; Heerah et al. 2019). Finally, SSTa 

during the incubating period (September) was extracted for 
a restricted area 35°–40° S, 75°–80° E (Heerah et al. 2019) 
to test for effects of climate conditions on breeding success.

The SIOD is defined as the leading mode of the SST vari-
ability (i.e., a time series) in the domain 30° E–150° E and 
10° S–50° S (Behera and Yamagata 2001; Terray 2011). 
This index is standardized (e.g. mean and standard deviation 
equals to 0 and 1, respectively) and positive values of the 
index (e.g. positive SIOD events) correspond to positive and 
negative SSTa, respectively, in the southwest and northeast 
of the southern Indian Ocean basin. This SSTa pattern is 
linked to a strengthening of the Mascarene high (e.g., a zone 
of high Sea Level Pressure near Mascarene Island), which 
corresponds to a blocking atmospheric situation and an 
undulation of the westerly mean flow with more southeast-
erly (northwesterly) wind anomalies eastward (westward) of 
Amsterdam Island. This implies increased (decreased) wind 
speed eastward (westward) of Amsterdam Island. Note that 
Amsterdam Island is located exactly at the zero point of the 
SSTa gradient between the two poles of the SIOD on aver-
age. In other words, the in situ SSTa and SIOD bring com-
plementary information on the climate conditions, which 
may impact northern rockhopper penguins. Consequently, 
SIOD was used in the analyses during both pre-moult and 
pre-breeding periods as it may affect northern rockhopper 
penguins indirectly through its effect on SST and thermo-
cline regional anomalous patterns in addition to in situ SST 
and thermocline anomalies. It has been shown to affect the 
foraging behaviour and population dynamics of king pen-
guins Aptenodytes patagonicus breeding at Crozet islands 
(Bost et al. 2015).

Finally, SAM is a global large-scale climatic index 
defined as the difference in the normalized monthly zonal 
mean sea level pressure between 40° S and 65° S (Gong and 
Wang 1999). Monthly SAM values were obtained from the 
online database of the Koninklijk Nederlands Meteorolo-
gisch Instituut https ://clime xp.knmi.nl/selec tinde x.cgi.

SAM index measures the surface pressure gradient (e.g. 
the "see-saw" of atmospheric mass) between the middle 
(around 30° S–50° S) and high (around 50° S–70° S) lati-
tudes of the southern hemisphere (Marshall 2003). It is the 
dominant mode of atmospheric variability in the southern 
hemisphere (Hall and Visbeck 2002). Positive values of the 
SAM index correspond in most cases to stronger westerlies 
over the high latitudes (50°S-70°S) and weaker westerlies 
at mid-latitudes. The reverse is true for negative values. As 
the SAM is a large-scale and low-frequency (e.g., month 
to month or inter-annual variations) index, it does not cor-
respond necessarily to the in situ wind conditions (direction 
and speed) in the southern Indian Ocean. As such, its link 
with the local SST or SIOD is complex. In other words, 
it is not a redundant climate variable of in situ SSTa/wind 
conditions or the SIOD. However, SAM may affect northern 
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rockhopper penguins indirectly through its effect on westerly 
winds and Ekman transport (i.e., the 90° net transport of the 
surface layer of a fluid by wind forcing) affecting upwelling 
intensity and mixed layer depth, and consequently biological 
productivity and prey availability in the STF zone (Thomp-
son et al. 2011).

In a nutshell, local SSTa, SIOD and SAM provide differ-
ent details of the background climate conditions from the 
local, regional and global scales, respectively, and the rela-
tions between local SST and wind with both SAM and SIOD 
are not direct.

We tested for a temporal trend in environmental variables 
using a generalised linear model (GLM) with a Gaussian 
family distribution and identity link function. Year was fitted 
as a continuous variable. The GLM model was fitted using 
the R package lme4.

To assess the robustness of association between the 
body condition of penguins and the physical environment, 
we also computed correlation maps between body condi-
tion of males and females during the breeding and moulting 
periods and the SST time series over the Indian Ocean for 
the two seasons preceding: the pre-breeding and pre-moult 
periods. Such correlation maps are standard statistical tools 
of climate analysis (see Von Storch and Zwiers 1999 for 
illustration) and they have been very useful in this science to 
discover new phenomena or modes of climate variability. In 
our context, although we extracted some environmental vari-
ables from the distribution areas of penguins during different 
periods of their life cycle, which we then used as explanatory 
variables for body condition, correlation maps are comple-
mentary to this analysis by focusing on larger spatial scales 
and shed light on the spatial structure of climate anomalies, 
which may be associated with changes in body condition.

Modelling body condition

To estimate body condition, we used the scale mass index 
(SMI) as recommended by Peig and Green (2009). The SMI 
(hereafter referred to as body condition) was calculated for 
each individual i according to the formula:

where  Mi and  Li are, respectively, the body mass and the 
bill length of the individual i , x is mean of bill length 
(47.22 mm for females and males pooled) and b is the value 
of the slope estimate of a standard major axis regression 
(SMA) of bill length and body mass (0.532 for females and 
males pooled). The SMA between bill length and body mass 
was fitted using the R package lmodel2 .

First, we tested for the effects of sex, day of the year, 
year, stage (breeding, moulting) and the interaction 

SMI
i
= M

i
∗ (x∕L

i
)b

between sex and stage on body condition using a GLM 
with a Gaussian family distribution and identity link func-
tion. Year was fitted as a categorical effect to test for inter-
annual variations in body condition, and day of the year as 
a continuous variable. To test for a trend in body condi-
tion, year was fitted as a continuous variable. The GLM 
model was fitted using the R package lme4.

As we suspected strong non-linear effects of climate 
covariates on body condition, their effects were tested 
using generalised additive models (GAM) with a Gauss-
ian family and identify link function. The advantage of 
GAMs is the smoothing function which enables to model 
non-linear relationships between the response variable 
and the predictors (Wood 2004, 2017). Because sex and 
stage effects were found on body condition using GLM 
(see “Results”) and due to potentially complex non-linear 
interactions between sex, stage and environmental covari-
ates, separate GAM were developed for males and females 
and for each stage. Models included day of the year, SSTa, 
SIOD and SAM as fixed factors modelled with non-par-
ametric smoothing functions (Wood et al. 2017). We a 
priori expected non-linear effects of the date at which birds 
arrived at the colony and were weighed because body con-
dition is known to be influenced by several intrinsic fac-
tors (such as age, experience, individual quality…) which 
may affect arrival at the colony in a complex way. We 
proceeded with a forward-stepwise modelling approach, 
by fitting one variable at a time to estimate the variance 
explained by each (Carneiro et al. 2016). We limited the 
amount of smoothing (k) to 3 degrees of freedom for each 
spline to avoid excessive flexibility and model overfitting 
that would have no ecological meaning (Wood 2004). As 
there was a single very early date of arrival (day of the 
year = 23 for 2004) during moulting, we tested the same 
forward-stepwise modelling approach on a dataset exclud-
ing this year (see results on Online Resource 1, Table S2 
and Fig S1). The models selected were similar whatever 
the dataset used (see “Results“ and Online Resource 1, 
Table S1, S2). We thus considered the original dataset.

Finally, we investigated (at the population level) 
whether body condition between i) the breeding and subse-
quent moulting period and ii) the moulting period and sub-
sequent breeding period were correlated. We first checked 
for normality of the body condition using Shapiro–Wilk 
tests and then performed correlation tests (accordingly 
Spearman rank correlation test (Shapiro–Wilk test; 
P < 0.05) for i), and Pearson’s test (Shapiro–Wilk test; 
P > 0.05) for ii)).

Modelling breeding success

The effects of climate covariates and body condition on 
breeding success were tested using GAM with a Gaussian 
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family and identify link function. Models included body 
condition of females and males during breeding, SSTa and 
SAM during the winter preceding the breeding event, and 
SSTa during the incubating period as fixed factors mod-
elled with non-parametric smoothing functions (Wood et al. 
2017).

Prior to GAM analysis (body condition and breeding), 
we used the variance inflation factor to assess collinear-
ity between climate variables and removed covariates for 
which GVIF > 2 (Zuur et al. 2009). Residual normality was 
visually verified. The starting models included all the main 
effects. The best candidate model (i.e. the model containing 
the most informative set of covariates) was selected based 
on the Akaike’s information criterion (AIC). A difference of 
more than 2 AIC units was taken to indicate strong support 
for the model with the lower AIC (Burnham and Anderson 
2002). The GAM models were fitted using the R package 
mgcv and MASS. Data were analysed using R 3.4.1 (Team 
RC 2019).

Results

Adult body condition

There was a high inter-annual variability in body condition 
of male and female northern rockhopper penguins for both 
sexes and stages over the study period 1994–2016 (Fig. 2). A 
similarly high variability was observed for body mass what-
ever the sexes and the stages considered (Fig. S2). However, 
no long-term temporal trend was detected for the body con-
dition whatever the period (breeding vs. moulting) or the 
sex considered (Fig. 2). At the population level, no correla-
tion was found for body condition i) between the breeding 
and subsequent moult period (Spearman rank correlation, 
rs =−0.12, N = 19, P = 0.63), and ii) between the moult and 
subsequent breeding period (Pearson’s correlation, r = 0.29, 
N = 20, P = 0.22). Individuals were in better condition dur-
ing the moulting period compared to the breeding period, 
and males were on average in better condition than females 
(Table 1, Figs. S2, 2). Body condition also varied between 
sexes, stages and date of the year (see Online Resource 1, 
Table S1). Body condition was negatively related to day of 
the year, indicating that individuals arriving earlier at the 
colony whatever the period (breeding vs. moulting) were in 
better condition.

All three climate covariates (SSTa, SIOD, SAM) exhib-
ited significant temporal trends over the study period 
(P < 0.001) except SAM during the pre-moult (for female 
P = 0.011 and for male, non-significant; see Online Resource 
1, Table S4-S7). SSTa and SAM tended to increase (pre-
breeding) while SIOD tended to decrease (pre-breeding and 
pre-moult). All three climate covariates and day of the year 

affected male and female condition during pre-breeding and 
pre-moult (see Online Resource 1, Table S2). The GAM 
models explained ~ 48% and ~ 32% of the deviance during 
the breeding and the moulting periods, respectively. The day 
of the year explained a large part of the variation of body 
condition (~ 41% and ~ 25% of the deviance during breeding 
and moulting, respectively), the climate covariates explain-
ing the remaining part (~ 7%, 2.7–11.3; see Online Resource 
1, Table S2). Among covariates, SSTa (4%) for females and 
SAM (12.4%) for males better explained body condition 
variations during pre-breeding, while SIOD (7% and 3.5%, 
respectively, for females and males) better explained body 
condition variations during pre-moult.

During breeding, body condition decreased with 
increasing arrival date at the colony for males and females 
(see Online Resource 1, Tables S4-S7, Fig. 3a). These 
relationships were similar during the moulting period, 
with a clear pattern for late arriving individuals that 
were in lower body condition whatever the sex (Fig. 4a). 

Fig. 2  Body condition (scale mass index: mean ± standard devia-
tion) in adult northern rockhopper penguins on Amsterdam Island 
from 1994 to 2016 corrected for the effect of day of the year during 
a breeding stage and b moulting stage in females (dotted grey) and 
males (black). To correct for the effect of day of the year we used the 
residuals from a GAM modelling body condition as a function of day 
of the year
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Nonetheless, very early arriving individuals during the 
moulting period (days 23; Fig. 4a) had lower body con-
dition compared to birds arriving later in late January 
and early February (days 27–35). These results remained 

robust when excluding the most extreme years (see Online 
Resource 1, Tables S2–S3, Figs. 4, S1).

SSTa had an effect on body condition only during the 
pre-breeding period (see Online Resource 1, Tables S4-S5, 
Fig. 3b). Male body condition decreased almost linearly 

Table 1  Average body measurements and body condition (scale mass index, body condition) for male and female northern rockhopper penguins 
from Amsterdam Island, southern Indian Ocean, for the 1994–2016 period

Values are mean (SD)
N number of individuals

Period Sex N Bill length (mm) Bill length 
range (mm)

Body mass (g) Body mass range (g) Body condition Body condition range

Breeding Male 2110 49.89 (1.91) 46.0–57.6 3499.3 (381.9) 1850–4750 3399.9 (365.9) 1810–4575
Female 1529 43.69 (1.42) 37.0–45.9 3205.2 (377.1) 1925–4500 3341.2 (389.4) 2012–4579

Moulting Male 804 49.68 (1.80) 46.1–56.0 3970.9 (488.4) 1700–5200 3865.8 (471.0) 1646–5077
Female 572 43.33 (1.57) 37.9–45.9 3631.5 (463.9) 1675–4800 3802.4 (484.1) 1778–5059

Fig. 3  Estimated smoothing curves (with s.e.) for environmental 
covariates during pre-breeding period in relation to the body condi-
tion of northern rockhopper penguins during the breeding stage in 

females and males. Covariates considered in the model were a day 
of the year, b sea surface temperature anomaly, c Subtropical Indian 
Ocean Dipole and d Southern Annular Mode

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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with increasing SSTa. Female body condition decreased 
with increasing values of SSta up to null anomalies (~ 0) 
and then increased for warmer SSTa. Maps of correlation 
with Indian Ocean SST support the results obtained using 
the above models (Fig. 5). There were negative correlations 
significant at the 95% confidence level in the foraging area 
around Amsterdam Island during breeding, while no par-
ticular link occurred in the southeast area during pre-moult. 
Spatial patterns of correlation were similar for males and 
females, but more significant for males during the two peri-
ods (Fig. 5).

The body condition of males and females decreased with 
increasing SIOD during the pre-breeding period, almost 
linearly for both sexes (Fig. 3c). During pre-moult, body 
condition of males and females increased with increasing 
SIOD in a non-linear way (Fig. 4b).

SAM was non-linearly related to body condition in 
males and females whatever the period considered (see 
Online Resource 1, Tables S2, S5–S7, Figs. 3d, 4c) except 

for females during pre-breeding (the full model was not 
selected despite a slightly lower AIC value Δ = −0.71 
for the model including SAM). During the pre-breed-
ing period, the body condition of males decreased with 
increasing SAM but increased for high values of SAM 
(Fig.  3d). Reversed relationships were observed dur-
ing the pre-moult period, with values of body condition 
maximized for slightly positive values of SAM (Fig. 4c). 
Our sensitivity analysis testing for an effect of the sexing 
method indicated that all results remained very similar 
when the 15% largest males and 15% smallest females 
were removed from the dataset (results not shown).

Breeding success

There was a long-term temporal trend in breeding success 
with a continuous decline during the period 1997–2016 
(Fig. 1) and extremely low values for recent years (~ 0%). 
Neither the body condition of females or males during the 

Fig. 4  Estimated smoothing curves (with s.e.) for environmental 
covariates during pre-moult period in relation to the body condition 
of northern rockhopper penguins during the moulting stage in females 

and males. Covariates considered were a day of the year, b Subtropi-
cal Indian Ocean Dipole and c Southern Annular Mode
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breeding period, nor the environmental variables (SAM, 
SIOD and SSTa) did influence breeding success (see 
Online Resource 1, Table S8).

Discussion

This study examined body condition variation over a 23-year 
period (1994–2016) of a threatened migratory seabird, the 
northern rockhopper penguin at Amsterdam Island. Contrary 

to the prediction of the food resources hypothesis, the body 
condition of males and females exhibited no long-term 
temporal trend, whatever the stage considered (i.e. breed-
ing or moulting), whereas breeding success declined dur-
ing the same period. Parental body condition at the start of 
the breeding season, and therefore food availability during 
the pre-breeding period, can therefore be ruled out as an 
explanation for the observed low breeding success in recent 
years. It remains open whether low breeding success in this 
population is explained by environmental conditions and 

Fig. 5  Map of correlations between penguin body condition and time 
series of sea surface temperature according to the period (breeding 
stage correspond to pre-breeding austral winter period and moult-
ing stage to pre-moult austral summer period) and sex. Amsterdam 

Island (grey star) and foraging areas considered to extract sea surface 
temperature anomaly (grey rectangle) are shown. Contours indicate 
where the correlation exceeds the 95% confidence level, based on a 
Student’s t test
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food availability near Amsterdam Island during the breeding 
season (i.e. during the chick-rearing period, chicks starving 
during poor conditions not necessarily imply lower body 
condition of adults (Morrison et al. 2016)), disease or other 
factors, such as predation (Authors’s unpublished data). As 
predicted by life-history theory, this could reflect a trade-
off between current and future reproduction (Stearns 1976). 
This may lead, when resources are scarce, to abandonment 
by adults of the current breeding episode if risks to their 
survival are too great (Goodman 1974; Drent and Daan 
1980). Alternatively, the decline in breeding success can 
be due to disease (Jaeger et al. 2018) or other factors, such 
as predation.

Sex‑specific body condition

Body condition varied between years and sexes and part of 
this variation was explained by the environmental factors 
investigated in the study. Sex‐specific sensitivity to envi-
ronmental variability is rather common (Badyaev 2002). 
Ecological theory predicts that larger animals have higher 
energetic demands than smaller animals, and that in times of 
food shortage small size confers an advantage (e.g. Wikel-
ski and Wrege (2000)). As northern rockhopper penguins 
are sexually size dimorphic, with females being generally 
smaller than males (Warham 1970; Steinfurth et al. 2019; 
Cuthbert 2013), low resource availability would dispro-
portionately affect males, which is suggested by the higher 
sensitivity to variability in SSTa (Figs. 4, 5). Nevertheless, 
males were on average in better condition than females what-
ever the stage. This could be linked to different parental 
roles. Females require additional energy reserves to produce 
the eggs, while males are fasting during a longer period at 
the colony between arrival and incubation period (~ 47 days; 
Williams 1995) compared to females (~ 39 days), and also 
during moult (20–30 days, up to ~ 60 days of fasting). Other 
non-exclusive hypotheses are that these patterns in body 
condition could be driven by males and females using dif-
ferent areas prior to arriving in their colonies, or feeding on 
different prey, or by the time lag in arrival between males 
and females.

Body condition and timing of arrival at colony

The body condition of both sexes was negatively related 
to the day of the year, indicating that individuals arriving 
earlier at the colony for each of the two stages were in better 
condition. Timing of egg laying (which correlates with tim-
ing of arrival) and body mass were also linked with clutch 
mass in the closely related southern rockhopper penguin 
(Dehnhard et al. 2015a, b, 2016). Similarly, considering 
body mass at arrival (after their incubation trip), possible 
relationships between body mass and timing of reproduction 

were suggested in macaroni penguins E. chrysolophus 
(Horswill et al. 2016). Larger body sized females may be 
more likely to initiate breeding slightly earlier.

Reduced reproductive success for adults in poor body 
condition has been documented in Eudyptes penguins 
(southern rockhopper penguin; Crawford et al. 2006, 2008; 
macaroni penguin; Horswill et al. 2016). A carry-over effect, 
i.e. influence of pre-breeding stages on subsequent stages 
of the breeding cycle, was also evidenced from winter body 
mass with timing of breeding and reproductive success in 
penguins (macaroni penguin: Crossin et al. 2010; little pen-
guin Eudyptula minor: Salton et al. 2015). Individuals in 
good body condition (i.e. breeding body mass) were more 
likely to breed early (little penguin: Salton et al. 2015; south-
ern rockhopper penguin: Dehnhard et al. 2015b; Morrison 
et al. 2016). Nonetheless, at the population level, no cor-
relation was evidenced here for body condition between 
the breeding and subsequent moult period and between the 
moult and subsequent breeding period. Clutch initiation 
date was found to be highly consistent in individual south-
ern rockhopper penguins, but not affected by individual pre-
breeding foraging ranges revealing a likely individual trait 
(Dehnhard et al. 2015b, 2016; Morrison et al. 2016). Other 
parameters, such as sex, age or individual quality, could 
influence the date of return to the colony to breed (Thiebot 
et al. 2014b). Unfortunately, the information on breeding 
success at the individual level was missing in our study and 
did not permit to explore the relationships between body 
condition, timing of arrival and breeding success.

Body condition and climate factors

The body condition of males and females was impacted by 
all the climate factors considered, while there was no effect 
on breeding success. This could indicate that body condi-
tion has been kept above a certain threshold where it did 
not impact breeding success or that the extreme impact of 
diverse causes (i.e. weather, predation and/or pathogens) was 
overlying any trends. In the closely related southern rock-
hopper penguin, the body mass was evidenced to be affected 
by climate variables (Dehnhard et al. 2015a). We evidenced 
complex relationships between the body condition of indi-
viduals and the climatic conditions preceding the breeding 
season. The body condition of females during the breeding 
period was non-linearly related to the remote environmental 
variables (except for SIOD). Overall, females were in bet-
ter body condition for negative values of SIOD and SSTa, 
although their body condition seemed to increase for posi-
tive SSTa. The body condition of males exhibited similar but 
less complex and more significant patterns, with decreasing 
body condition for increasing SAM, SIOD and SSTa but 
with slight increases in body condition for positive values 
of SAM. Positive values of SAM in South Atlantic Ocean 
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(i.e. lower SST and stronger westerly winds) were found 
to increase body mass in the southern rockhopper penguin 
(Dehnhard et al. 2015a). Nevertheless, inter-annual varia-
tion in body mass should vary among studied populations 
(Dehnhard et al. 2013a; Crawford et al. 2006, 2008) reflect-
ing possible regional differences in the environmental con-
ditions. Similarly, the SAM-associated climatic conditions 
have already previously been associated with better foraging 
conditions and higher survival rates (southern rockhopper 
penguin; Dehnhard et al. 2011, 2013a, b). The SAM was 
also best explanatory factor for clutch initiation date in rock-
hopper penguins (i.e. earlier under positive SAM; Dehnhard 
et al. 2015b). Furthermore, Dehnhard et al. (2015b) demon-
strated that heavier females producing heavier clutches and 
laid heavier eggs under lower SST. Finally, larger chicks at 
fledging positively correlated to higher provisioning rate by 
parents have greater likelihood of surviving to recruit into 
the population (Morrison et al. 2016; Horswill et al. 2014, 
2017).

The area around Amsterdam Island presents characteris-
tics of a subtropical gyre, i.e. quiescent conditions with little 
mixing from winds and occasional occurrence of mesoscale 
eddies leading to generally oligotrophic conditions. How-
ever, medium levels of production at the surface indicate a 
transition area between the Southern ocean and subtropical 
gyre (Visser et al. 2015). The subtropical gyre is charac-
terized by globally low productivity due to weak mixing 
and mesoscale eddy activity as reported by satellite data 
(Antoine et al. 1996), oceanographic models (Machu et al. 
2005), and in situ sampling (Visser et al. 2015).

In the Amsterdam Island area, positive SAM and SIOD 
correspond, respectively, to less wind at mid-latitude and 
warmer surface water (Lovenduski and Gruber 2005). 
Favourable oceanographic conditions would be generated by 
negative phases of both SIOD and SAM during pre-breeding 
while positive phases of these climate indices would corre-
spond to beneficial conditions during pre-moult. These state-
ments are supported by the relationships obtained between 
SSTa and body condition. Colder surface waters and strong 
wind during the austral winter period resulted in weak strati-
fication and enhanced mixing of the water column (Fig. 6a, 
favourable conditions on the left panel vs unfavourable con-
ditions on the right panel). These environmental conditions 
potentially injected deeper waters enriched in nutrients to 
refuel the biological production in the surface layer. The 
new biological production may sustain high prey abundance, 
which is an important process in the oligotrophic subtropi-
cal context. Nonetheless, it will take a considerable amount 
of time from increased nutrients over primary productivity 
to generate prey for penguins. Colder surface waters and 
increased wind could also directly affect the distribution of 
prey swarms and therefore foraging success (Dehnhard et al. 
2013a). During the succeeding austral summer period and 

its associated bloom, warm surface waters induced stratified 
water column. The seasonal biological production accumu-
lates at the thermocline and, as a result, mid-trophic levels 
are attracted by this vertical aggregation of biological pro-
duction. Such oceanographic features may create favourable 
conditions for prey concentrations available at the depth of 
the thermocline for diving predators, such as penguins (Pel-
letier et al. 2012; Van Eeden et al. 2016). During the austral 
summer, a high stratification of the water column required 
for the bloom was maintained by weak winds conditions and, 
as a result, for the accumulation of biological production at 
the bottom of the surface layer (Fig. 6b). These climatic and 
oceanographic processes operating during the austral sum-
mer may explain the different (and nearly opposite) patterns 
which were observed during the pre-moult period compared 
to the pre-breeding period. During moulting, females and 
males had maximum body condition for intermediate values 
of SAM, and their body condition increased with increas-
ing values of SIOD during the austral summer. The pre-
moulting months are a key period for individuals that need 
to replenish their energetics reserves through a period of 
hyperphagia at sea (Thiebot et al. 2014a) before initiating 
their moult. We do not know where the individuals forage in 
the months during this particular period but we can hypoth-
esize that females and males behaved similarly or at least 

Fig. 6  Schematic effects of climatic factors [Southern Annular Mode 
(SAM) and Subtropical Indian Ocean Dipole (SIOD)] and the derived 
physical (wind and mixing) and trophic (primary production and prey 
densities) conditions during pre-breeding and pre-moult periods on 
body condition in adult northern rockhopper penguin on Amsterdam 
Island from 1994 to 2016 during a breeding and b moulting stages. 
Favourable conditions for body condition on the left panels versus 
unfavourable conditions on the right panels. The black line illus-
trates a typical temperature profile in the subtropical domain depict-
ing either a weak or a strong stratification. Symbols ( ±) represent, 
respectively, positive and negative SAM and SIOD

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



 Marine Biology          (2021) 168:27 

1 3

   27  Page 12 of 15

they forage in areas similarly influenced by climatic factors. 
Nevertheless, the correlation maps allowed investigating 
spatial associations between body condition and SSTa pat-
terns without a selection of a priori climate indices. Spatial 
patterns of correlation are similar for males and females, 
but more significant for males during the two periods (see 
Fig. 5). Here, this approach supports the robustness of the 
GAM analysis which provides congruent results. Despite the 
exploratory nature of this correlation analysis, such meth-
ods have also been proven to be useful in discovering new 
climate teleconnections (Von Storch and Zwiers 2001) and 
can be useful here to generate hypotheses on the potential 
foraging areas and to suggest other important remote climate 
forcing phenomena on penguins’ body conditions (e.g. El 
Niño-Southern oscillation (ENSO)).

For northern rockhopper penguins, we found that indi-
viduals on average were in better condition during the moult-
ing period compared to the breeding period, suggesting that 
body condition was probably fully restored during the pre-
moulting months but not during the pre-breeding months 
(i.e., austral winter period previous to the onset of breeding). 
Birds used considerable reserves of energy during moulting 
explaining why they need to be in better condition before 
this stage. This dissimilarity in condition can also mirror the 
different seasonal availability of trophic resources or might 
indicate different foraging areas. Indeed Eudyptes penguins 
tended to exhibit large-scale dispersal during the pre-moult 
period (Lowther et al. 2014; Thiebot et al. 2014a; Horswill 
2015; Whitehead et al. 2016).

Our results, showing no long-term trend in northern 
rockhopper penguin adult body condition at two critical 
periods of the life cycle, concurrent with changes in cli-
mate variables, combined with the synchronous dramatic 
long-term decline in breeding success and its lack of asso-
ciation with climatic factors, suggest that the causes of the 
long-term decline of the Amsterdam Island population does 
not originate solely from bottom–up effects linked to chang-
ing marine environment, at least during the pre-breeding 
and pre-moulting periods. Population declines should be 
due to low breeding success as observed here, but also to 
low adult survival, and low survival of immatures between 
fledging and recruitment at the colony, but no informa-
tion is available for these two last parameters. Pathogen 
outbreaks (avian cholera and erysipelas causative agents) 
were identified to threaten seabird species on Amsterdam 
Island (Jaeger et al. 2018). Nonetheless, the effects of these 
pathogens on northern rockhopper penguins remain to be 
quantified and the responsible mechanisms to be identified. 
Other potential land-based factors are top–down effects due 
to predation pressure and/or harassment level. Native brown 
skuas Catharacta antarctica lonnbergi, introduced invasive 
brown rats Rattus norvegicus or feral cats Felis catus are 
known to predate on similar sized penguins and on northern 

rockhopper penguins at Amsterdam Island (Berruti 1981; 
Hunter 1990; Simeone and Luna-Jorquera 2012; Authors, 
personal observation). Fur seals Arctocephalus spp. occa-
sionally hunt and prey upon northern rockhopper penguins 
(Roux and Hes 1984) and may be an additional cause of 
the population decline (Guinard et  al. 1998). However, 
although the number of sub-Antarctic fur seals A. tropica-
lis at Amsterdam Island increased dramatically between the 
1970s and late 1990s, it has stabilized since the mid-2000s 
(Pacoureau et al. 2017).

Conclusion

In conclusion, we suspect that northern rockhopper penguin 
population decline at Amsterdam Island might result from 
effects of top–down pressure (i.e. on land threats: preda-
tion or harassment), disease, and bottom–up environmental 
forces (i.e. food resources) (Regehr and Montevecchi 1997; 
Horswill et al. 2016), which may act individually or more 
likely in combination. Further information on the drivers 
of the population decline and particularly the low breeding 
success is needed. Additional field and modelling studies are 
needed to understand and estimate the effects of potential 
disease outbreaks and predators on the demography and pop-
ulation dynamics of northern rockhopper penguins, which 
will help designing management plans aiming at conserving 
this endangered species.
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