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Abstract—This paper studies the impacts of transmitters power
levels on spectrum reconstruction performances in order to mon-
itor a wideband spectrum. A sub-Nyquist blind sampling scheme
based on the Modulated Wideband Converter (MWC) has been
considered to achieve this task. Reconstruction performances are
evaluated in simulation in terms of correct reconstruction and
false alarm rates by studying several multi-level power scenarios.
The study shows that the performance of reconstruction depends
on the In-Band Signal-to-Noise ratio (IBSNR) of each transmitter.
Based on these results, a threshold of In-Band Signal-to-Noise
ratio to ensure the correct reconstruction is proposed.

I. INTRODUCTION

In context of cognitive radio, the limitation of frequency
resources motivates the studies on frequency sharing [1], [2]. To
not affect the primary (licensed) users, the secondary users must
know whether the frequency band is vacant. A very common
way to detect the present of power spectrum at licensed band
is to apply an energy detector, since it is low complexity,
however it is sensitive to noise level [3]. Another possible
method is considered as spectrum sensing, which can detect
multiple power level of primary users and secondary users [4],
[5]. A problem of spectrum sensing that needs to be taken
in account is the sensed bandwidth. In some applications, the
sensed bandwidth may go beyond several GHz. Consequently,
the limited sampling rate and limited input bandwidth of a
conventional Analog-to-Digital Converter (ADC) will be a
constraint for spectrum sensing. In the literature, the sub-
Nyquist sampling methods such as Random Modulator [6], [7],
Multicoset Sampling [8], [9] or Modulated Wideband Converter
(MWC) [10]–[12] are seen as a premise to deploy spectrum
sensing into practice. In [13], a multicoset based on Compressed
Sensing (CS) [14], [15] is proposed to estimate the power
spectral density, at sub-Nyquist sampled wide sense-stationary.
To the best of our knowledge, the MWC seems to be the most
convenient scheme in terms of practical implementation, since
it has been deployed by different prototypes and analog boards
[11], [16], [17].

In practice, primary users use multiband spectra with differ-
ent parameters of interest, such as power, bandwidth or modula-
tion. The MWC has potential of wideband spectrum sensing and

multiband detection in real-time, which benefits on practical
implementation than other schemes. As a result, it comes up
with some practical applications in cognitive radio [18], [19],
and fast spectrum sensing and receiver flexibility in spectrum
sensing applications [20] and meet the LTE specifications [21].

The MWC has proved its efficiency to monitor multiband
spectra, such as Phase Shift Keying modulation scenario [16]
or rectangular shapes [10] with different energy ratios. How-
ever, the authors do not focus on the detection sensibility of
transmitter with low power level. For example, in cognitive
radio, the low power signal detection could bring benefit. In
case of frequency sharing, an idle band can be occupied by
a secondary user with very weak signal strength, to without
affects the primary user. A spectrum sensing system can verify
the presence of the secondary user. The attempt to detect very
low power level transmitter contributes to the study of fading
for both primary and secondary users [22], [23]. To balance
the fading in cognitive radio, the primary user can increase its
performance if the channel information is known, especially
the SNR. Consequently, the motivation of this paper is to study
the impacts of amplitude level ratio between transmitters on
spectrum reconstruction performances (correct reconstruction
and false alarm rates) and propose a threshold based on our
simulations which ensure high reconstruction performances.

This paper is organized as follows. Section II presents the
background of the MWC. In Section III, several multi-level
power scenarios are studied by comparing In-Band Signal-to-
Noise Ratio of all transmitters (called global in-Band SNR
and noticed IBSNRG) and In-Band SNR of each transmitter
taken separately (noticed IBSNR1T). Then, the evaluation of
the simulation results based on the correct reconstruction rate
and false alarm rate according to the proposed scenarios is
presented.

II. MODULATED WIDEBAND CONVERTER

A. Physical scheme and operation description

The MWC physical scheme [12] is shown in Fig. 1. A
wideband signal x(t) comprises multiband, but sparse and
unknown carrier frequency. The signal x(t) is considered as



an input of the MWC scheme. This scheme consists of M
physical channels, each has one mixer, one lowpass filter and
one ADC. The mixer with mixing sequence pi(t) is to shift all
spectra of x(t) into baseband. The mixing sequence pi(t) can
be any sequence in communications such as Gold [24], Kasami
[25] or random sequences with the repetition frequency Fp.
The lowpass filter keeps the signal only in baseband bandwidth
[−Fs/2;Fs/2], with cutoff frequency Fc = Fs/2. Then, the
sampling rate of ADC will be chosen Fs for convenience.

Fig. 1: The MWC scheme and processing stages.

The output of the mixer is

xi(t) = pi(t)x(t), (1)

and the output of lowpass filter yi(t) as

yi(t) = h(t) ∗ xi(t), (2)

where h(t) the ideal lowpass filter transfer function. At last,
the conversion output reads as

yi[n] = yi(nTs), (3)

where Ts the sampling period. For further development, con-
sider that the Nyquist bandwidth is divided into L subbands,
then the relationship between Nyquist frequency and mixing
frequency is L = FNyq/Fp. It means that each subband has
Fp bandwidth. The active subband l which comprises the input
spectrum will be detected among L subbands ( L = 2L0 + 1
and −L0 ≤ l ≤ L0) by the MWC scheme and Compressed
Sensing technique [14], [15].

The mixing sequences are generated by pseudo-random
sequences. At the mixer, there will be one transmitter to be
shifted in the baseband of each MWC physical channel. Thus,
the more number of MWC physical channels there are, the
more transmitters will be detected. In practice, the number of
MWC physical channels cannot be high, due to the exponential
increase cost of analog components such as mixer, lowpass filter
and ADC. Consequently, a collapsing factor q is introduced to
overcome this problem [12]. Instead of M physical channels,
it can be considered as q × M collapsed channels. With M
channels, the sampling rate is Fs, thus with q ×M channels,
the sampling rate can be considered Fp, by q = Fs/Fp. This
assumption can help to extend virtually the number of MWC
channels.

B. Number of active subbands estimation

In Fig. 1, before reconstruction, the number of active sub-
bands s needs to be estimated. The output of the MWC yi[n]
(1 ≤ i ≤ M ) has L sub-Nyquist samples, it can be formed to
a M × N matrix y output, or qM × L matrix y if collapsing
factor q is used.

The number of active subbands is estimated based on the sin-
gular values of matrix y ∈ PM×L, or the autocorrelation matrix
eigenvalues. The active subbands s is related to the variation
of these values. Then, there are s non-zero eigenvalues. In the
simulation of this paper, the number of active subbands s is
estimated by two discriminant functions [26].

C. Spectrum reconstruction

The mixing sequences pi(t) is used to form a sensing matrix
(P)il = pil [10], where pil = Fp

∫ Tp/2

−Tp/2
pi(t)e

−j2πlFptdt

are the Fourier coefficients obtained from pi(t). The Fourier
transform of the input signal (multi-subband) in the lth subband
is denoted zl[n] with l ∈ [1, L]. Thus, the MWC system
equation with a MWC output and a sensing matrix is y = Pz,
with P ∈ CqM×L [11] [12]. Fig. 2 shows an illustration of the
system equation.

Fig. 2: Illustration of the system equation.

In Compressed Sensing, a main condition needed to be
respected is s ≤Mq−1, with s the number of active subbands
or the non-zero elements in z. This condition is called sparsity
because the matrix size of y (q×M ) has to be smaller than the
size of input z (L elements) and there is a few number of s. The
reconstruction step is to look for z from y. In our simulation, a
greedy algorithm Orthogonal Matching Pursuit (OMP) [27] is
applied to reconstruct the input signal.

III. MULTIPLE POWER LEVELS SENSING AND
RECONSTRUCTION

For the rest of the paper, the MWC parameters are chosen
as M = 4, L = 96, q = 7 and FNyq = 1 GHz. Each
transmitter is a band-limited white noise and has the same
bandwidth B = 2Fp/3 = 7 MHz. The central frequency of
each transmitter has been randomly generated between [B2 ;
FNyq

2 − B
2 ], i.e. [3.5;496.5] MHz. To respect the sparsity

condition, the maximum number of symmetric transmitter must
be equal to Ntmax =

⌊
Mq−1

4

⌋
= 6 (by assuming that each

transmitter can locate astride two channels of the equivalent
model).

The spectrum is contaminated by a wideband additive Gaus-
sian noise at different SNR. The SNR is defined into two



categories, a SNR in all active subbands (or so-called global
SNR in-band noticed IBSNRG) and a SNR in the whole Nyquist
bandwidth noticed SNRNyq. Then, the relationship between the
two categories of SNR can be seen as

IBSNRG = SNRNyq + 10 log

(
FNyq

2×Nt ×B

)
= SNRNyq + 10 log

(
3× L

4×Nt

)
(4)

with Nt the number of transmitters and B = 2Fp/3. The
number of transmitters is fixed to 6.

The low SNRNyq will make the active subbands to be
aliased by the noise. It leads to the overestimation due to
the unexpected high power in active subbands and difficult
to determine the number of active subbands s or number of
transmitters Nt. Another factor that needs to be taken into
account is the SNR in each transmitter bandwidth (not global
SNR), this factor impacts directly to the reconstructions and
in the next section, corresponding to each global In-Band SNR
value IBSNRG, the In-Band SNR in each transmitter bandwidth
will be figured out.

Moreover, the correct reconstruction rate [28] (resp. false
alarm rate) is estimated by Pc = %(Br

⋂
Bd)

%Br
(resp. Pf =

%((Bd\Br)∩B̄r)
1−%Br

), where Br the real active subbands from input
signal and Bd the detected active subbands. It should be noted
that for each simulation scenario, 2000 trials have been tested
to compute the reconstruction and false alarm rates.

To study the impact of transmitter power levels, with this
configuration of the MWC, four scenarios are considered. In
the first scenario, all six transmitters have the same power level.
The second scenario, assume that one pair of transmitters has
greatest power, then the second pair of transmitters has 75%
level of the first pair, and the third pair has 50% level of the
first pair. Third scenario, we assume that the second pair has
50% level of the first pair, and the third pair has only 25%
level of the first pair. In the last scenario, 6 transmitters have
different power levels and reduce gradually Table I summarizes
these scenarios.

P1 P2 P3 P4 P5 P6

Scenario 1 1 1 1 1 1 1
Scenario 2 1 1 0.75 0.75 0.5 0.5
Scenario 3 1 1 0.5 0.5 0.25 0.25
Scenario 4 1 0.8 0.6 0.4 0.3 0.2

TABLE I: Simulation scenarios and transmitters power levels.

A. Reconstruction performances in function of Global In-Band
Signal to Noise Ratio for all scenarios

Firstly, the spectrum reconstruction will be tested at the same
power level (scenario 1), then reduced the power levels of
transmitters followed the scenarios in Table I, to obtain and
compare the correct reconstruction and false alarm rates in
function of IBSNRG. Fig. 3 shows the correct reconstruction
rate and false alarm rate for 6 transmitters of all scenarios.
When reducing the power level, the correct reconstruction rate

is reduced too. In scenario 2, the Pc in function of global SNR
in-band is higher than the Pc in scenario 3 and 4, due to the
fact that the proportion of useful power in an active subband is
higher. In scenario 3 and 4, the correct reconstruction rates and
the false alarm rates are nearly the same, although the power
levels in scenario 3 and 4 are different, the power proportion
in all active subbands can be considered the same globally.

Fig. 3: Correct reconstruction rate and false alarm rate for all scenarios
in function of IBSNRG (with B = 2Fp/3).

It should be noted that from Fig. 3, the correct reconstruction
rates start to decrease at 15 dB for scenario 1 and 2, and
at 20 dB for scenario 3 and 4. Hence, these values can be
considered as threshold values which ensure correct reconstruc-
tion. Due to the multiple thresholds for IBSNRG, it is hard to
determine which transmitter cannot be reconstructed, in next
subsection, we propose a relationship to find an In-Band Signal-
to-Noise Ratio for each transmitter. This relationship helps to
determine an unique IBSNR threshold for each transmitter and
each scenario which ensures high reconstruction performances.
Moreover, to verify the threshold, the bandwidth B of each
transmitter is reduced to B = Fp/3 ≈ 3.47 MHz. The correct
reconstruction and false alarm rates are shown in Fig 4. It can
be seen that the Pc at this bandwidth also starts to decrease at
15 dB for scenario 1 and 2, and 20 dB for scenario 3 and 4.
This result helps to conclude that the proposed threshold can be
used to make sure the correct reconstruction in these scenarios
with an acceptable bandwidth.

Fig. 4: Correct reconstruction rate and false alarm rate for all scenarios
in function of IBSNRG (with B = Fp/3).

Besides, an example of spectrum reconstruction of 6 identical
power level transmitters is shown in Fig. 5 at IBSNRG = 20



dB. It can be seen that at this noise level, all the transmitters can
be correctly reconstructed with their level and no false alarm.

Fig. 5: Example of spectrum reconstruction of 6 identical power level
transmitters at IBSNRG = 20 dB (scenario 1).

From scenario 2 to 4, we show the performance of recon-
struction in function of the in-band Signal-to-Noise Ratio for
each transmitter. It is determined by the ratio between signal
levels which is linked to the in-band SNR of each transmitter
taken separately. It is possible to compute the In-band Signal-
to-Noise Ratio for each transmitter IBSNR1T by:

IBSNR1T = SNR1T
Nyq + 10 log

(
FNyq
2×B

)
= SNR1T

Nyq + 10 log

(
3× L

4

)
(5)

with SNR1T
Nyq the SNR in the whole Nyquist bandwidth of the

considered transmitter and B = 2Fp/3.

B. Correct reconstruction performance in function of In-Band
Signal to Noise Ratio

1) Scenario 2: In this scenario, the correct reconstruction
rate is shown in Fig. 6, in function of the exact IBSNR1T. It can
be observed that at the same global in-band SNR, the low power
level transmitters have to deal with higher noise than the higher
power level, then leads to a bad reconstruction. It can be seen
that the pair which has the greatest power level ({P1, P2} = 1)
can achieve high performance even at low IBSNRG. For the
second pair ({P3, P4} = 0.75), the correct reconstruction rate
is still high, more than 85% at 5 dB of IBSNR1T. Otherwise,
the lowest level pair ({P5, P6} = 0.5) has low performance
when IBSNR1T is low (typically less than 5 dB). It means that
the reconstruction is not correct at this noise level. Overall, the
correct reconstruction rate starts to decrease at IBSNR1T = 15
dB, then this is a threshold proposed for this scenario to ensure
the correct reconstruction for all transmitters.

Fig. 7 shows the correct reconstruction rate for this scenario
with a reduction of bandwidth (B = Fp/3), it should be
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Fig. 6: Correct reconstruction rate of 6 transmitters with different
power levels in function of IBSNR1T (scenario 2, B = 2Fp/3).

noted that Pc starts to decrease at IBSNR1T = 15 dB for all
transmitters. This result verifies the proposed threshold for this
scenario.

Fig. 7: Correct reconstruction rate of 6 transmitters with different
power levels in function of IBSNR1T (scenario 2, B = Fp/3).

An example of spectrum reconstruction of this scenario at
IBSNRG = 20 dB is shown in Fig. 8. It can be seen that in this
scenario and at this noise level, it is difficult to reconstruct the
low power transmitters with their levels correctly. Moreover, it
appears to be a false alarm and that makes confusion with low
power transmitters.

Moreover, the spectrum reconstruction of this scenario at
IBSNRG = 5 dB is shown in Fig. 9. It is clear that at this noise
level, the reconstruction is not absolutely correct, and false
alarm spectra appear along the Nyquist bandwidth. For the blind
spectrum detection application, this noise level (IBSNRG = 5



Fig. 8: Spectrum reconstruction of 6 transmitters with different power
levels in scenario 2 at IBSNRG = 20 dB.

dB) makes it difficult to determine the useful transmitters.

Fig. 9: Spectrum reconstruction of 6 transmitters with different power
levels in scenario 2 at IBSNRG = 5 dB.

2) Scenario 3: In the third scenario, the power level of the
second pair and third pair are continuously reduced ({P3, P4} =
0.5 and {P5, P6} = 0.25). This scenario is to test the recon-
struction performance of the MWC in case of very low power
transmitters. The reconstruction rate is presented in Fig. 10 in
function of IBSNR1T. It is clear to see that the reconstruction
rate of the third pair ({P5, P6} = 0.25) has low performance
in the presence of noise (less than 6 dB). Due to the power
ratio of transmitters that is reduced in this scenario, the second
pair can achieve higher performance than the previous scenario.
Also, from Fig. 10, the reconstruction rate starts to decrease at
IBSNR1T = 15 dB. This is considered as a threshold to ensure
the correct reconstruction for all transmitters in this scenario.
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Fig. 10: Correct reconstruction rate of 6 transmitters with different
power levels in function of IBSNR1T (scenario 3, B = 2fp/3).

Moreover, Fig 11 illustrates the correct reconstruction rate for
scenario 3 with the bandwidth B = Fp/3. The performance
of reconstruction can be ensured at ≥ 15 dB SNR of each
transmitter, then the proposed threshold can be verified.

Fig. 11: Correct reconstruction rate of 6 transmitters with different
power levels in function of IBSNR1T (scenario 3, B = Fp/3).

An example of spectrum reconstruction for the third scenario
is presented in Fig. 12 at IBSNRG = 20 dB. It can be seen that
in this scenario and at this noise level, the first pair and the
second pair can be reconstructed correctly with their frequency
location and their power level. The lowest power level is always
difficult to reconstruct because the ratio between the lowest
level with the maximum level is always low. Moreover, at this
noise level, all the transmitters can be detected correctly and
there is no false alarm.



Fig. 12: Spectrum reconstruction of 6 transmitters with different power
levels in scenario 3 at IBSNRG = 20 dB.
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Fig. 13: Correct reconstruction rate of 6 transmitters with different
power levels in function of IBSNR1T (scenario 4, B = 2Fp/3).

3) Scenario 4: This scenario is to study more levels, such as
each transmitter has a different level to the others and is reduced
gradually. The correct reconstruction rate and false alarm rate
are shown in Fig. 13. It can be seen from this figure, the Pc
of the power level which is under 50% the maximum power
(i.e. for P4 = 0.4, P5 = 0.3 and P6 = 0.2) is low, even the
global correct reconstruction rate, at low IBSNRG (5 and 10
dB). These values show that some transmitters have been lost
at these power ratios and SNR levels. Moreover, from Fig. 3
the false alarm rate of this scenario is highest compared to the
other scenarios. It means that the system cannot determine the
frequency locations of the small power transmitters and then
the wrong detection appears. Finally, a threshold proposed for
this scenario is also at 15 dB.

The correct reconstruction rate with the reduction of band-

Fig. 14: Correct reconstruction rate of 6 transmitters with different
power levels in function of IBSNR1T (scenario 4, B = Fp/3).

width (B = Fp/3) is shown in Fig. 14, this also verifies that the
proposed threshold is IBSNR1T = 15 dB to ensure the correct
reconstruction.

Besides, an example of spectrum reconstruction is shown
in Fig. 15 at IBSNRG = 20 dB. At this noise level, all the
transmitters can be detected correctly. The lowest power level
transmitter (P6 = 0.2 in this example) at IBSNRG = 20
dB is equivalent IBSNR1T = 10.2 dB at its subbands. Then,
the reconstruction rate of this level is nearly 90% and the
false alarm rate is low, less than 2% (in Fig. 13). Hence, the
reconstruction of MWC is correct in the frequency locations at
this noise level and no false alarm. The power level is impacted
by noise, however, the monitoring system cannot reconstruct
exactly the transmitter power level, mainly some near value
and low levels (for example, P5 = 0.3 and P6 = 0.2).

Based on our simulations, the threshold for IBSNR1T, with
an acceptable bandwidth, to ensure the correct reconstruction
can be concluded is 15 dB for all cases.

IV. CONCLUSION

This paper studies the impact of transmitters power levels on
the reconstruction performance of the MWC system in terms
of correct reconstruction and false alarms rates. It is clear that
the noise power has a negative impact on the reconstruction
performance, by adding false alarm and by introducing miss de-
tection, especially for transmitters with low power levels. Based
on our simulations, reconstruction performances depend on the
In-Band Signal to Noise ratio (IBSNR) of each transmitter and
a threshold value of IBSNR1T = 15 dB has been proposed to
ensure high reconstruction performances.
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Fig. 15: Spectrum reconstruction of 6 transmitters with different power
levels in scenario 4 at IBSNRG = 20 dB.
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