
HAL Id: hal-03378928
https://hal.science/hal-03378928

Submitted on 14 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Energy and Expenditure Aware Data Replication
Strategy

Morgan Séguéla, Riad Mokadem, Jean-Marc Pierson

To cite this version:
Morgan Séguéla, Riad Mokadem, Jean-Marc Pierson. Energy and Expenditure Aware Data Replica-
tion Strategy. [Research Report] IRIT/RR–2021–07–FR, Institut de Recherche en Informatique de
Toulouse (IRIT), Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9. 2021.
�hal-03378928�

https://hal.science/hal-03378928
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Institut de Recherche en Informatique
de Toulouse

UMR CNRS 5505

Energy and Expenditure Aware Data Replication
Strategy
Version 5

Morgan Séguéla — Riad Mokadem — Jean-Marc Pierson

Research report no IRIT/RR–2021–07–FR

DÉPARTEMENT ASR – October 14, 2021





Energy and Expenditure Aware Data Replication Strategy
Version 5

Morgan Séguéla , Riad Mokadem , Jean-Marc Pierson

Département ASR

Research report no IRIT/RR–2021–07–FR October 14, 2021 (21 pages)

Abstract: Energy saving is a major challenge for Information Technology (IT) companies that
aim to reduce their carbon footprint while providing large scale cloud services. These companies
often rely on data replication technique in order to satisfy tenant’s objectives, e.g., performance,
especially with the increasing volume of data distributed throughout the world. In this paper, we
propose a static and multi objective data replication strategy (E2ARS) that aims to reduce both energy
consumption and expenditure of the provider. E2ARS leverages on cloud heterogeneity and energy
efficient technologies. We first compare different policies of our strategy, from only taking energy
consumption into account to only taking expenditure into account. Unsurprisingly, the more you want
to reduce the energy consumption, the less you replicate. Then, we compare E2ARS with strategies
from the literature. E2ARS reduces both energy consumption and expenditure where those strategies
satisfy only one of the two objectives.

Key-words: Cloud, Data replication, Provider expenditure, Energy consumption, SLA violation

IRIT, Université Toulouse 3 Paul Sabatier (UT3)
118 Route de Narbonne - F-31062 TOULOUSE Cedex 9 FRANCE

Tel: (33) 5 61 55 67 65 – mail: contact@irit.fr





Stratégie de Réplication de données qui prend en compte la consommation
énergétique et la dépense

Version 5

Résumé : La consommation énergétique est un défi majeur pour les sociétés d’informatique qui
cherchent à réduire leurs émissions de gaz à effet de serre tout en fournissant des services cloud à large
échelle. Ces sociétés s’appuient souvent sur la réplication de données pour satisfaire les objectifs des
locataires, comme la performance, surtout avec une augmentation du volume de données distribuées
autour du monde. Dans ce rapport, nous proposons une stratégie statique de réplication de données
qui est multiobjectif (E2ARS) qui cherche à diminuer à la fois la consommation énergétique et la
dépense pour le fournisseur. E2ARS s’appuie sur l’hétérogénéité dans le cloud et des technologies
d’efficacité énergétique. Dans un premier temps, nous comparerons les différentes politiques de notre
stratégie, d’uniquement prendre en compte la consommation énergétique à uniquement prendre en
compte la dépense. Les résultats montrent qu’au plus l’utilisateur veut réduire la consommation
énergétique, moins la stratégie va répliquer. Puis, nous comparons E2ARS avec des stratégies venant
de la littérature. E2ARS réduit la consommation énergétique et la dépense alors que d’autres stratégies
réduisent uniquement l’un ou l’autre des objectifs.

Mots-clés : Cloud, Réplication de données, Dépense du fournisseur, Consommation énergétique,
Violation de SLA

IRIT, Université Toulouse 3 Paul Sabatier (UT3)
118 Route de Narbonne - F-31062 TOULOUSE Cedex 9 FRANCE

Tel: (33) 5 61 55 67 65 – mail: contact@irit.fr





E2ARS 1

Energy and Expenditure Aware Data Replication Strategy

Morgan Séguéla , Riad Mokadem , Jean-Marc Pierson

October 14, 2021

Abstract

Energy saving is a major challenge for Information Technology (IT) companies that aim
to reduce their carbon footprint while providing large scale cloud services. These companies
often rely on data replication technique in order to satisfy tenant’s objectives, e.g., perfor-
mance, especially with the increasing volume of data distributed throughout the world. In
this paper, we propose a static and multi objective data replication strategy (E2ARS) that
aims to reduce both energy consumption and expenditure of the provider. E2ARS leverages
on cloud heterogeneity and energy efficient technologies. We first compare different policies
of our strategy, from only taking energy consumption into account to only taking expendi-
ture into account. Unsurprisingly, the more you want to reduce the energy consumption, the
less you replicate. Then, we compare E2ARS with strategies from the literature. E2ARS
reduces both energy consumption and expenditure where those strategies satisfy only one
of the two objectives.

1 Introduction

Since the spread of information technologies, data produced by humanity as a whole increased
sharply. These data are accessed by people and companies, for entertainment and debates,
to fuel economic and scientific productions. Data have to be accessed at anytime and from
everywhere as some data are accessed a lot in a short period of time. This became more relevant
during the pandemic lockdown as everyone had to stay home even for working, implying a high
raise of data access for IT companies, and for entertainment providers [1].

One way to answer this increasing number of accesses is to replicate data. Data replication
is a well studied technique for several years and contexts. It has been commonly used in
traditional systems like parallel databases systems [2] and more recently Cloud systems [3] on
which we are focusing in this paper. Data replication aims to satisfy different objectives, from
performance and availability objectives [4] to reducing energy consumption [5] and, costs [6] such
as bandwidth network consumption. In fact, most giant IT companies like Google, Amazon and
Microsoft provide cloud services for economic profit while investing in more powerful and greener
components.

Elastic resource management is critical to minimize operating cost while ensuring tenant
objectives [7]. In fact, the provider automatically adapts its resources as closely as possible
to the tenant needs. Then, tenants only pay for what they consume. This corresponds to a
specific economic model called the Pay-as-you-go model. The price to rent resources is specified
in an agreement [8] signed by the provider and the tenant. This agreement, called the Service
Level Agreement (SLA), essentially contains Service Level Objectives (SLO) that the provider
has to achieve otherwise there will be penalties, mostly applied by refunding a part of the
rent to the tenant. These penalties can be seen as costs for the provider amongst different
kind of expenditure. [9] studied ways to model costs as most of them are split into capital
expense (CAPEX) and operational expense (OPEX). CAPEX includes data center and server

IRIT/RR –2021–07–FR



2 M. Séguéla R. Mokadem J-M. Pierson

depreciation over a certain time-frame. OPEX includes all others costs like resource costs,
salaries, maintenance and so on.

Reducing the carbon footprint is becoming a more and more important objective for com-
panies. In this context, companies communicate on this objective and Greenpeace made a
report to state their evolution in terms of energy consumption and production [10]. In order to
achieve this objective, several studies have been done to reduce energy consumption [11] [12] [13].
These studies focus on technologies like sleep state which permits putting in sleep mode some
servers to reduce their energy consumption [14], and techniques like consolidation that avoid
over-provisioning and put useless resources in sleep mode for instance.

In this paper, we propose a static data replication strategy E2ARS that aims to reduce
both expenditure and energy consumption of the provider while considering performance for
tenants. For this aim, we introduce models to estimate energy consumption and expenditure,
e.g., storage and replication. In this context, the heterogeneity of prices and components in
different data centers are taken into account. Based on these models, we propose an optimization
algorithm in order to reduce both energy consumption and expenditure, through a 2 steps
decision process. The reduction of energy consumption is leveraged by technologies like sleep
state and consolidation. Note that we consider read-only data that will not be updated.

We compared the proposed static strategy to other static and dynamic data replication
strategies. Compared to static strategies, the proposed strategy E2ARS is able to significantly
reduce both energy consumption and expenditure when others reduce only one side. On the
other hand, despite E2ARS is a static strategy, its energy consumption and the number of
violations are only slightly higher compared to dynamic strategies, depending on the workload.

The rest of this paper is organized as follows: we begin in Section II by a state of the art
of data replication strategies that takes into account energy consumption and/or expenditure
of the provider. Then, in Section III, we describe our data replication strategy. After that,
in Section IV, we validate the proposed strategy through the analysis of experimental results.
Finally, we conclude and draw some lines for future works.

2 State of the art

We focus on strategies that take into account the provider expenditures or its energy con-
sumption or both. Dealing with strategies that consider economic issues, one of the first data
replication strategies that take into account this issue in cloud systems is [15]. The replication
is based on the failing probability of a node and a reliability requirement. This permits to
reduce the storage cost by delaying the replication while holding the reliability requirement.
The strategy [16] uses a multi-tier cloud to reduce the operating cost while keeping a high level
of performance based on heterogeneity. It supposes that there is a top-tier data center that is
very effective but very expensive and low-tier data centers that are cheaper but less reliable.
In the strategy proposed by [6], replication is triggered by a SLO violation and is applied only
if it makes profit for the provider. The profit estimation is done during the replication choice
based on the provider’s revenue minus the operating cost from the start of the tenant’s rent. [17]
proposed a resilient and cost-effective data replication strategy. Their idea is to classify data
based on their popularity. The servers are classified into 2 groups, primary servers and backup
ones. Each data item has 2 replicas in the primary group and a third replica in the backup.
Based on their popularity, replicas are compressed in the backup group or not. [18] considers a
workflow application model that contains information about which task needs which data. This
permits to regroup data based on their dependencies, and know which data are requested too
many times. If there is an overlap between the ones that are highly dependent, and the ones
that are accessed a lot, they become eligible and are replicated if it reduces the cost compared

IRIT



E2ARS 3

to doing nothing. [19] proposed a strategy that considers time frames and for each time frame
estimates the benefit made from a new replica or data migration compared to letting data stored
in their precedent location. They also take into account a minimum number of replicas based
on a latency constraint such as all data center can request data with a maximum latency under
a given threshold.

The other scope of this paper is the reduction of energy consumption. The authors in [20]
proposed a static Multi-Objective Replica Management. The proposed strategy tries to answer
availability, service time, load balancing, energy consumption and latency issues through an
evolutionary algorithm where each objective is weighted. A dynamic strategy is proposed by [5],
that aims to reduce both energy and bandwidth consumption. This strategy considers a 3-tier
fat tree data center architecture with a database at each level and one across the internet. A
replication is triggered when the number of data accesses is higher than a threshold and occurs
only if the energy and the bandwidth consumed by the database at a lower level are lower than
the ones consumed by the database at the current level. Another data replication proposed
in [21] takes into account availability and performance issues through the energy consumption
prism. For this aim, it classifies both data and servers, the first based on their popularity and
the second based on their power consumption. Then, hot data are replicated in hot servers
(that consumes more) and cold data are replicated in cold servers. [22] tries to reduce providers
carbon footprint by reducing energy consumption and choosing the replication placement based
on the energy mix of each data center. However, most of these strategies neglect the economic
costs of the resources consumed by the provider.

Authors in [23] state that there are very few strategies that consider both expenditure and
energy consumption. Among those strategies, [24] aims to reduce energy consumption in order
to maximize the provider profit. The profit is estimated by the energy cost from an absence
of replication minus the energy cost under this strategy. This strategy does not model all the
other costs that can occur while transferring files for instance. To reduce both, [12] considers
a linear combination of energy consumption and expenditure and then use a Particle Swarm
Optimization mixed with a Tabu Search Algorithm between each iteration. However, this
strategy cannot let the administrator choose its policy with a clear view, and does not allow
a high range of choices. The proposed strategy in this paper aims, through a static replica
placement, to reduce both energy consumption and costs to store, read and replicate data.

3 Data placement strategy

3.1 Notation

Let F be a set of files stored on a set of nodes N . Each file fi ∈ F, 1 ≤ i ≤ z has a size s(fi).

Each node nj ∈ N, 1 ≤ j ≤ m has a storage capacity cpj .

ϕ is a matrix of size (z, m) and denotes the placement of the files on the nodes: ϕ(fi, nj) is
equal to 1 if fi is on nj , and 0 otherwise.

Ea denotes the energy consumed to perform the action a, a ∈ A. Prb represents the price
of a node action b, b ∈ B.

The sets of actions depend on the state of the node. The static state represents the node
when it is up but inactive (static). The dynamic state contains actions such as reading a file
from a node (read), writing a file to a node (write), transferring data between nodes through
the network (net) and storing a file on a node (storage). A contains read, write, net actions
of the dynamic state and also contains the static state. B contains only the storage and net
actions.

IRIT/RR –2021–07–FR



4 M. Séguéla R. Mokadem J-M. Pierson

Notation Description

F Set of files, F = {f1, ..., fi, ..., fz}
N Set of nodes, N = {n1, ..., nj , ..., nm}
ϕ Matrix of files F stored on node N

s(fi) Size of file i (MB)
cpj Storage capacity of node j
Pwa Energy consumption of node action (in Joules)

a ∈ {read,write, net, static}
Prb Price of a node action (in $/MB or $/MB per second)

b ∈ {net, storage}
t Renting time parameter (in seconds)

nbRds Number of reads parameter

Table 1: Notation table

t is the time the user will rent the provider’s nodes, and nbRds is the number of reads the
user will do. To summarize those parameters, it is possible to refer to Table 1.

In the following part, models used in our data placement strategy are described. At first,
cost and energy consumption of the storage for a fixed number of seconds is detailed. Then,
the writing process for each replica and the average energy consumption for a fixed number of
reads are given.

3.2 Models and Objective functions

In this part, models are proposed to estimate the provider’s expenditure and energy consumption
used in the optimization algorithm. These models are divided into 3 kinds of events: replicating,
storing, reading. The expenditure model used in the following estimations are based on the work
of [6]. To estimate the energy consumption, we modeled each component that is used in the
data management of a server. At first, disks energy consumption is modeled based on [25]
that is also used in [26] to model Solid-State Drive. Then the memory is modeled, and more
precisely the Random Access Memory, based on [27] which is regularly updated by technical
reports of a founder like [28]. Finally, the network energy consumption is considered through
the Network Interface Card for the nodes, based on [29], and switches, from [30]. In these
models, processors are only considered through their idle energy consumption. However, it is
worth to say that these models are only used to build the following strategy and are not meant
to precisely describe reality. Note that they can be modified or updated as it will not impact
the core of the proposed strategy.

3.2.1 Replication

First, the impact of replicating data from their original node to the chosen node is modeled. Let
No be the set of nodes included in N which contains nodes that store the original file before the
placement strategy occurs. nio represents the original node where file fi is stored. If the chosen
node is the original node of the file, the energy consumption and the cost needed to replicate
are equal to 0. Most of the time, the replication occurs on other nodes which implies costs for
the network.

To model the energy consumption, transferring and writing energy consumption have to be
considered. The writing part includes the following steps: writing the received file on the RAM,

IRIT



E2ARS 5

and reading the file from the RAM to write it on the Disk. Note that we do not consider RDMA
in this work.

Energy:

ECreplic(F,N,No, ϕ) =

z∑
i=1

m∑
j=1

ϕ(fi, nj) ∗ [Enet(nio , nj , fi) + Ewrite(nj , fi)] (1)

Replicating a file implies costs for provider which is mostly represented by the communication
cost through the network. This cost is based on the size of the file s(fi) and the price per
megabyte is represented by Prnet(nio , nj) and depends on the placement: if the files are in the
same data center it will be cheaper than being in 2 different regions. The expenditure model to
replicate files is considered as follow:

Cost:

Costreplic(F,N,No, ϕ) =
z∑

i=1

m∑
j=1

ϕ(fi, nj) ∗ s(fi) ∗ Prnet(nio , nj) (2)

3.2.2 Storage

After writing all replicas, the impact of storing files for t seconds on nodes is modeled. We
suppose here that nodes cannot be turned off if they store data, in order to retrieve requested
data as quick as possible. Also, adding data to a node that already stores data does not increase
its power consumption. This implies that storing a file on an empty node will consume more
than placing it on a node that already store files. An empty node can be turned off and its
power consumption will be equal to 0.

In the following model all files in F can be stored on all nodes in N based on ϕ which
represents nodes that store files. Estatic(nj , t) is the static energy consumption to keep nj up for
t seconds. To estimate this energy consumption we consider the summation of the static power
consumption of each component multiplied by t seconds. The model is described as follows:

Energy:

ECstorage(F,N, t, ϕ) =

m∑
j=1

Estatic(nj , t) ∗ [1−
z∏

i=1

(1− ϕ(fi, nj))] (3)

On the other hand, storing files imply a cost for the provider. This cost depends on the
size of the file s(fi) and on the price Prstorage(nj) to store data on the chosen node and for t
seconds. The model is considered as follows:

Cost:

Coststorage(F,N, t, ϕ) =
z∑

i=1

m∑
j=1

ϕ(fi, nj) ∗ s(fi) ∗ Prstorage(nj) ∗ t (4)

Where Prstorage(nj) is the storage price per second and per megabyte of nj .

IRIT/RR –2021–07–FR



6 M. Séguéla R. Mokadem J-M. Pierson

3.2.3 Read

Finally, the energy consumption and costs linked to the number of reads is modeled.

Let Ni be a set of nodes that contains fi and Ni the set of nodes that do not contain this
file. These sets are different for each file and are built based on ϕ(fi, nj). In fact, Ni is the set
of nodes where ϕ(fi, nj) = 1 for a specific file fi, and Ni contains the rest. Each node in Ni is
written as nj with 1 ≤ j ≤ mi and mi being equal to the number of replicas of fi. In Ni, nodes
are written nj′ with 1 ≤ j′ ≤ mi. One last notation specific to this part is shortest(nj , nj′)
which is equal to 1 if the requestor node nj′ is the closest to the storage node nj in terms of
transfer time and 0 otherwise.

The energy consumption model for this event includes the energy consumption to read a
file fi from the closest node nj to the node nj′ that requested this file (Eread(nj , fi)), and the
energy consumed by the network to transfer this file between those nodes (Enet(nj , nj′ , fi)).
The energy consumption to read the file considers the following steps: reading from the disk to
write on the RAM, and then reading from the RAM to get transferred through the network.

Energy:

ECread(F,N, ϕ) =
1

z

z∑
i=1

[

mi∑
j=1

1

mi

mi∑
j′=1

shortest(nj , nj′) ∗ [Enet(nj , nj′ , fi) + Eread(nj , fi)]] (5)

s.t. Ni ∪Ni = N

Like the writing part, the cost is mainly based on the cost to transfer data to the node nj′

that requested the file fi from the closest node nj that stores this file. This cost is based on the
size of fi and the price to transfer this file Prnet(nj , nj′) per megabyte.

Cost:

Costread(F,N, ϕ) =
1

z

z∑
i=1

[

mi∑
j=1

1

mi

mi∑
j′=1

shortest(nj , nj′) ∗ s(fi) ∗ Prnet(nj , n
′
j)] (6)

s.t. Ni ∪Ni = N

3.2.4 Multi-Objective Function

In this last part, global models and the objective function used in the optimization algorithm
are introduced. As it was detailed before, t represents the renting time of the user and nbRds
is the number of reads the user will do. These parameters are hypothesis made to balance the
number of replicas. In fact, the lower the number of reads and the higher the renting time, the
lower the number of replicas to reduce long term energy consumption and cost.

Based on previously defined functions (3), (1), (5), the global energy consumption model is
described as follows:

Energy:

ECG(F,N,N0, t, nbRds, ϕ) = ECreplic(F,N,No, ϕ) + ECstorage(F,N, t, ϕ)+

nbRds ∗ ECread(F,N, ϕ) (7)

The following global expenditure model is based on (4), (2), (6):

Cost:

IRIT



E2ARS 7

ExpG(F,N,N0, t, nbRds, ϕ) = Costreplic(F,N,No, ϕ) + Coststorage(F,N, t, ϕ)+

nbRds ∗ Costread(F,N, ϕ) (8)

Let cpj be the storage capacity of node nj , the size of all files stored on this node cannot
be higher than cpj . This constraint is applied to nodes only, as it will be discussed later it does
not occur if the node is considered as a representative of one data center. Based on [15], we
choose to create a minimum of 2 replicas per file to assure a data availability within a year of
more than 99.99%.

The following objective function is built upon 7 and 8. It searches the minimum value of
both global models depending on ϕ.



min
ϕ

(
ECG(F,N,N0, t, nbRds, ϕ),
ExpG(F,N,N0, t, nbRds, ϕ)

)
z∑

i=1
∗ϕ(fi, nj) ∗ s(fi) ≤ cpj , ∀j

z∑
j=1

ϕ(fi, nj) ≥ 3 ,∀i

(9)

3.3 Energy and Expenditure Aware Strategy

We propose an Energy and Expenditure Aware Replication Strategy (E2ARS ). This static data
replication strategy can be considered as an initial data placement for a dynamic data replication
strategy. The optimization algorithm used in this static data replication strategy is described
below.

3.3.1 Overview on the static data replication algorithm

We consider a transnational cloud provider, like Amazon Web Services for instance, which
provides services through different regions with several data centers in each region. All data
centers have different prices and parameters. Nonetheless, we suppose that all nodes can store
data, and for the sake of simplicity these nodes are homogeneous inside a data center. A multi-
objective optimization algorithm is used to reduce both energy consumption and expenditure.
However, including all nodes in the search space would make the processing very long. As the
objective function considers the reading expenditure and energy consumption for each node
between all other nodes, considering a subset of nodes permits to highly reduce the time to
compute this part of the objective function. In order to make the algorithm works in a decent
amount of time, a two steps decision process is proposed. The first optimization algorithm
chooses on which data center replicas are stored. To do so, a node is chosen to represent the
data center (referred to as getRepresentatives(N) in Algorithm 1). The second optimization
algorithm chooses where the data will be stored inside the chosen data center. The whole
process is given in algorithm 1.

3.3.2 Data replication between data centers (lines 1-5)

The first step is the most important because it has to choose between highly different data
centers. It has to replicate and place data where the trade-off between expenditure and energy
consumption is the most balanced from the database administrators (and all the hierarchy above
them) perspective. To consider both objectives, we could use one objective as a constraint and
minimize the other or use a weighted objective to mix them into one. However, we choose

IRIT/RR –2021–07–FR



8 M. Séguéla R. Mokadem J-M. Pierson

Algorithm 1 Static Data Replication Algorithm

Input: N: List of nodes
Input: F: List of Files
Input: t: renting time
Input: NbRds: number of reads
Input: listOfDC: List of DC
Output: Final Individual: matrix of files and nodes that represents replica placement
1: Final Individual = zeros(F,N)

// matrix (number of files, number of nodes) of zeros
2: DCrep = getRepresentativesDC(N)

// retrieve one node for each data center
3: OriginFiles = getOriginalNodeFile(F, N)

// nodes where files are stored at first
4: DC individuals = getSPEA2Result(F, DCrep, OriginFiles, t, NbRds)
5: DC individual = chooseIndividual(DC individuals)
6: for all DC in listOfDC do
7: tempNodesInDCList = getNodesFromDC(N, DC)
8: tempFileInDCList = getFileOnDC(DC individual, F)
9: tempDCIndividual = FirstFitNoBottleneck(F, tempFileInDCList, tempNodesInDCList)

10: Final Individual[tempNodesInDCList] = tempDCIndividual
// replace in the subset of nodes from the current DC in Final Individual the result of
FirstFitNoBottleneck

11: end for

to find the Pareto front to let the administrator choose if this is more important to reduce
energy consumption, reduce expenditure, or make a more balanced choice. Thus, their choice
could be supported by having an idea on their future costs and energy consumption. The
Improved Strength Pareto Evolutionary Algorithm, also known as SPEA2 [31] (referred to as
getSPEA2Result in algorithm 1), is efficient to find this Pareto front. SPEA2 returns a group of
individuals from the Pareto front that are as far as possible from each other, the administrator
can then choose the policy they want to apply (referred to as chooseIndividual in algorithm 1).
This algorithm works with a population of individuals that can be dominated or not by other
individuals, an archive that stores mostly non-dominated individuals. SPEA2 has 6 steps:

1. Generate an initial population

2. Calculate the fitness for each individual

3. Select individuals based on domination and truncation

4. End the algorithm if the maximum number of generations is reached

5. Selection with replacement within the archive to fill the mating pool

6. Recombination and mutation operators to the mating pool, go to step 2

Expenditure and energy consumption models are used as objective functions in the fitness
calculation. For this first optimization algorithm, we suppose that each data center can store
all the data. However, we are under the constraint of creating at least 2 replicas. [15] is a data
replication strategy that tries to delay as much as possible replication in order to save costs,
but it considers an availability issue. It highlights the fact that having independently stored

IRIT



E2ARS 9

replicas increases the probability of not loosing data by node failure. Here, independently means
reducing dependence of nodes where our data are stored. For instance, if 2 replicas are stored
in the same data center and if there is an electrical shortage in this data center. Then, both
replicas will not be available anymore. In a performance context, this will reduce a bottleneck
induced by an overload of reading and replication requests.

3.3.3 Data placement inside chosen data centers (lines 6-10)

The second step chooses on which node a replica is stored inside each data center. Before
processing this optimization algorithm, it has to gather nodes from the data center (referred to
as getNodesFromDC in algorithm 1) and files that will be stored in the data center (getFileOnDC
in algorithm 1). At first, we tried genetic and greedy algorithms. But, we found out that placing
data on a very few nodes could highly reduce the energy consumption and there are not many
things that could be done to reduce the expenditure. This kind of algorithm might not be
optimal but the solution provided is enough considering the processing time. However, getting
the minimum number of nodes storing data, would introduce a bottleneck in a performance
context as a high amount of requests will be done on these nodes. Also, the more there is data
on a node, the longer the response time would be if the workload is very high. To consider
this issue, we choose to wake and store those replicas on a small proportion of nodes in the
data center so that those nodes are not fully loaded. This small proportion of nodes includes
nodes that store the original files if those files are planned to be replicated in this data center.
Otherwise, these files will be deleted. Based on our experiments, we chose to use 6.25% of the
data center nodes as it is a good trade off between performance and energy consumption. If
this number of nodes cannot hold all the data, we increase this proportion by 6.25% steps.

The second optimization algorithm (Algorithm 2) takes as input, the set of files F, the set of
files that will be stored in the chosen data center FilesInDC and the set of nodes in the current
data center Nodes DC. This algorithm at first sort chosen files by their size and return their id
from the set F. The function used in line 3 is described in the algorithm 3. It permits to find
the right number of nodes based on the 6.25% policy discussed before. Algorithm 3 starts by
getting the size of all data that has to be stored (line 2) and verify if there is enough space for
each increment by 6.25% of the number of woken up nodes. If this is the case, it returns this
number of nodes. Then we place each file with a round-robin method between each node (lines
10-18). If the node cannot store the file due to its lack of capacity, it seeks for the next node
(lines 21-29). If the file is not stored after trying all nodes chosen from the algorithm 3, it stores
the file on another node, outside the ones considered by the algorithm 3. In fact, it bases its
estimation of the number of nodes needed on the size of all the data that has to be stored and
the capacity of these chosen nodes.

4 Experiments

4.1 Experimental Environment

4.1.1 Strategies Parameters

First, we highlight the differences between three kinds of policies based on our optimization
algorithm. Those policies represent a range on our objective spectrum based on the Pareto
front, from only considering energy consumption (E2ARSEC ) to only considering expenditure
(E2ARSEX ). We also tried a policy that is more balanced toward energy consumption and
expenditure which will be considered on the following experiments (E2ARS ). To choose this
balanced policy, we ordered all the proposed individuals by energy consumption, and we chose

IRIT/RR –2021–07–FR



10 M. Séguéla R. Mokadem J-M. Pierson

Algorithm 2 FirstFitNoBottleneck

Input: F: List of all files
Input: FilesInDC: List of files that will be stored in the current DC
Input: Nodes DC: List of nodes in DC
Output: DCIndividual : matrix of File stored on Node
1: DCIndividual = zeros(z, Node DC)

// matrix (z, nbNodesInDc) of zeros
2: orderedFileListId = sort(FilesInDC)

// sort files based on their size and return their id
3: totalNbNode = getTotalNbNode(Node DC, FilesInDC)
4: capacity = getAllCapacity(Node DC)

// get a list of capacity for all nodes in DC
5: for all idFile in ordderFilesListId do
6: idNode = idFile % totalNbNode

// First chosen node
7: tempNode = Node DC[idNode]
8: fileStored = false
9: nbNodeTested = 0

10: repeat
11: nbNodeTested += 1
12: if capacity[tempNode] > s(F[idFile]) then
13: DCIndividual[idFile][idNode] = 1
14: fileStored = true
15: capacity[tempNode] -= s(F[idFile])
16: else
17: idNode = (idFile + nbNodeTested) % totalNbNode
18: tempNode = Node DC[idNode]
19: end if
20: until fileStored ∨ nbNodeTested ≥ totalNbNode
21: if ¬ fileStored then
22: idNode = totalNbNode
23: while ¬ fileStored do
24: tempNode = Node DC[idNode]
25: if capacity(tempNode) > size(F[idFile]) then
26: DCIndividual[idFile][idNode] = 1
27: fileStored = true
28: end if
29: idNode += 1
30: end while
31: end if
32: end for

IRIT



E2ARS 11

Algorithm 3 getTotalNbNode

Input: Nodes DC: Set of nodes in DC
Input: FilesInDC: Set of files that will be stored in DC
Output: Number of Nodes
1: prop = 0.0625
2: totalFileSize = getTotalSize(FilesInDC)

// return the size of all stored data in the chosen DC
3: allFileFit = false
4: repeat
5: totalStorage = 0
6: totalNbNodes = round(length(Node DC) * prop)
7: for i = 0 to totalNbNode do
8: totalStorage += capacity(Node DC[i])
9: end for

10: allFileFit = totalFileSize < totalStorage
11: prop += 0.0625
12: until allFileFit

the middle one. In following experiments, t is set at 30 days, and nbRds at 100. Then we
compare our strategy with other data replication strategies proposed in the literature and control
strategies. As control replication strategy, we used a strategy that places 3 replicas randomly
called 3Rand. From the literature, we compare our strategy with a static replication strategy
called MORM [20] that occurs before the experiment starts, with a multi-objective algorithm
that considers availability, latency, load balancing, service time and energy consumption. We
also compare our strategy with 2 dynamic replication strategies: (i) PEPR [6] and (ii) the one
proposed by Boru et al. [5]. PEPR is a strategy that takes into account the provider profit (with
an income of 0.0205$ per cloudlet) and performance. It is triggered by each violation, replicates
if it is still profitable. Boru et al. considers a hierarchical topology with 3 level of databases
(central, data center, rack). In this strategy, the replication is triggered by the number of reads
reaching a threshold, and the replication occurs on lower level databases (data center, rack) if
they consume less energy and bandwidth than the higher level databases (central, data center).

4.1.2 Simulation Parameters

In order to compare those strategies, we implemented them on CloudSim [32]. This simulator
has been extended by [6] in order to take into account data replication while considering het-
erogeneous network bandwidth, and monetary cost of resources. Then, it has been extended to
estimate the energy consumption [23]. Finally, we added the capacity for all nodes to be turned
into sleep mode based on [14] in order to reduce the energy consumption. However, we have
supposed that storing data block the node from sleeping to keep access to the data it stores.
This implies some differences compared to results in [23] in terms of energy consumption.

Networks parameters come from different sources. Bandwidth is based on [5] and latency
values are from Wikipedia1. Pricing characteristics are coming from Google Cloud Pricing,
assuming a 20% margin. The response time threshold is coming from [33] where a 15 seconds
wait without feedback implies a loss of 25% of users. This threshold corresponds to our SLO,
and if the response time is higher than 15 seconds, we consider that this cloudlet violates the
SLO implying a refund to the tenant. Experiment parameters are summarized in the Table

1https://wikitech.wikimedia.org/wiki/Network design (08/28/2020)

IRIT/RR –2021–07–FR

https://wikitech.wikimedia.org/wiki/Network_design


12 M. Séguéla R. Mokadem J-M. Pierson

2. We consider 2 kinds of experiments. Large scale ones with 1024 files with 128 nodes per
data center, and smaller scale ones with 30 files and 32 nodes per data center. Smaller scale
experiments are kept as MORM needed too much memory and could not be processed for larger
scale ones. Then, when the number of nodes and files is higher, we also increased the number
of cloudlets from 75,000 to 150,000.

In our experiments, we have to take care of the given architecture for each data replication
strategy. In fact, 3Rand, E2ARS, MORM and PEPR are considered using an architecture
following a peer to peer topology. In this case, all nodes can process tasks and store data. Boru
et al.’s architecture is based on a three tier fat tree topology where each level has a database.
In order to take its architecture into account inside a peer to peer one, we add a data center per
region which corresponds to the data center database, and a region which represents the central
database. However, these added structures are not taken into account to the global energy
consumption, because those nodes can not process tasks, and only store data. This permits us
to compare those strategies for a given amount of storage and processing resources.

Parameters Values Parameters Values
Number of files 30 / 1,024 File size [0.2, 5, 10] GB

Simulation Duration 6h Number of cloudlets 75,000 / 150,000
Minimum cloudlet size 1,000 MI Maximum cloudlet size 7,500 MI

Node processing capacity 1,600 MIPS Number of Nodes per DC 32 / 128
Number of DCs per region 5 Number of region per Cloud 4

BW between regions 100 Gbit/s Latency between regions 160 ms
BW within a region 10 Gbit/s Latency within a region 30 ms

BW within a DC 10 Gbit/s Latency within a DC 1 µs
Response time SLO 15s Penalty Cost 0.00205$

Cloudlet execution cost 3.8-4.4*10-9$/MI Storage cost 2.2-7.7*10-8$/GB
Transfer cost between regions 0.094$/GB Transfer cost within a region 0.0078$/GB

Transfer cost within a DC 7.8*10-4$/GB

Table 2: Simulation parameters (Smaller scale / Larger scale)

For the workload, [34] shows that when there is a post on a social media with a link to
Wikipedia, there is an increasing interest about the topic, increasing the number of views on
the linked Wikipedia page. Then the interest fades away, decreasing the number of access to
the topic page on Wikipedia. [35] also highlights the fact that this interest can fade at different
speed. Based on this information, we simulate 2 different workload. The first one is represented
by experiment 1 and experiment 3 for the smaller and larger scale ones respectively. The
second workload is represented by experiment 2 and experiment 4. These workload model a
short interest for a content. To do so, we choose the gamma probabilistic distribution to model
the arrival rate of requests with parameters α = 4 and β = 600. The difference between the first
workload and the second is that the increase comes at 4h and 1h30, respectively. All differences
between experiments are summarized in Table 3. Also, experiments are processed 25 times as
there is some randomness that may impact the results. Results are shown through means and
standard deviations.

To compare these policies and strategies, we used 4 metrics: (i) the number of created
replicas, (ii) the proportion of violations which represents the number of time the response time
is higher than the SLO divided by the number of request. (iii) The energy consumed (in MJ)
by the Cloud at the end of the experiment and (iv) the total cost for the provider (in $).

A GitHub repository is available here 2 to let everyone run their own experiments with their
parameter on our environment.

2https://github.com/MorganSeguela/Cloud 2021 XPS

IRIT

https://github.com/MorganSeguela/Cloud_2021_XPS


E2ARS 13

Experiments 1 2 3 4
Number of files 30 30 1024 1024

Number of cloudlets 75k 75k 150k 150k
Number of nodes 32 32 128 128
Times of increase 4h 1h30 4h 1h30

Table 3: Differences between experiments

4.2 Results

4.2.1 Comparison between different policies

First, we compare different policies from our static data replication strategy. As a reminder, we
compare E2ARSEX and E2ARSEC which are policies that only take respectively expenditure
and energy consumption exclusively. There is a 3rd policy that is a balance between those 2
objectives called E2ARS. The following figures and analysis are first based on experiment 3
(large scale experiment with an increase after 4h).

At first, it can be highlighted the fact that the more energy consumption is considered, the
less the strategy creates replicas. In fact, E2ARSEC is the one having the lowest number of
replicas with an average of 2915.1 (σ = 13.12) replicas, followed by E2ARS and E2ARSEX with
an average of 2,923.2 (σ = 9.61) and 2,937.5 (σ = 9.26) replicas respectively. These differences
have an impact on the number of violations. Figure 1a represents the cloudlet arrival rate of
experiment 3 and the SLO violations ratio. This figure shows that violations are sorted according
to the number of replicas which mean that E2ARSEC, with an average of 3,027.3 (σ = 1, 184.3),
has more violations than E2ARS, with an average of 2,752.4 (σ = 1, 634.6). Then E2ARS has
more violations than E2ARSEX with an average of 2,171.6 (σ = 786.7). Yet, only the difference
between E2ARSEC and E2ARSEX are statistically different (based on Student tests to compare
means).

Figure 1b shows the standardized values of energy consumption and expenditure for ex-
periment 3. On this plot, E2ARSEC is the policy that consume less with an average of 595.4
MJ (σ = 16.64) compared to E2ARSEX which consumes 606.1 MJ (σ = 17.3) and E2ARS
that consumes 601.7 MJ (σ = 14.1). E2ARSEX is the cheapest one with an average cost
of 8,713.8$ (σ = 234.6) compared to E2ARS which costs 8,848.6$ (σ = 215) and E2ARSEC
8,867.3$ (σ = 210.1). The ordering of those policies still seems to make sense as they represent
3 different policies of our spectrum. E2ARS will then correspond to the selected strategy as
it is in the middle of the spectrum. Just like the replication, E2ARSEC and E2ARSEX are
significantly different for both energy consumption and expenditure.

However, it has to be highlighted that the number of files and nodes have an impact on
these results. In fact, this has an impact on their range of possibility, implying that some
results shows that E2ARS can be closer to E2ARSEX or E2ARSEC in terms of performance,
energy consumption and expenditure.

4.2.2 Comparison between different strategies

To compare all the strategies, we analyze experiment 1 (small scale, increase after 4h), but other
results will also be analyzed as they highlight some differences compared to this experiment.
Figure 2a shows the number of replications during the experiment 1 when comparing our strategy
with the static ones (MORM, 3Rand), and the dynamic ones (Boru et al., PEPR). Within the
static strategies, 3Rand creates 2 replicas per files, MORM creates a lot of replicas (more than a
thousand) and E2ARS created a bit less than 3 replicas per file. A first comparison we can focus
on is the time needed to let MORM choose how many and where to place its replicas compared

IRIT/RR –2021–07–FR



14 M. Séguéla R. Mokadem J-M. Pierson

(a) Cloudlets distribution and Violations over
execution between policies

(b) Standardized Value of energy consumption and
expenditure between policies

Figure 1: Results from experiment 3

to E2ARS. In fact MORM takes an average of 1,164 seconds to compute its strategy while
E2ARS takes around 9.6 seconds. In the dynamic group, PEPR starts without replicas, and
it adapts dynamically based on violations and profit. Implying that the stop of the increasing
number of replicas can be either due to the lack of violations or the lack of profit. Boru et al.
starts without replicas either, as all data are stored in the central database, and then if the
number of requests is higher than a threshold it triggers the replication, and it replicates if the
energy consumption and the bandwidth of the level below is lower. This is why there is a sharp
increase of data replication, then it gets slower, as long as most of the highly requested data in
the central database are already replicated. However, on Figure 2b, we can see that even with
the 2nd largest number of replicas, it as the highest number of violations (reaching up to 83% at
the end. This is mostly due to the topology that makes a bottleneck where data are stored. It is
followed by 3Rand and E2ARS which violated the SLO with an average of 700 times (σ = 370)
corresponding to 0.9% of cloudlets and 510 times (σ = 164) which correponds to 0.7% of all
cloudlets respectively. PEPR’s number of violations follows the number of replicas created in
this workload. In fact, as the number of violations began to remain constant, the number of
replicas is also kept constant. Which means that the reason of stopping the creation of replicas
in this workload is based on the number of violations. Finally, MORM is the strategy that has
no violations at all as it created a huge amount of replicas. Table 4 and Table 5 represent the
number of replicas created and the number of SLO violations respectively at the end of each
workload.

Figure 3 corresponds to the standardized values of energy consumption and expenditure of
experiment 1. We chose 3Rand as a control strategy, its average energy consumption is 228.47
MJ (σ = 7.17) and it costs 4,732$ (σ = 304.89). It is the baseline to which we compare others
strategies. On this figure, MORM is the cheapest with a reduction of 87% of the cost. It
is explained by the fact that it replicates a lot implying an absence of data transfer between
regions which is very expensive, but this would be very expensive for a long term storage. But,
this is the second most energy consuming strategy with an increase of 84% compared to 3Rand

IRIT



E2ARS 15

(a) Replication over execution between strategies
(b) Cloudlets distribution and Violations over

execution between strategies

Figure 2: Results from experiment 1

Experience 1 2 3 4

Boru et al. 241 (5.9) 240 (4.3) 126 (3.7) 127 (3.87)
3Rand 60 (0) 60 (0) 2,048 (0) 2,048 (0)
MORM 6.6k (3.2k) 6.3k (3.1k) - -
PEPR 108 (9.7) 159 (8.1) 184 (80.1) 2,075 (32.1)
E2ARS 85 (2.3) 85 (2.1) 2,923 (9.6) 2,927 (15.7)

E2ARSEC 83 (1.7) 84 (1.9) 2,915 (13) 2,914 (12)
E2ARSEX 86 (1.29) 86 (1.4) 2,937 (9.3) 2,933 (8.6)

Table 4: Number of replicas created per each experiment – Mean (Standard−Deviation)

Experience 1 2 3 4

Boru et al. 63k (451) 70k (190) 144k (160) 146k (171)
3Rand 700 (370) 610 (137) 55k (7.3k) 53k (6.9k)
MORM 0 (0) 0 (0) - -
PEPR 226 (34) 168 (10) 109k (5.8k) 2.1k (32)
E2ARS 510 (164) 483 (79) 2.8k (1635) 2.2k (807)

E2ARSEC 505 (118) 507 (106) 3k (1184) 3.7k (1477)
E2ARSEX 313 (74) 429 (92) 2.2k (787) 2k (781)

Table 5: Number of SLO violations per experiment – Mean (Standard−Deviation)

IRIT/RR –2021–07–FR



16 M. Séguéla R. Mokadem J-M. Pierson

Figure 3: Standardized Value of energy consumption and expenditure of experiment 1 between
strategies

as it needs to keep all nodes awaken while other strategies can put them in sleep mode. Boru
et al. is the one that costs and consumes the most with expenditure increase of 33% and an
energy consumption that is equal to more than 3 times 3Rand. This is mostly explained by the
bottleneck created by the topology increasing the execution time, implying an increase in terms
of energy consumption. Also, due to its topology, Boru et al. has to retrieve data from the
central database, as it is considered as another region, it sharply increases the cost to transfer
data. Compared to 3Rand, PEPR slightly reduces its energy consumption by 4% while keeping
the same cost. E2ARS reduces significantly both energy consumption and expenditure by 3%
and 10% respectively. As other experiments have been done on other workload, results are
summarized on table 6 and 7 for energy consumption and expenditure respectively.

Based on all results (Table 4, Table 5, Table 6 and Table 7), experiments show differences in
terms of results and behaviors. For instance, Boru et al. keeps a low number of replicas in larger
scale experiments compared to smaller ones. This is mostly explained by the chosen threshold
that has to be lowered as the number of file increases. However, we kept the same replication
conditions between all experiments as it was for other strategies. It mostly has an impact on
transfer time, implying an increase in terms of violations (up to 98% of all cloudlets), expenditure
and energy consumption. PEPR handles the larger scale experiments and keeps reducing both
expenditure and energy consumption in almost all experiments. Yet, in experiment 3 (large
scale, increase after 4h), PEPR has a very low number of replicas linked with a high number of
violations (73% of all cloudlets). This means that replications stopped due to the lack of profit
as the expenditure went higher. Finally, E2ARS keep its performance in larger scale with a low
number of violations (up to 1.8% in large scale) with a low processing time (around 9 seconds
in small scale and 161 seconds for larger scale ones). Also, larger scale experiments highlight
a higher reduction of both energy consumption and expenditure compared to 3Rand with a
reduction of 36% and 18% respectively.

IRIT



E2ARS 17

Experience 1 2 3 4

Boru et al. 747 (77) 722 (56) 8.9k (131) 8.8k (129)
3Rand 227 (6) 194 (1) 942 (37) 785 (5.54)
MORM 419 (14) 457 (9) - -
PEPR 216 (6) 192 (1) 896 (119) 498 (2.81)
E2ARS 220 (6) 187 (1) 602 (14) 503 (4.55)

E2ARSEC 220 (7) 187 (1) 595 (17) 501 (3.8)
E2ARSEX 228 (10) 188 (1) 606 (17) 505 (3.2)

Table 6: Energy consumption by experiment and policies in MJ – Mean (Standard−Deviation)

Experience 1 2 3 4

Boru et al. 6.3k (377) 6.4k (288) 40k (488) 40k (484)
3Rand 4.8k (305) 4.7k (195) 11k (230) 11k (262)
MORM 594 (102) 1.8k (1.1k) - -
PEPR 4.7k (350) 3.7k (230) 22k (2.1k) 6.8k (106)
E2ARS 4.3k (268) 4.1k (331) 8.8k (215) 8.8k (244)

E2ARSEC 4.3k (269) 4.2k (389) 8.8k (210) 8.9k (209)
E2ARSEX 3.8k (299) 3.7k (333) 8.7k (235) 8.7k (186)

Table 7: Expenditure by experiment and policies in $ – Mean (Standard−Deviation)

5 Conclusion

In this paper, we proposed a static data replication strategy called E2ARS that achieves its
objective to reduce both energy consumption and expenditure compared to other strategies.
The proposed strategy takes into account the trade-off between reducing energy consumption
and reducing expenditure that is considered and decided by the administrator instead of finding
an optimal solution for one issue or another. E2ARS uses a 2 steps decision process in order to
reduce the search space. The first step uses an Evolutionary Algorithm named SPEA2 followed
by a second step which is a heuristic that places data on a few amounts of nodes in order to
leverage technologies like PowerSleep.

We compared our strategy alongside a control strategy that places 3 replicas placed randomly
(3Rand). We also compared our strategy to other existing strategies proposed in the literature,
both static (MORM) and dynamic (Boru et al., PEPR). Results show that E2ARS reduces
the number of violations compared to 3Rand with only a few more replicas. Also, E2ARS
fulfilled its objective to reduce both energy consumption and expenditure compared to the
others strategies, that mostly reduced efficiently one objective. Compared to MORM, E2ARS
significantly reduces both energy consumption and expenditure. On the other hand, despite
E2ARS is a static strategy, its energy consumption and the number of violations are only slightly
higher compared to the compared dynamic strategies. Furthermore, E2ARS leverages the cloud
heterogeneity and technologies like PowerSleep while keeping a high level of performance without
creating a large amount of replicas.

For future work, we will use the proposed static data replication strategy as an initial place-
ment for a forthcoming dynamic data replication strategy. Also, it would be interesting to use
some techniques like data compression in order to reduce storage cost and energy consumption.
Another idea is to include the reduction of carbon footprint by knowing the energy mix of each
data center. Finally, we are currently repeating these experiments on a real architecture.

IRIT/RR –2021–07–FR



18 M. Séguéla R. Mokadem J-M. Pierson

References

[1] H. Reed, “Netflix Q1 Report 2020,” Tech. Rep., Apr. 2020. [Online]. Available:
https://www.netflixinvestor.com/financials/quarterly-earnings/default.aspx

[2] P. Valduriez, “Parallel database systems: Open problems and new issues,”Distributed and
Parallel Databases, vol. 1, no. 2, pp. 137–165, Apr. 1993.

[3] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th
utility,” Future Generation Computer Systems, vol. 25, no. 6, pp. 599–616, Jun. 2009.

[4] J. Janpet and Y.-F. Wen, “Reliable and Available Data Replication Planning for
Cloud Storage,” in 2013 IEEE 27th International Conference on Advanced Information
Networking and Applications (AINA). Barcelona: IEEE, Mar. 2013, pp. 772–779.
[Online]. Available: http://ieeexplore.ieee.org/document/6531832/

[5] D. Boru, D. Kliazovich, F. Granelli, P. Bouvry, and A. Y. Zomaya, “Energy-efficient data
replication in cloud computing datacenters,”Cluster Computing, vol. 18, no. 1, pp. 385–402,
Mar. 2015.

[6] U. Tos, R. Mokadem, A. Hameurlain, T. Ayav, and S. Bora, “Ensuring performance and
provider profit through data replication in cloud systems,”Cluster Computing, Dec. 2017.

[7] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in Cloud Computing: What It Is,
and What It Is Not,” ICAC, vol. 13, pp. 23–27, 2013.

[8] D. Serrano, S. Bouchenak, Y. Kouki, F. A. de Oliveira Jr., T. Ledoux, J. Lejeune, J. Sopena,
L. Arantes, and P. Sens, “SLA guarantees for cloud services,”Future Generation Computer
Systems, vol. 54, pp. 233–246, Jan. 2016.

[9] L. A. Barroso, U. Hölzle, and P. Ranganathan, “The Datacenter as a Computer:
Designing Warehouse-Scale Machines, Third Edition,” Synthesis Lectures on Computer
Architecture, vol. 13, no. 3, pp. i–189, Oct. 2018. [Online]. Available: https:
//www.morganclaypool.com/doi/abs/10.2200/S00874ED3V01Y201809CAC046

[10] G. Cook, J. Lee, T. Tsai, A. Kong, J. Deans, B. Johnson, and E. Jardim, “Clicking Clean:
Who is Winning the Race to Build a Green Internet?” Greenpeace Inc., Washington, DC,
Tech. Rep., 2017. [Online]. Available: http://www.clickclean.org/

[11] T. Mastelic, A. Oleksiak, H. Claussen, I. Brandic, J.-M. Pierson, and A. V. Vasilakos,
“Cloud Computing: Survey on Energy Efficiency,”ACM Computing Surveys, vol. 47, no. 2,
pp. 1–36, Dec. 2014.

[12] Y. Ebadi and N. J. Navimipour, “An energy-aware method for data replication in the
cloud environments using a Tabu search and particle swarm optimization algorithm,”
Concurrency and Computation: Practice and Experience, vol. 31, no. 1, p. e4757, 2019,
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4757. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4757

[13] I. Hamzaoui, B. Duthil, V. Courboulay, and H. Medromi, “A Survey on the
Current Challenges of Energy-Efficient Cloud Resources Management,” SN Computer
Science, vol. 1, no. 2, p. 73, Feb. 2020. [Online]. Available: https://doi.org/10.1007/
s42979-020-0078-9

IRIT

https://www.netflixinvestor.com/financials/quarterly-earnings/default.aspx
http://ieeexplore.ieee.org/document/6531832/
https://www.morganclaypool.com/doi/abs/10.2200/S00874ED3V01Y201809CAC046
https://www.morganclaypool.com/doi/abs/10.2200/S00874ED3V01Y201809CAC046
http://www.clickclean.org/
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4757
https://doi.org/10.1007/s42979-020-0078-9
https://doi.org/10.1007/s42979-020-0078-9


E2ARS 19

[14] S. Wang, J. Liu, J.-J. Chen, and X. Liu, “PowerSleep: A Smart Power-Saving Scheme
With Sleep for Servers Under Response Time Constraint,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 1, no. 3, pp. 289–298, Sep. 2011. [Online].
Available: http://ieeexplore.ieee.org/document/6042345/

[15] W. Li, Y. Yang, and D. Yuan, “A Novel Cost-Effective Dynamic Data Replication Strategy
for Reliability in Cloud Data Centres,” in 2011 IEEE Ninth International Conference on
Dependable, Autonomic and Secure Computing. Sydney, Australia: IEEE, Dec. 2011, pp.
496–502.

[16] N. K. Gill and S. Singh, “A dynamic, cost-aware, optimized data replication strategy for
heterogeneous cloud data centers,” Future Generation Computer Systems, vol. 65, pp. 10–
32, Dec. 2016.

[17] J. Liu, H. Shen, H. S. Narman, Z. Lin, and Z. Li, “Popularity-aware Multi-failure Re-
silient and Cost-effective Replication for High Data Durability in Cloud Storage,” IEEE
Transactions on Parallel and Distributed Systems, pp. 1–1, Oct. 2018.

[18] F. Xie, J. Yan, and J. Shen, “A Data Dependency and Access Threshold Based Replication
Strategy for Multi-cloud Workflow Applications,” in Service-Oriented Computing – ICSOC
2018 Workshops, ser. Lecture Notes in Computer Science, X. Liu, M. Mrissa, L. Zhang,
D. Benslimane, A. Ghose, Z. Wang, A. Bucchiarone, W. Zhang, Y. Zou, and Q. Yu, Eds.
Springer International Publishing, Apr. 2019, pp. 281–293.

[19] Y. Mansouri and R. Buyya, “Dynamic replication and migration of data objects
with hot-spot and cold-spot statuses across storage data centers,” Journal of Parallel
and Distributed Computing, vol. 126, pp. 121–133, Apr. 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731518309092

[20] S.-Q. Long, Y.-L. Zhao, and W. Chen, “MORM: A Multi-objective Optimized Replication
Management strategy for cloud storage cluster,” Journal of Systems Architecture, vol. 60,
no. 2, pp. 234–244, Feb. 2014.

[21] Y. Lin and H. Shen, “EAFR: An Energy-Efficient Adaptive File Replication System in
Data-Intensive Clusters,” IEEE Transactions on Parallel and Distributed Systems, vol. 28,
no. 4, pp. 1017–1030, Apr. 2017, conference Name: IEEE Transactions on Parallel and
Distributed Systems.

[22] Z. Xu, N. Deng, C. Stewart, and X. Wang, “CADRE: Carbon-Aware Data Replication for
Geo-Diverse Services,” in 2015 IEEE International Conference on Autonomic Computing.
Grenoble, France: IEEE, Jul. 2015, pp. 177–186.

[23] M. Séguéla, R. Mokadem, and J.-M. Pierson, “Comparing energy-aware vs. cost-aware
data replication strategy,” in 2019 Tenth International Green and Sustainable Computing
Conference (IGSC), Oct. 2019, pp. 1–8.

[24] M. Alghamdi, B. Tang, and Y. Chen, “Profit-based file replication in data intensive cloud
data centers,” in 2017 IEEE International Conference on Communications (ICC). Paris,
France: IEEE, May 2017, pp. 1–7.

[25] A. Hylick and R. Sohan, “A methodology for generating disk drive energy models using
performance data,” Energy (Joules), vol. 80, p. 100, 2009.

IRIT/RR –2021–07–FR

http://ieeexplore.ieee.org/document/6042345/
http://www.sciencedirect.com/science/article/pii/S0743731518309092


20 M. Séguéla R. Mokadem J-M. Pierson

[26] M. Song, “Minimizing Power Consumption in Video Servers by the Combined Use of Solid-
State Disks and Multi-Speed Disks,” IEEE Access, vol. 6, pp. 25 737–25 746, Jun. 2018.

[27] M. Rhu, M. Sullivan, J. Leng, and M. Erez, “A locality-aware memory hierarchy for energy-
efficient GPU architectures,” in 2013 46th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). Davis, California: ACM Press, Dec. 2013, pp. 86–98.

[28] Micron, “TN-40-07: Calculating Memory Power for DDR4 SDRAM,” 2017. [Online].
Available: https://www.micron.com/support

[29] R. Basmadjian, H. D. Meer, R. Lent, and G. Giuliani, “Cloud computing and its
interest in saving energy: the use case of a private cloud,” Journal of Cloud Computing:
Advances, Systems and Applications, vol. 1, no. 1, p. 5, Jun. 2012. [Online]. Available:
https://doi.org/10.1186/2192-113X-1-5

[30] A. Vishwanath, K. Hinton, R. W. Ayre, and R. S. Tucker, “Modeling energy consumption in
high-capacity routers and switches,” IEEE Journal on Selected Areas in Communications,
vol. 32, no. 8, pp. 1524–1532, 2014, publisher: IEEE.

[31] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength Pareto evolu-
tionary algorithm,”TIK-report, vol. 103, 2001.

[32] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya, “CloudSim:
a toolkit for modeling and simulation of cloud computing environments and evaluation of
resource provisioning algorithms,” Software: Practice and Experience, vol. 41, no. 1, pp.
23–50, Jan. 2011.

[33] F. F.-H. Nah, “A study on tolerable waiting time: how long are Web users willing to wait?”
Behaviour & Information Technology, vol. 23, no. 3, pp. 153–163, May 2004.

[34] D. Moyer, S. L. Carson, T. K. Dye, R. T. Carson, and D. Goldbaum, “Determining the
influence of Reddit posts on Wikipedia pageviews,” in Ninth international AAAI conference
on web and social media. AAAI Press Oxford, UK, 2015, pp. 75–82.

[35] K. Lerman and R. Ghosh, “Information Contagion: an Empirical Study of the Spread of
News on Digg and Twitter Social Networks,” arXiv:1003.2664 [physics], Mar. 2010, arXiv:
1003.2664. [Online]. Available: http://arxiv.org/abs/1003.2664

IRIT

https://www.micron.com/support
https://doi.org/10.1186/2192-113X-1-5
http://arxiv.org/abs/1003.2664




IRIT, Université Toulouse 3 Paul Sabatier (UT3)
118 Route de Narbonne - F-31062 TOULOUSE Cedex 9 FRANCE

Tel: (33) 5 61 55 67 65 – mail: contact@irit.fr

IRIT, INP - ENSEEIHT
2, Rue Camichel, BP 7122 - 31071 TOULOUSE cedex 7 FRANCE

IRIT, Université Toulouse 1 Capitole (UT1)
Place Anatole-France 31042 TOULOUSE cedex 9 FRANCE

IRIT, Université Toulouse 2 Jean Jaurès (UT2J)
Maison de la Recherche, 5 allées Antonio Machado - 31058 TOULOUSE cedex 9 FRANCE

IRIT, IUT de Blagnac – Université Toulouse 2 Jean Jaurès (UT2J)
1 Place Georges Brassens, BP 60073 - 31703 BLAGNAC cedex FRANCE

http://www.irit.fr


	Introduction
	State of the art
	Data placement strategy
	Notation
	Models and Objective functions
	Replication
	Storage
	Read
	Multi-Objective Function

	Energy and Expenditure Aware Strategy
	Overview on the static data replication algorithm
	Data replication between data centers (lines 1-5)
	Data placement inside chosen data centers (lines 6-10)


	Experiments
	Experimental Environment
	Strategies Parameters
	Simulation Parameters

	Results
	Comparison between different policies
	Comparison between different strategies


	Conclusion

