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ABSTRACT

This paper presents a description of ongoing research that aims
to improve the interaction between human and Embodied Conver-
sational Agent (ECA). The main idea is to model the interactive
loop between human and agent such as the virtual agent can con-
tinuously adapt its behavior according to one’s partner. This work,
based on recurrent neural network, focuses on non-verbal behavior
generation and presents several scientific locks like the multimodal-
ity, the intra-personal temporality of multimodal signals or the
temporality between partner’s social cues. The modeling will be
done using the NOXI database containing natural human/human
interactions and the nonverbal behavior generation will be tested
on the GRETA platform that simulates virtual agents.

CCS CONCEPTS

« Human-centered computing — Human computer interac-
tion (HCI); - Computing methodologies — Neural networks.
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1 INTRODUCTION

Embodied Conversational Agents (ECAs) are human-like virtual
characters involved in face-to-face interaction with a human or
another agent. The goal of researches around ECA is to generate
agent behavior and to make them react to verbal and nonverbal so-
cial signals, like a human interlocutor. Virtual agents are becoming
more and more popular and can be found in applications such as
language learning [58], clinical psychology [50], coaching [4] etc.
During an interaction, information is communicated in various
ways, through verbal and nonverbal channels. The importance
of non-verbal communication was demonstrated through many
researches. In two experiments, Mehrabian et al. [40] concluded
that the interpretation of a message is not only through the verbal
channel, but also through the vocal and visual channels. A large part
of the communication is “nonverbal”. But what are these nonverbal
signals? In addition to the “body language” including “gestures,
facial expressions, body movement, gaze, dress, and the like to
send messages”, defined by Burgoon et al. [11, p.2], Burgoon et
al. [11] added some important communicative elements such as use
of the voice, touch, distancing and time. Generating the behavior
of an agent consists therefore not only to generate its words but
also to generate its non-verbal behavior so that it can transmit
as much information as a human interlocutor. In this work, we

are particularly interesting in this aspect of nonverbal behavior
generation.

During a conversation, the interlocutors constantly adapt their
behavior based on the social signals emitted by their interlocutors.
The behavior adaptation increases the fluidity of the exchange
and the interlocutors’ engagement level, which are some of the
key factors for maintaining a good quality of interaction [25]. As
proposed first by Dermouche et al. [18], this adaptation can be
modeled by an interactive loop between interlocutors that adapt to
their surrounding social cues at each iteration. Thus, by studying
the other interlocutors’ social signals it is possible to produce the
appropriate human-like social behavior within an interaction.

In our research, we decide to use Recurrent Neural Networks
(RNN) [14] to model this interactive loop. To simplify complex real
world scenarios, we chose to work with dyadic interactions and
focus on generating nonverbal social signals of the virtual agent.
Several scientific locks appear like the multimodality of the sig-
nals, the intra-personal temporality between these signals or with
partner’s social cues. This implies that the multimodal aspect of
signals needs to be managed (i.e. multimodality of the signals) and
the temporal coherence must be assured between each signal (i.e.
intra-personal temporality) for the generation of a natural interac-
tion. The signals also have to be related to verbal and nonverbal
signals of the partners (i.e. inter-personal temporality) in order to
maintain an interaction with a good quality and an engagement of
both partners.

The paper starts with a presentation of the state of the art in
Section 2. Then, the database we choose and the considered social
signals will be introduced in Section 4.1, before the presentation
of the scientific questions posed in Section 3 to implement the
interactive loop between human and ECA and some envisaged
approaches.

2 RELATED WORK
2.1 Nonverbal signals and their temporality

Terminologically, a “nonverbal behavior” refers to actions that are
distinct from speech such as facial expressions, gestures and pos-
tures. As stated by Mehrabian [39, p.1], “the term “nonverbal behav-
ior” is a misnomer” as various aspects of speech like fundamental
frequency, prosody, ... , are traditionally included in the nonverbal
phenomena. Even if they are opposed in their denomination, ver-
bal and non-verbal signals reinforce each other. Thus, Bonaccio et
al. [10] show some examples where nonverbal behavior can repeat
verbal discourse (a nod to show agreement), substitute it (an eye
roll instead of a statement of contempt), complement it (reddening



while talking to an intimidating person), accent it (a slap on the
back following a joke) or contradict it (wiping tears away while
asserting that one is fine). More importantly, non-verbal behavior
can add information that are not explicitly encoded in the verbal be-
havior such as emotions or social attitudes [5, 52]. Such nonverbal
signals are therefore extremely useful to better understand one’s
partner.

Nonverbal signals are also highly related to engagement in the
interaction. For example, facial gestures [57] like a smile, looking
at one’s partners (gaze direction) [44] or posture [20] can reinforce
the interaction. On the opposite, an ECA without facial gestures,
with a monotone voice, with a static posture, without any gesture
and a perfectly motionless head, will be boring very quickly. Thus,
generating nonverbal motion is very important and essential to
create a good quality interaction.

These non-verbal signals are highly multimodal and of great
dimension. Moreover, the timing between them is primordial. It
is often referred as “synchrony” [16]. For an intra-personal point
of view, these signals (gaze, facial gestures, posture, body gesture,
head motion) need to be coordinated with each other. We talk about
intra-personal synchrony [9].

In communication, the Communication Accommodation The-
ory (CAT) [15] deals with the temporal coherency between speech
prosody, speech rate, response latency, laughter or posture. More-
over the inter-personal synchrony is highly correlated with the
mimicry effect [33] where, for example, the listener’s body moves
according to the speaker’s rhythm of speech. In [41], Miles et al.
assert that temporal coordination during dyadic interactions is a
foundation for effective social exchange and enhance perceptions of
rapport and inter-personal connectedness. Along with synchrony,
backchannels [8], which are listener’s signals that express attention,
interest and understanding through short verbal utterances (“ok”),
vocal signals (“uh-huh”) or gestural cues (head nod), are also play
an important role in maintaining an interaction.

So, displaying nonverbal behavior is important for an ECA. It
is required to generate a great number of multi-dimensional sig-
nals. They have to be coherent with each other (intra-personal
temporality) but also be related to nonverbal signals of the partner
(inter-personal temporality).

2.2 Nonverbal behavior generation

We present several works on communicative and interaction behav-
ior generation with a focus on key behaviors that characterize the
interaction maintenance or behavior adaptation, such as backchan-
nels and facial gestures. We will first introduce works focusing on
single-person based (either speaker or listener) techniques and then
for two-person based techniques. These works will be introduced
in chronological order.

Earlier studies on interaction behavior generation, notably for
ECAs, used rule-based systems. For example, Truong et al. [55]
manually design rules for backchannel prediction based on pitch
and pause information of audio signal. In the same way, Poppe
et al. [49] evaluate a six rules-based strategy, from the speaker’s
speech and gaze, for backchannel generation in face-to-face conver-
sations. Decision trees [46] have been employed in a chat context,
to generate natural responses and their timing, based on prosodic
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and surface linguistic information. Morency et al. [43] propose a
probabilistic model, based on Conditional Random Fields [38], that
is able to predict backchannels using multimodal signals such as
prosody, words or gaze.

Recent progresses on neural networks and more particularly on
recurrent neural networks, combined with the increase of compu-
tation capacity, namely Graphics Processor Unit (GPU), have led to
a transition from classical approaches to neural ones.

Some works use simple Feed-Forward Neural Network (FEN) [7]
for modality translation to compute communicative behaviors. For
example, Karra et al. [36] generate 3D facial animation using audio
input in real time, with low latency. Thus, given a short time window
of audio signals, the network infers the facial gestures at the center
of the window. A 3D mesh is animated by sliding the window over
a vocal audio track. In a similar way, Ding et al. [19] proposed
FFN regression model to synthesize head motion of a speaker from
his/her speech.

New architectures of Neural Networks (NNs) have been con-
structed to define and update memory cells from previous time-
steps. These NN, called Recurrent Neural Network (RNN) [14]
and more especially the Long Short-Term Memory (LSTM) [32],
have been broadly used in multiple fields to capture the temporal
information.

As stated in Section 2.1, intra-personal and inter-personal tem-
poralities are very important during interactions and thus, need to
be properly modeled and employed. So, several works have been
interested in using RNN to generate nonverbal behavior.

Always for the purpose of computing nonverbal behavior from
a modality, for example from speech to head movement or facial
expression, Sadoughi et al. [54] propose the use of Bi-directional
Long Short-Term Memory (BLSTM) [28] that encode sequences in
both directions: forward and backward. This modeling forces to
work on sliding temporal windows: prosody features over a time
window are used to predict the future head movements. A Gener-
ative Adversarial Network (GAN) [27] is also added to generate
multiple realizations of head movements from each speech segment
by sampling from a conditioned distribution. Hasegawa et al. [29]
also use an approach based on BLSTM to predict the 3D human
body gesture from audio utterances.

GAN s are very popular to generate natural sequences and are
often used nowadays. For example, temporal GANs with two dis-
criminators have been employed to generate facial gestures from
the speech signals of a same person [56], we then talk about “talking
head”. From a still image of a person and an audio clip containing
speech, the model can generate lip movements and natural facial
gestures such as blinks and eyebrow movements.

Ginosar et al. [26] propose to translate speaker speech into com-
municative gestures using FFN. As the method suffers from the
regression to the mean problem, which leads to overly smooth mo-
tion, a GAN has been added. It ensures that generated sequences
look like real ones.

Ferstl et al. [24] push the use of GAN to map speech to 3D ges-
ture motion by defining several sub-problems, including plausible
gesture dynamics, realistic joint configurations, and diverse and
smooth motion. Each sub-problem is monitored by separate adver-
saries.
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Alexanderson et al. [3] introduce another powerful model, based
on MoGlow method [30], that generates speech-driven gesticula-
tion. The statistical aspect of the method allows generating several
gesticulations from a same speech segment, all with an important
plausibility. Pose sequences are generated via an auto-regressive
approach using normalizing flows [48].

The approaches introduced above focus only on the intra-personal
temporality as only one person (listener or speaker) is involved.
Some other works are more interested in modeling the temporal re-
lationship of nonverbal behaviors between a participant and his/her
partner during an interaction.

Huang et al. [34] generate facial gestures in human-agent interac-
tions using Conditional Generative Adversarial Networks (CGANs)
[42]. At each time step ¢, a conditional deep convolutional genera-
tive adversarial network is employed to produce expressive facial
gestures of the interviewer, conditioned on the interviewee’s fa-
cial gestures. The temporality of signals is not really modeled as
previous interviewee’s facial gestures descriptors are simply aver-
aged. The main contribution of this work is to generate valid facial
expression response thanks to the GAN.

In [23], Feng et al. create a Feed-Forward Neural Network (FFN)
that generates agent’s facial gestures based on the agent’s and hu-
man’s facial gestures on previous frame. To the best of our knowl-
edge, it is one of the first works that considers the interactive loop
between user and an embodied agent. The facial descriptors of the
90 last frames of the agent and of the human are concatenated
to generate the next 15 frames of agent’s facial gestures. As for
BLSTM [54], the use of FFN imposes to work on sliding widows.

Dermouche et al. [17] employed LSTM to model the temporality
of nonverbal signals and generate ECA’s behavior in a dyadic in-
teraction. They introduced an Interactive Loop LSTM that models
the agent’s nonverbal behaviors by considering both agent’s and
user’s behaviors. More precisely, the prediction model takes as in-
put a sequence composed of the last n frames of the agent’s and of
the user’s features and predicts the agent’s behavior (smile, head
rotation, gaze direction) for the next frame.

In [35], a system that takes audio from both partners and facial
expression of human generates corresponding appropriate facial
expression of an ECA using an extension of MoGlow [30]. At each
time step of the flow, all modalities are encoded using a RNN and
their concatenation is passed to a neural network.

2.3 Multimodal signal processing

Previously presented works use multimodal signals (audio, visual
and textual features) for nonverbal behavior generation. Never-
theless, they do not study the aspect of multimodality. This mul-
timodality of signals that can come from words, prosody, facial
expression, head motion, gestures, ... , is an important aspect that
needs to be dealt for the task of generating nonverbal behavior.

Chu et al. [13] propose a neural conversation model generating
facial expression alongside with text. Their goal to add richness
to their generation by exploiting modalities in a separate man-
ner. Rather than concatenating both modalities, they use a RNN
dedicated to each modality (facial expression and text). Then, the
global description is obtained by concatenating the history of each
modality.

Rajagopalan et al. [51] extended the LSTM for multimodal learn-
ing by proposing Multi-View LSTM (MV-LSTM) which explicitly
models modality-specific and cross-modality interactions. Thus,
the model defines four types of memory cells: modality specific
cells, coupled cells, fully connected cells and input oriented cells.
MV-LSTM shows promising results in exploiting multi-view rela-
tionships for behavior recognition and image caption generation
problem. Another approach that learns from multiple modalities
was proposed by Zadeh et al. [59]. Their structure, named Memory
Fusion Network (MFN), learns view-specific dynamics in isolation
by training a LSTM for each modality. Then, an attention network
is used to find cross-view interactions by associating a relevance
score to the memory dimensions of each LSTM. A last compo-
nent stores the cross-view information over time in the Multi-view
Gated Memory acting like a dynamic memory module. MFN has
been tested on several multimodal databases and show high per-
formance in sentiment analysis, emotion recognition and speaker
traits recognition.

Another multimodal approach has been proposed to generate
animations from natural language sentences [2]. To map linguistic
concepts to motion animations, the authors propose a joint embed-
ding of language and pose that is learned end-to-end. The principle
is to map sentence and pose to a latent representation using a
sentence encoder and a pose encoder respectively. These latent
representations should lie close to each other as they represent
the same concept. This is ensured during the learning thanks to a
specific loss function.

2.4 Evaluation metrics

To validate the quality of a behavior generation model, an evalua-
tion needs to be performed. However, it is difficult to evaluate the
quality of behavior generation models as several plausible candi-
dates exist for a given input. For example, one can respond to the
interlocutor’s smile with smiles of different intensities or timings.
Most of the time, evaluations should be conducted both quantita-
tively and qualitatively.

Concerning the quantitative evaluation, several measures have
been employed, according to the type of data to be predicted and
to the allowed tolerance around the ground truth.

In some cases, the problem can be transposed to a classification
problem with its own metrics. For example, Morency et al. [43]
propose a method to generate backchannels. They introduce the
precision as the probability that a predicted backchannel corre-
sponds to a real one and the recall as the probability that a real
backchannel is predicted by the model. The F1-score:

Precision * Recall

Fi=2% ——— 1
! * Precision + Recall )

defined as the weighted harmonic mean of precision and recall is
also employed.

The same measures have been used in [13] to generate verbal
response for example. This part is also evaluated with a F1-score
between the words in generated sentences and ground truth.

But in most of the cases, the prediction of nonverbal behavior
consists of generating a time-series of real values like position
(facial and body landmarks) or magnitude (smile, head rotation,
gaze direction, facial action unit). The evaluation then compares



the generated time-series (t) to the real one y(t) and the most
popular measure is the Mean Square Error (MSE):

T
MSE= = 3" (§(0) - y(1)? @)

=1
It has for example been used by [19] and [54] to evaluate the syn-
thesized head motion with their models. Similar measures called
Mean Absolute Error (MAE) [26]:

T
MAE = 2 3" 1(0) - y(0) ®)
t=1
Average Position Error (APE) [29]:
T
APE= 2 1130 - y(0)ll, @
=1

or Root Mean Square Error (RMSE) [18]:

T
RMSE =\ = 3 (3(1) — y(0))’ ©)
t=1
have also been used.
Comparison between time-series can also be done using cor-
relation based measures. We can for example cite the Pearson’s
correlation used in [59]:

Sy (y(0) = py) (1) = i)

r= (6)
VEL @0 — ) S G0 - pg)?
or the coefficient of determination (R?) [18]:
S0 -9 o

Sy (y(1) = py)?

Some particular methods [35, 54] allow the generation of several
plausible time-series from a specific input. They can be evaluated by
estimating the density of probability p(x) of the generated samples
and by computing the likelihood of the test samples using this

distribution:
L=]]pex ®)
i

Some authors [37, 53] consider that the goal of behavior gener-
ation is not to reproduce a ground truth behavior but to produce
plausible and realistic behavior. Thus, Kucherenko et al. [37] pro-
pose to study and compare distribution statistics of generated and
real gestures and more particularly, statistics on speed and jerk. A
similar approach has been adopted in [35] where, in addition to the
likelihood of test data, Jonell et al. evaluate the rate of change of
acceleration and the range of the motion. A statistical comparison
between test and real data has also be proposed in [29] that consider
naturalness, time constancy and semantic constancy of gesture.

Quantitative evaluation metrics are not sufficient as several
plausible candidates exist for a same input and thus quantitative
closeness to the ground truth does not signify that the generated
behavior is valid. Also, they do not measure how behaviors are
perceived by humans nor their impact on the perceived quality
of the interaction. To better evaluate behaviors, almost all the
works propose qualitative studies that are conducted via question-
naires [3, 13, 23, 35, 36, 54].
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3 CHALLENGES

As stated in the Section 2.2, producing nonverbal behavior is impor-
tant for an ECA as a lot of information passes through this canal
of communication. It requires the generation of a great number of
multi-dimensional signals like facial expression (or gesture), head
motion, body gesture, posture, prosody and so on. Also, the intra-
personal and inter-personal temporality of these signals must be
assured.

These constraints imply some challenges in constructing a model
which takes into account all the signals together, from all modalities
and all partners. Moreover, to ensure a real-time interaction, the
nonverbal behavior needs to be generated at each time step, taking
into account the past behaviors of both human and agent.

Regarding the bibliography and previous requirements, several
questions are still open.

3.1 Which temporal scale should be considered
as input and output?

Considering the input data, two main categories of approaches
exist: those that work on temporal moving windows and those that
consider each time step as it arrives. The first ones are mainly based
on FFN [19, 26, 36] and Bi-directionnal LSTM while the second ones
often use RNN or LSTM (3, 17, 29, 54].

Both methods have advantages and drawbacks and thus a com-
parative study should be interesting. The methods based on a mov-
ing window avoid the vanishing gradient problem that often occurs
with RNN [31], particularly for long sequence. But, they require to
a priori set the size of the moving window and, more importantly,
can lead to discontinuous results. The opposite conclusion can be
drawn for RNN based methods that can be affected by a poor learn-
ing (vanishing gradient) but produce more continuous predictions
thanks to a memory that is updated with time.

The problem differs for the output: do we have to predict the
output time step by time step guaranteeing a real time adaptation
to the partner or is it better to make the prediction on “chunk” (i.e.
sliding window)? Actually, it seems for example difficult to predict
a gesture timestamp by timestamp without deciding the realization
of the whole gesture. In the literature, some methods make the
prediction at each time step [17, 36], while other ones predict the
whole sequence using sequence translation [54]. A compromise has
probably to be find but some studies on the quality of the interaction
according to this temporal length have to be undertaken.

3.2 How to manage multimodality?

Social cues are by definition highly multimodal and includes sig-
nals coming from text (words, dialog act,...), from audio (prosody,
turn-talking, interruption,...), from image (facial gesture, posture,
body gesture, head motion,...). In addition to being multimodal,
these signals have different types like series of numerical values
(fundamental frequency, head rotation for example) or series of
categorical variables (words, dialog act, turn-taking,...). Thus, they
probably have to be processed differently, even if it is important to
consider them altogether.

This multimodality has to be managed both for input signals
and output signals. Actually, all signals are extracted from the hu-
man partner and their modeling requires the management of their
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multimodal aspect. For the output side, all these signals have to be
generated to animate an ECA. Some works consider multimodal-
ity just by concatenating each modality to form the input of the
predictor [17, 23], but such a solution is probably not optimal as
processing multimodal signals in an individual manner can result to
a better exploitation. In [35] or [13], each modality is encoded by a
specific RNN, for a finer extraction of information of each modality
features, and the modality encodings were then concatenated for
the final prediction.

The management of multimodal signals is not specific to ECA
behavior generation and has been studied for other applications.
Some interesting methods have been proposed to better combine
modality encodings [51, 59]. They obtain important gains in per-
formance on tasks like sentiment analysis, emotion recognition or
speaker traits recognition and it should be interested to use these
models for ECA multimodal behavior synthesis. Multi-modal sig-
nals modeling recently appears in literature [47] and there is no
doubt that a lot of work remains to be done on this subject.

3.3 How to manage intra-personal and
inter-personal temporality?

Modeling an interaction between partners is complex, even for
a dyadic interaction. Many signals of both partners are involved
with a lot of temporal dependency between them. A dependency
exists between partners. For example, when one person smiles, the
other person often responds to his/her smile. It is a short term
dependency. Moreover, individuals often adapt their speech rate
or voice level to their partner. This time dependency is long-term,
much longer than the first example. But the generation of ECA’s
nonverbal behavior must not only consider signals from his/her
partner but also the temporal dependency of its own signals. Actu-
ally, the generated signals have also a strong temporal dependency
amongst themselves. For example, head motion or hand gesture
can reinforce speech, a change in posture may indicate a desire to
engage a new turn talking. In a more obvious manner, lip motion
or facial gestures are highly dependent on speech.

But how do we manage all these temporal dependencies, both
inter-personal and intra-personal?

In most of the works, this aspect is not addressed and a generic
model is used and supposed to do the job. We believe, however,
that a more specific model, explicitly modeling intra- and inter-
personal dependencies, could help the generation of more natural
behaviors. To the best of our knowledge, Ahuja et al. [1] were the
first and only ones to propose such a model. They explicitly model
intra-personal and inter-personal dynamics and merge them using
a selective attention module to generate sequences of body poses.
Based on this first work, other NN architectures can be proposed
and compared.

4 OUR RESEARCH

In this work, we propose to generate nonverbal behaviors of a
virtual agent during a dyadic interaction. As we plan to integrate our
work in an human-agent interaction platform, particular attention
will be paid on real time aspect. Moreover, the model should be
causal, taking only information from the past, so that the model
can be applied in real-time.

We propose to tackle the 3 challenges mentioned above to model
the interacting loop between the human and the agent. This model
will be constructed using a dyadic human/human interactions data-
base.

4.1 Corpus

We choose to use the NoXi (NOvice eXpert Interaction) [12] data-
base, a corpus of screen-mediated face-to-face interactions recorded
in three countries (France, Germany and UK), spoken in seven lan-
guages (English, French, German, Spanish, Indonesian, Arabic and
Ttalian). The screen-mediated recording allowed recording a face-
to-face conversation without the use of multiple cameras placed in
different angles.

The protocol is constructed to capture full body movements,
facial expressions, gestures and speech. They are acquired using
the Microsoft’s Kinect 2 and a dynamic head-set microphone.

The database offers 25 hours of dyadic interactions in a natural
setting. It is obtained by enrolling in each dyadic interaction, an
expert willing to share his/her experience and a novice willing to
learn on a given topic. In this work, we use only the French part
containing 21 dyadic interactions performed by 28 participants
(total duration 7h22).

Nonverbal behaviors need to be extracted from the database and
an analysis should be done for model training. The features con-
structing these behaviors were obtained through feature extraction
which was done separately for audio and video.

For images processing, we use the opensource toolkit Open-
Face [6] on both expert and novice videos. It allows us to estimate
head pose and rotation as well as facial Action Units (AUs) that rep-
resent the movements of facial muscles classified according to the
FACS (Facial Action Coding System) taxonomy [21]. All features
have been filtered using a median filter. Moreover, when OpenFace
does not succeed to extract AUs, the missing values are estimated
using a linear interpolation. Two feature vectors are thus extracted

head
t

at each time step, one x;'°?*, composed of head rotations around the

3 axes and head position, and the second one xtface, composed of
the 17 AUs extracted by OpenFace. We split the visual features into

two separate vectors (xi’e“d and xtf ¢€), instead of putting them
into a single vector, as head rotations and AUs have distinct feature
characteristics.

Audio signals are first filtered to decrease background noise and
to eliminate speech from the other interlocutor. Then the open-
source toolkit openSMILE [22] is employed to extract speech related
features. As for video, a median filter is then applied. The feature
vector, extracted at each time step xf“dio, is composed of funda-
mental frequency, loudness, voicing probability and 13 MFCCs
coefficients.

In the following, these three features vectors x;le“d, x[ ¢ and

xf“dio will be considered as three distinct modalities.

4.2 Our contribution
Our purpose is thus to generate the nonverbal behavior of an agent

and more particularly, to generate its facial gestures A]; 4°¢ and head

motion Ai’ead at time step ¢ from facial gestures, head motion and
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Our work will be progressively developed in three stages corre-

sponding to each research question. At the end, all these studies
will be integrated in a unique model learned in an end-to-end way.

We plan to begin with a simple model, like the one proposed
in [17] named IL-LSTM, where all modalities for both agent and
human of the last 20 frames are set as input of a LSTM layer. A fully
connected layer allows then to predict outputs, like illustrated in
Figure 1.

LSTM P
t-20 t-1 \ Y, t
Yo
Input Model Prediction
Human features Agent features

- + Hface - + Hhead I:l - Haudio - + Aface - + Ahead I:l + Aaudio

Figure 1: A single LSTM working on a sliding window

To avoid important output discontinuities encountered with this
method, the problem which triggers our first research question
stated in Section 3.1, we change the paradigm by avoiding the use
of a sliding window and using “online LSTM” where cells’ memories
are continuously updated during the whole interaction. In such a
way, the past is encoded in these memory cells and is used to make
new prediction. Moreover, the model takes its predicted values of
previous time step as input for the prediction at the next time step.

Another change we propose on the IL-LSTM model is to sym-
metrize the problem: during learning on human/human interac-
tions, both partners are involved in the same way in the interaction.
Thus, rather than predicting just one behavior from the past data,
we predict both behaviors. This allows us to use all the available
information in the loss function (MSE for the IL-LSTM) during
the training and thus to help the learning step. This new model is
illustrated on Figure 2.

The IL-LSTM model will be used as baseline, to validate, or not,
these first two propositions and particularly to study the use of
temporal window.

In a second stage, we want to tackle the multimodality modeling,
by answering our second research question in Section 3.2, and plan
to employ the Memory Fusion Network (MFN) proposed in [59] to
encode each partner modalities. This model, illustrated in Figure 3,
encodes independently each modality using a specific LSTM and
then, construct a multimodal gated memory using an attention
mechanism. Thus, the idea is to encode the nonverbal behavior of
each partner using a MFN to obtain two multimodal memory cells
that will be concatenated to predict the future behavior of each
partner as illustrated in Figure 4.

Our last purpose, concerns a better modeling of the inter-personal
interaction (for the moment, just a concatenation is employed) us-
ing a specific model that has to be developed. We plan to do so
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Figure 4: Fusion of multimodal memory cells

by investigating the how both intra-personal and inter-personal
temporality can be managed in our model, which corresponds to
our last research question in Section 3.3.

4.3 Evaluation

For the evaluation, we plan to evaluate our models through quan-
titative and qualitative measures as presented in Section 2.4. The
baseline will be the model of Dermouche et al. [17] that inspired us
in the first place.
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Moreover, the best model will be integrated on the Greta plat-
form [45], which is a 3D humanoid agent capable of communicating
with a human using verbal and nonverbal channels.

5 CONCLUSION

This paper presents a review of the state of the art on nonverbal
behavior generation for ECA. Following this review, three remain-
ing scientific locks have been identified. We propose to study them
during our future works and propose some perspectives at this end.
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