Dually Crosslinked Polymer Networks Incorporating Dynamic Covalent Bonds - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Polymers Année : 2021

Dually Crosslinked Polymer Networks Incorporating Dynamic Covalent Bonds

Résumé

Covalent adaptable networks (CANs) are polymeric networks containing covalent crosslinks that are dynamic under specific conditions. In addition to possessing the malleability of thermoplastics and the dimensional stability of thermosets, CANs exhibit a unique combination of physical properties, including adaptability, self-healing, shape-memory, stimuli-responsiveness, and enhanced recyclability. The physical properties and the service conditions (such as temperature, pH, and humidity) of CANs are defined by the nature of their constituent dynamic covalent bonds (DCBs). In response to the increasing demand for more sophisticated and adaptable materials, the scientific community has identified dual dynamic networks (DDNs) as a promising new class of polymeric materials. By combining two (or more) distinct crosslinkers in one system, a material with tailored thermal, rheological, and mechanical properties can be designed. One remarkable ability of DDNs is their capacity to combine dimensional stability, bond dynamicity, and multi-responsiveness. This review aims to give an overview of the advances in the emerging field of DDNs with a special emphasis on their design, structure-property relationships, and applications. This review illustrates how DDNs offer many prospects that single (dynamic) networks cannot provide and highlights the challenges associated with their synthesis and characterization.
Fichier principal
Vignette du fichier
polymers-13-00396.pdf (5.48 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03376330 , version 1 (12-01-2022)

Identifiants

Citer

Larissa Hammer, Nathan van Zee, Renaud Nicolaÿ. Dually Crosslinked Polymer Networks Incorporating Dynamic Covalent Bonds. Polymers, 2021, 13 (3), pp.396. ⟨10.3390/polym13030396⟩. ⟨hal-03376330⟩
33 Consultations
153 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More