
CODABENCH: FLEXIBLE, EASY-TO-USE AND REPRODUCIBLE
META-BENCHMARK PLATFORM

ACCEPTED BY PATTERNS CELL PRESS

Zhen Xu∗ Sergio Escalera Adrien Pavão Magali Richard

Wei-Wei Tu Quanming Yao Huan Zhao Isabelle Guyon

SUMMARY

Obtaining standardized benchmark of computational methods is a major issue in data science com-
munities. Dedicated frameworks enabling fair benchmarking in a unified environment are yet to
be developed. Here we introduce Codabench, a meta-benchmark platform that is open-sourced
and community driven for benchmarking algorithms or software agents versus datasets or tasks. A
public instance of Codabench https://www.codabench.org/ is open to everyone, free of charge,
and allows benchmark organizers to compare fairly submissions, under the same setting (software,
hardware, data, algorithms), with custom protocols and data formats. Codabench has unique features
facilitating easy organization of flexible and reproducible benchmarks, such as the possibility of
re-using templates of benchmarks, and supplying compute resources on-demand. Codabench has
been used internally and externally on various applications, receiving more than 130 users and 2500
submissions. As illustrative use cases, we introduce four diverse benchmarks covering Graph Machine
Learning, Cancer Heterogeneity, Clinical Diagnosis and Reinforcement Learning.

Keywords Machine Learning · Data Science · Benchmark platform · Reproducibility · Competitions

1 Introduction

The methodology of unbiased algorithm evaluation is crucial for machine learning, and has recently received renewed
attention in all data science scientific communities. Often, researchers have difficulties understanding which dataset to
choose for a fair evaluation, with which metrics, under which software/hardware configurations, and on which platforms.
The concept of benchmark itself is not well standardized and includes many settings. For instance, the following may
be referred to as a benchmark: a set of datasets; a set of artificial tasks; a set of algorithms; one or several dataset(s)
coupled with reference baseline algorithms; a package for fast prototyping algorithms for a specific task; a hub for
compilation of related algorithm implementations. In addition, many benchmarks often integrate new progresses by
manual verification instead of automatic submission and execution, which delays the benchmark update and requires
extra human efforts.

Typical examples of existing frameworks addressing such needs are inventoried in Table 1, including competition
platforms, repository hubs and domain specific benchmarks. Firstly, competition platforms focus on the participants and

∗Additional authorship information is as follows:
Corresponding authors: Zhen Xu (xuzhen@4paradigm.com) and Isabelle Guyon (guyon@chalearn.org).
Lead contact: Zhen Xu (xuzhen@4paradigm.com).
Authors’ order: The other authors are ordered alphabetically.
Affiliation: Zhen Xu, Wei-Wei Tu, Huan Zhao are with 4Paradigm, Beijing 100085, China; Sergio Escalera is with Universitat
de Barcelona, Computer Vision Center, Barcelona 08007, Spain; Adrien Pavão and Isabelle Guyon are with LISN/CNRS/INRIA,
University Paris-Saclay, Gif-sur-Yvette 91190, France; Magali Richard is with University Grenoble Alpes, CNRS, UMR 5525,
VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France; Quanming Yao is with Tsinghua University, Beijing 100084, China;
Isabelle Guyon is also with ChaLearn, CA, USA.

https://www.codabench.org/


Codabench ACCEPTED BY PATTERNS CELL PRESS

Benchmark 
Participants

Benchmark 
Organizers

Platform
Developers

Develop Prepare Submit

Task A
Task B

...

Benchmark
(Bundle)

A Meta-
Benchmark 

Platform

Codabench

(3) Reproducible

(3) Docker

(1) Flexible
(2) Easy

Code

(1) Ingestion
Scoring

(2) Creation/API

Benchmark

Benchmark

...

Data

Code

...

Requirement Implementation

Figure 1: Overview of Codabench. A meta-benchmark platform has three types of contributors: platform developers
(in yellow), benchmark organizers (in green) and benchmark participants (in red). Codabench is at the meta level to
support diverse benchmarks. Each benchmark is implemented by a benchmark bundle that contains one or more tasks.

provide limited support for organizing general tasks. Famous platforms like Kaggle2, Tianchi3, CodaLab4 organize many
data science challenges attracting a large number of participants. However, the platform providers retain some control:
the organizers do not have full flexibility and control over their competitions. Thus, the experience for organizers are not
enjoyable. A comparison between competitions and benchmarks is given in Table S1 in the supplementary. Secondly,
repository hubs such as UCI repository5, OpenML19 and PapersWithCode6, also play an important role for benchmarks
and research. They collect large amount of datasets, methods, and results from academic papers, but reproducibility
by running code in given containers (or similar ways) is not guaranteed. Besides the above-mentioned platforms,
many domain specific benchmarks exist, e.g. DAWNBench5, KITTI Benchmark Suite8. These benchmarks usually
focus on a couple of closely related tasks, but are not designed to host general benchmarks. In addition, they require
repetitive efforts to develop and maintain, which is not always affordable by data science teams. Thus, to facilitate
benchmarking, we need a platform to allow users to flexibly and easily create benchmarks with custom evaluation
protocols and custom data formats, and execution in a controlled reproducible environment, which is totally free
and open-sourced.

To answer these unmet needs, we developed Codabench, a meta-benchmark platform (Figure 1). A meta-benchmark
platform is designed to support general purpose benchmarks and to facilitate the organization and usage of benchmarks.
Codabench takes into account three types of contributors: benchmark participants, benchmark organizers and platform
developers. Benchmark participants submit to different benchmarks, which are prepared and owned by different
benchmark organizers. Reproducibility is required at this stage for fair benchmarking. Platform developers contribute
different features to Codabench to support diverse benchmarks instead of one specific benchmark, i.e. Codabench is
at the meta level of benchmarks. Flexibility and easiness to organize and use benchmarks are thus required at this
stage. Codabench realizes these features by implementing an ingestion/scoring programming paradigm, supporting
multiple benchmark creation methods and API access, and using Docker to guarantee reproducibility. Codabench has
received over 130 users and 2500 submission on 100 tasks including Automated Machine Learning (AutoML)11, Graph
Machine Learning10, Reinforcement Learning (RL)18, detecting cancer heterogeneity and training clinicians7. Multiple
illustrative use cases are introduced. Codabench is an important step towards reproducible research and should meet the
interest of all areas of data science.

2https://www.kaggle.com/
3https://tianchi.aliyun.com/
4https://codalab.lisn.upsaclay.fr/
5https://archive.ics.uci.edu/ml
6https://paperswithcode.com/
7https://cancer-heterogeneity.github.io/

2

https://www.kaggle.com/
https://tianchi.aliyun.com/
https://codalab.lisn.upsaclay.fr/
https://archive.ics.uci.edu/ml
https://paperswithcode.com/
https://cancer-heterogeneity.github.io/


Codabench ACCEPTED BY PATTERNS CELL PRESS

(1) Scoring module (World)

Scoring program calls:
Scoring function S(ytrue, ypred) 

Execution time <= budget T:
Input & Reference data = [x, ytrue]

(2) Ingestion module (Agent)

Ingestion program calls:

Submission (T, x):
z.fit()
z.predict()

Return ypred

Information 
exchange between 
Ingestion/Scoring 
modules

T, S, x, 
ypred, ytrue

HIDDEN TO PARTICIPANTS

(3) Public Info:

Information
available to 
participants

Scores and logs

Public Data

Sample submission

VISIBLE TO PARTICIPANTS

Leaderboard:
r, R (cumulated 

reward) & log files

Benchmark 
Participants

z
Submission

Reward 
& logs

Task:
Provided by
Benchmark 
Organizers

Figure 2: Operational Codabench workflow. Left side: Task module specified by the benchmark organizers, executed
on the platform. Right: Web interface with participants permitting to make submissions and retrieve results. Numerated
blocks are specified by the benchmark organizers. They include (1) a scoring module; (2) an ingestion module; (3)
and public information. An intermediate block also exists for information exchange of time budget, scoring, input
data, ground truth data and predictions. Red bottom right block: participant prepares a submission "z" uploaded to the
platform. The submission is then executed by the ingestion program. The role of the scoring program is to produce
scores that are then displayed on the leaderboard.

2 Method: Design of Codabench

Codabench is a meta-benchmark platform to provide flexible, easy-to-use and reproducible benchmarking service that is
publicly and freely available for everyone. In Codabench, benchmarks are implemented by benchmark bundles which
contain one or several tasks. The concept of a task is newly introduced, which is the minimal unit for composing a
benchmark (bundle). A task consists of an “ingestion module” (including an ingestion program and input data), a
“scoring module” (including a scoring program and reference data, invisible to the participant’s submission), a baseline
solution with sample data, and meta-data information if needed. Tasks in Codabench may be programmed in any
programming language in any custom way, which are run in a docker specified by organizers. Figure 2 provides a
detailed description of Codabench internal interaction logistics.

Take supervised learning tasks as an example. A typical usage is that benchmark participants submit a class (e.g. a
Python object) “z”, with 2 methods: z.fit and z.predict, similarly to scikit-learn objects15. The ingestion program
reads data, calls z.fit with labeled training data and z.predict with unlabeled test data (labeled training data and
unlabeled test data being part of the so-called “input data”), then outputs predictions. The scoring program reads
the predictions and evaluates them based on custom scoring metric(s), using the test labels (called “reference data”).
Other application usages are possible, including: transposed benchmarks, where datasets are submitted by participants
instead of algorithms while the organizers supply a set of algorithms, and reinforcement-learning benchmarks, where
the ingestion program plays the role of an agent wrapping around the submission of the participant and interacting with
a world (scoring program) in a specific way.

The reader is referred to Codabench official repository8, where the code and complete documentation are found. In the
supplementary, we also include instructions and references to get started. To use the public instance of Codabench,
please visit the Codabench website. To test and install locally, the instructions are given in the README file of the
official repository. The Codabench code is released under an Apache 2.0 License.

8https://github.com/codalab/codabench/

3

https://www.codabench.org/
https://github.com/codalab/codabench/blob/develop/LICENSE
https://github.com/codalab/codabench/


Codabench ACCEPTED BY PATTERNS CELL PRESS

Table 1: Comparison of various reproducible science platforms. Different features are introduced in Sec 3.1.
‘Bundle’ means whether a wrap up is provided for a benchmark such that we could reuse or share. ‘Result/Code/Dataset’
submit means whether different submissions are supported to enable flexible tasks. ‘Compute queue’ means, where
public or private computation resources could be provided or linked for convenient deployment.

Platform
Flexibility Easy-to-use Reproducibility

Bundle Result/Code
submit

Dataset
submit

Easy
creation

Open-
source/free

API
access

Compute
queue

Kaggle ✘ ✔ ✘ ✔ ✘ ✔ ✔ ✔

Tianchi ✘ ✔ ✘ ✔ ✘ ✘ ✔ ✔

CodaLab ✔ ✔ ✘ ✔ ✔ ✘ ✔ ✔

UCI ✘ ✘ ✔ ✘ ✔ ✘ ✘ ✔

OpenML ✘ ✔ ✔ ✔ ✔ ✔ ✘ ✔

PapersWithCode ✘ ✔ ✘ ✔ ✔ ✘ ✘ ✔

DAWNBench ✘ ✔ ✘ ✘ ✔ ✘ ✘ ✔

Codabench ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

3 Results

3.1 Key features of Codabench

Codabench is task-oriented. Using tasks, the organizers have the flexibility of implementing any benchmark protocol,
with any dataset format and API, or even using data generating models, allowing them to organize reinforcement
learning challenges. In this section, we introduce the key features of Codabench contributing to the flexibility, easiness
and reproducibility, as shown in Figure 1. Codabench also supports custom leaderboards and has full documentation of
usage.

3.1.1 Flexibility

Codabench supports flexible benchmark types including results submission, code submission and even dataset submis-
sion. Benchmarks on Codabench are organized by bundles containing all the information of a benchmark.

Bundle (hosting a benchmark). A benchmark bundle is a zip file containing all necessary constituents of a benchmark:
tasks, documentation, and configuration settings (such as leaderboard settings). A Codabench bundle may include
single or multiple tasks. Classical benchmark is usually single-task while AutoML 11, Transfer Learning14, Meta
Learning20 benchmarks are multi-task.

Results or code submission. “Classic” Codabench benchmarks are either with result or code submission. On one
hand, result submissions are used when organizers wish that participants use they own computational resources. In
supervised learning competitions, participants would supply e.g. predictions of output values on some test datasets.
Other types of results may be supplied, for instance high resolution images in a hyper-resolution challenge for which
inputs are low-resolution images. On the other hand, if the organizers wish to run all algorithms in a uniform manner on
the platform, Codabench allows the participants to make code submissions. The submitted software is run in a docker
supplied by the organizers, either on the default compute worker, or on compute workers supplied by the organizers.
This code submission design allows organizers to provide suitable computational resources (e.g. GPUs), and improve
reproducibility.

Dataset submission. The role of dataset and algorithm can be transposed with Codabench to facilitate Data-Centric
AI9 which is a trending research topic that cares about the quality and usage of data. In a “classic” benchmark,
organizers provide datasets and participants submit algorithms. In a transposed benchmark, participants submit datasets
and organizers provide reference algorithms. A “classic” benchmark will have a leaderboard with datasets in columns,
growing by adding more lines as algorithm submissions are made. In a transposed dataset submission benchmark, the
leaderboard will have algorithms in columns and lines are added as more datasets are submitted. With Codabench’s
transposed benchmark, it is easier to try different data augmentation and processing methods with fixed algorithms as
test cases.

9https://datacentricai.org/

4

https://github.com/codalab/codabench/wiki
https://datacentricai.org/


Codabench ACCEPTED BY PATTERNS CELL PRESS

3.1.2 Easy-to-use

To facilitate an easiness of using the system, we provided several tools to help the benchmark organizers to create a
benchmark. A platform editor is provided to develop a benchmark, which provides simple user-interfaces to prepare
data, code, and other configurations. As a second option, the user can upload a locally prepared benchmark bundle to
facilitate local debugging and testing. Once uploaded, a benchmark can further be modified using the platform editor.
An existing benchmark can be saved as another bundle, which facilitates the sharing and portability. Similar benchmark
bundles can be easily prepared with shared template bundles. Codabench is open-sourced and free to use.

APIs to external clients. We provide APIs for interacting with the platform, including “robot” submissions via
command lines, without going through the regular Codabench web interface, and likewise a programmatic way of
recuperating results directly without going through the leaderboard.

Dedicated computing queues. The public instance of Codabench provides default compute workers. Organizers can
also create a dedicated job queue and connect it to their own CPU or GPU compute workers.

3.1.3 Reproducibility

Codabench makes extensive use of Dockers10 to guarantee reproducibility. Benchmark organizers specify the Docker
image by providing its Docker Hub name and tag. Docker wraps all the software dependencies into a lightweight
virtual image. Once a docker is provided by the benchmark organizer, the program can be run inside a docker which
contains exactly the same installed packages. This docker will be pulled every time a benchmark’s program is executed.
Different benchmarks could use different dockers, which are usually provided by organizers. We also provide a default
docker for more general benchmarks’ usage or people who are not familiar with dockers.

3.1.4 Other features

Custom leaderboard. To better facilitate benchmarks, the leaderboard is fully customizable and can handle multiple
datasets and multiple custom scoring functions. We provide multiple ways to display submissions (best per participant,
multiple submissions per participant, etc.) and the leaderboard can flexibly rank submissions by average score, per task,
per sub-metric of a certain task, etc.

Documentation. The documentation11 provides detailed help for different types of contributors. For benchmark
participants, we provide instructions to join and submit to a benchmark. For benchmark organizers, we provide
annotated instructions for organizing benchmarks. Several benchmark bundle templates, from simple to advanced, are
also available to ease the technical aspects of building a benchmark, and to let people concentrate on scientific aspects
of the benchmark. For platform developers, we explain more technical specifications on technology stack and provide
ways to integrate to the project. Platform developers are contacted via the GitHub issues and pull requests to solve
issues encountered in daily usage.

3.2 Use cases of Codabench

Codabench has been used not only internally at 4Paradigm and LISN Lab for tasks of AutoML11, Graph Machine
Learning10, Reinforcement Learning18, Speech Recognition16 and Weakly Supervised Learning21, but also externally
by University Grenoble Alphes for hosting scientific benchmarks in cancer heterogeneity and training clinicians.
Codabench has received more than 130 users and 2500 submissions distributing on various applications. In this section,
we introduce 4 use cases of Codabench, aiming at demonstrating different Codabench features and capabilities. A
visual illustration is given in Figure 3.

3.2.1 Use case 1: AutoGraph benchmark

In this section, we introduce Automated Graph Machine Learning (AutoGraph) benchmark, which targets at automated
node classification methods on diverse dataset scenarios. With this use case, we show a set of fundamental features
of Codabench: (1) the code submission mode (2) reproducibility guaranteed by docker (3) flexible benchmark
bundle configuration with multiple tasks, and (4) customizable computational resources.

Background. Graph Machine Learning has been a very hot topic due to ubiquity of graph-structured data, e.g. social
network9, molecule graph13, knowledge graph3, etc. Typical tasks of graph data include node-level (node classification),
edge-level (link prediction) and graph-level (graph regression/classification). The task of our benchmark here is node

10https://www.docker.com/
11https://github.com/codalab/codabench/wiki

5

https://github.com/codalab/codabench/wiki/Robot-submissions
https://codabench.org/
https://www.docker.com/
https://github.com/codalab/codabench/wiki


Codabench ACCEPTED BY PATTERNS CELL PRESS

Ingestion

?

?

Input Data Code Submission

Scoring

Reference Data

Prediction

Classification
Accuracy

Code

Code

(a) Use case 1: AutoGraph

Bundle A

Task A

code (Python, R, ...)

Pancreatic Cell 
Transcriptomic data

Ingestion

config.yaml

code (Python, R, ...)

Pancreatic Cell 
Transcriptomic data

Scoring

Bundle B

Task B

code (Python, R, ...)

Immune Cell 
Transcriptomic data

Ingestion

config.yaml

code (Python, R, ...)

Immune Cell 
Transcriptomic data

Scoring

Copy

Replace

Copy

Replace

Copy

(b) Use case 2: DECONbench

Bundle A (normal)

config_A.yaml

Result

Task A

Ingestion

Scoring

Meta Info

Bundle B (transposed)

config_B.yaml

Result

Task B

Ingestion

Scoring

Meta Info

API

Customized 
Dashboard

API for submission

API for fetching

API for 
protocol

Clinician

DataCode

(c) Use case 3: COMETH

Agent / Policy

Machines

Update 
Scheduling

Jobs

Stochastic 
events

ActionsMakespan

Enviroment / World

(d) Use case 4: Job Scheduling

Figure 3: Use case illustrations. The details are introduced in Section 3.2.

classification, i.e. given a graph where some nodes are labeled and the rest are unlabeled, we want to predict the classes
of the unlabeled nodes. In addition, we require the algorithm to perform well on a set of datasets instead of just one
dataset. This leads to Automated Graph Machine Learning problem which we call AutoGraph.

Implementation. The AutoGraph benchmark is a typical code submission use case. It focuses on Automated Machine
Learning (AutoML) methods11 which requires more than one dataset to be evaluated together. Codabench bundle is
by design flexible with multiple tasks each of which contains a seperate dataset. We also provide a docker hosted on
DockerHub, which could be pulled automatically by Codabench platform to run each algorithm submission and be
used for researchers’ local development. Every time a new method is uploaded, a new docker container instance will
be called to independently run the method for each dataset. In this way, we make sure every algorithm is fairly run
under the same setting and the whole process can be fully reproduced on other machines. Codabench is designed to
adapt to any Docker-enabled computational resource (local machine, cluster server, cloud machines, etc.). We currently
host the AutoGraph benchmark on Codabench with free computational resources thanks to Google’s sponsorship,
encouraging everyone to contribute. Besides, the datasets are also available to the public for local usage and further
benchmarking on GitHub12 and Kaggle. We uploaded the solutions of the winners of the challenge as baselines. Since
the benchmark datasets are already released, users can also run complementary experiments on their local computers
and debug mode easily, thus more rapidly making progress. With AutoGraph benchmark, we provide researchers and
practitioners the possibility to showcase results in a public venue.

3.2.2 Use case 2: DECONbench benchmark

In this section, we introduce the DECONbench benchmark7. DECONbench aims at benchmarking algorithms inferring
tumor cellular composition from molecular data. Here we highlight two features of Codabench: (1) flexibility of
benchmark bundle (in this use case, another task and programming language R supported) (2) reusability and
portability of benchmark bundles

12https://github.com/AutoML-Research/AutoGraph-KDDCup2020

6

https://www.kaggle.com/nehzux/autograph-benchmark
https://github.com/AutoML-Research/AutoGraph-KDDCup2020


Codabench ACCEPTED BY PATTERNS CELL PRESS

Background. Successful treatment of cancer is still a challenge and this is partly due to a wide heterogeneity of tumor
cellular composition across patient population. Tumors are made up of cells with different identities and origins. Cancer
cells evolving in a dynamic environment consist of aberrant non-cancerous cells, such as blood vessels or immune cells.
Tumor cellular composition is difficult to observe and quantify, as it is hidden inside the bulk molecular profiles of
the samples, with millions of cells present in the tumor (and not only cancer cells) contributing to the bulk recorded
signals. Taking advantage of the large amount of molecular data publicly available, a wide number of supervised and
unsupervised algorithms have been recently developed to estimate tumor cellular composition4;1;6. DECONbench
is a series of benchmarks dedicated to the quantification of tumor composition, focusing on estimating cell-types
and proportion in biological samples using multimodal molecular data. Participants have to identify an estimation of
the tumor composition, i.e. a matrix of estimated proportion of each deconvoluted cell-type (rows) for each sample
(columns). The discriminating metric is mean absolute error (MAE) between prediction and ground truth matrix. Note
that DECONbench series is optimized to run methods developed in the statistical programming language R.

Implementation. Using the Codabench platform, the COMETH consortium firstly developed a benchmark for
continuous evaluation of computational methods based on epigenomic data13. Since we are at the same time interested
in other modalities of data under similar tasks, it would be ideal to reuse previously created bundles instead of going
through everything again. Thanks to the portability of Codabench bundle design, we only need to replace the data files
and adjust slightly the protocol code. All other configuration files can be reused. As a result, this first benchmark was
easily cloned and extended to similar benchmarks using other types of data, e.g. all-cell-type transcriptomic data14,
immune-cell-types transcriptomic data15, all-cell-types multimodal transcriptomic and epigenomic data16.

3.2.3 Use case 3: COMETH benchmark

In this section, we introduce the COMETH benchmark, motivated by real clinical application and it is an exciting
step towards Data-Centric AI. With this use case, we show that (1) Codabench supports a transposed benchmark
consolidating Data-Centric AI (2) the provided API interaction opens a window for other customization scenarios.

Background. When it comes to clinical application, it is often necessary for health data scientists and clinicians
to identify the most suitable existing method to be applied on a given dataset. In this case, we focus more on the
data instead of algorithmic development, which aligns with Data-Centric AI. Usually, the clinicians do not (need to)
know much about the algorithm details. Instead, they have access to newly available data and want to apply the most
relevant algorithms on their new data. There is thus a need to provide an effective tool displaying the evaluation of
state-of-the-art algorithms on reference dataset, and enabling their application on new dataset. This will guide and
facilitate the appropriate use of these algorithms by non-expert clinicians. Note that these algorithms are usually
provided by benchmark organizers who are domain experts on certain tasks.

Implementation. To solve this question, the COMETH consortium developed the COMETH benchmark 17, a transposed
challenge in which datasets should be submitted to be evaluated against existing algorithms (i.e. tasks in the Codabench
design). For instance, the COMETH benchmark provides a series of recent deconvolution algorithms that are able to
quantify tumor heterogeneity4;1;6. Clinicians aiming to quantify tumor heterogeneity from molecular data can submit
their dataset of interest to the COMETH benchmark and retrieve the corresponding outputs, in a fully reproducible
environment. To facilitate the use of this functionality by clinicians who are less familiar with data science programming
details, COMETH benchmark has been connected to an external client displaying a user-friendly web dashboard. The
external client is able to send requests to users directly on the COMETH benchmark using APIs provided by Codabench
and return the generated results from all reference algorithms. This feature strongly contributes to a direct transfer of
knowledge between data scientists and healthcare professionals. This design was used at a winter school for training
clinicians and data scientists 18.

3.2.4 Use case 4: Job Scheduling benchmark

We lastly introduce another use case: Job Scheduling benchmark focusing on reinforcement learning and operational
research. With this use case, we show that Codabench is RL-friendly with the help of flexible design of benchmark
bundles.

13https://www.codabench.org/competitions/174
14https://www.codabench.org/competitions/147
15https://www.codabench.org/competitions/148
16https://www.codabench.org/competitions/237
17https://www.codabench.org/competitions/218
18https://cancer-heterogeneity.github.io/cometh.html

7

https://www.codabench.org/competitions/174
https://www.codabench.org/competitions/147
https://www.codabench.org/competitions/148
https://www.codabench.org/competitions/237
https://www.codabench.org/competitions/218
https://cancer-heterogeneity.github.io/cometh.html


Codabench ACCEPTED BY PATTERNS CELL PRESS

title: ...
pages: ...
tasks: ...
leaderboard: ...

(1)
(2)

(3)

(4)

(5)

Figure 4: Bundle structure. The details of benchmark.yaml is given in Data S1.

Background. We consider the problem of Dynamic Job Shop Scheduling2;17;12. The task is to allocate a set of jobs
to a set of machines to achieve the shortest execution time, i.e. makespan. Each job has a pre-determined operation
sequence to be executed on certain machines. To mimic real life scenarios, we add stochastic machine down events to
the problem. This task is usually formulated as a sequential decision-making problem and fits easily to reinforcement
learning. We thus expect an agent making decisions on how to schedule better the jobs in minimal time. The reward
depends on the makespan.

Implementation. As explained in Sec 2, our design of bundle and ingestion/scoring program makes it very natural and
flexible for RL problems. We easily use the scoring program as an environment which evaluates a job schedule and
returns a makespan as reward. The ingestion program serves as an agent and makes decisions on job scheduling based
on received reward.

3.3 A concrete benchmark bundle example

In this section, we provide a concrete benchmark bundle example to show how simple it is to organize benchmarks on
Codabench. A bundle consists of five parts as in Figure 4: (1) a YAML configuration file19, (2) ingestion program, (3)
scoring program, (4) data and (5) additional files for description.

The ingestion program usually reads data and participant’s submission. It calls participant’s method on the dataset and
produces predictions to a shared space. The scoring program usually reads ingestion program’s output and evaluate
w.r.t ground truth according to organizer customized metric. It finally writes scores to a text file which will be read
by the platform and be displayed on a leaderboard. The data contain input data (in supervised learning, they are
usually X_train, y_train, and X_test) and reference data (in supervised learning, it is usually y_test). Both are zipped
into separate files. The additional files are just text or figure files for organizers to provide other information e.g.
instructions, references, logo, etc. A final YAML file connects all previous parts and provides more configurations for
the benchmark. A simplified YAML file is given on Data S1 in the supplementary. It contains general configurations
like title, logo image, docker image, and which HTMLs to be displayed, leaderboard configuration (e.g. which metrics
will be used in the leaderboard) and tasks. Each task is by itself a complete unit for running. It contains name, ID,
ingestion program, scoring program, input data, reference data.

4 Discussion

Codabench is a new meta-benchmark platform for data science communities. Codabench is compatible with diverse
tasks (including supervised learning and reinforcement learning) and supports result, code, and dataset submission.
It is easy to use Codabench and reproducibility is guaranteed by Dockers. Codabench has a public instance free
for use, deployed at Université Paris-Saclay, but can also be deployed locally, with the technology stack provided
in documentation. Hosting, maintaining, and further developing the platform is funded by grants and donations. As
real-world scenarios, we introduce 4 benchmark use cases illustrating the flexibility, easiness in use, reproducibility and
other features of Codabench. We also note that tremendous other tasks could be integrated into Codabench as well

19https://yaml.org/

8

https://yaml.org/


Codabench ACCEPTED BY PATTERNS CELL PRESS

including EEG classification, drug discovery and property prediction, dynamic simulation for weather, traffic, fluid, etc.,
which are important tasks towards AI for Science.

The current limitations of Codabench are mainly as follows. First, since it is relatively new, we do not have yet
an active community of organizers and benchmark participants. We need more users’ feedbacks to polish up our
user-interface and documentation. Second, although supported by design, we have not had yet a distributed computation
scenario, where complex multi-node compute workers are used. This could enrich our benchmark template library with
benchmarks for algorithm parallelization. Thirdly, although Codabench supports both code submission and dataset
submission, we do not currently allow users to extend the leaderboard in both directions simultaneously, i.e., it does not
allow users to submit both code and datasets at the same time. This feature could largely increase the user experience of
the platform. Lastly, Codabench doesn’t support yet hardware related benchmarks or human-in-the-loop benchmarks
which could be interesting to consider in the future.

Potentially harmful uses of Codabench could result from poor benchmark designs (e.g., no scientific question is asked
by hosting a benchmark), or bad data collections (e.g., data license, data quality), as in any machine learning project.
We are working on an open-access book (to appear in 2022) on best practices for designing challenges and benchmarks
including data preparation, task evaluation, benchmark analyse paper, etc.

Further works include providing more comprehensive usage templates illustrating features such as: (1) splitting an
algorithm workflow into submodules and scoring the effectiveness of the modules individually (e.g., with ablation or
sensitivity analysis); (2) providing templates of fact sheets to extract information about algorithms (similar to datasheets
for datasets, but for algorithms); and (3) providing guidelines to benchmark participants to produce enriched detailed
results, amenable to meta-analyses.

5 Experimental Procedures

5.1 Resource availability

Lead Contact. Zhen Xu (xuzhen@4paradigm.com). 4Paradigm, Beijing 100085, China.

Materials availability. This study did not generate new materials.

Data and code availability. The code of Codabench is available at https://github.com/codalab/codabench.
This work does not introduce new datasets. For creating benchmarks, organizers should prepare their own datasets.

Acknowledgments

The Codabench project shares the same community governance as CodaLab Competitions. The openness of Codabench
is total: the Apache 2.0 licence is used, the source code is on GitHub; the development framework and all the used
components are open-sourced. Codabench has received important contributions from many people who did not co-author
this paper, and we would like to thank their efforts in making Codabench what it is today, including early CodaLab
Competitions developers and contributors (alphabetically): Pujun Bhatnagar, Justin Carden, Richard Caruana, Francis
Cleary, Xiawei Guo, Ivan Judson, Lori Ada Kilty, Shaunak Kishore, Stephen Koo, Percy Liang, Zhengying Liu, Pragnya
Maduskar, Simon Mercer, Arthur Pesah, Christophe Poulain, Lukasz Romaszko, Laurent Senta, Lisheng Sun, Sebastien
Treguer Cedric Vachaudez, Evelyne Viegas, Paul Viola, Erick Watson, Tony Yang, Flavio Zhingri, Michael Zyskowski.
We would like thank particularly the people who contributed to the design, development, and testing of Codabench
including (alphabetically): Alexis Arnaud, Xavier Baró, Feng Bin, Yuna Blum, Eric Carmichael, Laurent Darré. Hugo
Jair Escalante, Sergio Escalera, Eric Frichot, Yuxuan He, James Keith, Anne-Catherine Letournel, Shouxiang Liu,
Zhenwu Liu, Adrien Pavao, Magali Richard, Tyler Thomas, Nic Threfts, Bailey Trefts, Catherine Wallez, Lanning
Wei. Université Paris-Saclay is hosting the main instance of Codabench. Funding and support have been received by
several research grants, including Big Data Chair of Excellence FDS Paris-Saclay, Paris Région Ile-de-France, EU EIT
projects HADACA and COMETH, United Health Foundation INCITE project, ANR Chair of Artificial Intelligence
HUMANIA ANR-19-CHIA-0022, the Spanish project PID2019-105093GB-I00, ICREA under the ICREA Academia
programme, Inserm Cancer project ACACIA 232717, MIAI @Grenoble Alpes (ANR-19-P3IA-0003), 4Paradigm,
ChaLearn, Microsoft, Google. We also appreciate the following people and institutes for open sourcing datasets which
are used in our use cases: Andrew McCallum, C. Lee Giles, Ken Lang, Tom Mitchell, William L. Hamilton, Maximilian
Mumme, Oleksandr Shchur, David D. Lewis, William Hersh, Just Research and Carnegie Mellon University, NEC
Research Institute, Carnegie Mellon University, Stanford University, Technical University of Munich, AT&T Labs,
Oregon Health Sciences University. We are also very grateful to Joaquin Vanschoren for fruitful discussions.

9

https://github.com/codalab/codabench
https://github.com/codalab/codalab-competitions/blob/master/docs/Community-Governance.md
https://github.com/codalab/codabench/blob/develop/LICENSE
https://github.com/codalab/codabench


Codabench ACCEPTED BY PATTERNS CELL PRESS

Author Contributions

Conceptualization, Z.X, S.E, A.P, I.G ; Methodology, Z.X, I.G; Validation & Investigation, all authors; Resources &
Data Curation, Z.X, M.R, W.W.T, I.G; Writing – Original Draft, all authors; Writing – Review & Editing, Z.X, Q.Y,
M.R, I.G; Visualization, Z.X, Q.Y, I.G; Supervision & Project Administration, I.G; Funding Acquisition, W.W.T, I.G.

Declaration of Interests

Author Z.X, WW.T and H.Z are employed by 4Paradigm, China. Author IG is president of ChaLearn, a non-for-profit
organization dedicated to running challenges in machine learning. ChaLearn is a tax exempt non-for-profit organization
under section 501(c)(3) of the US IRS code of the Unites States. It derived no profit from sponsoring this research. All
authors declare no other competing interests.

10



Codabench ACCEPTED BY PATTERNS CELL PRESS

References
[1] Francisco Avila Cobos, José Alquicira-Hernandez, Joseph E Powell, Pieter Mestdagh, and Katleen De Preter.

Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nature communications, 11(1):1–14,
2020.

[2] M Emin Aydin and Ercan Öztemel. Dynamic job-shop scheduling using reinforcement learning agents. Robotics
and Autonomous Systems, 2000.

[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. Translating
embeddings for modeling multi-relational data. Advances in Neural Information Processing Systems, 26, 2013.

[4] Laura Cantini, Ulykbek Kairov, Aurélien De Reynies, Emmanuel Barillot, François Radvanyi, and Andrei
Zinovyev. Assessing reproducibility of matrix factorization methods in independent transcriptomes. Bioinformatics,
35(21):4307–4313, 2019.

[5] Cody Coleman, Daniel Kang, Deepak Narayanan, Luigi Nardi, Tian Zhao, Jian Zhang, Peter Bailis, Kunle
Olukotun, Christopher Ré, and Matei Zaharia. Analysis of dawnbench, a time-to-accuracy machine learning
performance benchmark. ACM SIGOPS Operating Systems Review, 53(1):14–25, 2019.

[6] Clémentine Decamps, Florian Privé, Raphael Bacher, Daniel Jost, Arthur Waguet, Eugene Andres Houseman,
Eugene Lurie, Pavlo Lutsik, Aleksandar Milosavljevic, Michael Scherer, Michael G. B. Blum, and Magali
Richard. Guidelines for cell-type heterogeneity quantification based on a comparative analysis of reference-free
dna methylation deconvolution software. BMC bioinformatics, 21(1):1–15, 2020.

[7] Clémentine Decamps, Alexis Arnaud, Florent Petitprez, Mira Ayadi, Aurélia Baurès, Lucile Armenoult, Sergio
Escalera, Isabelle Guyon, Rémy Nicolle, Richard Tomasini, et al. Deconbench: a benchmarking platform dedicated
to deconvolution methods for tumor heterogeneity quantification. BMC bioinformatics, 22(1):1–17, 2021.

[8] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the KITTI vision
benchmark suite. In IEEE Conference on Computer Vision and Pattern Recognition, pages 3354–3361. IEEE
Computer Society, 2012.

[9] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and applications.
IEEE Data Engineering Bulletin, 40(3):52–74, 2017.

[10] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and Jure
Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Advances in Neural Information
Processing Systems, 2020.

[11] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, editors. Automated Machine Learning - Methods, Systems,
Challenges. Springer, 2019.

[12] Anant Singh Jain and Sheik Meeran. Deterministic job-shop scheduling: Past, present and future. European
Journal of Operational Research, 1999.

[13] Elman Mansimov, Omar Mahmood, Seokho Kang, and Kyunghyun Cho. Molecular geometry prediction using a
deep generative graph neural network. Scientific reports, 2019.

[14] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge and data
engineering, 2009.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in python. Journal of Machine Learning Research, 2011.

[16] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra Goel, Mirko Hanne-
mann, Petr Motlicek, Yanmin Qian, Petr Schwarz, et al. The kaldi speech recognition toolkit. In IEEE workshop
on automatic speech recognition and understanding, 2011.

[17] R Ramasesh. Dynamic job shop scheduling: a survey of simulation research. Omega, 1990.
[18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second

edition, 2018.
[19] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luís Torgo. Openml: networked science in machine

learning. SIGKDD Explorations, 15(2):49–60, 2013.
[20] Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial Intelligence Review,

18(2):77–95, 2002.
[21] Zhi-Hua Zhou. A brief introduction to weakly supervised learning. National science review, 2018.

11


	Introduction
	Method: Design of Codabench
	Results
	Key features of Codabench
	Flexibility
	Easy-to-use
	Reproducibility
	Other features

	Use cases of Codabench
	Use case 1: AutoGraph benchmark
	Use case 2: DECONbench benchmark
	Use case 3: COMETH benchmark
	Use case 4: Job Scheduling benchmark

	A concrete benchmark bundle example

	Discussion
	Experimental Procedures
	Resource availability


