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Abstract 20 

1. Submerged macrophytes are important foundation species that can strongly influence 21 

the structure and functioning of aquatic ecosystems, but only little is known about the 22 

temporal variation and the timescales of these effects (i.e. from hourly, daily, to 23 

monthly). 24 

2. Here, we conducted an outdoor experiment in replicated mesocosms (1000 L) where 25 

we manipulated the presence and absence of macrophytes to investigate the temporal 26 

variability of their ecosystem effects. We measured several parameters (chlorophyll-a, 27 

phycocyanin, dissolved organic matter [DOM], and oxygen) with high-resolution 28 

sensors (15 min intervals) over several months (94 days from spring to fall), and 29 

estimated metabolic rates of each replicate ecosystem in a Bayesian framework.  30 

3. Over the entire experiment, macrophytes had a negative effect on phytoplankton 31 

biomass, a positive effect on mean DOM concentration, and either a weak or no effect 32 

on mean metabolic rates, DOM composition, and conductivity. We also found that 33 

macrophytes increased the variance of DOC composition and metabolic rates, and, at 34 

some times of the year, increased the variance of phytoplankton biomass and 35 

conductivity. The observation that macrophytes decreased the mean but increased the 36 

variance of phytoplankton biomass is consistent with a model of competitive 37 

interactions between macrophytes and phytoplankton that we implemented here.  38 

4. Our high-resolution time series embedded within a manipulative experiment reveal 39 

how a foundation species can affect ecosystem properties and processes that have 40 

characteristically different timescales of response to environmental variation. 41 

Specifically, our results show how macrophytes can affect short-term dynamics of 42 

algal biomass, while also affecting the seasonal buildup of DOM and the variance of 43 

ecosystem metabolism. 44 



Introduction 45 

Decades of research on submerged macrophytes have documented how these aquatic plants 46 

can influence a suite of ecosystem properties and processes (Carpenter & Lodge, 1986; 47 

Jeppesen et al., 1997; Huss & Wehr, 2004; Reitsema, Meire & Schoelynck, 2018). Acting as 48 

foundation species (Dayton, 1972; Ellison et al., 2005), macrophytes create and maintain 49 

habitats for other species, affect species interactions, and influence the dynamics of matter 50 

and energy in freshwater ecosystems (Carpenter & Lodge, 1986; Jeppesen et al., 1997). 51 

Populations of individual macrophyte species, as well as species assemblages, can also 52 

influence how aquatic ecosystems respond to environmental change and the propensity of 53 

ecosystems to shift between alternative stable states in shallow lakes (Scheffer et al., 1993; 54 

Blindow, Hargeby & Andersson, 1998; Faafeng & Mjelde, 1998).  Importantly, while the net 55 

ecosystem effects of macrophytes in contrasting equilibrium states are well studied, much 56 

less is known about how macrophytes affect the temporal dynamics of ecosystem properties 57 

and processes over timescales ranging from hours, to days, to months (Mitchell & Rogers, 58 

1985; Madsen & Adams, 1988; Iacarella et al., 2018). High-resolution times series that 59 

capture both mean and variance responses of aquatic ecosystems are essential for predicting 60 

the effects of environmental change on aquatic ecosystems (Reitsema et al., 2018; Hillebrand 61 

et al., 2018) and improving their management in light of increasing disturbance and climate 62 

variability (Spears et al., 2017). 63 

The strong and persistent ecosystem effects of macrophyte communities are often 64 

linked to their competitive interactions with phytoplankton communities for dissolved 65 

nutrients and light (Carpenter & Lodge, 1986; Scheffer et al., 1993). In shallow lakes, the 66 

positive feedback between light transmission and macrophyte biomass is an important reason 67 

why macrophytes help maintain a clear water state over a wide range of nutrient loading 68 

(Scheffer et al., 1993, 2003; Blindow et al., 1998). Many types of macrophytes are efficient 69 



at taking up nutrients from the water and, if rooted, from the sediment, which can limit 70 

phytoplankton growth at low to intermediate nutrient loading (Yamamichi et al., 2018). 71 

Furthermore, macrophytes can reduce fish predation pressure on the zooplankton 72 

communities that graze on phytoplankton (Jeppesen et al., 1997), and can also produce 73 

allelopathic chemicals that inhibit phytoplankton growth (Gross, 2003; Hilt & Gross, 2008; 74 

Nakai et al., 2012). While it is known that such mechanisms can contribute to the positive 75 

feedbacks that help maintain lakes in a clear water state, (Kéfi, Holmgren & Scheffer, 2016; 76 

Iacarella et al., 2018) surprisingly little is known about the seasonal dynamics of these 77 

interactions, partly because (Carpenter, 1988; Benedetti-Cecchi, 2003) to capture variability 78 

of phytoplankton communities over time and concurrently with other ecosystem properties. 79 

This is a problematic knowledge gap because the variance of ecosystem properties is 80 

increasingly recognized as an important dimension of overall ecosystem resilience 81 

(Cottingham & Carpenter, 1998; Benedetti-Cecchi, 2003; Scheffer et al., 2009; Vasseur et 82 

al., 2014; Zelnik, Arnoldi & Loreau, 2018).  83 

In addition to the effects on phytoplankton dynamics, macrophytes are known to 84 

affect the amount and composition of dissolved organic dissolved organic matter (DOM) 85 

(Bolan et al., 2011; Kellerman et al., 2015), which is a diverse mixture of low and high 86 

molecular weight components of different structure and composition (Bolan et al., 2011; 87 

Kellerman et al., 2015). In the clear water state, phototrophic organisms such as macrophytes, 88 

phytoplankton and bacteria produce low weight dissolved organic carbon (DOC) compounds 89 

such as carbohydrates that are byproducts of photosynthesis (Carpenter & Lodge, 1986; 90 

Retamal et al., 2007; Bolan et al., 2011; Reitsema et al., 2018). Macrophytes can both 91 

directly produce DOC, and indirectly reduce it by stimulating higher rates of DOC 92 

degradation from epiphytic bacteria (Catalán, Obrador & Pretus, 2014). Given the importance 93 

of interactions between macrophytes and different compositions of DOM in aquatic 94 



ecosystems (Reitsema et al., 2018)it is important to experimentally test how macrophytes can 95 

simultaneously affect the mean and variance of DOM concentration and composition 96 

(Findlay & Sinsabaugh, 2003; Catalán et al., 2014; Reitsema et al., 2018), and to consider 97 

such effects in models of ecosystem resilience to nutrient perturbation (Kéfi et al., 2016; 98 

Spears et al., 2017). 99 

  DOM dynamics driven by competitive interactions between macrophytes and 100 

phytoplankton can also alter ecosystem metabolism (Mitchell, 1989; Kaenel, Buehrer & 101 

Uehlinger, 2000; Findlay & Sinsabaugh, 2003; Reitsema et al., 2018). Growth and decay of 102 

macrophyte tissue can strongly affect metabolic rates of shallow lakes, depending on plant 103 

density, diversity and lake depth (Żbikowski et al., 2019). In shallow lakes with a given 104 

nutrient load, ecosystem productivity is typically higher when macrophytes are dominant 105 

over phytoplankton (Wetzel, 1964; Carpenter & Lodge, 1986; Brothers et al., 2013). 106 

Macrophytes are known to be efficient photosynthesizers (Kaenel et al., 2000), but also 107 

provide additional substrate for the growth of autotrophic periphyton and bacteria (Wetzel & 108 

Søndergaard, 1998; Brothers et al., 2013). Additionally, the effects of macrophytes on the 109 

dynamics of DOC accumulation and decomposition can affect shifts between net autotrophy 110 

and net heterotrophy (Mitchell & Rogers, 1985; Madsen & Adams, 1988; Nielsen et al., 111 

2013). Overall, the potential effects of interactions between macrophytes and phytoplankton 112 

on whole ecosystem metabolism are increasingly well documented. However, the ability of 113 

macrophytes to resist or moderate perturbations to ecosystem metabolism in the context of 114 

global change depends on the relative importance of the described mechanisms and the 115 

temporal scale on which they each occur (Zelnik et al., 2018). To our knowledge, only a few 116 

studies have investigated the effects of competition for light and nutrients between 117 

macrophytes and phytoplankton on dynamics of DOC and metabolism at the temporal 118 



resolution necessary to understand how they interact (Benedetti-Cecchi, 2003; Zelnik et al., 119 

2018). 120 

Here, we experimentally tested how macrophytes affect the temporal dynamics of 121 

oligotrophic aquatic ecosystems in 1000L mesocosms over an entire growing season. We 122 

manipulated the presence and absence of a macrophyte assemblage consisting of two 123 

common species, Myriophyllum spicatum and Chara tomentosa, and quantified several biotic 124 

(two phytoplankton pigments) and abiotic (temperature and conductivity, dissolved oxygen, 125 

dissolved organic matter) properties at high temporal resolution (15 min). We used this data 126 

set to test three hypotheses. First, we predicted that macrophytes would be able to suppress 127 

phytoplankton biomass across seasonal variation in light and temperature. Second, we 128 

predicted that macrophytes would increase overall rates of ecosystem metabolism because 129 

they are known to be efficient photosynthesizers. Third, we predicted that macrophytes would 130 

impact not only mean ecosystem properties such as phytoplankton biomass, DOM, and 131 

metabolism, but also their temporal variance in response to continual changes in resource 132 

availability. For this last hypothesis, we also tested whether we could generate observed 133 

contrasts in variability using a simple model of competitive interactions between 134 

phytoplankton and macrophytes. We compare our findings with previous empirical work and 135 

discuss the broad functional spectrum of macrophytes as foundation species in shallow lake 136 

ecosystems. 137 

Material and methods 138 

Experimental design and setup 139 

In an outdoor mesocosm experiment, we manipulated the presence or absence of an 140 

assemblage of macrophytes including Myriophyllum spicatum (hereafter Myriophyllum), a 141 



perennial vascular plant that grows vertically towards the water surface forming a canopy, 142 

and Chara tomentosa (hereafter Chara), a green algae that forms tufts of calcium carbonate 143 

encrusted stems (typically <30cm) on the sediment surface. We chose this assemblage 144 

because both species are common in Europe and other parts of the world, they commonly 145 

occur together in macrophyte assemblages, and their strong influence on lake ecosystems has 146 

been previously documented (Van den Berg et al., 1998; Ibelings et al., 2007; Hilt & Gross, 147 

2008; Nakai et al., 2012).  148 

We set up the experiment on a site next to Eawag Kastanienbaum (eight tanks total) 149 

with four pairs of 1000L mesocosms (1 x 1 x 1 m), with each pair consisting of a mesocosm 150 

with (M+) and without (M-) a macrophyte assemblage (Fig. 1). To prepare the mesocosms, 151 

we first established a 2 cm thick layer of limestone gravel from a local quarry (2-4 mm grain 152 

size) and a 1 cm thick layer of fine, oligotrophic sediment (Fiskal et al., 2019) that we 153 

collected from Lake Lucerne. Afterwards the mesocosms were filled with water from Lake 154 

Lucerne, an oligotrophic lake (Fiskal et al., 2019), and left for two weeks to allow the 155 

sediment to settle and the mesocosm community to assemble. On May 25th, 2015, we 156 

collected Myriophyllum from a stream in Oberriet (47°19'55.5"N 9°34'43.9"E), and kept the 157 

plants overnight in additional outdoor mesocosms onsite. The following day we collected 158 

Chara from Lake Lucerne (47°00'06.8"N 8°20'02.7"E) and planted both species in the 159 

mesocosms. We then divided all the macrophyte material manually (on a large and moist 160 

plastic sheet) into 18 similar sized portions based on either an equal number of shoots (i.e. for  161 

Myriophyllum), or similarly sized tufts (i.e. for Chara). We used 10 portions to quantify the 162 

initial plant biomass (cleaned of sediment, infauna removed, biomass dried for 48 hours at 163 

45°C), and added 4 portions to the M+ tanks. To inoculate the M- mesocosms with 164 

macrophyte associated invertebrate and bacterial communities, we submerged the remaining 165 

four portions of macrophytes in large mesh enclosures in the middle of the water column for 166 



two weeks. On July 4th, we added 20 µg/L of P and 144.7 µg/L of N (i.e. Redfield ratio) to 167 

every mesocosm to supplement the Lake Lucerne source water with nutrients. Over the 168 

course of the experiment we measured dissolved nutrient concentrations in the mesocosms on 169 

four occasions (July 15, Aug. 5, Sept 8. and Oct 20, Fig. S1). At the end of the experiment 170 

(Oct 23rd) we quantified total macrophyte biomass in terms of above-ground dry weight 171 

(procedure: see above). This included both the original inoculated species and a filamentous 172 

algae species that colonized the sediment surface of all the mesocosms (see Table S1). 173 

Ecosystem dynamics measurement using multiparameter sondes 174 

We measured high-frequency ecosystem dynamics in the mesocosms from July 18th to Oct 175 

23rd, 2015, using four autonomous multi parameter instruments (EXO2 modular sensor 176 

platform [YSI-WTW], hereafter referred to as sondes). The sondes were placed 177 

approximately at the center of the mesocosm (~0.5 m depth), away from the walls and outside 178 

of patches of macrophytes. Additionally, we measured photosynthetically active radiation 179 

(PAR) in 15 min intervals using a quantum sensor (Li-Cor) installed onsite to estimate 180 

surface light irradiance. PAR and sonde temperature data (Fig. S2) were used together with 181 

the dissolved oxygen data to estimate metabolic rates (see Ecosystem Metabolism Modelling).  182 

Sensors - The sondes were equipped with modular sensors that recorded the following 183 

ecosystem parameters at 15 minute intervals (see Table 1 for details): temperature, 184 

chlorophyll-a and phycocyanin (as proxies for phytoplankton biomass), dissolved oxygen, 185 

fluorescent dissolved organic matter (fDOM) and specific conductivity. The sondes were 186 

equipped with an autonomous wiper that cleaned the sensor heads once every hour. All 187 

sensors were thoroughly cleaned whenever the sondes were moved to another mesocosm (see 188 

Contrasts and sampling design). 189 



Calibration - Prior to the experiment, we performed a 48h cross-comparison trial where we 190 

installed all the sondes in a single mesocosm, enabling us to correct for differences among 191 

sensors and calibrate them against each other. During the cross-comparison trial we also 192 

quantified chlorophyll-a concentration by analyzing water samples with high performance 193 

liquid chromatography (HPLC, Jasco), and calibrated the optical sensors installed on the 194 

sondes in accordance with the manufacturer’s manual (YSI-WTW). Hence, we report 195 

chlorophyll-a as µg/L, Phycocyanin and fDOM as raw fluorescence units.  The oxygen 196 

sensors were calibrated against water-saturated air. 197 

Contrasts and sampling design - At the beginning of the experiment, all four sondes were 198 

randomly assigned to two pairs of M+ and M- tanks. Because we only had four sondes 199 

available, the four sondes were taken out of these tanks after 10 days, thoroughly cleaned, 200 

and then introduced to the two remaining pairs, where they were left for another 10-day 201 

period (Fig. 1). Over the entire study we repeated this two-part cycle five times, yielding five 202 

distinct periods in which all tanks were sampled (Fig. 2-4: t1-t5). On the third sampling 203 

period (t3) we reduced the length of the measurement period to 7 days per set of tanks due to 204 

battery issues with the Sondes. Between all transfers, we thoroughly cleaned the sondes by 205 

hosing down the sondes and sensor bodies with a power washer before reinstalling them. We 206 

included the distinct periods (t1-t5) resulting from the rotation scheme and each individual 207 

tank as a random effect in all statistical models (see Statistical Analysis). 208 

Ecosystem metabolism estimation 209 

We used the temperature and oxygen measurements (mg/L) from the sondes and the PAR-210 

measurements from the light sensor to model whole ecosystem metabolic rates of each 211 

mesocosm (for an overview of the abiotic conditions see Fig. S2). We used the 212 

streamMetabolizer package (Appling et al., 2018) in the programming language R (R Core 213 



Team 2017), which applies inverse modelling to estimate daily rates of gross primary 214 

productivity (P), respiration (R) and gas exchange (K600) as g O2/m2/day. For every 215 

modelled rate we calculated the ratio of P and R. Prior to modelling we smoothed all input 216 

data with a 12-hour moving average window to facilitate model convergence (A. Appling, 217 

personal communication) and for more conservative estimates. We used a Bayes-type model 218 

with pooled K600 for gas-exchange and lognormal priors (K = 0-1). Because the dissolved 219 

oxygen time series reflects oxygen produced and consumed by all organisms in the whole 220 

ecosystem, we assumed the model reflects the net effects of any biomass changes throughout 221 

the experiment, for example, due to plant or epiphytic growth, or biomass decay. 222 

DOC sampling 223 

For each pair of tanks within each measurement period (i.e. every 10 or 7 days: Table S2) we 224 

took a water sample for the analysis of DOC concentration and absorbance properties (Fig. 225 

S3). Water samples were filtered through 47mm ashed GF/Fs (6 hours at 450°C), acidified 226 

with HCl 2 M and preserved at 4°C in the dark until analysis via high temperature catalytic 227 

oxidation (TOC-VCS, Shimadzu), with a detection limit of 0.5 mg/L (±0.5). Specific 228 

ultraviolet absorbances (SUVA) were measured on the same samples from scans (1 nm 229 

intervals) on a Shimadzu UV1700 spectrophotometer, using 1 cm quartz cuvettes. We 230 

selected absorbance at 254 nm (SUVA254) as a proxy of aromaticity and reactivity of DOC 231 

(Weishaar et al., 2003). Furthermore, we measured SUVA350, which is an indicator for how 232 

much UVA radiation is absorbed in the water (Fischer et al., 2015). We normalized the 233 

SUVA measurements by dividing the sample absorbances by the total DOC concentration 234 

(Hansen et al., 2016). Finally, we calculated spectral slope ratio (SSR) as the ratio of linear 235 

regressions of the log-transformed spectra of 275–295 nm and 350–400 nm (Helms et al., 236 

2008; Hansen et al., 2016). SSR is a common proxy for DOC molecular weight, to which it 237 



should be inversely related.  We were unable to analyze two DOC timepoints over the course 238 

of the experiment (Oct 2nd, and 17th) due to technical problems with the TOC analyzer.  239 

A model for competition between macrophytes and phytoplankton 240 

We used an existing model for competition between macrophytes and phytoplankton 241 

(Scheffer & Carpenter, 2003) to explore how mesocosm phytoplankton dynamics might 242 

differ in the presence and absence of macrophytes. This model assumes standard features of 243 

macrophyte-phytoplankton interactions and implicitly accounts for competition for light and 244 

nutrients (Fig. 5). In the model, growth of macrophytes M and of phytoplankton P is 245 

determined by a gain and a loss term following: 246 

 247 
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Phytoplankton grows with a maximum growth rate rP that is limited by nutrients n in a 250 

saturating function with half-saturation constant hp. Limitation of phytoplankton growth by 251 

macrophytes comes through nutrient availability given by eq2: 252 

𝑛 = !"#"
!!!!!!!!!

 (eq2) 253 

where Ntot is the total amount of nitrogen in the system and nutrients decrease in a nonlinear 254 

way depending on the biomass of macrophytes and phytoplankton. Parameters qM and qP 255 

determine the strength of the response in decreasing nutrients per biomass increase in 256 

macrophytes and phytoplankton, respectively. Phytoplankton growth is also limited by light 257 

due to self-shading scaled by αP where 1/αP is the biomass of phytoplankton that makes the 258 

maximum growth rate equal to half, whereas loss is determined by loss rate lp., Macrophyte 259 

maximum growth rate rM is limited only due to competition for light (in contrast to 260 

phytoplankton which is also limited by nutrients). In that case, light limitation is driven by 261 



self-shading through parameter aM and due to shading by phytoplankton by parameter b. Loss 262 

is determined by loss rate lM. In this simplified model formulation, we ignore some 263 

potentially important interactions for which we had no empirical data, including nutrient 264 

uptake by macrophytes from the sediment, and interactions between macrophytes and 265 

periphyton biomass over time. 266 

We used model parameters such that both macrophytes and phytoplankton were 267 

equivalent in the rates of growth (rP=rM=0.5), mortality (lP=lM=0.05), and self-shading 268 

(αP=αM=0.01). Instead, we modeled asymmetry between macrophytes and phytoplankton in 269 

terms of light and nutrient limitation. Phytoplankton growth was limited by nutrients (hP = 270 

0.2), through macrophytes having a stronger impact on retaining the available nutrients in the 271 

water column (Ntot) (qM = 0.075 and qP = 0.005). Macrophytes became light limited by 272 

phytoplankton due to shading (b = 0.02). We set Ntot=3.2.  This is a total nutrient level value 273 

for which the model can give rise to 2 alternative states, one state with both macrophytes and 274 

phytoplankton present (M+) and an alternative with phytoplankton but no macrophytes (M-). 275 

These two states resemble our experimental setup. We simulated model dynamics at these 276 

two contrasting states in the presence of environmental stochasticity εP(t), εM(t) (iid different 277 

for macrophytes and phytoplankton) with strength σ (=0.5). We produced 200 simulated sets 278 

of 1000 timepoints in length for each of the two states using the same sequence of stochastic 279 

realizations for both states. In that way, differences in the recorded standard deviation and 280 

coefficient of variation were independent of the stochasticity and only due to the stability of 281 

the two states. The model was implemented in MATLAB R2016b (Mathworks) using Grind 282 

v2 (https://www.sparcs-center.org/resources/dynamical-modelling-tools.html). Equilibria and 283 

eigenvalues were estimated numerically, stochastic equations were solved with Euler-284 

Murayama integration using a 0.01 step. 285 



Statistical analysis 286 

Data treatment - Prior to the statistical analysis we removed incomplete days at the beginning 287 

and end of each measurement period (five time series: t1-t5). After this, each of the five time 288 

series had 864 data points (15 min interval = 96 data points per day = 9 days) for t1-3 and 576 289 

data points (= 6 days) for t4 and t5. In a second step, we identified residuals of the detrended 290 

data that were outside 2.5 times the interquartile range as outliers and removed them from the 291 

data set. Finally, we used sliding windows with a size of 96 timepoints (= 1 day) to calculate 292 

time series of mean and cv, resulting in 768 data points for t1-t3 and 480 data points for t4-t5 293 

(8 and 5 days, respectively).  294 

Ecosystem dynamics - We analyzed time series of chlorophyll-a, phycocyanin, dissolved 295 

oxygen and fDOM separately for each of the five measurement periods to account for any 296 

variation due to the sonde-switching. To test for effects of macrophytes on the mean and 297 

variance of each parameter we implemented a series of generalized additive models (GAM) 298 

using the R-package mgcv (Wood, 2004): one model per parameter (chlorophyll-a, 299 

Phycocyanin, fDOM, oxygen concentration, conductivity) per measurement period (t1-t5) per 300 

metric (mean or CV), resulting in a total of 50 separate GAMs. Each model used data from 301 

all eight tanks to test for differences in the mean or coefficient of variation (CV), with the 302 

presence or absence of macrophytes as the independent variable and tank and pair (see Fig. 1) 303 

as random effects. All GAMs included a term that accounted for first order autocorrelation 304 

and used penalized thin plate regression splines with automatic knot selection. 305 

In addition to the GAMs we also calculated pairwise log response ratios (LRR) for 306 

macrophyte presence in all five periods for the high frequency measurements. To do so we 307 

divided vectors of mean and CV (coming either from the sliding window for the water 308 

parameters or from the daily estimates of metabolism) for M+ by the corresponding vector of 309 



M- for each given pair of tanks. We then calculated the natural logarithm for these ratios for 310 

each measurement period and for each tank (for a summary of all response ratios see Fig. 6). 311 

Ecosystem metabolism - To test for statistical differences in metabolic rates, we used the 312 

output from the ecosystem metabolism models, which were 8 or 5 consecutive days for t1-t3, 313 

and t4-t5, respectively (streamMetabolizer does not provide estimates for the final day in a 314 

time series). In a similar fashion as for the ecosystem dynamics, each model used data from 315 

all eight tanks within a measurement period to test for differences in P, R or P:R, using 316 

macrophyte presence as the independent variable and pair and tank as random effects. We 317 

calculated LRRs in the same way as described for the high frequency ecosystem dynamics. 318 

We used paired t-tests to test for differences in metabolism CV for each measurement period. 319 

DOC - We used paired t-tests to test for differences in mean and CV of total DOC 320 

concentration, SUVA254 and SUVA350, and SSR between mesocosms with and without 321 

macrophytes. For each date (10 dates in total, see Table S2) we performed separate tests for 322 

all four metrics (n=8 tanks). We performed t-tests with the stats R-package (R Core Team 323 

2017), and calculated pairwise LRRs for all DOC metrics (for a summary of all response 324 

ratios see Fig. 6). 325 

Results 326 

Macrophyte biomass and nutrients 327 

The overall biomass of the macrophyte community changed over the course of the 328 

experiment, decreasing in the M+ treatment and increasing slightly in the M- treatment. At 329 

the end of the experiment substantially less Chara biomass was present in the M+ mesocosms 330 

than at the beginning (from 165.1 ± 21.65 g to 5.08 ± 7.6 g dry weight/mesocosm, mean ± se, 331 

Table S1), whereas Myriophyllum biomass increased threefold from 2.84 ± 0.54 g to 8.45 ± 332 



1.6 g dry weight (mean ± se). In the M- treatment there was no Myriophyllum, but Chara 333 

biomass increased slightly due to growth from the sediment (from 0 to 0.27 ± 0.54 g dry 334 

weight, mean ± se). In both treatments, filamentous algae grew over the course of the 335 

experiment to a final biomass of 8.33 ± 10.54 g dry weight (M+) and 3.21 ± 5.46 g dry 336 

weight (M-, mean ± se). Throughout the experiment we observed no differences in 337 

concentrations of phosphate or nitrogen between mesocosms with and without macrophytes 338 

(Figure S1). The nutrients we supplied on July 4th were almost completely consumed by July 339 

18th and were consistently low (<2ug P/L, <50ugN/L) over the entire experiment. However, 340 

concentrations of both nutrients tended to increase towards the end of the experiment, likely 341 

due to decomposition of plant material (e.g. Chara). 342 

Ecosystem dynamics 343 

As expected, solar radiation and water temperature decreased strongly over the course of the 344 

experiment from July 18th to Oct 20th (Fig. S2). Several parameters differed between M+ 345 

and M- tanks over the course of the experiment, with the magnitude of the difference 346 

depending on period (Fig 2 and Fig. 6; for P-values see Table 2). As expected, mean 347 

phytoplankton biomass was significantly higher without macrophytes (M-) in three of the five 348 

periods (t2, t4, and t5; Table 2), and, unexpectedly, the CV of phytoplankton biomass was 349 

higher in the tanks with macrophytes (M+) in three periods (t1, t2, and t5, Fig. 3). By 350 

comparison, mean phycocyanin was not significantly different between M+ and M- (Fig. 2), 351 

but the CV of phycocyanin was significantly higher in the M+ treatment during three periods 352 

(Fig. 3; t1, t2, t4). In tanks with macrophytes (M+), fDOM was higher in four periods (GAM, 353 

t2 - t5), and the CV was significantly lower in one period (GAM, t3). The mean concentration 354 

of dissolved oxygen was significantly higher in M+, but only towards the end of the 355 

experiment (Fig. 3, t4 and t5). In these two periods when irradiance was decreasing (Fig. S2), 356 



the tanks lacking macrophytes (M-) became undersaturated with dissolved oxygen indicating 357 

net heterotrophy. During the entire experiment, there were no differences between M+ and 358 

M- in the CV of dissolved oxygen. Effect sizes of macrophyte presence on mean and variance 359 

of all parameters measured in high frequency are summarized in Figure 6. 360 

Ecosystem metabolism 361 

We found weak and seasonally variable differences in mean ecosystem metabolism between 362 

mesocosms with and without macrophytes (Fig. 4). In three measurement periods mesocosms 363 

with macrophytes had significantly higher gross primary productivity (t1, t3, and t5). During 364 

t1, mesocosms with macrophytes also had higher respiration (GAM, main effect of 365 

macrophytes, P = 0.001). In t2 there was a tendency for higher P:R ratio in mesocosms 366 

without macrophytes (GAM, main effect of macrophytes, P=0.074), but in t3 and t4 we found 367 

the opposite pattern with significantly higher P:R ratio in the presence of macrophytes 368 

(GAM, main effect of macrophytes, P<0.001 and P=0.002, respectively. Overall, P and R 369 

decreased significantly over the course of the experiment, likely due to seasonal dynamics 370 

(decreasing temperature and light, Fig. S2) but the P:R ratio remained around one. Across all 371 

measurement periods, both productivity and respiration increased with chlorophyll-a biomass 372 

(slope in Fig. S4). However, for a given chlorophyll-a concentration, both metabolic rates 373 

were higher in the presence of macrophytes than in their absence (intercept in Fig. S4). 374 

Moreover, we found higher variance of metabolic rates when macrophytes were present (all t-375 

tests of metabolism CV significantly different - Fig 6). 376 

DOC 377 

Total DOC concentration was not significantly different between M+ and M- mesocosms 378 

(Table S2, Fig. S3). However, there were clear effects of macrophytes on chromophoric 379 

(impacting light transparency) DOC components: SUVA254 and SUVA350 were often higher 380 



in the presence of macrophytes (Table S2, Fig. S3), indicating that less UV light was able to 381 

penetrate in these ecosystems. SSR diverged among treatments early in the experiment and 382 

remained higher in the –M treatment for most of the season (Fig. S3), potentially indicating 383 

dissolved substances of lower molecular weight in the absence of macrophytes (e.g. sugars or 384 

amino acids). We also found higher variance in all metrics of DOC composition in the 385 

presence of macrophytes (Fig 6). 386 

Simulated interactions between macrophytes and phytoplankton 387 

Our simulation model produced results parallel to those observed in the mesocosms. Under 388 

identical nutrient levels, phytoplankton biomass was on average lower in the presence of 389 

macrophytes, but also varied more strongly around the mean (i.e. lower mean and higher CV 390 

under M-). This was also reflected in the stability regimes measured as the dominant 391 

eigenvalue lambda, which was higher in the absence and lower in the presence of 392 

macrophytes (Fig. 5, panel B). These results emerged solely from differences in the relative 393 

effects of macrophytes vs. phytoplankton on nutrient vs. light limitation and illustrate that 394 

differential competition for these resources can impact both mean and variance in 395 

phytoplankton biomass.  396 

Discussion 397 

Over the course of our experiment, macrophytes affected a wide range of ecosystem 398 

parameters. Most notably from those measured at high frequency, chlorophyll-a fluorescence 399 

(i.e. phytoplankton biomass) was significantly lower in the presence of macrophytes. This 400 

was expected, and in agreement with a large body of previous work documenting the 401 

outcome of competition between macrophytes and phytoplankton for dissolved nutrients and 402 

light (Sand-Jensen & Borum, 1991; Scheffer et al., 1993; Faafeng & Mjelde, 1998; van Nes, 403 



Rip & Scheffer, 2007). The ability of macrophytes to keep phytoplankton biomass low is 404 

important for stabilizing the clear water state in response to nutrient additions (Scheffer et al., 405 

1993; Ibelings et al., 2007), and for understanding the timescale of competition for light and 406 

nutrients between these producers in the context of ecosystem stability. However, our high-407 

resolution measurements also revealed some unexpected variance patterns of macrophyte-408 

ecosystem interactions, most notably higher variance of phytoplankton and DOC components 409 

in the presence of macrophytes. While the former may be explained by resource competition 410 

between macrophytes and phytoplankton, as indicated by our competition simulation, the 411 

mechanisms behind elevated DOC variability are potentially related to growth and 412 

decomposition of macrophytes. Below we discuss the implications of our joint findings from 413 

the high-resolution time series and the simulation model, as well as the outcomes of the 414 

ecosystem metabolism models. Overall, our findings indicate that some macrophyte effects 415 

on ecosystem parameters are of more limited duration (e.g. phytoplankton was decreased 416 

only temporarily and most strongly in t2), whereas others remain stable across the season 417 

(e.g. fDOM was consistently higher from t2 onwards). 418 

As expected from existing theoretical and experimental work, and confirming our first 419 

hypothesis, we observed higher phytoplankton biomass in the absence of macrophytes 420 

(Scheffer et al., 1993; Blindow et al., 1998). However, a finding we did not expect based on 421 

existing theory was the higher variability of phytoplankton biomass in the presence of 422 

macrophytes, a phenomenon that has not been previously reported. One mechanism for 423 

higher variability of phytoplankton biomass could be that the ongoing photosynthesis, 424 

growth, and decay of macrophytes increases the short-term variability of nutrient and carbon 425 

availability, and that phytoplankton respond more rapidly to these changes in nutrient 426 

concentrations than macrophytes themselves (Setaro & Melack, 1984; Mitchell, 1989; Eichel 427 

et al., 2014). Importantly, however, the much larger reservoir of macrophytes biomass may 428 



be able to repeatedly suppress these rapid increases in phytoplankton growth. Rooted 429 

macrophytes build up biomass over time and can also store nutrients (Faafeng & Mjelde, 430 

1998; Søndergaard & Moss, 1998; Yamamichi et al., 2018), and thus probably prevented a 431 

high mean level of phytoplankton biomass and repeatedly suppressed multiple bouts of 432 

phytoplankton growth. 433 

We implemented a model to explore how competitive interactions between 434 

macrophytes and phytoplankton might affect the mean vs. the variance of phytoplankton 435 

biomass. Specifically, we modelled competitive interactions such that macrophytes limit 436 

nutrient availability and phytoplankton limit light availability (Scheffer and Carpenter 437 

(2003)). This model reproduced the same contrast in phytoplankton biomass that we observed 438 

in the mesocosms: lower mean phytoplankton biomass but higher variance (CV) in the 439 

presence of macrophytes. Thus, the model predicted that phytoplankton biomass in a 440 

phytoplankton-dominated state would be more stable than in a macrophyte-dominated state 441 

under the same nutrient loading condition. At first sight, this result might appear 442 

counterintuitive as a macrophyte-dominated state is expected to be more stable to the 443 

unfavorable phytoplankton-dominated state. The biological explanation may be that when 444 

macrophytes and phytoplankton are competing for nutrients (and light), variation arising from 445 

the depletion of these resources is larger than with just one consumer (i.e. only phytoplankton 446 

in M-). However, whether variability is always expected to be higher in a macrophyte 447 

dominated than in a phytoplankton-dominated state, or under what conditions, would require 448 

more empirical work to validate. The model shows that this is the case when considering only 449 

one aspect of macrophyte-phytoplankton interactions (i.e. competition), which qualitatively 450 

matched with the high-resolution algal biomass data we collected. However, macrophytes can 451 

affect other compartments of the ecosystem (e.g. sediment, epiphytes, DOC) that are not 452 

considered in our model. For example, macrophytes can produce allelochemicals that inhibit 453 



phytoplankton production (Hilt & Gross, 2008; Nakai et al., 2012), modify the light 454 

environments via the production of DOC, or alter community structure of grazers; all of 455 

which could potentially influence the variance of phytoplankton biomass. Nevertheless, our 456 

study does illustrate that high resolution monitoring of ecosystem conditions (Mandal et al., 457 

2019) and accompanying simulation models may provide new insights into the underlying 458 

mechanisms whereby macrophytes (or other foundation species) can affect ecosystem 459 

dynamics in general, and the relationships between mean and variance of ecosystem 460 

responses in particular. 461 

In line with macrophytes being efficient primary producers in shallow lakes (Kaenel 462 

et al., 2000), we confirmed our second hypothesis that mesocosm ecosystems with 463 

macrophytes had higher metabolic rates than those without macrophytes. Differences in 464 

productivity were most pronounced in July, where mesocosms with macrophytes were 465 

significantly more productive than macrophyte free mesocosms (t1). However, this difference 466 

disappeared during the phytoplankton bloom in the second measurement period (t2). This 467 

suggests that at intermediate concentrations, phytoplankton can increase productivity of 468 

aquatic ecosystems and match rates of primary production of macrophytes. Yet for any given 469 

chlorophyll-a biomass we measured, metabolic rates were higher when macrophytes were 470 

also present. This indicates that even at relatively low density, macrophytes (Myriophyllum, 471 

Chara and filamentous algae) can produce a significant metabolic signal. Higher productivity 472 

of ecosystems with macrophytes was also reflected in P:R ratio, which is on average slightly 473 

higher for those mesocosms in t3 and t4 (Sep 5th - Oct 9th). During t2 (Aug 7th - Aug 27th) 474 

there was a tendency for higher P:R in mesocosms without macrophytes, probably due to 475 

very high phytoplankton biomass. Towards the second half of the experiment, the growth of 476 

filamentous algae may have also contributed to higher rates of whole ecosystem productivity 477 

in +M tanks, where filamentous algae biomass was higher (8.33 ± 10.54 g dry weight, mean 478 



± SD) than in the -M tanks (3.21 ± 5.46 g dry weight, mean ± SD). Overall, these findings 479 

suggest that macrophytes, regardless of their growth form, might make shallow lake 480 

ecosystems more productive across the seasonal succession of ecosystem metabolism 481 

(Madsen & Adams, 1988; Blindow et al., 2006; Brothers et al., 2013). These dynamics 482 

require additional investigation, especially in the context of successive phytoplankton blooms 483 

and their effects on the macrophyte community, but also in the context of rising temperatures 484 

and eutrophication. 485 

Another important axis by which macrophytes affected the experimental ecosystems 486 

is their effects on the concentration and composition of dissolved organic matter. From the 487 

beginning of t2 (August 8th) to the end of the experiment (October 23rd), fDOM 488 

measurements in mesocosms with macrophytes were nearly twice as high as in mesocosms 489 

without macrophytes. Higher mean, but also lower variance of DOM was expected, because 490 

especially Myriophyllum is known to produce allelochemicals to inhibit algae growth that can 491 

persist in the water column (Hilt & Gross, 2008; Nakai et al., 2012). However, total DOC 492 

concentrations were similar in both treatments, suggesting that not all components of the 493 

DOM-pool are affected the same way by macrophytes (Catalán et al., 2014; Reitsema et al., 494 

2018). Moreover, measurements from the scanning spectrophotometer showed consistently 495 

lower SSRs, indicating the presence of DOC compounds with higher molecular weight. The 496 

buildup and decay of macrophyte detritus could explain the low SSR ratios at similar total 497 

DOC levels, particularly since much of the initial Chara biomass contributed to 498 

decomposition rather than taking root, and/or grew but then decayed over the course of the 499 

experiment. However, Myriophyllum biomass also increased substantially, and could have 500 

added high MW compounds into the mesocosms. It is also possible that production rates of 501 

DOC were similar in M+ and M- treatments (as the total DOC was similar), but that material 502 

originating from macrophytes has a higher MW, and is more difficult to break down by 503 



bacteria (Bolan et al., 2011; Reitsema et al., 2018). Overall, changes in DOC composition 504 

and variance might reflect differences in the balance of production and decomposition rates 505 

of different photosynthetic compounds, such as low MW sugars that are a byproduct of recent 506 

photosynthetic activity (Carpenter & Lodge, 1986; Bolan et al., 2011; Reitsema et al., 2018). 507 

However, more work needs to be done to understand the specific mechanisms behind such 508 

patterns, e.g. biomass production and decomposition or the production of secondary 509 

metabolites. 510 

Using a common macrophyte assemblage, our experiment shows that communities of 511 

submerged plants can affect the mean and variance of a wide range of biotic and abiotic 512 

ecosystem properties and processes over a relatively short amount of time. Some of the 513 

effects we found on mean values, such as macrophytes decreasing phytoplankton biomass 514 

and increasing fDOM are not particularly surprising nor are they novel. However, the 515 

elevated variability of both phytoplankton pigments in the presence of macrophytes was 516 

unexpected, and potentially linked to competitive interactions. Across all our ecosystem 517 

metrics, we found that changes in CV covaried negatively with changes in the mean, or that 518 

CV increased despite no effect on the mean. Such results, show the importance of considering 519 

also the variance of ecological dynamics, which is increasingly recognized as an important 520 

aspect of ecosystem dynamics (Carpenter, 1988; Benedetti-Cecchi, 2003) and is used in a 521 

wide array of applications, e.g. ecological forecasting (Petchey et al., 2015; Pennekamp et al., 522 

2019), early warning signals for critical transitions (Scheffer et al., 2009; Carpenter et al., 523 

2011), and ecological modelling (Bartell et al., 1988; Cottingham & Carpenter, 1998). 524 

Furthermore, our high frequency measurements can begin to reveal and quantify 525 

characteristic differences in timescales of ecosystem change, such as the high variability in 526 

phytoplankton communities vs. the relative stability of DOM and oxygen concentration 527 

throughout the season. Future experiments targeting shallow lake ecosystems should also 528 



encompass measurements in high resolution, e.g. to detect the potential outcome of 529 

interactions among different trophic levels (e.g. between macrophytes, zooplankton and fish) 530 

or quantify the response to perturbations (e.g. nutrients or temperature). Our study highlights 531 

how complex and temporally variable interactions around foundation species can be and 532 

underscores the need for further research that investigates biotic and abiotic components of 533 

these networks of interactions in detail.  534 

Acknowledgements 535 

We thank Gilles Antoniazza, Emil Birnstiel, Laetitia Catalano, Daniel Steiner, Jaime M. 536 

Anaya-Rojas and Marek Svitok for major contributions to mesocosm set-up, maintenance, 537 

and sampling. Patrick Kathriner, and Beat Kienholz provided lab facilities and infrastructure 538 

support. The Eawag Directorate provided financial support for RJB. MDL was funded by the 539 

center for Adaptation to a changing Environment (ACE) at ETH Zürich 540 

Data Availability Statement 541 

Upon publication, all collected data will be made available via a data repository (Dryad). 542 

Conflict of interest 543 

The authors declare no conflict of interests. 544 

References 545 

Appling A.P., Hall R.O. Jr., Yackulic C.B. & Arroita M. (2018). Overcoming Equifinality: 546 

Leveraging Long Time Series for Stream Metabolism Estimation. Journal of 547 



Geophysical Research: Biogeosciences 123, 624–645. 548 

https://doi.org/10.1002/2017JG004140 549 

Bartell S.M., Brenkert A.L., O’Neill R.V. & Gardner R.H. (1988). Temporal Variation in 550 

Regulation of Production in a Pelagic Food Web Model. In: Complex Interactions in 551 

Lake Communities. (Ed. S.R. Carpenter), pp. 101–118. Springer New York, New York, 552 

NY. 553 

Benedetti-Cecchi L. (2003). The Importance of the Variance around the Mean Effect Size of 554 

Ecological Processes. Ecology 84, 2335–2346 555 

Blindow I., Hargeby A. & Andersson G. (1998). Alternative Stable States in Shallow Lakes: 556 

What Causes a Shift? In: The Structuring Role of Submerged Macrophytes in Lakes. 557 

Ecological Studies, (Eds E. Jeppesen, M. Søndergaard, M. Søndergaard & K. 558 

Christoffersen), pp. 353–360. Springer New York. 559 

Blindow I., Hargeby A., Meyercordt J. & Schubert H. (2006). Primary production in two 560 

shallow lakes with contrasting plant form dominance: A paradox of enrichment? 561 

Limnology and oceanography 51, 2711–2721. https://doi.org/10.4319/lo.2006.51.6.2711 562 

Bolan N.S., Adriano D.C., Kunhikrishnan A., James T., McDowell R. & Senesi N. (2011). 563 

Chapter One - Dissolved Organic Matter: Biogeochemistry, Dynamics, and 564 

Environmental Significance in Soils. In: Advances in Agronomy. (Ed. D.L. Sparks), pp. 565 

1–75. Academic Press. 566 

Brothers S.M., Hilt S., Meyer S. & Koehler J. (2013). Plant community structure determines 567 

primary productivity in shallow, eutrophic lakes. Freshwater biology 58, 2264–2276. 568 

https://doi.org/10.1111/fwb.12207 569 

Carpenter S.R. (1988). Transmission of Variance through Lake Food Webs. In: Complex 570 

Interactions in Lake Communities. (Ed. S.R. Carpenter), pp. 119–135. Springer New 571 

York, New York, NY. 572 



Carpenter S.R., Cole J.J., Pace M.L., Batt R., Brock W.A., Cline T., et al. (2011). Early 573 

warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079–1082. 574 

https://doi.org/10.1126/science.1203672 575 

Carpenter S.R. & Lodge D.M. (1986). Effects of submersed macrophytes on ecosystem 576 

processes. Aquatic botany 26, 341–370. https://doi.org/10.1016/0304-3770(86)90031-8 577 

Catalán N., Obrador B. & Pretus J.L. (2014). Ecosystem processes drive dissolved organic 578 

matter quality in a highly dynamic water body. Hydrobiologia 728, 111–124. 579 

https://doi.org/10.1007/s10750-014-1811-y 580 

Cottingham K.L. & Carpenter S.R. (1998). Population, Community, and Ecosystem Variates 581 

as Ecological Indicators: Phytoplankton Responses to Whole-Lake Enrichment. 582 

Ecological applications: a publication of the Ecological Society of America 8, 508–530. 583 

https://doi.org/10.2307/2641090 584 

Dayton P.K. (1972). Toward an understanding of community resilience and the potential 585 

effects of enrichments to the benthos at McMurdo Sound, Antarctica. In: Proceedings of 586 

the colloquium on conservation problems in Antarctica. pp. 81–96. Allen Press 587 

Lawrence, Kansas, USA. 588 

Eichel K.A., Macrae M.L., Hall R.I., Fishback L. & Wolfe B.B. (2014). Nutrient Uptake and 589 

Short-Term Responses of Phytoplankton and Benthic Algal Communities from a 590 

Subarctic Pond to Experimental Nutrient Enrichment in Microcosms. Arctic, antarctic, 591 

and alpine research 46, 191–205. https://doi.org/10.1657/1938-4246-46.1.191 592 

Ellison A.M., Bank M.S., Clinton B.D., Colburn E.A., Elliott K., Ford C.R., et al. (2005). 593 

Loss of foundation species: consequences for the structure and dynamics of forested 594 

ecosystems. Frontiers in ecology and the environment 3, 479–486. 595 

https://doi.org/10.1890/1540-9295(2005)003[0479:LOFSCF]2.0.CO;2 596 

Faafeng B.A. & Mjelde M. (1998). Clear and Turbid Water in Shallow Norwegian Lakes 597 



Related to Submerged Vegetation. In: The Structuring Role of Submerged Macrophytes 598 

in Lakes. Ecological Studies, (Eds E. Jeppesen, M. Søndergaard, M. Søndergaard & K. 599 

Christoffersen), pp. 361–368. Springer New York. 600 

Findlay S. & Sinsabaugh R.L. (2003). Aquatic Ecosystems: Interactivity of Dissolved 601 

Organic Matter. (Ed. F. Sinsabaugh), Academic Press. 602 

Fiskal A., Deng L., Michel A., Eickenbusch P., Han X., Lagostina L., et al. (2019). Effects of 603 

eutrophication on sedimentary organic carbon cycling in five temperate lakes 604 

Gross E.M. (2003). Allelopathy of Aquatic Autotrophs. Critical reviews in plant sciences 22, 605 

313–339. https://doi.org/10.1080/713610859 606 

Hansen A.M., Kraus T.E.C., Pellerin B.A., Fleck J.A., Downing B.D. & Bergamaschi B.A. 607 

(2016). Optical properties of dissolved organic matter (DOM): Effects of biological and 608 

photolytic degradation: DOM optical properties following degradation. Limnology and 609 

oceanography 61, 1015–1032. https://doi.org/10.1002/lno.10270 610 

Helms J.R., Stubbins A., Ritchie J.D., Minor E.C., Kieber D.J. & Mopper K. (2008). 611 

Absorption spectral slopes and slope ratios as indicators of molecular weight, source, 612 

and photobleaching of chromophoric dissolved organic matter. Limnology and 613 

oceanography 53, 955–969. https://doi.org/10.4319/lo.2008.53.3.0955 614 

Hillebrand H., Langenheder S., Lebret K., Lindström E., Östman Ö. & Striebel M. (2018). 615 

Decomposing multiple dimensions of stability in global change experiments. Ecology 616 

letters 21, 21–30. https://doi.org/10.1111/ele.12867 617 

Hilt S. & Gross E.M. (2008). Can allelopathically active submerged macrophytes stabilise 618 

clear-water states in shallow lakes? Basic and applied ecology 9, 422–432. 619 

https://doi.org/10.1016/j.baae.2007.04.003 620 

Huss A.A. & Wehr J.D. (2004). Strong indirect effects of a submersed aquatic macrophyte, 621 

Vallisneria americana, on bacterioplankton densities in a mesotrophic lake. Microbial 622 



ecology 47, 305–315. https://doi.org/10.1007/s00248-003-1034-7 623 

Iacarella J.C., Barrow J.L., Giani A., Beisner B.E. & Gregory-Eaves I. (2018). Shifts in algal 624 

dominance in freshwater experimental ponds across differing levels of macrophytes and 625 

nutrients. Ecosphere  9. https://doi.org/10.1002/ecs2.2086 626 

Ibelings B.W., Portielje R., Lammens E.H.R.R., Noordhuis R., van den Berg M.S., Joosse 627 

W., et al. (2007). Resilience of Alternative Stable States during the Recovery of Shallow 628 

Lakes from Eutrophication: Lake Veluwe as a Case Study. Ecosystems  10, 4–16. 629 

https://doi.org/10.1007/s10021-006-9009-4 630 

Jeppesen E., Peder Jensen J., Søndergaard M., Lauridsen T., Junge Pedersen L. & Jensen L. 631 

(1997). Top-down control in freshwater lakes: the role of nutrient state, submerged 632 

macrophytes and water depth. In: Shallow Lakes ’95: Trophic Cascades in Shallow 633 

Freshwater and Brackish Lakes. (Eds L. Kufel, A. Prejs & J.I. Rybak), pp. 151–164. 634 

Springer Netherlands, Dordrecht. 635 

Kaenel B.R., Buehrer H. & Uehlinger U. (2000). Effects of aquatic plant management on 636 

stream metabolism and oxygen balance in streams. Freshwater biology 45, 85–95. 637 

https://doi.org/10.1046/j.1365-2427.2000.00618.x 638 

Kéfi S., Holmgren M. & Scheffer M. (2016). When can positive interactions cause alternative 639 

stable states in ecosystems? Functional ecology 30, 88–97. https://doi.org/10.1111/1365-640 

2435.12601 641 

Kellerman A.M., Kothawala D.N., Dittmar T. & Tranvik L.J. (2015). Persistence of dissolved 642 

organic matter in lakes related to its molecular characteristics. Nature geoscience 8, 454. 643 

https://doi.org/10.1038/ngeo2440 644 

Madsen J.D. & Adams M.S. (1988). The seasonal biomass and productivity of submerged 645 

macrophytes in a polluted Wisconsin stream. Freshwater biology 20, 41–50. 646 

https://doi.org/10.1111/j.1365-2427.1988.tb01715.x 647 



Mandal S., Smith S.L., Priyadarshi A. & Yamazaki H. (2019). Micro-Scale Variability 648 

Impacts the Outcome of Competition Between Different Modeled Size Classes of 649 

Phytoplankton. Frontiers in Marine Science 6, 259. 650 

https://doi.org/10.3389/fmars.2019.00259 651 

Mitchell D.S. & Rogers K.H. (1985). Seasonality/aseasonality of aquatic macrophytes in 652 

Southern Hemisphere inland waters. Hydrobiologia 125, 137–150. 653 

https://doi.org/10.1007/BF00045931 654 

Mitchell S.F. (1989). Primary production in a shallow eutrophic lake dominated alternately 655 

by phytoplankton and by submerged macrophytes. Aquatic botany 33, 101–110. 656 

https://doi.org/10.1016/0304-3770(89)90023-5 657 

Nakai S., Zou G., Okuda T., Nishijima W., Hosomi M. & Okada M. (2012). Polyphenols and 658 

fatty acids responsible for anti-cyanobacterial allelopathic effects of submerged 659 

macrophyte Myriophyllum spicatum. Water science and technology: a journal of the 660 

International Association on Water Pollution Research 66, 993–999. 661 

https://doi.org/10.2166/wst.2012.272 662 

van Nes E.H., Rip W.J. & Scheffer M. (2007). A theory for cyclic shifts between alternative 663 

states in shallow lakes. Ecosystems  10, 17–27. https://doi.org/10.1007/s10021-006-664 

0176-0 665 

Nielsen A., Liboriussen L., Trolle D., Landkildehus F., Søndergaard M., Lauridsen T.L., et 666 

al. (2013). Daily net ecosystem production in lakes predicted from midday dissolved 667 

oxygen saturation: analysis of a five-year high frequency dataset from 24 mesocosms 668 

with contrasting trophic states and temperatures: Predicting lake net ecosystem 669 

production. Limnology and oceanography, methods / ASLO 11, 202–212. 670 

https://doi.org/10.4319/lom.2013.11.202 671 

Pennekamp F., Iles A.C., Garland J., Brennan G., Brose U., Gaedke U., et al. (2019). The 672 



intrinsic predictability of ecological time series and its potential to guide forecasting. 673 

Ecological monographs 89, e01359. https://doi.org/10.1002/ecm.1359 674 

Petchey O.L., Pontarp M., Massie T.M., Kéfi S., Ozgul A., Weilenmann M., et al. (2015). 675 

The ecological forecast horizon, and examples of its uses and determinants. Ecology 676 

letters 18, 597–611. https://doi.org/10.1111/ele.12443 677 

Reitsema R.E., Meire P. & Schoelynck J. (2018). The Future of Freshwater Macrophytes in a 678 

Changing World: Dissolved Organic Carbon Quantity and Quality and Its Interactions 679 

With Macrophytes. Frontiers in plant science 9, 629. 680 

https://doi.org/10.3389/fpls.2018.00629 681 

Retamal L., Vincent W.F., Martineau C. & Osburn C.L. (2007). Comparison of the optical 682 

properties of dissolved organic matter in two river-influenced coastal regions of the 683 

Canadian Arctic. Estuarine, coastal and shelf science 72, 261–272. 684 

https://doi.org/10.1016/j.ecss.2006.10.022 685 

Sand-Jensen K. & Borum J. (1991). Interactions among phytoplankton, periphyton, and 686 

macrophytes in temperate freshwaters and estuaries. Aquatic botany 41, 137–175. 687 

https://doi.org/10.1016/0304-3770(91)90042-4 688 

Scheffer M., Bascompte J., Brock W.A., Brovkin V., Carpenter S.R., Dakos V., et al. (2009). 689 

Early-warning signals for critical transitions. Nature 461, 53–59. 690 

https://doi.org/10.1038/nature08227 691 

Scheffer M. & Carpenter S.R. (2003). Catastrophic regime shifts in ecosystems: linking 692 

theory to observation. Trends in ecology & evolution 18, 648–656. 693 

https://doi.org/10.1016/j.tree.2003.09.002 694 

Scheffer M., Hosper S.H., Meijer M.L., Moss B. & Jeppesen E. (1993). Alternative equilibria 695 

in shallow lakes. Trends in ecology & evolution 8, 275–279. 696 

https://doi.org/10.1016/0169-5347(93)90254-M 697 



Scheffer M., Szabo S., Gragnani A., Van Nes E.H., Rinaldi S., Kautsky N., et al. (2003). 698 

Floating plant dominance as a stable state. Proceedings of the National Academy of 699 

Sciences of the United States of America 100, 4040–4045. 700 

https://doi.org/10.1073/pnas.0737918100 701 

Setaro F.V. & Melack J.M. (1984). Responses of phytoplankton to experimental nutrient 702 

enrichment in an Amazon floodplain lake1: Amazon lake nutrient limitation. Limnology 703 

and oceanography 29, 972–984. https://doi.org/10.4319/lo.1984.29.5.0972 704 

Søndergaard M. & Moss B. (1998). Impact of Submerged Macrophytes on Phytoplankton in 705 

Shallow Freshwater Lakes. In: The Structuring Role of Submerged Macrophytes in 706 

Lakes. (Eds E. Jeppesen, M. Søndergaard, M. Søndergaard & K. Christoffersen), pp. 707 

115–132. Springer New York, New York, NY. 708 

Spears B.M., Futter M.N., Jeppesen E., Huser B.J., Ives S., Davidson T.A., et al. (2017). 709 

Ecological resilience in lakes and the conjunction fallacy. Nature ecology & evolution 1, 710 

1616–1624. https://doi.org/10.1038/s41559-017-0333-1 711 

Van den Berg M.S., Coops H., Meijer M.-L., Scheffer M. & Simons J. (1998). Clear Water 712 

Associated with a Dense Chara Vegetation in the Shallow and Turbid Lake 713 

Veluwemeer, The Netherlands. In: The Structuring Role of Submerged Macrophytes in 714 

Lakes. (Eds E. Jeppesen, M. Søndergaard, M. Søndergaard & K. Christoffersen), pp. 715 

339–352. Springer New York, New York, NY. 716 

Vasseur D.A., DeLong J.P., Gilbert B., Greig H.S., Harley C.D.G., McCann K.S., et al. 717 

(2014). Increased temperature variation poses a greater risk to species than climate 718 

warming. Proceedings. Biological sciences / The Royal Society 281, 20132612. 719 

https://doi.org/10.1098/rspb.2013.2612 720 

Weishaar J.L., Aiken G.R., Bergamaschi B.A., Fram M.S., Fujii R. & Mopper K. (2003). 721 

Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical 722 



Composition and Reactivity of Dissolved Organic Carbon. Environmental science & 723 

technology 37, 4702–4708. https://doi.org/10.1021/es030360x 724 

Wetzel R.G. (1964). A Comparative Study of the Primary Production of Higher Aquatic 725 

Plants, Periphyton, and Phytoplankton in a Large, Shallow Lake. Internationale Revue 726 

der gesamten Hydrobiologie und Hydrographie 49, 1–61. 727 

https://doi.org/10.1002/iroh.19640490102 728 

Wetzel R.G. & Søndergaard M. (1998). Role of Submerged Macrophytes for the Microbial 729 

Community and Dynamics of Dissolved Organic Carbon in Aquatic Ecosystems. In: The 730 

Structuring Role of Submerged Macrophytes in Lakes. (Eds E. Jeppesen, M. 731 

Søndergaard, M. Søndergaard & K. Christoffersen), pp. 133–148. Springer New York, 732 

New York, NY. 733 

Wood S.N. (2004). Stable and efficient multiple smoothing parameter estimation for 734 

generalized additive models. Journal of the American Statistical Association 99, 673–735 

686 736 

Yamamichi M., Kazama T., Tokita K., Katano I., Doi H., Yoshida T., et al. (2018). A shady 737 

phytoplankton paradox: when phytoplankton increases under low light. Proc. R. Soc. B 738 

285, 20181067. https://doi.org/10.1098/rspb.2018.1067 739 

Żbikowski J., Simčič T., Pajk F., Poznańska-Kakareko M., Kakareko T. & Kobak J. (2019). 740 

Respiration rates in shallow lakes of different types: contribution of benthic 741 

microorganisms, macrophytes, plankton and macrozoobenthos. Hydrobiologia 828, 742 

117–136. https://doi.org/10.1007/s10750-018-3807-5 743 

Zelnik Y.R., Arnoldi J.-F. & Loreau M. (2018). The Impact of Spatial and Temporal 744 

Dimensions of Disturbances on Ecosystem Stability. Frontiers in ecology and evolution 745 

6, 224. https://doi.org/10.3389/fevo.2018.00224 746 

  747 



Figures 748 

 749 

1. A: Scheme of experimental procedure. Because we were limited to four sondes, we could 750 

only measure two tank pairs of macrophyte (M+)/no macrophyte (M-) contrasts. To measure 751 

all eight tanks, we followed a rotation scheme in which every tank was measured for 10 752 

consecutive days before the sondes were moved to another tank (for details refer to Methods 753 

section). B: Picture of experimental site showing the set up mesocosms (1000L). C: Chara 754 

tomentosa (Photo credit: Gustav Johansson). D: Myriophyllum spicatum (Photo credit: Alison 755 

Fox). 756 

  757 



 758 



2. Sliding window results from high frequency measurements of chlorophyll-a and 759 

Phycocyanin over time (days 2-9 in each of five consecutive sampling periods). Lines show 760 

Mean ± SE (n = 8 tanks), asterisks indicate significant differences (p <= 0.05), dots indicate 761 

marginal significance (p <= 0.1). One GAM was used per period, including tank and the pair 762 

it was in (see Fig.1) as random effects. Here the sliding window time series of the Mean from 763 

both blocks are shown pooled for better illustration. Because the sliding window had a width 764 

of one day, only aggregate days 2-9 for each measurement are shown. 765 



 766 



3. Sliding window results from high frequency measurements of fDOM and dissolved oxygen 767 

over time (days 2-9 in each of five consecutive sampling periods). Lines show Mean ± SE (n 768 

= 8 tanks), asterisks indicate significant differences (p <= 0.05). One GAM was used per 769 

period, including tank and the pair it was in (see Fig.1) as random effects. Here the sliding 770 

window time series of the Mean from both blocks are shown pooled for better illustration. 771 

Because the sliding window had a width of one day, only aggregate days 2-9 for each 772 

measurement are shown.  773 



 774 



4. Ecosystem productivity (P), respiration (R) and P:R ratio calculated from high frequency 775 

measurements of O2 saturation, temperature, light, and air pressure. Shown are Mean ± SE 776 

(n= 8 tanks), asterisks indicate significant differences, dots indicate marginal significance (p 777 

<= 0.1). One GAM was used per period, including both consecutive blocks as random 778 

variables. Here the time series of metabolic rates from both blocks are shown pooled for 779 

better illustration. The modelling procedure requires full days to be included, but because of 780 

the model parameterization to start each day 1 hour before sunrise, the last day is incomplete 781 

and thus cannot be modeled. Hence, only aggregate days 1-8 are shown. 782 
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 784 

 785 



5. A simple model of competition for light and nutrients between macrophytes and 786 

phytoplankton (for details see Supplement). A: Schematic of interactions between 787 

macrophytes (M) and phytoplankton (P). Macrophytes consume nutrients, which has a 788 

negative indirect effect on phytoplankton. If phytoplankton biomass becomes too high, it 789 

reduces light levels such that there is a negative indirect effect on macrophytes. Thus, 790 

macrophytes are more strongly limited by light, and phytoplankton by nutrients. B: Zero-791 

growth curves of macrophytes (green line) and phytoplankton (blue line). Black points mark 792 

the 2 alternative stable equilibria of either a macrophyte-and-phytoplankton state or an only-793 

phytoplankton state. Although these two states exist for the same level of nutrients in the 794 

water, their stability (measured as the dominant eigenvalue lambda) differs: the only-795 

phytoplankton is more stable than the macrophyte-and-phytoplankton state. C: Simulated 796 

time series of phytoplankton biomass in the presence (green) and in the absence (blue – note 797 

second y-axis) of macrophytes for the same level of nutrients in the water. D: Coefficient of 798 

variation of phytoplankton biomass estimated from 200 simulated sets.  799 

  800 



 801 

 802 

6. Average log response ratios (LRR) for macrophyte presence on mean and CV. Effect sizes 803 

were calculated differently for each data type: high frequency (●), metabolism (▲), or DOC 804 

point measurements (■) – for details refer to the methods section. Each point shows the 805 

average (mean ± se) macrophyte LRR across all tank pairs (N=4, Fig. 1) and in all 806 

measurement periods (t1-t5, except for the DOC point measurements, where all 10 807 

measurements were used to calculate LRR for mean and CV). 808 



Tables 809 

1. Parameters measured in high frequency using autonomous sondes. Prior to the experiment 810 

we performed a cross-comparison trial with all four sondes, after which we corrected all 811 

sensors for relative differences among them (i.e., “cross” = calibrated against each other). 812 

Chlorophyll-a sensors were additionally calibrated with samples taken during this trial that 813 

were analyzed for their chlorophyll-a content with high pressure liquid chromatography 814 

(HPLC). Oxygen sensors were calibrated against water-saturated air. (*fDOM-sensors 815 

measure emission at 365±5 and excitation at 480±40 nm. **For metabolism modelling mg/L 816 

output was used.) 817 

 818 
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2. Statistical results of GAM-models testing time series of water parameters and metabolic 820 

rates. Results are from individual models (one model per parameter and measurement 821 

period). For mean and CV of water parameters, N per model is 768 for t1-t3 and 480 for t4 822 

and t5. For metabolic rates, N per model is 8 23for t1-t3 and 5 for t4 and t5. Trends (p<0.1) 823 

indicated by bold font, significant results (p<0.05) indicated by underlined bold font. t-value 824 

= model estimate / model estimate SD, Rsq = R squared of model fit.  825 
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