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ITÔ-KRYLOV’S FORMULA FOR A FLOW OF MEASURES

THOMAS CAVALLAZZI

Abstract. We prove Itô’s formula for the flow of measures associated with an Itô process having a
bounded drift and a uniformly elliptic and bounded diffusion matrix, and for functions in an appropriate
Sobolev-type space. This formula is the almost analogue, in the measure-dependent case, of the Itô-Krylov
formula for functions in a Sobolev space on R

+
×R

d.

1. Introduction

We fix (Ω,F , (Ft)t≥0,P) a filtered probability space satisfying the usual conditions. Let T > 0 be a
finite horizon of time, d, d1 ∈ N∗ with d1 ≥ d, and (Bt)t≥0 a (Ft)t≥0-Brownian motion of dimension d1.
We consider the Itô process on Rd defined, for t ∈ [0, T ], by

Xt := X0 +

∫ t

0
bs ds +

∫ t

0
σs dBs, (1.1)

where X0 ∈ L2(Ω,F0;R
d), b : [0, T ] × Ω → Rd and σ : [0, T ] × Ω → Rd×d1 are progressively measurable

processes. In the following, we will denote by µt the law of Xt and by a the matrix σσ∗.

Let us fix a real-valued function u defined on the 2-Wasserstein space P2(R
d), i.e. the space of proba-

bility measures on Rd having a finite moment of order 2. In this paper, we are interested in Itô’s formula
for u and the flow of probability measures (µt)t∈[0,T ]. This formula describes the dynamics of t 7→ u(µt),
essentially by computing its derivative (see (1.2) below). It has a wide range of applications for example
in Mean-Field Games, McKean-Vlasov’s control problems, McKean-Vlasov Stochastic Differential Equa-
tions (SDEs) but also in the study of interacting particle systems and the propagation of chaos. These
applications will be detailed below.

Itô’s formula for a flow of measures naturally requires differential calculus on the space of measures
P2(R

d). We will use the linear (functional) derivative, which is a standard notion of differentiability for
functions of measures relying on the convexity of P2(R

d). The function u admits a linear derivative if there
exists a real-valued and continuous function δu

δm defined on P2(R
d)×Rd, at most of quadratic growth with

respect to the space variable uniformly on each compact set of P2(R
d), and such that for all µ, ν ∈ P2(R

d)

u(µ)− u(ν) =

∫ 1

0

∫

Rd

δu

δm
(tµ+ (1− t)ν)(v) d(µ − ν)(v) dt.

The standard Itô formula for a flow of measures can be found in [4] (see Theorem 6.1) or in Section 3
of [11] and Chapter 5 of [9] (see Theorem 5.99) under less restrictive assumptions. It states that for all
t ∈ [0, T ]

u(µt) = u(µ0) +

∫ t

0
E

(

∂v
δu

δm
(µs)(Xs) · bs

)

ds+
1

2

∫ t

0
E

(

∂2
v

δu

δm
(µs)(Xs) · as

)

ds, (1.2)

where x ·y denotes the usual scalar product of two vectors x, y ∈ Rd and A ·B := Tr(A∗B) the usual scalar
product of two matrices A,B ∈ Rd×d. The common point between these results is that the function u has

Date: November 07, 2022.
2000 Mathematics Subject Classification. 60H05,60H50.
Key words and phrases. Itô’s formula, flow of probability measures, linear functional derivative, Krylov’s estimate.

1



2 THOMAS CAVALLAZZI

to be C2 in some sense. More precisely, it is always assumed that for all µ ∈ P2(R
d), the linear derivative

δu
δm (µ)(·) belongs to C2(Rd) or equivalently that the L-derivative ∂µu(µ)(·) belongs to C1(Rd) (see below for
the definition of the L-derivative and its link with the linear derivative). This paper aims at proving Itô’s
formula (1.2) for functions u having a linear derivative δu

δm that is not C2 with respect to the space variable.

We now fix the assumptions on the Itô process (Xt)t∈[0,T ]. In this paper, we always assume that the
drift b and the diffusion matrix σ in (1.1) satisfy the following properties.

(A) There exists K > 0 such that almost surely

∀t ∈ [0, T ], |bt|+ |σt| ≤ K.

(B) There exists δ > 0 such that almost surely

∀t ∈ [0, T ], ∀λ ∈ Rd, atλ · λ ≥ δ|λ|2.

Assumptions (A) and (B) stem from Section 2.10 of [20]. Therein, Krylov deals with controlled diffu-
sion processes and needs to apply the standard Itô formula for the so-called pay-off function which is not
C2. That is why he proves an extension of the classical Itô formula for the Itô process (Xt)t∈[0,T ] satisfying

Assumptions (A) and (B), and for a function g : Rd → R belonging to an appropriate Sobolev space.
The crucial point is that (Xt)t satisfies the non-degeneracy Assumption (B). It ensures that the noise
does not degenerate and allows to produce a regularizing effect. Let us explain how. The non-degeneracy
assumption leads to Krylov’s inequality (see Theorem 4.1 taken from Section 2.3 of [20]). This inequality,
in turn, implies that for almost all t ∈ [0, T ], µt, the law of Xt, has a density p(t, ·) with respect to the

Lebesgue measure (see Proposition 4.3). Moreover, this density belongs to L(d+1)′([0, T ] × Rd), where
(d+ 1)′ denotes the conjugate exponent of d+ 1 defined in Section 2. The existence of densities together
with the integrability property permit to assume Sobolev regularity for the function g. More precisely,
Itô-Krylov’s formula is established under the assumption that g is continuous on Rd and that ∇g belongs

to the Sobolev space W 1,k
loc (R

d), for k ≥ d+1, i.e. that ∇g and ∇2g are in Lk
loc(R

d) (see Section 2.10 of [20]).

Our goal here is to take advantage of the regularizing effect of the noise, stemming from the existence
of the densities p(t, ·) and their integrability property, to establish an analogue of Itô-Krylov’s formula in
the measure-dependent case. Looking at Itô’s formula for a flow of measures (1.2), the regularizing effect
comes from the presence of expectations which average, with respect to the space variable, the derivatives
of δu

δm on all the trajectories of (Xt)t. Indeed, the regularization by noise will only appear through the
space variable of the linear derivative but not through its measure variable. This is not surprising since
the space of measures P2(R

d) is somehow infinite dimensional while the noise is of finite dimension. Thus,
we cannot expect a true regularization in the measure variable of δu

δm . The fact that a finite dimensional

noise cannot have a complete regularizing effect in the space P2(R
d) is explained in [23] in the context of

McKean-Vlasov SDEs.

In order to prove Itô’s formula (1.2) for u, it is clear that u needs to admit a linear derivative with at
least distributional derivatives of order 1 and 2 with respect to the space variable in Lk(Rd) for some k, as
for the standard Itô-Krylov formula. Let us describe more precisely our assumptions on u. As said before,
for almost all t ∈ [0, T ], the law µt has a density p(t, ·) such that p belongs to L(d+1)′([0, T ]×Rd). Denoting
by P(Rd) the space of measures µ ∈ P2(R

d) having a density with respect to the Lebesgue measure in

L(d+1)′(Rd), our assumptions on the derivatives of δu
δm (µ)(·) are only made for measures µ belonging to

P(Rd). This is natural since for almost all t ∈ [0, T ], µt belongs to P(Rd), and the derivatives of δu
δm

are evaluated along the flow (µt)t∈[0,T ] and integrated in time. Moreover, because of the integrability

property of the densities p(t, ·), the derivatives of δu
δm (µ)(·) do not need to be defined and continuous on

the whole space Rd because they are somehow integrated against the densities p(t, ·) (see (1.2)). We say
"somehow" because it is not completely the case since b and a are random. But as they are bounded,
we can omit them in some sense. More precisely, the integrability property of the densities leads us to



ITÔ-KRYLOV’S FORMULA FOR A FLOW OF MEASURES 3

assume that u admits a linear derivative such that for all µ ∈ P(Rd), ∂v
δu
δm (µ)(·) belongs to the Sobolev

space W 1,k(Rd) defined in Section 2, with k ≥ d + 1. This is exactly the same condition as in the stan-

dard Itô-Krylov formula, except that we replace W 1,k
loc (R

d) by W 1,k(Rd). This is essentially explained by
the expectations in Itô’s formula (1.2). Indeed, the process (Xt)t cannot be localized by stopping times.
Moreover, we assume that the map µ ∈ P(Rd) 7→ ∂v

δu
δm (µ)(·) ∈ W 1,k(Rd) is continuous for a distance on

P(Rd) satisfying the assumptions of Definition 2.3. This continuity assumption can be interpreted as the
fact that the noise has no regularizing effect in the measure variable of the linear derivative, as explained
above. The precise assumptions of our Itô-Krylov’s formula are given in Definition 3.1 and Theorem 3.3.
Eventually, we extend in Theorem 3.12 our formula to functions depending also on the time and space
variables satisfying the assumptions of Definition 3.10.

We now focus on some applications of Itô’s formula for a flow of measures. This one has been devel-
oped with the increasing interest for Mean-Field Games and McKean-Vlasov SDEs over the last decade.
Mean-Field Games were initiated independently by Caines, Huang and Malhame in [5] and by Lasry and
Lions in [21]. The notion of Master equations has been introduced by Lions in his lectures at Collège de
France [22] in order to describe Mean-Field Games. Master equations are Partial Differential Equations
(PDEs) on the space of probability measures and can be derived with the help of Itô’s formula. We refer to
Lions’ lectures [22], the notes written by Cardialaguet [6], and the books of Carmona and Delarue [9, 10]
for more details on Mean-Field Games and Master equations. We also mention Bensoussan, Frehse and
Yam [1] and Carmona, Delarue [8] where Master equations are derived, with the help of Itô’s formula in
[8]. The question of existence and uniqueness of classical solutions to Master equations was addressed by
Cardaliaguet, Delarue, Lasry and Lions in [7] and by Chassagneux, Crisan and Delarue in [11]. From a
different point of view, Mou and Zhang deal with the well-posedness of Master equations in some weaker
senses in [24].

Moreover, Itô’s formula appears to be the natural way to connect a McKean-Vlasov SDE (more precisely
the associated semigroup (Pt)t acting on the space of functions of measures) to a PDE on the space of
probability measures (the Master equation) in the same manner as for classical SDEs. It turns out to be
a crucial tool to study the stochastic flow generated by a McKean-Vlasov SDE, as explained in Chapter
5 of [9]. The link between McKean-Vlasov SDEs and PDEs on the space of measures is at the heart of
the work of Buckdahn, Li, Peng and Rainer [4] where the authors prove that the PDE admits a unique
classical solution expressed with the flow of measures associated with the McKean-Vlasov SDE. Moreover,
in the parallel work [11], Chassagneux, Crisan and Delarue adopt a similar approach and study the flow
generated by a forward-backward stochastic system of McKean-Vlasov type under weaker assumptions
on the coefficients of the equation. Both works are motivated by Mean-Field Games, and Itô’s formula
plays a key role. In [15], Crisan and McMurray prove that the Master equation admits a unique classical
solution for some irregular terminal condition using Malliavin calculus. They point out a smoothing effect
concerning the differentiability of the solution with respect to the measure even though there is no noise
in the measure direction. Furthermore, the problem of propagation of chaos for the interacting particles
system associated with the McKean-Vlasov SDE can also be addressed with the help of the associated
PDE on the space of measures (see Chapter 5 of [9]). It allows to obtain quantitative weak propagation of
chaos estimates between the law of the solution to the McKean-Vlasov SDE and the empirical measure of
the associated particle system. This approach was adopted for example by Chaudru de Raynal and Frikha
in [14, 13], by Delarue and Tse in [16] and by Chassagneux, Szpruch and Tse in [12]. Let us also mention
that the Master equation satisfied by the semigroup has been recently used by Jourdain and Tse in [19] to
study the mean-field fluctuation (CLT) of an interacting particle system. Finally, Itô’s formula for a flow of
measures is also important to deal with McKean-Vlasov control problems because it allows to derive a dy-
namic programming principle describing the value function of the problem as presented in Chapter 6 of [9].

Recently, Itô’s formula has been extended to flows of measures generated by càdlàg semi-martingales. It
was achieved independently by Guo, Pham and Wei in [18], who studied McKean-Vlasov control problems
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with jumps and by Talbi, Touzi and Zhang in [26] who worked on mean-field optimal stopping problems.
In both works, dynamic programming principles are established thanks to Itô’s formula for a flow of mea-
sures. Finally, we also mention that several Itô-Wentzell-Lions formulae for functional random fields of
Itô type depending on measure flows have been established by dos Reis and Platonov in [17].

Let us explain our choice to work with the linear derivative. Indeed, the L-derivative, which was
introduced by Lions in his lectures at Collège de France [22], is also well-adapted to establish Itô’s formula
for a flow of measures. We say that u is L-differentiable if its lifting defined by

ũ : X ∈ L2(Ω;Rd) 7→ u(L(X)) ∈ R,

where L(X) denotes the law of X, is Fréchet differentiable on L2(Ω;Rd). Moreover, there exists a Rd-
valued function ∂µu defined on P2(R

d)×Rd such that the gradient of ũ at X ∈ L2(Ω;Rd) is given by the
random variable ∂µu(L(X))(X). The function ∂µu is called the L-derivative of u. The advantage of the
L-derivative is that it permits to use standard tools of differential calculus on Banach spaces. Of course,
there is a link between the L-derivative and the linear derivative of u. Indeed, in general, the L-derivative
∂µu(µ)(·) is equal to the gradient of the linear derivative ∂v

δu
δm (µ)(·) (see Propositions 5.48 and 5.51 in

[9] for the precise assumptions). Under our assumptions presented above, Sobolev embedding theorem
ensures that for all µ ∈ P(Rd), δu

δm (µ)(·) belongs to C1(Rd;R), and that ∂v
δu
δm (µ)(·) is continuous and

bounded on Rd. We would be tempted to deduce that u admits a L-derivative given, as recalled above, by
∂v

δu
δm (µ)(·). However, this term is assumed to exist only for measures µ ∈ P(Rd) and not for µ ∈ P2(R

d).

This is the case in Example 3.6, where this term is not well-defined for any µ ∈ P2(R
d) (see Remark 3.7).

It seems therefore more restrictive to work with the L-derivative and thus justifies our choice to work with
the linear derivative.

The paper is organized as follows. Section 2 gathers some notations and definitions used throughout the
paper. In Section 3, more precisely in Definitions 3.1 and 3.10, we define the spaces of functions for which
we will establish Itô-Krylov’s formula. These formulas are given in Theorem 3.3 for functions defined on
P2(R

d) and in Theorem 3.12 for functions depending also on the time and space variables. Moreover, we
give examples of functions for which our formulas hold and we discuss our assumptions through them.
The proofs of these examples are postponed to Appendix A for ease of reading. In Section 4, we give some
preliminary results. We start with Krylov’s inequality and its consequences on the existence of densities
for the flow of measures (µt)t∈[0,T ] in Proposition 4.3. Then we recall some classical results on convolution
and regularization. Finally, Sections 5 and 6 are respectively dedicated to the proofs Theorems 3.3 and 3.12.

2. Notations and definitions

2.1. General notations. Let us introduce some notations used several times in the article.

- BR is the open ball centered at 0 and of radius R in Rd for the euclidean norm.
- p′ is the conjugate exponent of p ∈ [1,+∞], defined by 1

p +
1
p′ = 1.

- Lp
loc(R

d) is the space of functions f such that for all R > 0, f ∈ Lp(BR).

- Wm,k(O) is the Sobolev space of functions u ∈ Lk(O) admitting distributional derivatives of order
between 1 and m in Lk(O), where O is open in Rd. It is equipped with the norm

‖u‖Wm,k(O) =
∑

α∈Nd, |α|≤m

‖∂αu‖Lk(O).

- Wm,k
loc (Rd) is the space of functions u such that for all R > 0, u belongs to Wm,k(BR).

- (ρn)n is a mollifying sequence on Rd, that is a sequence of non-negative C∞ functions, such that
for all n,

∫

Rd ρn(x) dx = 1 and ρn is equal to 0 outside B1/n. We assume that ρn(x) = ρn(−x) for
all x.

- ∗ denotes the convolution of two functions, when it is well-defined, or two probability measures.
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- B(E) is the Borel σ-algebra where E is a metric space.
- A∗ denotes the transpose of the matrix A ∈ Rd×d.
- A ·B denotes the usual scalar product of two matrices A,B ∈ Rd×d given by A ·B := Tr(A∗B).
- P(Rd) is defined in Definition 2.3.
- W1(R

d) is defined in Definition 3.1.
- W2(R

d) is defined in Definition 3.10.

2.2. Spaces of measures and linear derivative. The set P(Rd) is the space of probability measures
on Rd equipped with the topology of weak convergence. The Wasserstein space P2(R

d) denotes the set
of measures µ ∈ P(Rd) such that

∫

Rd |x|
2 dµ(x) < +∞, equipped with the 2-Wasserstein distance W2

defined for µ, ν ∈ P2(R
d) by

W2(µ, ν) = inf
π∈Π(µ,ν)

(
∫

Rd×Rd

|x− y|2 dπ(x, y)

)1/2

,

where Π(µ, ν) is the subset of P2(R
d ×Rd) with marginal distributions µ and ν. We will work with the

standard notion of linear derivative for functions of measures.

Definition 2.1 (Linear derivative). A function u : P2(R
d) → R is said to have a linear derivative if there

exists a continuous function (µ, v) ∈ P2(R
d)×Rd 7→ δu

δm (µ)(v) ∈ R, satisfying the following properties.

(1) For all compact K ⊂ P2(R
d) sup

v∈Rd

sup
µ∈K

{

(1 + |v|2)−1

∣

∣

∣

∣

δu

δm
(µ)(v)

∣

∣

∣

∣

}

< +∞.

(2) For all µ, ν ∈ P2(R
d), u(µ)− u(ν) =

∫ 1

0

∫

Rd

δu

δm
(tµ+ (1− t)ν)(v) d(µ − ν)(v) dt.

Remark 2.2. Instead of the second point of the previous definition, it is equivalent to assume that for
all µ, ν ∈ P2(R

d), t ∈ [0, 1] 7→ u(tµ+ (1− t)ν) is of class C1 with

∀t ∈ [0, 1],
d

dt
u(tµ + (1 − t)ν) =

∫

Rd

δu

δm
(tµ+ (1− t)ν)(v) d(µ − ν)(v).

One can find more details in Chapter 5 of [9], in particular the connection with the L-derivative.

Let us fix (ρn)n a mollifying sequence on Rd, that is a sequence of non-negative C∞ functions, such that
for all n,

∫

Rd ρn(x) dx = 1 and ρn is equal to 0 outside B1/n. We assume that ρn(x) = ρn(−x) for all x.

Definition 2.3. Let us define P(Rd) as the space of measures µ ∈ P2(R
d) which admit a density dµ

dx with

respect to the Lebesgue measure belonging to L(d+1)′(Rd). We endow P(Rd) with a general distance dP

satisfying the following properties.

(H1) For any n ≥ 1, µ ∈ (P2(R
d),W2) 7→ µ ∗ ρn ∈ (P(Rd), dP ) is continuous.

(H2) For any µ ∈ P(Rd), µ ∗ ρn −→
n→+∞

µ for dP .

Note that for all n ≥ 1 and for all µ ∈ P2(R
d), µ ∗ ρn ∈ P(Rd). Indeed, its density is given by

x 7→ ρn∗µ(x) =
∫

Rd ρn(x−y) dµ(y). Jensen’s inequality ensures that it belongs to L(d+1)′(Rd). Considering

the space (P(Rd), dP ) comes in a natural way with Assumptions (A) and (B) on the Itô process X. As

explained in the introduction, it implies the existence of a density p ∈ L1([0, T ]×Rd;R+)∩L(d+1)′([0, T ]×
Rd;R+) such that for almost all t ∈ [0, T ], the law of Xt is equal to p(t, ·) dx and belongs to P(Rd) (see
Proposition 4.3). Let us give two examples for the distance dP .

Example 2.4. The Wasserstein distance W2 clearly satisfies Assumptions (H1) and (H2) in Definition
2.3. Another family of examples is given by the distance dk defined, for k ∈ [d+1,+∞[, µ, ν ∈ P(Rd), by

dk(µ, ν) =

∥

∥

∥

∥

dµ

dx
−

dν

dx

∥

∥

∥

∥

Lk′ (Rd)

.
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Note that dk is well-defined since for any µ ∈ P(Rd), dµ
dx ∈ L1(Rd) ∩ L(d+1)′(Rd) which is included in

Lk′(Rd) by interpolation. The proof is postponed to the Appendix (Section A.1).

3. Itô-Krylov’s formula, ah-hoc spaces of functions and examples

Let us introduce now the Sobolev-type space of functions on P2(R
d) for which we will prove Itô’s

formula for a flow of measures.

Definition 3.1. Let W1(R
d) be the space of continuous functions u : P2(R

d) → R having a linear
derivative δu

δm such that for all µ ∈ P(Rd), the function δu
δm (µ)(·) admits distributional derivatives of

order 1 and 2 in Lk(Rd), for a certain k ≥ d+ 1, and satisfies the following properties.

(1) The map µ ∈ (P(Rd), dP ) 7→ ∂v
δu
δm (µ)(·) ∈

(

W 1,k(Rd)
)d

is continuous for a certain distance dP

satisfying (H1) and (H2).
(2) There exists α ∈ N such that k ≥ (1 + α)d and for all compact K ⊂ P2(R

d) and for any
µ ∈ K ∩ P(Rd)

∥

∥

∥

∥

∂v
δu

δm
(µ)(·)

∥

∥

∥

∥

Lk(Rd)

+

∥

∥

∥

∥

∂2
v

δu

δm
(µ)(·)

∥

∥

∥

∥

Lk(Rd)

≤ CK

(

1 +

∥

∥

∥

∥

dµ

dx

∥

∥

∥

∥

α

Lk′(Rd)

)

.

Remark 3.2. -The space W1(R
d) contains the functions which satisfy Assumption (1) in Definition 3.1

with (P2(R
d),W2) instead of (P(Rd), dP ). Indeed, the second point is clearly satisfied with α = 0 since

K is compact.

-Assumption (2) in Definition 3.1 allows to control the growth of
∥

∥∂v
δu
δm (µ)(·)

∥

∥

W 1,k(Rd)
with respect to

the measure µ. It allows us to take advantage of the continuity of the flow in P2(R
d) (because the control

is assumed on compact subsets of P2(R
d)), but also of its integrability properties proved in Lemmas 4.5

and 4.6. The form of the inequality suggests the integration of functions in Lk(Rd) with respect to µ, at
least when the function u is linear in µ.

-Sobolev embedding theorem (see Corollary 9.14 in [3]) ensures that for all µ ∈ P(Rd), δu
δm (µ)(·) belongs

to C1(Rd;R) and that ∂v
δu
δm (µ)(·) is bounded and γ-Hölder, where γ := 1− d

k . Note that we do not need

that δu
δm (µ)(·) ∈ W 2,k(Rd) since there is no integrability assumption made on the linear derivative.

Having this definition at hand, we can now state Itô-Krylov’s formula for functions in W1(R
d).

Theorem 3.3 (Itô-Krylov’s formula). Let u be a function in W1(R
d), which was defined in Definition

3.1. We have for all t ∈ [0, T ]

u(µt) = u(µ0) +

∫ t

0
E

(

∂v
δu

δm
(µs)(Xs) · bs

)

ds+
1

2

∫ t

0
E

(

∂2
v

δu

δm
(µs)(Xs) · as

)

ds, (3.1)

where ∂2
v
δu
δm (µs)(Xs) · as := Tr

(

∂2
v
δu
δm (µs)(Xs)as

)

is the usual scalar product on Rd×d.

Remark 3.4. Notice that a function u ∈ W1(R
d) is assumed to have a linear derivative on the whole

space P2(R
d). This seems a bit strong at first sight in comparison with the assumptions on its spatial

derivatives that are only made for measures µ ∈ P(Rd). Indeed, we could consider working with a linear
derivative defined only on the space of densities, as done for example in [1]. However, in order to establish
Itô-Krylov’s formula by regularization, the function u needs to be continuous on the whole space P2(R

d)
and not only on P(Rd). Indeed, the flow s ∈ [0, T ] 7→ µs ∈ P2(R

d) is continuous but µt does not
necessarily belong to P(Rd) for all t ∈ [0, T ]. This is proved only for almost all t. Thus, as the function u
has to be continuous on P2(R

d), we have chosen to assume the existence of a linear derivative on P2(R
d)

even though we could have only required it on the space of densities.
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Now, we focus on examples of functions belonging to W1(R
d). Let us start with the linear case.

Example 3.5 (Linear functional). Fix g ∈ C0(Rd;R) admitting a distributional derivative such that
∇g ∈ (W 1,k(Rd))d for some k ≥ d+ 1. Then, the function

u :







P2(R
d) → R

µ 7→

∫

Rd

g(x) dµ(x),

belongs to the space W1(R
d).

Indeed, Sobolev embedding theorem (see Corollary 9.14 in [3]) implies that ∇g ∈ L∞(Rd) since k ≥ d+1.
Thus g is at most of linear growth so that for all µ ∈ P2(R

d), δu
δm (µ) = g, which clearly satisfies Assump-

tions (1) and (2) (with α = 0) in Definition 3.1.

Let us now focus on the multi-linear case.

Example 3.6 (Polynomials on the Wasserstein space). Fix N ≥ 2 and g ∈ C0((Rd)N ;R) such that

- there exists C > 0 such that for all x = (x1, . . . , xN ) ∈ (Rd)N , |g(x)| ≤ C(1+ |x1|
2 + · · ·+ |xN |2),

- the distributional derivative ∇g belongs to (W 1,k((Rd)N ))Nd for a certain k ∈ [Nd,+∞[.

Then, the function

u :







P2(R
d) → R

µ 7→

∫

(Rd)N
g(x1, . . . , xN ) dµ(x1) . . . dµ(xN ),

belongs to the space W1(R
d) for dP = dk.

The proof is postponed to the Appendix (Section A.2).

Remark 3.7. - In Definition 3.1, the distributional derivatives of the linear derivative δu
δm (µ) are not

necessarily integrable functions for all µ ∈ P2(R
d). Of course, in Example 3.5, it is the case for all

µ ∈ P2(R
d) as the linear derivative does not depend on the measure µ. However, in Example 3.6 for

N = 2, the linear derivative is given by

δu

δm
(µ)(v) =

∫

Rd

g(v, y) dµ(y) +

∫

Rd

g(y, v) dµ(y). (3.2)

Formally, the derivative with respect to v of the first integral in (3.2) is
∫

Rd

∂vg(v, y) dµ(y).

This term is not well-defined for general measures µ ∈ P2(R
d) because we have only assumed that

∇g ∈ (W 1,k(R2d))2d with k ≥ 2d. Indeed, for k = 2d, we just know by Sobolev embedding theorem
that ∇g belongs to (Lr(R2d)2d with r ∈ [2d,+∞[ (see Corollary 9.11 in [3]). As we will see in the proof
(Section A.2 of the Appendix), it is well-defined as an integrable function of v if we restrict to measures
µ ∈ P(Rd). This also justifies why we have chosen to work with the linear derivative instead of the L-
derivative. Indeed, the L-derivative of u would be equal to the gradient of the linear derivative ∂v

δu
δm (µ)(·),

which is not well-defined for all µ ∈ P2(R
d). Thus, the function u does not need to be L-differentiable in

the usual sense in our setting.

- Our assumptions on the derivatives of δu
δm in Definition 3.1 deal with P(Rd) instead of the whole space

P2(R
d) essentially because in Itô’s formula (3.1), these derivatives only appear under integrals along the

flow (µs)s∈[0,T ], which belongs to P(Rd) for almost all s ∈ [0, T ]. However, we assume that u is continuous

on P2(R
d) since the flow s ∈ [0, T ] 7→ µs ∈ P2(R

d) is continuous but µt does not necessarily belong to
P(Rd) for all t ∈ [0, T ] .
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The next example focuses on the particular case of convolution which has to be treated differently than
in Example 3.6 with N = 2 because of the structure of the convolution which mixes the two variables.

Example 3.8. Let f ∈ C0(Rd;R) be a function such that the distributional derivative ∇f belongs to
(W 1,k+1(Rd))d, for a certain k ≥ d. Then, the function

u :







P2(R
d) → R

µ 7→

∫

Rd

f ∗ µdµ,

belongs to W1(R
d) for dP = W2.

Here, the particular structure of convolution enables us to work on the whole space P2(R
d) instead of

P(Rd), as explained in the first point of Remark 3.2. The proof is postponed to the Appendix (Section
A.3).

Finally, we give a non-linear example of functions belonging to W1(R
d).

Example 3.9. Let F ∈ C1(R;R) and g ∈ C0(Rd;R) be such that the distributional derivative ∇g belongs
to (W 1,k(Rd))d for some k ≥ d+ 1. Then

u :

{

P2(R
d) → R

µ 7→ F
(∫

Rd g dµ
)

belongs to W1(R
d) for dP = W2.

The proof is again postponed in the Appendix (Section A.4).

We now deal with the extension of Itô’s formula for functions depending also on the time and space
variables. First, we define the space of functions generalizing the space W1(R

d).

Definition 3.10. Let W2(R
d) be the set of continuous functions u : [0, T ]×Rd ×P2(R

d) → R satisfying
the following properties for a certain distance dP satisfying (H1) and (H2).

(1) For all (x, µ) ∈ Rd × P2(R
d), u(·, x, µ) ∈ C1 and ∂tu is continuous on [0, T ]×Rd × P2(R

d).

(2) There exists k1 ≥ d+ 1 such that for all (t, µ) ∈ [0, T ]×P(Rd), u(t, ·, µ) ∈ W 2,k1
loc (Rd) and for all

t ∈ [0, T ] and R > 0

µ ∈ (P(Rd), dP ) 7→ ∂xu(t, ·, µ) ∈
(

W 1,k1(BR)
)d

,

is continuous and ∂xu and ∂2
xu are measurable with respect to (t, x, µ) ∈ [0, T ]×Rd × P(Rd).

(3) For all (t, x) ∈ [0, T ]×Rd, u(t, x, ·) admits a linear derivative δu
δm (t, x, ·)(·) which is continuous on

[0, T ] ×Rd × P2(R
d)×Rd, and such that for all K ⊂ Rd × P2(R

d) compact and t ∈ [0, T ], there
exists C > 0 such that for all v ∈ Rd

sup
(x,µ)∈K

∣

∣

∣

∣

δu

δm
(t, x, µ)(v)

∣

∣

∣

∣

dx ≤ C(1 + |v|2).

(4) There exists k2 ≥ 2d such that for all (t, µ) ∈ [0, T ] × P(Rd), δu
δm (t, ·, µ)(·) admits distributional

derivatives with respect to v of order 1 and 2 such that for all t and R > 0

µ ∈ (P(Rd), dP ) 7→

(

∂v
δu

δm
(t, ·, µ)(·) , ∂2

v

δu

δm
(t, ·, µ)(·)

)

∈ (Lk2(BR ×Rd))d × (Lk2(BR ×Rd))d×d,

is continuous and measurable with respect to (t, x, µ, v) ∈ [0, T ]×Rd × P(Rd)×Rd.



ITÔ-KRYLOV’S FORMULA FOR A FLOW OF MEASURES 9

(5) There exists α1, α2 ∈ N with k1 ≥ (2α1 + 1)d, k2 ≥ (α2 + 2)d such that for all K ⊂ P2(R
d)

compact and R > 0, there exists CK,R > 0 such that for all µ ∈ K ∩ P(Rd)






















sup
t≤T

{

‖∂xu(t, ·, µ)‖Lk1 (BR) +
∥

∥∂2
xu(t, ·, µ)

∥

∥

Lk1(BR)

}

≤ CK,R

(

1 +

∥

∥

∥

∥

dµ

dx

∥

∥

∥

∥

α1

Lk′
1(Rd)

)

sup
t≤T

{

∥

∥

∥

∥

∂v
δu

δm
(t, ·, µ)(·)

∥

∥

∥

∥

Lk2 (BR×Rd)

+

∥

∥

∥

∥

∂2
v

δu

δm
(t, ·, µ)(·)

∥

∥

∥

∥

Lk2 (BR×Rd)

}

≤ CK,R

(

1 +

∥

∥

∥

∥

dµ

dx

∥

∥

∥

∥

α2

Lk′
2 (Rd)

)

.

Remark 3.11. - The space W2(R
d) contains the functions satisfying the four first assumptions of Defini-

tion 3.10 with (P(Rd), dP ) replaced by (P2(R
d),W2) and also assuming that the functions in Assumptions

(2) and (4) are continuous with respect to (t, µ) ∈ [0, T ]×P2(R
d). Indeed, Assumption (5) is automatically

satisfied with α1 = α2 = 0 because K is compact.

- The bound in Assumption (3) is quite natural. If the supremum in this bound was taken only over a
compact set of P2(R

d), it would be the definition of the linear derivative. But we also need to control
δu
δm locally uniformly in the space variable x ∈ Rd because of our regularization procedure through a
convolution both in the space and measure variables. Assumptions (2), (4) and (5) are generalizations of
those in Definition 3.1 adapted to the presence of the space and time variables. In Assumption (5), the
condition on k2 and α2 changes a bit compared to the analogous assumption in Definition 3.1, essentially
because it deals with functions on R2d instead of Rd. Let us mention that Assumption (5) in Definition
3.10 can be replaced by the integrability properties (6.1) established in Step 1 of the proof of the next
theorem (see Section 6).

The next theorem is the natural extension of the formula for functions in W2(R
d). Let (ηs)s∈[0,T ] and

(γs)s∈[0,T ] be two progressively measurable processes, taking values respectively in Rd and Rd×d1 and
satisfying Assumptions (A) and (B). We set, for all t ≤ T

ξt = ξ0 +

∫ t

0
ηs ds+

∫ t

0
γs dBs,

where ξ0 is a F0-measurable random variable with values in Rd.

Theorem 3.12 (Extension of Itô-Krylov’s formula). Let u be a function in W2(R
d), which was defined

in Definition 3.10. We have almost surely, for all t ∈ [0, T ]

u(t, ξt, µt) = u(0, ξ0, µ0) +

∫ t

0
(∂tu(s, ξs, µs) + ∂xu(s, ξs, µs) · ηs) ds+

1

2

∫ t

0
∂2
xu(s, ξs, µs) · γsγ

∗
s ds

+

∫ t

0
Ẽ

(

∂v
δu

δm
(s, ξs, µs)(X̃s) · b̃s

)

ds+
1

2

∫ t

0
Ẽ

(

∂2
v

δu

δm
(s, ξs, µs)(X̃s) · ãs

)

ds (3.3)

+

∫ t

0
∂xu(s, ξs, µs) · (γs dBs),

where (Ω̃, F̃ , P̃) is a copy of (Ω,F ,P) and (X̃, b̃, σ̃) is an independent copy of (X, b, σ).

Let us now give examples of functions belonging to the space W2(R
d).

Example 3.13. Let g ∈ C0(R2d;R) be a function such that its distributional derivative ∇g belongs to
(W 1,k(R2d))2d for some k ≥ 5d. Then, the function

u :







Rd × P2(R
d) → R

(x, µ) 7→

∫

Rd

g(x, y) dµ(y)

belongs to W2(R
d) for dP = dk.

The proof is postponed to the Appendix (Section A.5).
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Example 3.14. Let F ∈ C1(Rd ×R;R) be a function such that for all R > 0

y ∈ R 7→ ∇F (·, y) ∈ (W 1,k1(BR))
d+1,

is well-defined and continuous for some k1 ≥ d + 1. Let g ∈ C0(Rd;R) be such that the distributional
derivative ∇g belongs to (W 1,k2(Rd))d for some k2 ≥ 2d. Then

u :

{

Rd × P2(R
d) → R

(x, µ) 7→ F
(

x,
∫

Rd g dµ
)

belongs to W2(R
d) for dP = W2.

The proof is again postponed to the Appendix (Section A.6).

Remark 3.15. In the abstract, we said that our Itô-Krylov’s formula for a flow of measure was the al-
most analogue of the standard Itô-Krylov formula. We used the word "almost" because Assumption (1)
in Definition 3.10 is not completely satisfactory. Indeed, we do not assume Sobolev regularity with respect
to time, as it is the case in Itô-Krylov’s formula for functions defined on [0, T ]×Rd. Of course if u is of the
form u(t, µ) =

∫

Rd g(t, x) dµ(x) with g ∈ C0([0, T ]×Rd;R) at most of quadratic growth in x uniformly in

t, and such that the distributional derivatives ∂tg, ∂xg and ∂2
xg are in Lk([0, T ]×Rd) for some k ≥ d+ 1,

we will succeed in proving Itô-Krylov’s formula for u.

Let us give the idea of the proof. We regularize u by setting un(t, µ) :=
∫

Rd g ∗ ρn(t, x) dµ(x), where

(ρn)n is a mollifying sequence on R×Rd. The function un clearly satisfies the assumptions of the standard
Itô formula for a flow of measures (see Proposition 5.102 in [9]). It ensures that for all t ∈ [0, T ]

un(t, µt) = un(0, µ0) +

∫ t

0
E(∂tg ∗ ρn(s,Xs)) ds +

∫ t

0
E (∂xg ∗ ρn(s,Xs) · bs) ds

+
1

2

∫ t

0
E
(

∂2
xg ∗ ρn(s,Xs) · as

)

ds. (3.4)

As g is continuous, (g ∗ ρn)n converges to g uniformly on compact sets. It follows from the growth
assumption on g that un converges point-wise to u. Using that (∂tg ∗ ρn)n converges in Lk([0, T ]×Rd) to
∂tg as n → +∞, we deduce with Krylov’s inequality in Corollary 4.2 that for all t ∈ [0, T ]

∫ t

0
E(∂tg ∗ ρn(s,Xs)) ds →

∫ t

0
E(∂tg(s,Xs)) ds.

The same holds with the two other integrals in (3.4). Taking the limit n → +∞ in (3.4) yields for all
t ∈ [0, T ]

u(t, µt) = u(0, µ0) +

∫ t

0
E(∂tg(s,Xs)) ds +

∫ t

0
E (∂xg(s,Xs) · bs) ds

+
1

2

∫ t

0
E
(

∂2
xg(s,Xs) · as

)

ds.

In the general case, when the dependence in µ of the function u is not explicit, we cannot apply Krylov’s
inequality. Indeed, consider a function u : [0, T ] × P2(R

d) → R such that, for all µ ∈ P2(R
d), u(·, µ) ∈

W 1,k([0, T ]). In Itô’s formula for u, as in the classical formula, there should be the term
∫ t
0 ∂tu(s, µs) ds.

The assumption does not imply that this term is well-defined. One possible hypothesis is to assume that
for all compact K ⊂ P2(R

d), supµ∈K |∂tu(·, µ)| ∈ L1([0, T ]). Following our strategy to prove Itô-Krylov’s

formula, we would consider the mollified version of u defined by un(t, µ) := u(·, µ ∗ ρ1n) ∗ ρ2n(t), where
(ρ1n)n and (ρ2n)n are mollifying sequences on Rd and on R respectively. Assume that we have proved Itô’s
formula for un. In order to take the limit and deduce Itô’s formula for u, we would like to show that

∫ T

0
|∂tu(·, µs ∗ ρ

1
n) ∗ ρ

2
n(s)− ∂tu(s, µs)| ds → 0.
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However, this convergence is not obvious in the general case since the presence of µs prevents us from
using the classical results on convolution and we cannot apply Krylov’s inequality if the dependence in
the measure argument is not linear.

4. Preliminaries

4.1. Krylov’s inequality and densities. The key element to prove the theorem is Krylov’s inequality.
We recall it in the next theorem taken from [20] (see Theorem 4 in Section 2.3).

Theorem 4.1 (Krylov’s inequality). Let b : R+×Ω → Rd and σ : R+×Ω → Rd×d1 be two progressively
measurable functions. We assume that p, d1 ≥ d. Moreover, assume that there exists K > 0 and δ > 0
such that

(A1) ∀(t, ω) ∈ R+ × Ω, |bt(ω)|+ |σt(ω)| ≤ K
(A2) ∀(t, ω) ∈ R+ × Ω, ∀λ ∈ Rd, at(ω)λ · λ ≥ δ|λ|2, where a = σσ∗.

For X0 a Rd-valued F0-measurable random variable, we define the Itô process X = (Xt)t, for all t ∈ [0, T ],
by

Xt = X0 +

∫ t

0
bs ds+

∫ t

0
σs dBs.

Let λ > 0 be a positive constant. Then, there exists a constant N = N(d, p, λ, δ,K) such that for all
measurable function f : R+ ×Rd → R

E

∫ ∞

0
e−λt|f(t,Xt)| dt ≤ N‖f‖Lp+1(R+×Rd).

We will use the following corollary for a finite horizon of time.

Corollary 4.2. If b and σ satisfy Assumptions (A) and (B), there exists N1 = N1(d, p, δ,K, T ) such that
for all measurable function f : [0, T ]×Rd → R, we have

E

∫ T

0
|f(s,Xs)| ds ≤ N1‖f‖Lp+1([0,T ]×Rd).

Proof. We set bt = bT and σt = σT for t > T to guarantee that Assumptions (A1) and (A2) are

satisfied, without changing the process X on [0, T ]. It remains to apply Krylov’s inequality to f̃(t, x) :=
f(t, x)1t∈[0,T ], which gives the existence of N1 = N1(d, p, δ,K) such that

e−TE

∫ T

0
|f(s,Xs)| ds ≤ N1‖f‖Lp+1([0,T ]×Rd).

�

Krylov’s inequality also provides the existence of a density with respect to the Lebesgue measure for
µs, for almost all s ∈ [0, T ].

Proposition 4.3. Under Assumptions (A) and (B) on the coefficients b and σ, there exists a function

p ∈ L1([0, T ]×Rd;R+) ∩ L(d+1)′([0, T ] ×Rd;R+) such that for all f : [0, T ] ×Rd → R+ measurable
∫ T

0
Ef(s,Xs) ds =

∫

[0,T ]×Rd

f(s, x)p(s, x) dx ds. (4.1)

If τ is a stopping time such that (Xt)t∈[0,T ] belongs to BR almost surely on the set {τ > 0}, then

E

∫ τ∧T

0
f(s,Xs) ds ≤

∫

[0,T ]×BR

f(s, x)p(s, x) dx ds. (4.2)

Moreover, for almost all s ∈ [0, T ], µs = L(Xs) is equal to p(s, ·) dx.

We give the proof for the sake of completeness.
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Proof. We denote by µ the push-forward measure of λ⊗P, where λ is the Lebesgue measure on [0, T ], by
the measurable map (t, ω) ∈ [0, T ]×Ω 7→ (t,Xt(ω)) ∈ [0, T ]×Rd defined, for any A ∈ B([0, T ])⊗B(Rd),
by

µ(A) =

∫ T

0
E1A(s,Xs) ds.

Note that µ is a finite measure on [0, T ]×Rd. The monotone convergence theorem and Krylov’s inequality
ensure that for all f : [0, T ]×Rd → R+ measurable

∫ T

0
Ef(s,Xs) ds =

∫

[0,T ]×Rd

f(s, x) dµ(s, x) ≤ C‖f‖Lp+1([0,T ]×Rd).

Taking f = 1A, for A ∈ B([0, T ]) ⊗ B(Rd) with Lebesgue measure 0, we deduce that µ(A) = 0. Thus µ
is absolutely continuous with respect to the Lebesgue measure on [0, T ]×Rd. Radon-Nikodym’s theorem
provides the existence of p ∈ L1([0, T ]×Rd;R+) such that for all measurable function f : [0, T ]×Rd → R+

∫ T

0
Ef(s,Xs) ds =

∫

[0,T ]×Rd

f(s, x)p(s, x) dx ds. (4.3)

Krylov’s inequality exactly proves that the map f ∈ Ld+1([0, T ] ×Rd) 7→

∫

[0,T ]×Rd

f(s, x)p(s, x) dx ds is

a continuous linear form. Since the dual space of Ld+1([0, T ] ×Rd) is L(d+1)′([0, T ] ×Rd), p belongs to

L(d+1)′([0, T ] ×Rd).

To prove (4.2), it is enough to notice that

E

∫ τ∧T

0
f(s,Xs) ds ≤ E

∫ T

0
f(s,Xs)1BR

(Xs) ds.

Next, we establish that for almost all s ∈ [0, T ], µs = p(s, ·) dx. We fix s ∈ [0, T ], n ≥ 1 large enough and
A ∈ B(Rd). Applying (4.3) with f = 1[s−1/n,s+1/n]×A, and using Fubini-Tonelli’s theorem, we deduce that

n

2

∫ s+1/n

s−1/n
P(Xt ∈ A) dt =

n

2

∫ s+1/n

s−1/n

∫

A
p(t, x) dx ds.

Since t 7→ P(Xt ∈ A) is bounded and as Fubini’s theorem implies that t 7→
∫

A p(t, x) dx belongs to

L1([0, T ]), it follows from Lebesgue differentiation theorem (see Theorem 7.7 in [25]) that for almost all
s ∈ [0, T ]

P(Xs ∈ A) =

∫

A
p(s, x) dx.

We denote by R the set of all Borel sets in Rd of the form
∏d

i=1]ai, bi[, with ai < bi two rational numbers
for all i. The set R is at most countable, thus for almost s ∈ [0, T ]

∀A ∈ R, P(Xs ∈ A) =

∫

A
p(s, x) dx.

The monotone class theorem enables us to conclude. �

Note that for almost all s ∈ [0, T ], p(s, ·) ∈ L(d+1)′(Rd) using Fubini-Tonelli’s theorem. We deduce the
following corollary.

Corollary 4.4. For almost all s ∈ [0, T ], µs ∈ P(Rd).

We now prove two lemmas dealing with the integrability of the density p.

Lemma 4.5. Let p be the density given by Proposition 4.3. Then for all k ≥ d+ 1

s ∈ [0, T ] 7→ ‖p(s, ·)‖Lk′ (Rd) ∈ Lk/d([0, T ]).
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Proof. Using Jensen’s inequality since k
k′ = k − 1 ≥ d, we obtain that

∫ T

0

(
∫

Rd

p(s, x)k
′

dx

)
k

dk′

ds =

∫ T

0

(
∫

Rd

p(s, x)k
′−1p(s, x) dx

)
k

dk′

ds

≤

∫ T

0

∫

Rd

p(s, x)
k

dk′
(k′−1)+1 dx ds.

By definition of the conjugate exponent, we get

∫ T

0

∫

Rd

p(s, x)
k

dk′
(k′−1)+1 dx ds =

∫ T

0

∫

Rd

p(s, x)
1

d
+1 dx ds,

which is finite since (d+ 1)′ = 1
d + 1 and p ∈ L(d+1)′([0, T ] ×Rd). �

Lemma 4.6. Let p and q be two densities of two Itô processes of the form (1.1) and satisfying (A) and
(B) given by Proposition 4.3. Then for k, α ∈ N such that k ≥ max{d+ 1, d(α + 1)}, we have

∫ T

0
‖p(s, ·)‖α

Lk′ (Rd)
‖q(s, ·)‖Lk′ (Rd) ds < +∞.

Proof. Owing to Lemma 4.5, the function s 7→ ‖q(s, ·)‖Lk′ (Rd) belongs to L1([0, T ])∩Lk/d([0, T ]). Using

Hölder’s inequality, the proof is complete once we prove that s 7→ ‖p(s, ·)‖α
Lk′ (Rd)

belongs to Lr([0, T ]) for

some r ≥
(

k
d

)′
. Lemma 4.5 ensures that s 7→ ‖p(s, ·)‖α

Lk′ (Rd)
∈ L

k
αd ([0, T ]) thus we have to prove that

(

k
d

)′
≤ k

αd . This is equivalent to our assumption k ≥ d(α+ 1). �

4.2. Classical results on convolution and regularization. Fix p ∈ [1 + ∞[. We will need the two
following basic lemmas, which we recall for the sake of clarity.

Lemma 4.7 (Convolution). - For all f ∈ Lp(Rd) and for all g ∈ L1(Rd), the convolution f ∗ g is
well-defined and belongs to Lp(Rd). Moreover, we have ‖f ∗ g‖Lp ≤ ‖f‖Lp‖g‖L1 .

- For all f ∈ Lp(Rd) and for all g ∈ Lp′(Rd), the convolution f ∗ g is well-defined and belongs to
L∞(Rd). Moreover, we have ‖f ∗ g‖L∞ ≤ ‖f‖Lp‖g‖Lp′ .

Lemma 4.8 (Regularization). Recall that (ρn)n is a mollifying sequence.

- Let f ∈ L1
loc(R

d) and ρ ∈ C∞
c (Rd). Then f ∗ ρ ∈ C∞(Rd) and ∀α ∈ Nd, ∂α(f ∗ ρ) = f ∗ ∂αρ.

- If f ∈ Lp(Rd), then f ∗ ρn
Lp

−→ f , and if f ∈ C0(Rd), f ∗ ρn → f uniformly on compact sets.
- If f ∈ Lp

loc(R
d), then for all R > 0, f ∗ ρn → f in Lp(BR).

The following proposition will also be useful.

Proposition 4.9. Let f ∈ C0(Rd) be a function admitting distributional derivatives of order 1 et 2 in
L1
loc(R

d). Then f ∗ ρn ∈ C∞(Rd) and for all i, j ∈ {1, . . . d}
{

∂xi
(f ∗ ρn) = ∂xi

f ∗ ρn
∂xi xj

(f ∗ ρn) = ∂xi xj
f ∗ ρn.

The next lemma deals with the convolution of a function f ∈ Lp with µ ∈ P(Rd).

Lemma 4.10. Let f ∈ Lp(Rd). Then µ ∈ P(Rd) 7→ f ∗ µ ∈ Lp(Rd) is continuous.
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Proof. Note that the convolution f ∗ µ is well-defined as an element of Lp(Rd) thanks to Jensen’s
inequality which shows that

∀f ∈ Lp(Rd), ∀µ ∈ P(Rd), ‖f ∗ µ‖Lp ≤ ‖f‖Lp .

Let (µn)n be a sequence of P(Rd) weakly convergent to µ ∈ P(Rd). Using Skorokhod’s representation
theorem (see Theorem 6.7 in [2]), there exists a probability space (Ω′,F ′,P′), a sequence of random
variables (Xn)n converging P′-almost surely to a random variable X such that, the law of Xn is µn for all
n and the law of X if µ. For any a ∈ Rd, let us denote by τaf the translation of f defined, for all x ∈ Rd,
by τaf(x) := f(x− a). Jensen’s inequality and Fubini-Tonelli’s theorem yield

‖f ∗ µn − f ∗ µ‖pLp =

∫

Rd

∣

∣E′(f(x−Xn)− f(x−X))
∣

∣

p
dx

≤

∫

Rd

E′(|f(x−Xn)− f(x−X)|p) dx

= E′(‖τXn−Xf − f‖pLp).

It follows from the almost sure convergence of (Xn)n to X and the continuity of the translation operator

in Lp that ‖τXn−Xf − f‖pLp

a.s.
−→ 0. Moreover, the inequality

‖τXn−Xf − f‖pLp ≤ 2p−1(‖τXn−Xf‖pLp + ‖f‖pLp)

= 2p‖f‖pLp ,

enables us to conclude with the dominated convergence theorem. �

4.3. Convolution of probability measures.

Lemma 4.11 (Contraction inequality). Fix µ, ν,m ∈ P2(R
d). Then, we have

W2(µ ∗m, ν ∗m) ≤ W2(µ, ν).

Proof. Let π ∈ P2(R
d ×Rd) be an optimal coupling between µ and ν. We consider a couple of random

variables (X,Y ) with law π, and a random variable Z independent of (X,Y ) with law m. The law of
X + Z being µ ∗m and the law of Y + Z being ν ∗m, one has

W2(µ ∗m, ν ∗m) ≤ ‖(X + Z)− (Y + Z)‖L2 = W2(µ, ν).

�

The next corollary follows from the fact that ρn
W2−→ δ0.

Corollary 4.12. For all µ ∈ P2(R
d), µ ∗ ρn

W2−→ µ.

4.4. Measurability. We will need the following lemma to guarantee that, for u ∈ W1(R
d), we can find

versions of ∂v
δu
δm and ∂2

v
δu
δm that are measurable with respect to (µ, v) ∈ P(Rd)×Rd.

Lemma 4.13. Let u : E → Lk(Rd) be a continuous function, where E is a metric space and k > 1.
Then, for all x ∈ E, we can find a version of u(x) such that (x, v) ∈ E×Rd 7→ u(x)(v) is measurable with
respect to B(E)⊗ B(Rd).

Proof. For (x, v) ∈ E ×Rd, we define

ũ(x, v) = lim
n→+∞

1

λ(B(v, 1/n))

∫

B(v,1/n)
u(x)(y) dy = lim

n→+∞
un(x, v),

where λ denotes the Lebesgue measure on Rd. From Lebesgue differentiation theorem (see Theorem 7.7 in
[25]), we deduce that for all x ∈ E, ũ(x, ·) = u(x) λ-almost everywhere. We prove that for all n ≥ 1, un is
continuous. Note that 1

λ(B(v,1/n)) does not depend on v. The continuity of un follows from the continuity
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of x ∈ E 7→ u(x) ∈ Lk(Rd), v ∈ Rd 7→ 1B(v,1/n) ∈ Lk′(Rd) (coming from the dominated convergence

theorem), and of (f, g) ∈ Lk(Rd)× Lk′(Rd) 7→
∫

Rd fg dx. �

5. Proof of Theorem 3.3

The proof will be divided into three parts. Step 1 is dedicated to prove that all the terms in Itô-Krylov’s
formula (3.1) are well-defined. In Step 2, we regularize u by convolution of the measure argument with a
mollifying sequence (ρn)n. The effect of replacing u(µ) by u(µ ∗ ρn) is that the linear derivative is regular-
ized by convolution, in its space variable. Then, we apply the standard Itô’s formula for a flow of measure.
We finally take the limit n → +∞ in Step 3 with the help of Krylov’s inequality.

Step 1: All the terms in (3.1) are well-defined.

Let us show that the two integrals in (3.1) are well-defined.

Measurability. Thanks to Lemma 4.13, we can find a version of ∂v
δu
δm which is measurable with respect

to (µ, v) ∈ P(Rd) ×Rd. To conclude, we prove that s 7→ µs ∈ P(Rd) is measurable. Indeed if it is the
case, the function (s, ω) ∈ [0, T ]×Ω 7→ ∂v

δu
δm (µs)(Xs(ω)).bs(ω) will be measurable by composition. First,

note that µs ∈ P(Rd) for almost all s ∈ [0, T ] (see Corollary 4.4) so we can change µs on a negligible set
of times s to ensure that µs ∈ P(Rd) for all s ∈ [0, T ]. But µs = lim

n→+∞
µs ∗ ρn for dP by Assumption

(H2) in Definition 2.3. It remains to show that s 7→ µs∗ρn ∈ P(Rd) is continuous and thus mesurable for
all n. This follows from the continuity of s 7→ µs ∈ P2(R

d) and also from Assumption (H1) in Definition
2.3.

Integrability. We can omit the coefficients b and a to prove the integrability properties because they are
uniformly bounded. Taking advantage from the existence of a density coming from Proposition 4.3, we
have by Hölder’s inequality

∫ T

0
E

∣

∣

∣

∣

∂v
δu

δm
(µs)(Xs)

∣

∣

∣

∣

ds =

∫ T

0

∫

Rd

∣

∣

∣

∣

∂v
δu

δm
(µs)(x)

∣

∣

∣

∣

p(s, x) dx ds

≤

∫ T

0

∥

∥

∥

∥

∂v
δu

δm
(µs)(·)

∥

∥

∥

∥

Lk(Rd)

‖p(s, ·)‖Lk′ (Rd) ds

≤

∫ T

0
C
(

1 + ‖p(s, ·)‖α
Lk′ (Rd)

)

‖p(s, ·)‖Lk′ (Rd) ds,

for some constant C coming from Assumption (2) in Definition 3.1 because the flow (µs)s≤T is compact
in P2(R

d) and belongs to P(Rd) for almost all s. The last bound is finite thanks to Lemma 4.5 since
k ≥ max{d(α + 1), d+ 1}. The same properties hold for the term involving ∂2

v
δu
δm .

Step 2: Itô’s formula for the mollification of u.

For n ≥ 1, we set un : µ ∈ P2(R
d) 7→ u(µ ∗ ρn). By standard arguments, for each n ≥ 1, un has a linear

derivative given by

δun

δm
(µ)(v) =

∫

Rd

δu

δm
(µ ∗ ρn)(x)ρn(v − x) dx =

δu

δm
(µ ∗ ρn) ∗ ρn(v).

Now, we aim at applying the standard Itô formula for a flow of probability measures (see for example
Theorem 5.99 in Chapter 5 of [9] with the L-derivative) to un for a fixed n ≥ 1.



16 THOMAS CAVALLAZZI

(i) Regularity of δun

δm
(µ) for a fixed µ ∈ P2(R

d). Since for all µ ∈ P2(R
d), µ ∗ ρn ∈ P(Rd),

Proposition 4.9 implies that δun

δm (µ)(.) ∈ C∞(Rd) and for all i, j ∈ {1, . . . , d}

∂vi
δun

δm
(µ) = ∂vi

δu

δm
(µ ∗ ρn) ∗ ρn and ∂vi vj

δun

δm
(µ) = ∂vi vj

δu

δm
(µ ∗ ρn) ∗ ρn.

(ii) Continuity of ∂v
δun

δm
and ∂2

v

δun

δm
with respect to (µ, v). Let i ∈ {1, . . . , d}, (µm)m ∈ P2(R

d)N

and (vm)m ∈ (Rd)N be sequences converging respectively to µ and v. We have
∣

∣

∣

∣

∂vi
δun

δm
(µm)(vm)− ∂vi

δun

δm
(µ)(v)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∂vi
δun

δm
(µm)(vm)− ∂vi

δun

δm
(µ)(vm)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂vi
δun

δm
(µ)(vm)− ∂vi

δun

δm
(µ)(v)

∣

∣

∣

∣

=: D1 +D2

D2 converges to 0 when m → +∞ by (i). For D1, the convolution inequality Lk ∗ Lk′ gives that

D1 =

∣

∣

∣

∣

∂vi
δu

δm
(µm ∗ ρn) ∗ ρn(vm)− ∂vi

δu

δm
(µ ∗ ρn) ∗ ρn(vm)

∣

∣

∣

∣

≤

∥

∥

∥

∥

∂vi
δu

δm
(µm ∗ ρn)− ∂vi

δu

δm
(µ ∗ ρn)

∥

∥

∥

∥

Lk

‖ρn‖Lk′ .

Assumption (H1) in Definition 2.3 provides that µm ∗ ρn
dP−→ µ ∗ ρn when m → +∞. Finally, using the

first assumption in Definition 3.1, we conclude that D1 converges to 0 when m → +∞. This shows the
continuity of ∂v

δun

δm on P2(R
d)×Rd. The same reasoning proves the joint continuity of ∂2

v
δun

δm .

(iii) Boundedness of ∂v
δun

δm
and ∂2

v

δun

δm
. Let K ⊂ P2(R

d) be a compact set. For µ ∈ K and v ∈ Rd,
one has

∣

∣

∣

∣

∂vi
δun

δm
(µ)(v)

∣

∣

∣

∣

≤

∥

∥

∥

∥

∂vi
δu

δm
(µ ∗ ρn)

∥

∥

∥

∥

Lk

‖ρn‖Lk′ .

The set {µ ∗ ρn, µ ∈ K} is compact in (P(Rd), dP ) as the image of the compact K by the application
µ ∈ P2(R

d) 7→ µ ∗ ρn ∈ P(Rd) which is continuous by Assumption (H1) in Definition 2.3. The first

assumption in Definition 3.1 guarantees that supµ∈K

∥

∥

∥
∂vi

δu
δm

(µ ∗ ρn)
∥

∥

∥

Lk(Rd)
< +∞ and thus

sup
v∈Rd

sup
µ∈K

∣

∣

∣

∣

∂v
δun

δm
(µ)(v)

∣

∣

∣

∣

< ∞.

The same property holds for ∂2
v
δun

δm .

We can thus apply Itô’s formula of [9] to obtain that for all n ≥ 1 and for all t ∈ [0, T ]

un(µt) = un(µ0) +

∫ t

0
E

(

∂v
δun

δm
(µs)(Xs) · bs

)

ds+
1

2

∫ t

0
E

(

∂2
v

δun

δm
(µs)(Xs) · as

)

ds. (5.1)

Step 3: Letting n → +∞.

Our aim is now to take the limit n → +∞ in (5.1). As for all µ ∈ P2(R
d), µ∗ρn

W2−→ µ and u is continuous
on P2(R

d), we deduce that (un)n converges pointwise to u. It remains to take the limit in the two integrals
of (5.1). We show that

∫ t

0
E

(

∂v
δun

δm
(µs)(Xs) · bs

)

ds →

∫ t

0
E

(

∂v
δu

δm
(µs)(Xs) · bs

)

ds. (5.2)

Since b is uniformly bounded, it is enough to prove that

E

∫ T

0

∣

∣

∣

∣

∂v
δu

δm
(µ ∗ ρn) ∗ ρn(Xs)− ∂v

δu

δm
(µs)(Xs)

∣

∣

∣

∣

ds → 0.
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By Proposition 4.3, Hölder’s inequality and then the L1 ∗ Lk convolution inequality, one has

E

∫ T

0

∣

∣

∣

∣

∂v
δu

δm
(µs ∗ ρn) ∗ ρn(Xs)− ∂v

δu

δm
(µs)(Xs)

∣

∣

∣

∣

ds

≤

∫ T

0

∥

∥

∥

∥

∂v
δu

δm
(µs ∗ ρn)− ∂v

δu

δm
(µs)

∥

∥

∥

∥

Lk(Rd)

‖p(s, ·)‖Lk′ (Rd) ds

+

∫ T

0

∥

∥

∥

∥

∂v
δu

δm
(µs) ∗ ρn − ∂v

δu

δm
(µs)

∥

∥

∥

∥

Lk(Rd)

‖p(s, ·)‖Lk′ (Rd) ds

=: I1 + I2.

The integrand in I1 converges to 0 for almost all s using Assumption (1) in Theorem 3.3 and the fact that

µs ∗ ρn
dP−→ µs for almost all s thanks to Assumption (H2) in Definition 2.3. Let us now prove that the

dominated convergence theorem applies. The integrand is bounded by
[

sup
n≥1

∥

∥

∥

∥

∂v
δu

δm
(µs ∗ ρn)

∥

∥

∥

∥

Lk(Rd)

+

∥

∥

∥

∥

∂v
δu

δm
(µs)

∥

∥

∥

∥

Lk(Rd)

]

‖p(s, ·)‖Lk′ (Rd).

Note that the set {µs ∗ ρn, s ∈ [0, T ], n ≥ 1} ∪ {µs, s ∈ [0, T ]} is compact in P2(R
d). Indeed, if (sk)k ∈

[0, T ]N and (nk)k ∈ NN are two sequences, we have to find a convergent subsequence from (µsk ∗ ρnk
)k.

Up to an extraction, we can assume that (sk)k converges to some s ∈ [0, T ]. There are two cases. If there

exists l such that nk = l infinitely often, then µsk ∗ρl
W2−→ µs ∗ρl by the contraction inequality (see Lemma

4.11). Otherwise, we can assume that (nk)k converges to +∞. We use the triangle inequality to get

W2(µsk ∗ ρnk
, µs) ≤ W2(µsk ∗ ρnk

, µs ∗ ρnk
) +W2(µs ∗ ρnk

, µs).

The last term converges to 0 owing to Lemma 4.12, and the first is bounded by W2(µsk , µs) by the
contraction inequality (see Lemma 4.11), which converges to 0. Thus Assumption (2) in Definition 3.1
ensures that there exists C > 0 such that for almost all s ∈ [0, T ] and for all n

∥

∥

∥

∥

∂v
δu

δm
(µs ∗ ρn)

∥

∥

∥

∥

Lk(Rd)

+

∥

∥

∥

∥

∂v
δu

δm
(µs)

∥

∥

∥

∥

Lk(Rd)

≤ C(1 + ‖p(s, ·) ∗ ρn‖
α
Lk′ (Rd)

+ ‖p(s, ·)‖α
Lk′ (Rd)

).

It follows from the convolution inequality Lk′ ∗ L1 that for almost all s
[

sup
n≥1

∥

∥

∥

∥

∂v
δu

δm
(µs ∗ ρn)

∥

∥

∥

∥

Lk(Rd)

+

∥

∥

∥

∥

∂v
δu

δm
(µs)

∥

∥

∥

∥

Lk(Rd)

]

‖p(s, ·)‖Lk′ (Rd)

≤ 2C(1 + ‖p(s, ·)‖α
Lk′ (Rd)

)‖p(s, ·)‖Lk′ (Rd),

which is integrable on [0, T ] thanks to Lemma 4.5 since k ≥ max{d(α + 1), d + 1}. We conclude by the
dominated convergence theorem that I1 converges to 0. The term I2 also converges to 0 following the same
method. Indeed, for almost all s, ∂v

δu
δm (µs)(·) ∈ Lk(Rd) thus the integrand converges to 0 by Lemma 4.8

and we conclude with the dominated convergence theorem. Therefore (5.2) is proved. Following the same
lines, we take the limit n → +∞ in the last integral of (5.1) to obtain that for all t ∈ [0, T ]

∫ t

0
E

(

∂2
v

δun

δm
(µs)(Xs) · as

)

ds →

∫ t

0
E

(

∂2
v

δu

δm
(µs)(Xs) · as

)

ds.

This concludes the proof of Theorem 3.3. �

6. Proof of Theorem 3.12

The strategy of the proof is the following. In Step 1, we prove some integrability results coming from
Assumption (5) in Definition 3.10. Step 2 is devoted to prove that all the terms in Itô-Krylov’s formula
(3.3) are well-defined using a localization argument, Krylov’s inequality, and Step 1. Moreover, we see
that it is enough to prove the formula up to random times localizing the process ξ. Step 3 is dedicated
to regularize u using convolutions both in space and measure variables. In Step 4 and 5, we follow the
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strategy of the proof of Theorem 5.102 in [9] to prove Itô-Krylov’s formula for un, the mollified version of
u. Finally, Step 6 aims at taking the limit n → +∞ thanks to Krylov’s inequality.

Note that there are three kind of integrals in Itô’s formula (3.3): the terms involving standard time and
space derivatives in the first line, those involving the linear derivative in the second line and the martingale
term in the third line. We will treat them separately.

Step 1: Useful integrability results.

It follows from Assumption (5) in Definition 3.10 and Lemma 4.6 that for any M > 0 the following
quantities are finite:

J1(M) :=

∫ T

0

[

sup
n≥1

‖∂xu(s, ·, µs ∗ ρn)‖Lk1(BM ) + sup
n≥1

∥

∥∂2
xu(s, ·, µs ∗ ρn)

∥

∥

Lk1(BM )

]

‖q(s, ·)‖
Lk′

1 (BM )
ds,

(6.1)

J2(M) :=

∫ T

0
sup
n≥1

‖∂xu(s, ·, µs ∗ ρn)‖
2
L2k1 (BM ) ‖q(s, ·)‖Lk′

1 (BM )
ds,

J3(M) :=

∫ T

0
sup
n≥1

∥

∥

∥

∥

∂v
δu

δm
(s, ·, µs ∗ ρn)(·)

∥

∥

∥

∥

Lk2 (BM×Rd)

‖q(s, ·)‖
Lk′

2 (BM )
‖p(s, ·)‖

Lk′
2 (Rd)

ds,

J4(M) :=

∫ T

0
sup
n≥1

∥

∥

∥

∥

∂2
v

δu

δm
(s, ·, µs ∗ ρn)(·)

∥

∥

∥

∥

Lk2 (BM×Rd)

‖q(s, ·)‖
Lk′

2 (BM )
‖p(s, ·)‖

Lk′
2 (Rd)

ds.

To prove this, we follow the method employed in Step 3 of the preceding proof to justify the dominated
convergence theorem. We just give details for J2(M) since it requires a bit more attention. Owing to
Assumption (2) in Definition 3.10, we know that for all (t, µ) ∈ [0, T ] × P(Rd), ∂xu(t, ·, µ) ∈ W 1,k1(B).
Sobolev embedding theorem (see Corollary 9.14 in [3]) ensures that the embedding W 1,k1(BM ) →֒ L2k1(BM )
is continuous since k1 ≥ d+ 1. Thus there exists C > 0 such that

∀t ∈ [0, T ], ∀µ ∈ P(Rd), ‖∂xu(t, ·, µ)‖L2k1 (BM ) ≤ C
(

‖∂xu(t, ·, µ)‖Lk1 (BM ) + ‖∂2
xu(t, ·, µ)‖Lk1 (BM )

)

.

Thanks to Assumption (5) in Definition 3.10, there exists a constant CM > 0 such that for almost all s
and for all n ≥ 1

sup
n≥1

‖∂xu(s, ·, µs ∗ ρn)‖
2
L2k1 (BM ) ≤ CM

(

1 + ‖p(s, ·)‖2α1

Lk′
1 (Rd)

)

,

where we used the fact that {µs∗ρn, s ∈ [0, T ], n ≥ 1} is relatively compact in P2(R
d) and the convolution

inequality Lk′
1 ∗ L1. We conclude with Lemma 4.6 since k1 ≥ max{d(2α1 + 1), d + 1}. Note that these

integrability properties remain true if we replace µs ∗ ρn by µs and remove the supremum. We justify it
only for the second point. It follows from the continuity assumption (2) in Definition 3.10 that for almost
all s ∈ [0, T ]

∂xu(s, ·, µs ∗ ρn)
W 1,k1(BM )

−→ ∂xu(s, ·, µs),

because µs ∗ ρn
dP−→ µs for almost all s. Sobolev embedding theorem guarantees that

‖∂xu(t, ·, µ ∗ ρn)‖L2k1 (BM ) → ‖∂xu(t, ·, µ)‖L2k1 (BM ).

Thus we obtain
∫ T

0
‖∂xu(s, ·, µs)‖

2
L2k1 (BM )

‖q(s, ·)‖
Lk′

1 (BM )
ds ≤ J2(M) < +∞.

Step 2: Meaning of the terms in (3.3) and localization.
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Let (TM )M be the sequence of stopping times converging almost surely to T defined by

TM = inf{t ∈ [0, T ], |ξt| ≥ M} ∧ T.

Let ξMt = ξt∧TM
, which is bounded by M on the set {TM > 0}.

(i) Terms involving standard derivatives in (3.3). We prove that almost surely
∫ T

0
|∂xu(s, ξs, µs) · ηs| ds < +∞.

By Proposition 4.3 and Hölder’s inequality, one has

E

∫ T∧TM

0
|∂xu(s, ξs, µs)| ds ≤

∫ T

0

∫

BM

|∂xu(s, x, µs)|q(s, x) dx ds

≤

∫ T

0
‖∂xu(s, ·, µs)‖Lk1 (BM )‖q(s, ·)‖Lk′

1 (BM )
ds

≤ J1(M),

which is finite (see (6.1) in Step 1). We deduce that almost surely, for all M ≥ 1
∫ T∧TM

0
|∂xu(s, ξs, µs)| ds < ∞.

But it is clear that for almost all ω ∈ Ω and for M bigger than some random constant M(ω) ≥ 1,

TM (ω) = T. Thus, since η is uniformly bounded,
∫ T
0 |∂xu(s, ξs, µs).ηs| ds is finite almost surely. The other

terms in the first line of Itô’s formula (3.3) are treated with the same method.

(ii) Martingale term in (3.3). We need to prove that
∫ T
0 |∂xu(s, ξs, µs)|

2 ds is almost surely finite.
Reasoning as before, it is a consequence of the fact that J2 is finite since we have

∫ T

0
‖∂xu(s, ·, µs)‖

2
L2k1 (BM )‖q(s, ·)‖Lk′

1 (BM )
ds ≤ J2(M).

Therefore the martingale term in (3.3) is well-defined.

(iii) Terms involving the linear derivative in (3.3). We remark that X̃ and ξ can be seen as

independent processes on the product space Ω × Ω̃ with L(X̃s) = p(s, ·) dx and L(ξs) = q(s, ·) dx for
almost all s. Hölder’s inequality gives that

E

∫ T∧TM

0
Ẽ

∣

∣

∣

∣

∂v
δu

δm
(s, ξs, µs)(X̃s)

∣

∣

∣

∣

ds

≤

∫ T

0

∫

BM×Rd

∣

∣

∣

∣

∂v
δu

δm
(s, x, µs)(v)

∣

∣

∣

∣

q(s, x)p(s, v) dx dv ds

≤

∫ T

0

∥

∥

∥

∥

∂v
δu

δm
(s, ·, µs)(·)

∥

∥

∥

∥

Lk2(BM×Rd)

‖q(s, ·)‖
Lk′

2 (BM )
‖p(s, ·)‖

Lk′
2 (Rd)

ds

= J3(M),

which was defined in (6.1) and is finite. We deduce as previously that
∫ T
0 Ẽ

∣

∣

∣
∂v

δu
δm (s, ξs, µs)(X̃s).b̃s

∣

∣

∣
ds is

almost surely finite. The term involving ∂2
v
δu
δm is dealt similarly.

Since all the terms in (3.3) are well-defined, it is enough to prove Itô-Krylov’s formula for
u(t ∧ TM , ξt∧TM

, µt∧TM
) almost surely for all t ∈ [0, T ], and then take the limit M → +∞ using the

continuity of the integrals in Itô-Krylov’s formula with respect to t. So we fix τ := TM for M ≥ 1 and we
want to prove the formula up to time τ.
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Step 3: Mollification of u.

Let un be the function defined by un(t, x, µ) := u(t, ·, µ ∗ ρn) ∗ ρn(x). It is clearly continuous on [0, T ]×
Rd×P2(R

d), as u. Since ∂tu is jointly continuous, it follows from Leibniz’s rule that un is C1 with respect
to t and that we can differentiate under the integral i.e. for all (t, x, µ) ∈ [0, T ]×Rd × P2(R

d)

∂tu
n(t, x, µ) = ∂tu(t, ·, µ ∗ ρn) ∗ ρn(x),

which is also jointly continuous. As a result of Lemma 4.8 and Proposition 4.9, un is C2 with respect to x
and we have

∂xu
n(t, x, µ) = ∂xu(t, ·, µ ∗ ρn) ∗ ρn(x) and ∂2

xu
n(t, x, µ) = ∂2

xu(t, ·, µ ∗ ρn) ∗ ρn(x).

These two functions are continuous on [0, T ] ×Rd × P2(R
d) by the dominated convergence theorem and

the fact that u is jointly continuous. We define ρ̃n by ρ̃n(x, v) := ρn(x)ρn(v) for all x, v ∈ Rd. It is easy to
see that (ρ̃n)n is a mollifying sequence on R2d. Next, we claim that for all (t, x) ∈ [0, T ] ×Rd, un(t, x, ·)
has a linear derivative given by

δun

δm
(t, x, µ)(v) :=

δu

δm
(t, ·, µ ∗ ρn)(·) ∗ ρ̃n(x, v). (6.2)

This convolution is well-defined as δu
δm is jointly continuous. To prove (6.2), note first that the bound

of Assumption (3) in Definition 3.10 implies that for all (t, x) ∈ [0, T ] ×Rd, δun

δm (t, x, µ)(·) is at most of

quadratic growth, uniformly in µ on each compact set. Since for all (t, x) ∈ [0, T ] × Rd, δu
δm (t, x, ·)(·) is

continuous on P2(R
d)×Rd, the dominated convergence theorem proves that δun

δm (t, x, ·)(·) is continuous.

As explained in Remark 2.2, it is enough to compute, for µ, ν ∈ P2(R
d) and λ ∈ [0, 1], the derivative with

respect to λ of un(t, x,mλ), where mλ = λµ + (1 − λ)ν. As recalled in the proof of Theorem 3.3, when
(t, x) are fixed

d

dλ
u(t, x,mλ ∗ ρn) =

∫

Rd

δu

δm
(t, x,mλ ∗ ρn) ∗ ρn(v) d(µ − ν)(v).

Thanks to the bound Assumption (3) in Definition 3.10 for all compact K ⊂ Rd, one has

sup
x∈K

sup
λ∈[0,1]

∣

∣

∣

∣

d

dλ
u(t, x,mλ ∗ ρn)

∣

∣

∣

∣

≤ C

(

1 +

∫

Rd

|v|2 d(µ+ ν)(v)

)

.

We can conclude with the help of Leibniz’s rule and Fubini’s theorem that

d

dλ
un(t, x,mλ) =

∫

Rd

δu

δm
(t, ·,mλ ∗ ρn) ∗ ρ̃n(x, v) d(µ − ν)(v).

It follows from the joint continuity of δu
δm and Leibniz’s rule that δun

δm is C2 with respect to v and that










∂v
δun

δm
(t, x, µ)(v) =

δu

δm
(t, ·, µ ∗ ρn)(·) ∗ ∂vρ̃n(x, v) = ∂v

δu

δm
(t, ·, µ ∗ ρn)(·) ∗ ρ̃n(x, v)

∂2
v

δun

δm
(t, x, µ)(v) =

δu

δm
(t, ·, µ ∗ ρn)(·) ∗ ∂

2
v ρ̃n(x, v) = ∂2

v

δu

δm
(t, ·, µ ∗ ρn)(·) ∗ ρ̃n(x, v).

Note that ∂v
δun

δm and ∂2
v
δun

δm are continuous on [0, T ]×Rd ×P2(R
d)×Rd thanks to the dominated conver-

gence theorem and the joint continuity of δu
δm . Moreover for all compact K ⊂ P2(R

d) and for all M > 0

sup
t∈[0,T ]

sup
µ∈K

sup
|x|≤M

sup
v∈Rd

∣

∣

∣

∣

∂v
δun

δm
(t, x, µ)(v)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂2
v

δun

δm
(t, x, µ)(v)

∣

∣

∣

∣

< +∞. (6.3)

Indeed, Hölder’s inequality ensures that

sup
|x|≤M

sup
v∈Rd

∣

∣

∣

∣

∂v
δun

δm
(t, x, µ)(v)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂2
v

δun

δm
(t, x, µ)(v)

∣

∣

∣

∣

≤

[

∥

∥

∥

∥

∂v
δu

δm
(t, ·, µ ∗ ρn)(·)

∥

∥

∥

∥

Lk2 (BM+1×Rd)

+

∥

∥

∥

∥

∂2
v

δu

δm
(t, ·, µ ∗ ρn)(·)

∥

∥

∥

∥

Lk2 (BM+1×Rd)

]

‖ρ̃n‖Lk′
2 (R2d)

,
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the ball BM+1 coming from the fact that the support of ρ̃n is included in B1. Since K ∗ ρn is compact in
P2(R

d) and included in P(Rd), Assumption (5) in Definition 3.10 ensures that there exists C > 0 such
that for all µ ∈ K

sup
t∈[0,T ]

sup
|x|≤M

sup
v∈Rd

∣

∣

∣

∣

∂v
δun

δm
(t, x, µ)(v)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂2
v

δun

δm
(t, x, µ)(v)

∣

∣

∣

∣

≤ C

(

1 +

∥

∥

∥

∥

dµ ∗ ρn
dx

∥

∥

∥

∥

α2

Lk′
2(Rd)

)

‖ρ̃n‖Lk′
2 (R2d)

.

But we know that dµ∗ρn
dx (x) =

∫

Rd

ρn(x− y) dµ(y). We conclude with Jensen’s inequality that

∥

∥

∥

∥

dµ ∗ ρn
dx

∥

∥

∥

∥

α2

Lk′
2 (Rd)

≤ ‖ρn‖
α2

Lk′
2 (Rd)

.

This proves (6.3).

Step 4: Itô’s formula (3.3) for un when the coefficients b and σ are continuous.

We claim that (t, x) 7→ Un(t, x) := un(t, x, µt) ∈ C1,2([0, T ] ×Rd). The regularity with respect to x is
clear with the preceding properties on un. Let us thus focus on the regularity with respect to the time
variable. For (t, x) ∈ [0, T ]×Rd fixed, the regularity assumption on u with respect to t and the standard
Itô formula for a flow of measures applied to un(t, x, ·) (see Theorem 5.99 in Chapter 5 of [9]) ensure that
we have for h ∈ R satisfying t+ h ≥ 0

un(t+ h, x, µt+h)− un(t, x, µt) = un(t+ h, x, µt+h)− un(t, x, µt+h) + un(t, x, µt+h)− un(t, x, µt)

=

∫ t+h

t
∂tu

n(s, x, µt+h) ds+

∫ t+h

t
E

(

∂v
δun

δm
(t, x, µs)(Xs) · bs

)

ds (6.4)

+
1

2

∫ t+h

t
E

(

∂2
v

δun

δm
(t, x, µs)(Xs) · as

)

ds.

The function (s, x, µ) ∈ [0, T ] ×Rd × P2(R
d) 7→ ∂tu

n(s, x, µ) is continuous so

1

h

∫ t+h

t
∂tu

n(s, x, µt+h) ds −→
h→0

∂tu
n(t, x, µt).

The two other terms in (6.4) can be dealt similarly. Indeed, the dominated convergence theorem justified by
(6.3) ensures that the functions (s, x) ∈ [0, T ]×Rd 7→ E

(

∂v
δun

δm (s, x, µs)(Xs) · bs
)

and (s, x) ∈ [0, T ]×Rd 7→

E
(

∂2
v
δun

δm (s, x, µs)(Xs) · as
)

are continuous. Then, it follows that Un ∈ C1,2([0, T ] ×Rd) and that for all

(t, x) ∈ [0, T ] ×Rd

∂tU
n(t, x) = ∂tu

n(t, x, µt) +E

(

∂v
δun

δm
(t, x, µt)(Xt) · bt

)

+
1

2
E

(

∂2
v

δun

δm
(t, x, µt)(Xt) · at

)

.

We can now apply the classical Itô formula for Un and ξ, up to the random time τ defined at the end of
Step 2, to obtain that almost surely, for all t ∈ [0, T ]

un(t ∧ τ, ξt∧τ , µt∧τ ) = un(0, ξ0, µ0) +

∫ t∧τ

0
∂tu

n(s, ξs, µs) + ∂xu
n(s, ξs, µs) · ηs +

1

2
∂2
xu

n(s, ξs, µs) · γsγ
∗
s ds

+

∫ t∧τ

0
Ẽ

(

∂v
δun

δm
(s, ξs, µs)(X̃s) · b̃s

)

ds+
1

2

∫ t∧τ

0
Ẽ

(

∂2
v

δun

δm
(s, ξs, µs)(X̃s) · ãs

)

ds

(6.5)

+

∫ t∧τ

0
∂xu

n(s, ξs, µs) · (γs dBs).

Note that (6.5) does not require Assumptions (A) and (B) on the Itô process X. These assumptions will
only be used in Step 6.
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Step 5: Removing the continuity hypothesis on the coefficients b and σ.

We consider (bm)m and (σm)m two sequences of continuous and progressively measurable processes such
that

E

∫ T

0
|bns − bs|

2 + |σn
s − σs|

4 ds → 0.

We set, for t ≤ T, Xm
t := X0 +

∫ t
0 b

m
s ds +

∫ t
0 σ

m
s dBs, and µm

t the law of Xm
t . Owing to Step 4, Itô’s

formula (6.5) holds true for Xm and ξ. Now, we aim at taking the limit m → +∞ in (6.5). Note
that the set K := {µm

s , s ≤ T, m ≥ 1} ∪ {µs, s ≤ T} is compact in P2(R
d). Indeed, using Jensen’s

inequality and the Burkholder-Davis-Gundy (BDG) inequalities, it is clear that E sup
t≤T

|Xm
t − Xt|

2 → 0,

thus sup
t≤T

W2(µ
m
t , µt) → 0. We deduce that almost surely, for all t ∈ [0, T ]

un(t, ξt, µ
m
t ) −→

m→+∞
un(t, ξt, µt).

Now, we take the limit m → +∞ in the integrals in Itô’s formula (6.5).

(i) Martingale term in (6.5). Using BDG’s inequality, there exists C > 0 such that

E sup
t≤T

∣

∣

∣

∣

∫ t∧τ

0
(∂xu

n(s, ξs, µ
m
s )− ∂xu

n(s, ξs, µs)) · (γs dBs)

∣

∣

∣

∣

2

≤ CE

∫ T∧τ

0
|∂xu

n(s, ξs, µ
m
s )− ∂xu

n(s, ξs, µs)|
2|γs|

2 ds

≤ CE

∫ T

0
|∂xu

n(s, ξs, µ
m
s )− ∂xu

n(s, ξs, µs)|
21BM

(ξs)|γs|
2 ds.

The dominated convergence theorem can be applied since γ is bounded and ∂xu
n is jointly continuous on

[0, T ] ×Rd × P2(R
d). It shows that, up to an extraction, almost surely

∀t ≤ T,

∫ t∧τ

0
∂xu

n(s, ξs, µ
m
s ) · (γs dBs) −→

m→+∞

∫ t∧τ

0
∂xu

n(s, ξs, µs) · (γs dBs).

(ii) Terms involving the linear derivative in (6.5). Let us write
∣

∣

∣

∣

∫ t∧τ

0
Ẽ

(

∂v
δun

δm
(s, ξs, µ

m
s )(X̃m

s ) · b̃ms

)

ds−

∫ t∧τ

0
Ẽ

(

∂v
δun

δm
(s, ξs, µs)(X̃s) · b̃s

)

ds

∣

∣

∣

∣

≤

∫ T∧τ

0
Ẽ

∣

∣

∣

∣

∂v
δun

δm
(s, ξs, µ

m
s )(X̃m

s )

∣

∣

∣

∣

|b̃ms − b̃s| ds

+

∫ T∧τ

0
Ẽ

∣

∣

∣

∣

∂v
δun

δm
(s, ξs, µ

m
s )(X̃m

s )− ∂v
δun

δm
(s, ξs, µs)(X̃s)

∣

∣

∣

∣

|b̃s| ds

=: I1 + I2

Cauchy-Schwarz’s inequality ensures that

I1 ≤

(

∫ T∧τ

0
Ẽ

∣

∣

∣

∣

∂v
δun

δm
(s, ξs, µ

m
s )(X̃m

s )

∣

∣

∣

∣

2

ds

)1/2
(
∫ T

0
Ẽ|b̃ms − b̃s|

2 ds

)1/2

.

We conclude that I1 converges to 0 thanks to the bound (6.3) proved in Step 3 and since ξ is bounded by
M on the set {τ > 0}. To show that I2 → 0, we use the fact that b is bounded by K to get

I2 ≤ K

∫ T∧τ

0
Ẽ

∣

∣

∣

∣

∂v
δun

δm
(s, ξs, µ

m
s )(X̃m

s )− ∂v
δun

δm
(s, ξs, µs)(X̃s)

∣

∣

∣

∣

ds.
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The continuity of ∂v
δun

δm and the convergence in L2 of (X̃m
s )m to X̃s ensure that for all ω ∈ Ω,

∣

∣

∣
∂v

δun

δm (s, ξs(ω), µ
m
s )(X̃m

s )− ∂v
δun

δm (s, ξs(ω), µs)(X̃s)
∣

∣

∣
converges in probability on Ω̃ to 0 as m goes to infin-

ity. Using a uniform integrability argument coming from (6.3), we deduce that I2 converges to 0. Following
the same strategy, one has for all t ∈ [0, T ]

∫ t∧τ

0
Ẽ

(

∂2
v

δun

δm
(s, ξs, µ

m
s )(X̃m

s ) · ãms

)

ds −→
m→+∞

∫ t∧τ

0
Ẽ

(

∂2
v

δun

δm
(s, ξs, µs)(X̃s) · ãs

)

ds.

(iii) Terms involving standard derivatives in (6.5). It follows from the dominated convergence
theorem that almost surely, for all t ≤ T

∫ t∧τ

0
(∂tu

n(s, ξs, µ
m
s ) + ∂xu

n(s, ξs, µ
m
s ) · ηs) ds +

1

2

∫ t∧τ

0
∂2
xu

n(s, ξs, µ
m
s ) · γsγ

∗
s ds

−→
m→+∞

∫ t∧τ

0
(∂tu

n(s, ξs, µs) + ∂xu
n(s, ξs, µs) · ηs) ds +

1

2

∫ t∧τ

0
∂2
xu

n(s, ξs, µs) · γsγ
∗
s ds.

Indeed the functions ∂tu
n, ∂xu

n and ∂2
xu

n are jointly continuous on [0, T ] ×Rd × P2(R
d) and thus uni-

formly bounded on [0, T ]×BM ×{µm
s , s ∈ [0, T ], m ≥ 1}. Moreover, η and γ are also uniformly bounded.

This concludes Step 5.

Step 6: Letting n → +∞.

From Step 5, we deduce that Itô’s formula (6.5) in Step 4 holds for un up to time τ. To conclude the
proof, we need to take the limit n → +∞ in each term of (6.5). Then it remains to remove the stopping
time τ as explained at the end of Step 2 (i.e. letting τ → T ). The continuity of u ensures that almost
surely, for all t ≤ T , un(t, ξt, µt) → u(t, ξt, µt). We now focus on the integrals in Itô’s formula (6.5).

(i) Martingale term in (6.5). Thanks to BDG’s inequality, Hölder’s inequality, and the boundedness
of γ, we have

E sup
t≤T

∣

∣

∣

∣

∫ t∧τ

0
(∂xu

n(s, ξs, µs)− ∂xu(s, ξs, µs)) · (γs dBs)

∣

∣

∣

∣

2

≤ CE

∫ T

0
|∂xu(s, ·, µs ∗ ρn) ∗ ρn(ξs)− ∂xu(s, ξs, µs)|

21BM
(ξs) ds

= C

∫ T

0

∫

BM

|∂xu(s, ·, µs ∗ ρn) ∗ ρn(x)− ∂xu(s, x, µs)|
2q(s, x) dx ds

≤ C

∫ T

0
‖∂xu(s, ·, µs ∗ ρn) ∗ ρn − ∂xu(s, ·, µs)‖

2
L2k1 (BM )‖q(s, ·)‖Lk′

1 (BM )
ds

≤ C

∫ T

0
‖∂xu(s, ·, µs ∗ ρn) ∗ ρn − ∂xu(s, ·, µs) ∗ ρn‖

2
L2k1 (BM )

‖q(s, ·)‖
Lk′

1 (BM )
ds

+ C

∫ T

0
‖∂xu(s, ·, µs) ∗ ρn − ∂xu(s, ·, µs)‖

2
L2k1 (BM )‖q(s, ·)‖Lk′

1 (BM )
ds

=: I1 + I2.

We prove that I1 and I2 converge to 0. First note that, due to the convolution inequality Lr ∗L1, we have
for f ∈ Lr

loc(R
d) and for all R > 0, ‖f ∗ ρn‖Lr(BR) ≤ ‖f‖Lr(BR+1). The control on BR+1 follows from the

fact that the support of each ρn is included in B1. Hence

I1 ≤ C

∫ T

0
‖∂xu(s, ·, µs ∗ ρn)− ∂xu(s, ·, µs)‖

2
L2k1 (BM+1)

‖q(s, ·)‖
Lk′

1 (BM+1)
ds =: Ĩ1.
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As a consequence of Sobolev embedding theorem, for all t, the function

µ ∈ (P(Rd), dP) 7→ ∂xu(t, ·, µ) ∈ L∞(BM+1)

is continuous. Since µs ∈ P(Rd) for almost all s and thanks to Assumption (2) in Definition 2.3, we

deduce that the integrand in Ĩ1 converges to 0 for almost all s. It follows from the dominated convergence
theorem (see (6.1) in Step 1) that Ĩ1 converges to 0, as well as I1. We now focus on I2. The integrand
in I2 converges to 0 for almost all s because ∂xu(s, ·, µs) ∈ L2k1(BM ). We conclude with the dominated
convergence theorem as previously. This shows that, up to an extraction, almost surely

sup
t≤T

∣

∣

∣

∣

∫ t∧τ

0
∂xu

n(s, ξs, µs) · (γs dBs)−

∫ t∧τ

0
∂xu(s, ξs, µs) · (γs dBs)

∣

∣

∣

∣

→ 0.

(ii) Terms involving the linear derivative in (6.5). Following the same strategy, we obtain using
Hölder’s inequality

E sup
t≤T

∣

∣

∣

∣

∫ t∧τ

0
Ẽ

(

∂v
δun

δm
(s, ξs, µs)(X̃s) · b̃s

)

ds−

∫ t∧τ

0
Ẽ

(

∂v
δu

δm
(s, ξs, µs)(X̃s) · b̃s

)

ds

∣

∣

∣

∣

≤ EẼ

∫ T∧τ

0

∣

∣

∣

∣

∂v
δun

δm
(s, ξs, µs)(X̃s).b̃s − ∂v

δu

δm
(s, ξs, µs)(X̃s).b̃s

∣

∣

∣

∣

ds

≤ EẼ

∫ T

0

∣

∣

∣

∣

∂v
δun

δm
(s, ξs, µs)(X̃s) · b̃s − ∂v

δu

δm
(s, ξs, µs)(X̃s) · b̃s

∣

∣

∣

∣

1BM
(ξs) ds

≤ C

∫ T

0

∫

BM×Rd

∣

∣

∣

∣

∂v
δun

δm
(s, x, µs)(v) − ∂v

δu

δm
(s, x, µs)(v)

∣

∣

∣

∣

q(s, x)p(s, v) dx dv ds

≤ C

∫ T

0

∥

∥

∥

∥

∂v
δu

δm
(s, ·, µs ∗ ρn)(·) ∗ ρ̃n − ∂v

δu

δm
(s, ·, µs)(·)

∥

∥

∥

∥

Lk2(BM×Rd)

‖q(s, ·)‖
Lk′

2 (BM )
‖p(s, ·)‖

Lk′
2 (Rd)

ds.

The dominated convergence theorem justified by Assumption (4) in Definition 3.10 and (6.1) in Step 1
ensures that this term converges to 0. The same argument holds true for the term involving ∂2

v
δu
δm .

(iii) Terms involving standard derivatives in (6.5). The convergence of the term involving ∂tu
n in

(6.5) follows from the continuity of ∂tu on [0, T ]×Rd ×P2(R
d) and the dominated convergence theorem

since almost surely on the set {τ > 0}

sup
s∈[0,T ]

sup
n≥1

|∂tu
n(s, ξs, µs)| ≤ sup

s∈[0,T ]
sup
n≥1

sup
|x|≤M+1

|∂tu(s, x, µs ∗ ρn)| < +∞.

For the spatial derivatives, Hölder’s inequality ensures that

E sup
t≤T

∣

∣

∣

∣

∫ t∧τ

0
∂xu

n(s, ξs, µs) · ηs ds−

∫ t∧τ

0
∂xu(s, ξs, µs) · ηs ds

∣

∣

∣

∣

≤ C

∫ T

0
‖∂xu(s, ·, µs ∗ ρn) ∗ ρn − ∂xu(s, ·, µs)‖Lk1 (BM )‖q(s, ·)‖Lk′

1 (BM )
ds.

The right-hand side term converges to 0 with same reasoning as before. This shows that, up to an
extraction, one has almost surely

sup
t≤T

∣

∣

∣

∣

∫ t∧τ

0
∂xu

n(s, ξs, µs) · ηs ds−

∫ t∧τ

0
∂xu(s, ξs, µs) · ηs ds

∣

∣

∣

∣

−→
n→+∞

0.

The term involving ∂2
xu in (6.5) is dealt similarly.
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Taking the limit n → +∞ in (6.5), up to an extraction, we conclude that almost surely, for all t ∈ [0, T ]

u(t ∧ τ, ξt∧τ , µt∧τ ) = u(0, ξ0, µ0)

+

∫ t∧τ

0
(∂tu(s, ξs, µs) + ∂xu(s, ξs, µs) · ηs) ds +

1

2

∫ t∧τ

0
∂2
xu(s, ξs, µs) · γsγ

∗
s ds

+

∫ t∧τ

0
Ẽ

(

∂v
δu

δm
(s, ξs, µs)(X̃s) · b̃s

)

ds+
1

2

∫ t∧τ

0
Ẽ

(

∂2
v

δu

δm
(s, ξs, µs)(X̃s) · ãs

)

ds

+

∫ t∧τ

0
∂xu(s, ξs, µs) · (γs dBs).

This ends the proof as explained in Step 2. �

Appendix A.

A.1. Proof of Example 2.4. (1) It follows from the contraction inequality in Lemma 4.11 and Corollary
4.12.

(2) To prove (H1), we fix n ≥ 1 and µj
W2−→ µ ∈ P2(R

d). For ν ∈ P2(R
d), the density of ν ∗ ρn is given

by

x ∈ Rd 7→ ρn ∗ ν(x) =

∫

Rd

ρn(x− y) dν(y).

Hence,

dk(µj ∗ ρn, µ ∗ ρn) =

∥

∥

∥

∥

∫

Rd

ρn(· − y) dµj(y)−

∫

Rd

ρn(· − y) dµ(y)

∥

∥

∥

∥

Lk′ (Rd)

.

Using Lemma 4.10, we conclude that dk(µj ∗ ρn, µ ∗ ρn) −→
j→+∞

0. For (H2), let µ ∈ P(Rd) and denote by

f ∈ Lk′(Rd) the density of µ. For n ≥ 1, we have

dµ ∗ ρn
dx

= f ∗ ρn
Lk′

−→ f,

owing to Lemma 4.8.
�

A.2. Proof of Example 3.6. Let us give the detailed proof in the bilinear case N = 2. It is standard
(see Example 4 page 389 in Chapter 5 of [9]) that u has a linear derivative given by

δu

δm
(µ)(v) =

∫

Rd

g(v, y) dµ(y) +

∫

Rd

g(y, v) dµ(y).

We will only treat the first term since the other one can be dealt similarly.

Computation of the distributional derivatives and continuity: Let µ ∈ P(Rd) and f ∈ L(d+1)′(Rd)

be its density. By interpolation, we know that f ∈ Lr′(Rd) for all r ≥ d + 1. Let ϕ ∈ C∞
c (Rd)

and i ∈ {1, . . . , d}. Using Fubini’s theorem, justified by the quadratic growth of g and the fact that
f dx ∈ P2(R

d), we have
∫

Rd

(
∫

Rd

g(x, y)f(y) dy

)

∂viϕ(v) dv =

∫

Rd×Rd

g(v, y)f(y)∂viϕ(v) dy dv.

Let us define fn(x) =
1

µ(Bn)
(f1Bn) ∗ ρn(x), for n large enough to have µ(Bn) > 0. The function fn is a

probability density which is in C∞
c (Rd). It easily follows from Lemma 4.7, Lemma 4.8 and the dominated

convergence theorem that

fn
Lk′

−→ f and fn
W2−→ f. (A.1)
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For a fixed n ≥ 1, we have by definition of the distributional derivative
∫

Rd×Rd

g(v, y)fn(y)∂viϕ(v) dy dv = −

∫

Rd×Rd

∂vig(v, y)fn(y)ϕ(v) dy dv. (A.2)

Our aim is to take the limit n → +∞ in both side of the previous equality. Using Fubini’s theorem, the
left-hand side term is equal to

∫

Rd

(
∫

Rd

g(v, y)∂viϕ(v) dv

)

fn(y) dy.

Moreover, it converges to
∫

Rd×Rd

g(v, y)∂viϕ(v)f(y) dy dv.

Indeed, fn
W2−→ f and the function y 7→

∫

Rd g(v, y)∂viϕ(v) dv is continuous and at most of quadratic
growth. For the right-hand side term, we prove that

∫

Rd×Rd

∂vig(v, y)fn(y)ϕ(v) dy dv →

∫

Rd×Rd

∂vig(v, y)f(y)ϕ(v) dy dv.

Note that the limit is well-defined using Hölder’s inequality
∫

Rd×Rd

|∂vig(v, y)f(y)ϕ(v)| dy dv ≤ ‖f‖Lk′ (Rd)

∫

Rd

ϕ(v)‖∂vig(v, ·)‖Lk(Rd) dv.

The right-hand side term is finite because v 7→ ‖∂vig(v, ·)‖Lk(Rd) ∈ Lk(Rd). The same inequality shows
that
∣

∣

∣

∣

∫

Rd×Rd

∂vig(v, y)(fn(y)− f(y))ϕ(v) dy dv

∣

∣

∣

∣

≤ ‖fn − f‖Lk′ (Rd)

∫

Rd

ϕ(v)‖∂vig(v, ·)‖Lk(Rd) dv −→
n→+∞

0,

thanks to (A.1). Taking the limit n → +∞ in (A.2), we deduce that :
∫

Rd×Rd

g(v, y)f(y)∂viϕ(v) dy dv = −

∫

Rd×Rd

∂vig(v, y)f(y)ϕ(v) dy dv.

Hence, the distributional derivative of v 7→
∫

Rd g(v, y)f(y) dy is given by the function

v 7→

∫

Rd

∂vg(v, y)f(y) dy.

Moreover, it belongs to Lk(Rd) because applying Hölder’s inequality, one has
∫

Rd

∣

∣

∣

∣

∫

Rd

∂vg(v, y)f(y) dy

∣

∣

∣

∣

k

dv ≤

∫

Rd

‖∂vg(v, ·)‖
k
Lk(Rd)‖f‖

k
Lk′ (Rd)

dv

= ‖∂vg‖
k
Lk(Rd×Rd)‖f‖

k
Lk′ (Rd)

.

Note that this inequality and the linearity in f justify that µ ∈ (P(Rd), dk) 7→
∫

Rd ∂vg(·, y) dµ(y) ∈

Lk(Rd) is continuous with
∥

∥

∥

∥

∂v
δu

δm
(µ)

∥

∥

∥

∥

Lk(Rd)

≤

∥

∥

∥

∥

dµ

dx

∥

∥

∥

∥

Lk′ (Rd)

‖∇g‖Lk(Rd×Rd). (A.3)

Following the same lines, we show that the distributional derivative of order 2 of δu
δm (µ), for µ ∈ P(Rd),

is given by the Rd×d-valued function

v 7→

∫

Rd

∂2
vg(v, y) dµ(y) +

∫

Rd

∂2
yg(y, v) dµ(y).

It is also a continuous function from (P(Rd), dk) into Lk(Rd). Indeed, as previously, we obtain :
∥

∥

∥

∥

∂2
v

δu

δm
(µ)

∥

∥

∥

∥

Lk(Rd)

≤

∥

∥

∥

∥

dµ

dx

∥

∥

∥

∥

Lk′ (Rd)

‖∇2g‖Lk(Rd×Rd). (A.4)
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Growth property: Using the inequalities (A.3) and (A.4) of the previous step, one has for all µ ∈ P(Rd)
∥

∥

∥

∥

∂v
δu

δm
(µ)

∥

∥

∥

∥

Lk(Rd)

+

∥

∥

∥

∥

∂2
v

δu

δm
(µ)

∥

∥

∥

∥

Lk(Rd)

≤

∥

∥

∥

∥

dµ

dx

∥

∥

∥

∥

Lk′ (Rd)

[

‖∇g‖Lk(Rd×Rd) + ‖∇2g‖Lk(Rd×Rd)

]

.

The second point in Definition 3.1 is thus satisfied with α = 1 because we have supposed that k ≥ 2d.

In the general case N ≥ 2, one can show following the same lines that u admits a linear derivative and
that for all µ ∈ P(Rd), its distributional derivative is given for all v ∈ Rd by

∂v
δu

δm
(µ)(v) =

N
∑

j=1

∫

(Rd)N−1

∂xj
g(x1, . . . , xj−1, v, xj+1, . . . , xN ) dµ(x1) . . . dµ(xj−1) dµ(xj+1) . . . dµ(xN ).

Denoting by f the density of µ and using Hölder’s inequality, we obtain as previously that for all j ∈
{1, . . . , N}

∫

Rd

∣

∣

∣

∣

∣

∫

(Rd)N−1

∂xj
g(x1, . . . , xj−1, v, xj+1, . . . , xN ) dµ(x1) . . . dµ(xj−1) dµ(xj+1) . . . dµ(xN )

∣

∣

∣

∣

∣

k

dv

= ‖∂xj
g‖kLk((Rd)N )‖f‖

(N−1)k

Lk′ (Rd)
.

We easily show that µ ∈ (P(Rd), dk) 7→ ∂v
δu
δm (µ) ∈ Lk(Rd) is continuous and the same properties hold

for the distributional derivative of order two. We deduce that µ ∈ P(Rd)
∥

∥

∥

∥

∂v
δu

δm
(µ)

∥

∥

∥

∥

Lk(Rd)

+

∥

∥

∥

∥

∂2
v

δu

δm
(µ)

∥

∥

∥

∥

Lk(Rd)

≤

∥

∥

∥

∥

dµ

dx

∥

∥

∥

∥

N−1

Lk′(Rd)

[

‖∇g‖Lk((Rd)N ) + ‖∇2g‖Lk((Rd)N )

]

.

The second point in Definition 3.1 is thus satisfied with α = N−1 because we have supposed that k ≥ Nd.
�

A.3. Proof of Example 3.8. Note that f ∗µ and u(µ) are well-defined for µ ∈ P2(R
d). Indeed, it follows

from Sobolev embedding theorem (see Corollary 9.14 in [3]) that f ∈ C1(Rd,R) and ∂xf ∈ (L∞(Rd))d.
Thus f is at most of linear growth. Since f is continuous and at most of linear growth, it is easy to see
that u has a linear derivative given by

∀µ ∈ P2(R
d), ∀v ∈ Rd,

δu

δm
(µ)(v) = f ∗ µ(v) + f̃ ∗ µ(v),

where f̃(x) = f(−x) (see Example 2 page 386 in Chapter 5 of [9]). An easy computation based on Fubini’s
theorem shows that the distributional derivatives of order 1 and 2 of δu

δm (µ) are given by

∀i, j ∈ {1, . . . , d},

{

∂vi
δu
δm (µ) = ∂vif ∗ µ+ ∂xi

f̃ ∗ µ

∂vi vj
δu
δm (µ) = ∂vi vjf ∗ µ+ ∂vi vj f̃ ∗ µ,

as elements of Lk+1(Rd). These functions are continuous with respect to µ ∈ P2(R
d) owing to Lemma

4.10. It remains to apply the first point in Remark 3.2 to conclude.
�

A.4. Proof of Example 3.9. The function u is well-defined and continuous because ∇g ∈ L∞(Rd) and
is continuous thanks to Sobolev embedding theorem. Thus g is at most of linear growth. It follows from
the continuity of µ ∈ P2(R

d) 7→
∫

Rd g dµ that the function u admits a linear derivative given by

∀(µ, v) ∈ P2(R
d)×Rd,

δu

δm
(µ)(v) = g(v)F ′

(
∫

Rd

g dµ

)

.

We thus have in the sense of distributions

∀µ ∈ P2(R
d), ∀v ∈ Rd, ∂v

δu

δm
(µ)(v) = ∇g(v)F ′

(
∫

Rd

g dµ

)

.
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Moreover, the function

µ ∈ P2(R
d) 7→ ∂v

δu

δm
(µ)(·) ∈ Lk(Rd)

is continuous because F ∈ C1(R;R) and ∇g ∈ Lk(Rd). The same reasoning proves that

∀µ ∈ P2(R
d), ∀v ∈ Rd, ∂2

v

δu

δm
(µ)(v) = ∇2g(v)F ′

(
∫

Rd

g dµ

)

,

and that the function

µ ∈ P2(R
d) 7→ ∂2

v

δu

δm
(µ)(·) ∈ Lk(Rd)

is continuous. We conclude that u ∈ W1(R
d) with Remark 3.2.

�

A.5. Proof of Example 3.13. The function u is well-defined and continuous. Indeed, Sobolev embedding
theorem implies that ∇g ∈ L∞(Rd) and is continuous. Hence g is at most of linear growth. Following the
same method as in the proof of Example 3.6, we obtain that

∀µ ∈ P(Rd), ∂xu(·, µ) =

∫

Rd

∂xg(·, y) dµ(y).

Moreover

∀µ ∈ P(Rd), ‖∂xu(·, µ)‖Lk(Rd) ≤ ‖∇g‖Lk(R2d)

∥

∥

∥

∥

dµ

dx

∥

∥

∥

∥

Lk′(Rd)

.

This yields the continuity of the function

µ ∈ (P(Rd), dk) 7→ ∂xu(·, µ) ∈ Lk(Rd).

Moreover, keeping the notations of Definition 3.10, Assumption (2) is satisfied and setting α1 = 1, As-
sumption (5) is satisfied because we have supposed k ≥ 5d. The same holds true for ∂2

xu. Since g is
continuous and at most of linear growth, the linear derivative of u satisfies Assumption (3) in Definition
3.10 and is given, for all x, v ∈ Rd and for all µ ∈ P2(R

d), by

δu

δm
(x, µ)(v) = g(x, v).

As ∇g ∈ (W 1,k(R2d))d, Assumption (4) in Definition 3.10 is satisfied, as well as the growth property in
Assumption (5) with α2 = 0.

�

A.6. Proof of Example 3.14. As in A.5, the function u is well-defined and continuous because ∇g ∈
L∞(Rd) and is continuous. Thus g is at most of linear growth. It is clear with the assumption on ∇F

that for all µ ∈ P2(R
d), u(·, µ) ∈ W 2,k1

loc (Rd). It follows from the continuity of µ ∈ P2(R
d) 7→

∫

Rd g dµ
that the function

µ ∈ P2(R
d) 7→ ∂xu(·, µ) = ∂xF

(

·,

∫

Rd

g dµ

)

∈ (W 1,k1(BR))
d,

is also continuous for all R > 0. Moreover, it is easy to show with Remark 2.2 that for all x ∈ Rd, u(x, ·)
admits a linear derivative given by

∀(µ, v) ∈ P2(R
d)×Rd,

δu

δm
(x, µ)(v) = g(v)∂yF

(

x,

∫

Rd

g dµ

)

.

Assumption (3) in Definition 3.10 is clearly satisfied because ∂yF is continuous. Next, we compute the

derivatives of δu
δm (·, µ)(·) with respect to v in the sense of distributions. For φ ∈ C∞

c (R2d) and µ ∈ P2(R
d),
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Fubini’s theorem ensures that
∫

R2d

g(v)∂yF

(

x,

∫

Rd

g dµ

)

∂vφ(x, v) dx dv =

∫

Rd

(
∫

Rd

g(v)∂vφ(x, v) dv

)

∂yF

(

x,

∫

Rd

g dµ

)

dx

= −

∫

Rd

(
∫

Rd

∇g(v)φ(x, v) dv

)

∂yF

(

x,

∫

Rd

g dµ

)

dx

= −

∫

R2d

(

∇g(v)∂yF

(

x,

∫

Rd

g dµ

))

φ(x, v) dx dv.

This proves exactly that

∀µ ∈ P2(R
d), ∀x, v ∈ Rd, ∂v

δu

δm
(x, µ)(v) = ∇g(v)∂yF

(

x,

∫

Rd

g dµ

)

.

Since ∇g ∈ Lk2(Rd) and ∂yF
(

·,
∫

Rd g dµ
)

∈ L∞(BR), for all R > 0 and µ ∈ P2(R
d), the function

(x, v) ∈ BR ×Rd 7→ ∂v
δu

δm
(x, µ)(v)

belongs to Lk2(BR ×Rd). Moreover, the function

µ ∈ P2(R
d) 7→ ∂v

δu

δm
(·, µ)(·) ∈ Lk2(BR ×Rd)

is continuous because F ∈ C1(Rd × R;R) and thus y 7→ ∂yF (·, y) ∈ L∞(BR) is continuous. The same
reasoning proves that

∀µ ∈ P2(R
d), ∀x, v ∈ Rd, ∂2

v

δu

δm
(x, µ)(v) = ∇2g(v)∂yF

(

x,

∫

Rd

g dµ

)

,

and that the function

µ ∈ P2(R
d) 7→ ∂2

v

δu

δm
(·, µ)(·) ∈ Lk2(BR ×Rd)

is continuous for all R > 0. We conclude that u ∈ W2(R
d) with Remark 3.11.

�
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