

Weak impact of landscape parameters and rock lithology on Mg isotope composition of the Yenisey River and its tributaries

Vasileios Mavromatis, Anatoly S Prokushkin, Mikhail A Korets, Jérôme Chmeleff, Stéphanie Mounic, Oleg S Pokrovsky

► To cite this version:

Vasileios Mavromatis, Anatoly S Prokushkin, Mikhail A Korets, Jérôme Chmeleff, Stéphanie Mounic, et al.. Weak impact of landscape parameters and rock lithology on Mg isotope composition of the Yenisey River and its tributaries. Chemical Geology, 2020, 540, pp.119547. 10.1016/j.chemgeo.2020.119547. hal-03371867

HAL Id: hal-03371867 https://hal.science/hal-03371867

Submitted on 9 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Weak impact of landscape parameters and rock lithology on Mg isotope
2	composition of the Yenisey River and its tributaries
3	
4	Vasileios Mavromatis ^{a*} , Anatoly S. Prokushkin ^b , Mikhail A. Korets ^b , Jérôme Chmeleff ^a ,
5	Stéphanie Mounic ^a , Oleg S. Pokrovsky ^{a,c,d}
6	
7	^a Géosciences Environnement Toulouse (GET), CNRS, UMR 5563, Observatoire Midi-
8	Pyrénées, 14 Av. E. Belin, 31400 Toulouse, France
9	^b V.N. Sukachev Institute of Forest, SB RAS, Akademgorodok 50/28, Krasnoyarsk 660036,
10	Russia
11	^c BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, Russia
12	^d N. Laverov Federal Center for Arctic Research, IEPN, Russian Academy of Science, 23
13	Naber. Sev. Dviny, Arkhangelsk
14	
15	*Corresponding author: vasileios.mavromatis@get.omp.eu

17 Abstract

18 Constraining the mechanisms controlling the riverine flux of major cations and their isotopes 19 including that of Mg to the World Ocean is one of the challenges in Earth surface isotope 20 geochemistry. In an attempt to identify the main factors affecting the Mg isotopic composition of large rivers including vegetation, climate and lithology of the watershed, we studied the 21 largest, in terms of discharge, Siberian river, Yenisey, and 20 of its main tributaries, during 22 23 spring flood, summer flow and winter. The working hypothesis was that the influence of bedrock composition is most pronounced in winter, when the soils are frozen and the rivers 24 25 are fed by deep underground waters. Thus, we anticipated that the presence of permafrost will 26 help to distinguish the impact of surface processes, linked to biological uptake and release, and deep soil/underground transport of Mg from mineral sources. In contrast to these 27 expectations, no sizable differences in the Mg isotope composition of the river water (± 0.1) 28 29 ‰) for both the Yenisey tributaries and its main channel has been observed between the spring flood (May) and the winter (March) period. Those two periods are characterized by the 30 31 differences of discharge and degree of lithological impact on element source in the river 32 water. Regardless of the season, there was no straightforward control of lithology (relative abundance of carbonates, basalts, granites and sedimentary rocks) on δ^{26} Mg in the main 33 tributaries of the Yenisey river. Our findings suggest that the use of riverine Mg isotope 34 signature for tracing weathering mechanisms and dominant lithological impact is not 35 36 straightforward at the scale of large rivers whose watersheds present multiple lithologies, variable climatic conditions and vegetation types. 37

39 **1. Introduction**

40 An extensive amount of work in the past has focused on estimating elemental river fluxes into the ocean, in order to budget short and long-term elemental cycles (e.g. Dürr et al., 41 42 2011; Huh et al., 1998a; 1998b; Huh and Edmond, 1999). More recently, advances in mass spectrometry allowed for high resolution analyses of a wide number of isotopic systems, 43 including Ca, Mg and Si. The use of the isotopic signatures of these elements in riverine 44 45 transport studies has provided new insights into the processes and mechanisms of isotope fractionation during weathering but also on the elemental cycles. For example, as it has been 46 shown earlier by Tipper et al. (2006) the global isotopic signature of riverine runoff exhibits a 47 lower average δ^{26} Mg value compared to that of ocean waters, allowing for a better constraint 48 of the hydrological budget of Mg sources and sinks. 49

Magnesium isotopes are known to exhibit significant fractionation during weathering 50 (Tipper et al., 2008, 2012; Wimpenny et al., 2010, 2014; Pogge von Strandmann et al., 2008; 51 52 Brenot et al., 2008). River waters that drain silicate catchments generally appear to be enriched in the lighter Mg isotope (²⁴Mg) relative to bedrock (Huang et al., 2012; Liu et al., 53 2014; Opfergelt et al., 2012; 2014; Wimpenny et al., 2010; 2014; Tipper et al., 2012). This 54 has been interpreted as the uptake of the heavier Mg isotope (²⁶Mg) in Si-bearing secondary 55 phases. Other processes that can impact the Mg isotopic composition of riverine waters are 56 the dissolution of carbonates, secondary silicate mineral formation in soils, and dissolution of 57 particulate suspended matter in the river channel, as well as Mg uptake by plants and its 58 release from litterfall (Black et al., 2008; Bolou-Bi et al., 2010; Shirokova et al., 2013; 59 Kimmig et al., 2018). 60

The motivation of this study is to verify earlier observations suggesting that large
rivers are relative insensitive to lithology, but small ones exhibit a distinct difference between
carbonate and silicate watersheds, especially in the case of vegetation-free watersheds (Tipper

et al., 2012). The reasons of the uniformity met in the Mg isotope signatures of large rivers 64 are unclear, but likely stem from 1) the δ^{26} Mg composition of parent silicate rocks such as 65 granites, basalts and shales that dominate in the majority of large rivers, is rather 66 homogeneous (i.e. $-0.3\pm0.15\%$; Teng, 2017) and 2) the main processes controlling Mg 67 68 isotope fractionation in surface fluids are very similar, once Mg is released from the bedrocks. 69 These processes include *i*) the removal of Mg from the aqueous phase in the form of 70 formation of- or adsorption to secondary clays and *ii*) the uptake of Mg by vegetation and its release from plant litter. 71

72 In this study we continue our efforts on characterizing weathering processes in major Siberian rivers (Pokrovsky et al., 2013; Mavromatis et al., 2014b; 2016). Earlier we focused 73 on the isotopic composition of major and minor tributaries of Yenisey during the spring flood. 74 These earlier works demonstrated that parameters such as the degree of the permafrost 75 76 coverage, the type of vegetation and the lithology exhibit a rather weak influence on the Mg 77 isotope composition of river waters (Mavromatis et al., 2016). We have also shown that N. 78 Tunguska, the largest tributary of Yenisey river exhibits inter-seasonal variations in its riverine Mg isotope composition as large as 0.5% that can be attributed to Mg uptake from 79 vegetation and the intensity of carbonate mineral dissolution (Mavromatis et al., 2014b). In an 80 effort to test the effect of seasonality on the Mg isotope composition of Yenisey and its 81 tributaries, in this study we examine the Mg isotope composition of samples collected over 82 the course of three hydrological periods (i.e. March, May and August of 2015) and we 83 compare them with data of June 2012 (Mavromatis et al., 2016). These observations are 84 coupled with radiogenic ⁸⁷Sr/⁸⁶Sr measurements that are used as a tracer of the bedrock 85 lithology in the watersheds of the tributaries. The Yenisey River is the largest contributor of 86 87 freshwater to the Arctic Ocean, providing 18% of the total annual river discharge (Holmes et 88 al., 2013). Due to its highly variable lithology, forest, and wetland coverage, it is largely 89 representative of the rivers draining to the Arctic Ocean (Gladyshev et al., 2015; Roth et al.,

90 2013; Fabre et al., 2019). The Yenisey river system allows for testing the mechanisms of Mg 91 fractionation within its main channel and numerous tributaries which drain through rocks of 92 highly variable lithology and exhibit contrasting permafrost, forest, wetland, and vegetation coverage thus allowing for distinguishing the effects of bedrock, weathering and vegetation 93 94 uptake / release within this large subarctic watershed. In contrast to river systems located in tropical and the sub-tropical zones, the fresh water fluxes in boreal and permafrost-affected 95 96 rivers exhibit strong seasonal variations. Actually, 45% of the annual water discharging into 97 the Arctic Ocean occurs during the snowmelt (Holmes et al., 2013), together with the largest elemental fluxes from the watersheds. In monolithological catchments in Central Siberia 98 99 (Pokrovsky et al., 2006; 2013; Bagard et al., 2011) the major source of river solutes is derived 100 from chemical weathering of bedrock with an important contribution of element cycling through plants. The impact of the watershed's bedrock lithology (i.e. granites, basalts, 101 102 carbonates or terrigenous rocks) to a river is mostly manifested during winter baseflow, when the soils are frozen and the river is fed by taliks (i.e. unfrozen water paths in continuous 103 permafrost zone) from deep underground water reservoirs (Bagard et al., 2011; 2013; 104 Pokrovsky et al., 2013). Additionally, the chemical composition of river waters may be also 105 106 affected by the annual biomass turnover. This effect is especially pronounced during spring 107 freshet, when sizeable leaching of organic topsoil and plant litter can supply sizable amount of 108 base cations including Mg to the river (Pokrovsky et al., 2005). Therefore, it can be expected that Mg isotope signatures in Arctic rivers over the year will range from a shallow organic 109 110 source controlled at high flow to a deep soil source controlled at low flow. Over the winter period, the main source of Mg is expected to be deep carbonate and silicate rocks, whose 111 112 dissolution may create favorable conditions for precipitation of secondary Mg-bearing 113 minerals. During the permafrost-free period, congruent dissolution of silicate suspended material, leaching from plant litter, and uptake of Mg by vegetation in soil fluids are the 114 115 dominant processes (Mavromatis et al., 2016). The present study is designed to investigate the

role of the parameters such as landscape, climate and permafrost that are significantly variant among the lithologically-contrasting small tributaries of Yenisey River across its sizeable geographical gradient. The aims are to examine the major mechanisms controlling isotopic composition in Yenisey and its tributaries over the hydrological cycle and constrain in detail the Mg budget of isotopic fluxes into the Arctic Ocean.

121

122 2. Sampling and analytical procedures

123 2.1 Sample collection

In our previous study of Mg isotopes in Siberian rivers (i.e. Mavromatis et al., 2014b) 124 125 research focused on year-round survey of medium size river draining central Siberian basalts 126 and its catchment where we studied the impact of vegetation, soil and suspended load on the Mg isotopic signature. In similar terms Hindshaw et al. (2019) presented recently δ^{26} Mg 127 128 values of Yenisey river at Igarka over the time period between April and November of 2015. In the context of Mg isotopes in the Yenisey River and its tributaries at a single hydrological 129 event, the end of spring flood, work has been presented by Mavromatis et al. (2016). Here we 130 used higher temporal resolution for such a big riverine system, and we analyze the main stem 131 132 of Yenisey River and its tributaries over 3 hydrological periods of the year: winter baseflow, 133 peak of spring flood and summer flow.

The river samples at freshet (between 25th and 30th of May) and summer flow (between the 3rd and the 9th of August) periods of 2015 were collected during cruises on a tugboat. Winter river samples, representing winter base flow conditions, were collected under ice conditions (March and April of 2015). The samples were collected from the main Yenisey River channel and all of its significant tributaries, including the Angara, the Podkamennaya Tunguska, and the Nizhnyaya Tunguska Rivers, that together provide more than 50% of the annual Yenisey river discharge to the Arctic Ocean (Table 1, Figs. 1 and 2).

During ice-free period water samples were collected in the middle of the river 141 142 channels at a depth of 10-20 cm below the surface. During ice coverage in winter, water samples were collected through boreholes of ~15 cm diameter. The main stem of the Yenisey 143 river was sampled at 9 stations. A shipboard laboratory allowed immediate sample filtration 144 (pre-combusted Whatman glass fiber filters (GFF), 0.7 µm nominal pore size) and 145 preservation. Note here that filter pore size has been shown to have no impact on Mg 146 147 concentration (i.e. < 5%) in organic-rich river waters of the left and the main right tributaries of Yenisey (Pokrovsky et al., 2016; Bagard et al., 2011) and Mg isotopes in organic rich 148 lacustrine waters (Ilina et al., 2013). Water temperature, pH and specific conductivity were 149 150 measured directly in the rivers using a portable pH/T/conductivity meter HI8734 (Hanna 151 Instruments, USA).

152

153 2.2. Chemical and Isotopic Analyses

The concentrations of major cations in water samples were measured by ICP-MS 154 (Agilent 7500ce) at the Observatoire Midi Pyrénées (OMP) facilities (GET laboratory, 155 Toulouse, France). Indium and rhenium were used as internal standards to correct for 156 instrument drift and potential matrix effects. The accuracy of the Si, Mg, Ca, and Sr analyses 157 158 was assessed using the SLRS-5 river water reference material, with the difference between the 159 certified values and the measured values to be less than 10%. In addition, Mg was analyzed by atomic absorption spectroscopy with an analytical uncertainty of 1% and a detection limit 160 of 10 µg L⁻¹. The non-acidified filtered water samples were used for analyses of dissolved 161 inorganic carbon (DIC). Elemental analyses were performed using total combustion at 800°C 162 using a SHIMADZU Pt catalyser (TOC-VCSN) with a 5% analytical uncertainty and a 163 detection limit of 0.1 mg L⁻¹ (see Prokushkin et al., 2011). Chloride and sulfate were 164 determined using liquid chromatography with a DIONEX ICS-2000 system with analytical 165 uncertainty of 2% and a detection limit of 0.02 mg L^{-1} . 166

167	Water samples were purified from matrix elements prior to Mg isotopic analyses by
168	cation exchange chromatography. Prior to analyses water samples were treated with 30%
169	H_2O_2 to remove organics and evaporated to dryness. Separation of the Mg from the matrix
170	elements was done by following the protocol described by Mavromatis et al. (2013) using the
171	AG50W-X12 resin eluted with 1.0 M HNO ₃ . After Mg separation samples were evaporated to
172	dryness and re-dissolved to 0.35M HNO ₃ . The recovery of Mg processed through cation-
173	exchange chromatography was better than 99%. Impurities of about 5% were insignificant to
174	cause isobaric interferences during mass spectrometer. Magnesium isotopic ratios were
175	measured using a Thermo-Finnigan 'Neptune' Multi Collector Inductively Coupled Plasma
176	Mass Spectrometer (MC-ICP-MS) at the OMP facilities (GET laboratory, Toulouse, France).
177	All samples were prepared in 0.35 M HNO_3 and introduced into the Ar plasma with a large
178	Stable Introduction System spray chamber (double Scott Cyclonic spray chamber).
179	Instrumental mass fractionation effects were corrected by sample-standard-sample bracketing,
180	and all results are presented in delta notation relative to the DSM3 reference material as:
181	$[\delta^{x}Mg = (({^{x}Mg}/{^{24}Mg})_{sample} / ({^{x}Mg}/{^{24}Mg})_{DSM3} - 1) \times 1000)]$ where x refers to the Mg mass of
182	interest. All results are consistent with mass-dependent fractionation (see Table 2). The
183	reproducibility of the δ^{26} Mg analyses, assessed by replicate analyses of the mono-elemental
184	DSM3, CAM-1 and OUMg Mg reference standards and was typically better than 0.08‰;
185	these measurements were also in agreement with the previously published values from our lab
186	(e.g., Mavromatis et al. 2012, 2014a, Beinlich et al., 2014; 2018) as well as from other
187	laboratories (Geske et al., 2015; Riechelmann et al. 2016; 2018; Mavromatis et al., 2017;
188	Bolou-Bi et al., 2009, Wombacher et al. 2009). The reproducibility of chromatographic
189	separation was assessed by repeated analyses of selected samples and the total procedural
190	process of JDo-1 (dolomite) and IAPSO seawater was better than 0.08‰ (Table 2)
191	The ⁸⁷ Sr/ ⁸⁶ Sr ratios of the water samples were measured using a Triton Plus thermal
192	ionization mass spectrometer (TIMS) at OMP facilities (GET laboratory, Toulouse, France).

193	Water samples were evaporated, taken up in 3M HNO ₃ and run through Sr-spec columns
194	(Jones et al., 2012; 2014). The purified Sr was then loaded onto outgassed Ta filaments. The
195	samples were run at ⁸⁸ Sr beam potentials of 2V and 100 ratios were collected using a multi-
196	dynamic peak jumping routine. Resulting ⁸⁷ Sr/ ⁸⁶ Sr ratios were normalized to an ⁸⁶ Sr/ ⁸⁸ Sr ratio
197	of 0.1194. Eight analyses of the SRM987 (formerly NBS987) standard yielded an average
198	87 Sr/ 86 Sr of 0.710215±0.000012 (2SD). The certified value of NBS987 is 0.71034 ±0.00026.
199	Individual analytical errors did not exceed ± 0.000011 ⁸⁷ Sr/ ⁸⁶ Sr. Total blanks for Sr were
200	found to be negligible ($<0.1\%$) compared to the Sr amounts from the samples.

202 **3. Results**

203 *3.1 Chemical composition of Yenisey and its tributaries over the hydrological year*

The chemical composition of major elements in all river water samples can be found 204 in Table 2. Overall the maximum concentrations of Ca and Mg are lowest in May sampling 205 (Spring period). During this sampling period, the maximum Ca concentration measured was 206 587 μ M L⁻¹ in Kem, a river whose bed rock lithology is dominated by sedimentary silicates 207 (Table 1). The maximum measured Mg concentrations in samples collected during May 2015, 208 was 189 μ M L⁻¹ in Angara, a river whose bedrock coverage includes granites and sedimentary 209 210 silicates (Table 1). The concentrations of Ca and Mg over August (summer) and March 211 (winter) campaigns are in the same order of magnitude. In detail the maximum concentration of Ca over summer and winter periods are 1382 (Kem) and 1500 (Sovinskaya) μ M L⁻¹, 212 213 respectively. Similarly, the maximum concentrations of Mg over summer and winter periods are 492 and 655 μ M L⁻¹, respectively, and are observed in P. Tunguska a river draining 214 215 through basalts, tuffs and carbonates. The contribution of major elements in the riverine water from silicate and/or carbonate sources (e.g., Gaillardet et al., 1999, 2003) was assessed using 216 Mg vs. Ca concentrations plots of riverine waters normalized against the sum of Na and K. 217 218 The obtained results exhibit a linear trend for all the three seasons (Fig. 2), in agreement with

the chemical composition of Yenisey river waters collected in June of 2012 (Mavromatis et
al., 2016) and a number of other Siberian rivers (Pokrovsky et al., 2005).

The seasonal variations of dissolved Sr concentrations are similar to those of Mg and 221 Ca. They ranged over an order of magnitude between spring and winter or summer, regardless 222 of the bedrock lithology, exhibiting strong dilution in spring at high water discharge (see 223 Table 2). For example, in the Garevka river that is a small tributary of Yenisev dominated by 224 225 a granitic lithology (Mavromatis et al., 2016), Sr concentrations are low but different amongst seasons being equal to 0.18, 0.08 and 0.14 μ M L⁻¹during August, May and March, 226 respectively. Another example is P. Tunguska, which exhibited the highest Sr concentrations 227 of all river samples collected in this study of 8.00, 0.68 and 16.21 µM L⁻¹ during August, May 228 229 and March, respectively.

230

231 *3.2 Strontium isotope composition of Yenisey and its tributaries over the hydrological year*

The ⁸⁷Sr/⁸⁶Sr ratios of Yenisey tributaries sampled during May and March campaigns 232 plotted against the respective values of samples collected over the August campaign exhibited 233 a linear trend (Fig. 3). The values of samples collected in August have been used here, 234 235 because they reflect the maximum impact of vegetation on the chemical and isotopic 236 composition of river waters. In addition it is worth noting that despite the large variations of Sr concentrations both amongst rivers and amongst seasons, the sample tributaries exhibit a 237 range of ⁸⁷Sr/⁸⁶Sr ratios between 0.708 and 0.713. An exception is the ⁸⁷Sr/⁸⁶Sr ratios of 238 Garevka and Tis, (0.728 and 0.718, respectively, Table 2). Those elevated values can likely be 239 attributed to the predominance of granitic rocks in their watersheds. Similar values have been 240 earlier documented for riverine water of the same tributaries over the late spring flood of 2012 241 (Mavromatis et al., 2016). Overall the ⁸⁷Sr/⁸⁶Sr ratios of Yenisey tributaries for all the three 242 seasonal campaigns are within the same range for Eastern Siberian rivers (Huh et al., 1998a,b; 243 244 Huh and Edmond, 1999) and Yenisey coastal sediments (0.712; Guo et al., 2004). Within

uncertainty they are also comparable to Canadian rivers (0.7111; Wadleigh et al., 1985), and
the global river average which ranges from 0.7116 (Pearce et al., 2015) to 0.7119 (Palmer and
Edmond, 1989).

248

249 3.3 Magnesium isotope composition of Yenisey and its tributaries over the hydrological year

The overall variation of δ^{26} Mg values measured in this study spans a 0.8‰ range and 250 falls within the range of δ^{26} Mg values reported earlier for Yenisev tributaries in a post-flood 251 period (June 2012; Mavromatis et al., 2016). The riverine water samples collected from the 252 main channel of the Yenisey exhibit an increase in δ^{26} Mg northwards. However samples 253 254 collected in the mouth of the river exhibit variations that do not exceed 0.2‰ over the hydrological seasons. In addition, the samples collected at ~66.5N during May and August of 255 2015, exhibit similar values to those reported recently by Hindshaw et al. (2019) for the 256 Igarka station that were also sampled in 2015 (see Fig. 4). Similarly, most tributaries did not 257 exhibit any sizable variation of δ^{26} Mg between seasons. Generally, there were three groups of 258 tributaries depending on their value $\delta^{26}Mg_{spring/summer}$ - $\delta^{26}Mg_{winter}$: i) < 0.05‰ (Nizhnaya 259 260 Tunguska, Podkamennaya Tunguska, Vorogovka, Kas); ii) 0.1 to 0.18‰ (Bolshoi Pit, Tis, Dubches, Garevka) and iii) 0.27 ‰ (Sym). We did not evidence any straightforward link 261 262 between the value of this difference and the lithology, climate, size, or vegetative coverage of the river watershed. We note however that for all the tributaries plotted in Fig. 4, the Mg 263 isotope composition is lower at the end of spring flood (2012) compared to the peak of spring 264 flood (2015). The magnitude of this difference was not linked to lithology, size of the river, 265 and permafrost coverage. 266

Moreover, the most ²⁶Mg enriched samples were those collected from N. Tunguska, that is draining the Central Siberian basalt province (see Fig. 4). Note here that the samples collected from N. Tunguska tributary exhibit similar seasonal variations to those reported

earlier for the same river 600 km upstream its confluence with Yenisey (Mavromatis et al., 270 271 2014b). The Mg isotope composition of the water samples collected in the spring campaign of 2015 (May) of this study are systematically enriched in ²⁶Mg compared to samples at the end 272 of the post-flood period in 2012 (Mavromatis et al., 2016). Their difference range between 273 274 <0.1‰ for Turukhan, to more than 0.5‰ for P. Tunguska (see Fig. 4). Note here that 275 Turukhan drains through wetlands and peatlands of terrigenous terrain whereas P. Tunguska 276 drains through a mixture of basalts, carbonates and terrigenous material. We attribute the observed differences to the different timing of sampling, which was at the peak of the spring 277 flood in 2015 in this study (late May), whereas in 2012 it was the end of the spring flood (late 278 279 June). Indeed, there are significant isotopic variations over the hydrological year, specially 280 between winter, early and late spring that have been demonstrated in two rivers of Central Siberia plateau (see Mavromatis et al., 2014b) 281

In order to test the effect of multiple factors on the Mg isotopic composition, a 282 multivariate principle component analysis (PCA) has been conducted using the whole set of 283 284 parameters that may affect isotopic fractionation for each of the three seasons individually, using the statistical software Statistica (v. 11.2). For this analysis, we considered Mg and Sr 285 isotopic composition, major cation and anion concentration of the river water and landscape 286 287 and lithological parameters of the watersheds as listed in Tables 1, 2 and S1 (see Appendix). The PCA exhibited a rather weak capacity in explaining the variability of more than 20 288 parameters. The overall explanation by each of 2 factors was below 10%; the F1+F2 together 289 explained less than 20% of overall variability. However, the PCA analysis demonstrated the 290 following features: i) In winter, the δ^{26} Mg value is controlled by the 2nd factor and positively 291 linked to Mg/Ca and Mg/(Na+K) ratios, pH and DIC (Tables S2-S5; Appendix). This can be 292 interpreted as the effect of carbonate (notably dolomitic) rocks at the catchment, which is 293 294 pronounced through underground contribution via taliks of large and medium sized rivers; ii)

in spring, δ^{26} Mg is positively linked to latitude and river suspended matter but negatively linked to pH and DIC. During high water flow, this may reflect the importance of Mg desorption/leaching from silicate suspended particles and dilution of underground waters interacting with soluble carbonate rocks. Finally, in summer, δ^{26} Mg cannot be explained by any factor. This is consistent with simultaneous action of counter-balancing processes the secondary clay precipitation in soil fluids and the uptake of Mg by vegetation.

301

302 4 Discussion

4.1 Mg isotope variations in riverine waters over the hydrological year

304 As it has been argued earlier (Bochkarev, 1959; Alekin, 1970; Pokrovsky et al., 2006) 305 the chemical composition of river waters in Siberian Rivers is the result of the combination of 306 two major sources: i) leaching from the surface organic-rich soil layer including plant litter and *ii*) dissolution of minerals in deep soils and in the base rock; the latter delivers the mineral 307 constituents to the river via taliks (Anisimova, 1981; Bagard et al., 2011, 2013). It has to be 308 309 noted that, due to the complexity of large river lithology, the impact of rock distribution as 310 derived from geological maps can be compromised by river feeding from both surface (basalts) and deep (carbonates) reservoirs (Pokrovsky et al., 2005; Mavromatis et al., 2014b). 311 312 However, permafrost is present at the majority of the Yenisey basin. Its presence impacts the chemical composition of river waters that are influenced by the surface bedrock layers (0-10 313 314 m) rather than the deep rock lithology. Indeed, the extent and duration of permafrost is likely the main parameter controlling the relative contribution of each process over the hydrological 315 year. For example, the major contributions from the upper soil layer and plant litter occur 316 during the spring flood (Pokrovsky et al., 2013; Mavromatis et al., 2014b). Progressive 317 318 thickening of the thaw layer achieves its maximum value at the end of summer (i.e. August). The corresponding active layer depth limits the contribution of the top layers to the lateral 319

export flux of cations to the river. The dissolved products of chemical weathering of thawed 320 321 soils and leaching of plant litter are delivered to the river via so called suprapermafrost flow, a water flux travelling at the base of active layer, over the frozen horizons. The ⁸⁷Sr/⁸⁶Sr 322 composition of water samples collected from the same tributaries during June of 2012 323 324 suggests a similar source of Sr in the riverine waters regardless of the season (Fig. 3), and this composition is not affected by secondary mineral precipitation reactions (Mavromatis et al., 325 2016). For example, the ⁸⁷Sr/⁸⁶Sr ratios of N. Tunguska river exhibit variations of 0.0002 326 among seasons and reflect the ⁸⁷Sr/⁸⁶Sr ratios of the draining rock, the Patom paleobasin 327 dolostones (i.e. 0.7080-0.7085; Pokrovsky et al., 2011). We note here however that 328 329 differences in the contributions of each source, evidenced from Sr isotope variations, do not 330 necessarily result in variations in elemental ratio composition of riverine waters. Indeed, the linear trend presented in Fig. 2 suggests that the origin of Mg and Ca varies among three 331 seasons. This elemental ratio reflects mixing of two or more sources such as Precambrian 332 dolomite, basalts, granites and larch litter. Note that some impact of atmospheric dust on 333 seasonal variation in radiogenic Sr cannot be ruled out given that particulate deposition of Sr 334 is comparable with its dissolved form in atmospheric snow of central Siberia (Shevchenko et 335 al., 2017). At the same time, a single slope of the dependences shown in Fig. 2 suggests 336 337 similar Mg/Ca ratio in the different solute pools as it has been highlighted earlier for bedrocks, soil and plant litter of Central Siberian catchments (Pokrovsky et al., 2005). 338 Further, the dissolution of riverine suspended matter (RSM) within the main channel 339 340 can represent sizeable source of dissolved elements to the riverine waters, thus providing important source of solutes to the aqueous phase. The increase in active layer thickness over 341 the frost-free season leads to progressive decreasing of the depth of suprapermafrost flow, 342 343 which traverses organic horizons in spring and mineral soil horizons towards the end of summer-autumn. The contribution of riverine suspended matter as element source in the fluid 344 345 phase is expected to be at maximum during the spring flood, when the coastal abrasion and

flood zone sediment resuspension are the highest. As a result, the delivery of cations to the 346 river water is strongly controlled by the season, via organic versus mineral soil and bedrock 347 contributions, and related to river discharge or local storm events via mobilization of 348 suspended matter and plant debris. However, the isotopic signatures of Mg and Sr in the 349 350 whole Yenisey River watershed over the hydrological year do not follow a simple relationship with season (discharge), unlike the cation concentrations. Three reasons may be responsible 351 352 for such a decoupling. First, the permafrost is not homogeneously distributed in the Yenisey drainage area that spans over 2000 km in the S-N gradient from lake Baikal in the south to the 353 Arctic Ocean (Fig. 1). In fact, the watershed of some river basins such as Kem and Kas are 354 not affected at all by permafrost. As a result, there may be a possible effect on the δ^{26} Mg 355 value of riverine waters from the weathering of the organic rich layer and leaching of plant 356 litter that is generally depleted in ²⁶Mg compared to the host rock (Opfergelt et al., 2014; 357 358 Teng, 2017).

A second reason of Sr-Mg isotope decoupling is illustrated in Fig. 5 where a cross-plot 359 of the isotopic composition of riverine waters between the winter campaign in March 2015 vs. 360 the summer campaign during August 2015 suggests an enrichment of most summer samples 361 with ²⁶Mg over winter samples. Such an enrichment is more evident for samples retrieved 362 363 from Sym, Dubches and B. Pit rivers, draining terrigenous silicates and not affected by deep 364 carbonate rocks and permafrost whereas it is negligible for P. Tunguska, N. Tunguska and Vorogovka rivers, draining through basalts or carbonates, and fed by deep underground taliks 365 366 in winter. We note here that the major effect on the isotopic composition of Yenisey river and its tributaries can be anticipated to be strongly influenced by the bedrock composition occur 367 during winter baseflow, when the rivers are fed by taliks through unfrozen paths. The isotopic 368 signal of bedrock can be blurred during summer flow due to removal of isotopically light Mg 369 370 via i) plant uptake (Mavromatis et al., 2014b) and ii) secondary clay precipitation in the 371 interstitial soil solutions (soil porewaters) or shallow subsurface water reservoirs.

Finally, a third reason of isotope decoupling can be assessed by the δ^{26} Mg values of 372 373 riverine samples collected during open water period (May to October) and exhibit a good correlation with the riverine suspended material ($R_{Pearson} = 0.44$ at p < 0.05; Fig. 6). Indeed, 374 26 Mg – enriched waters collected in spring (May) and summer (August) exhibit increasing 375 RSM concentrations. We attribute this isotopically light composition of spring and summer 376 waters to the extensive dissolution of RSM in the river channel. The RSM is composed of 377 378 silicates (clays) and organic debris such as plant litter (Pokrovsky et al., 2005; 2013). Both have δ^{26} Mg close to zero (-0.2±0.2‰, Mavromatis et al., 2014b) which is released to aqueous 379 380 solution without substantial fractionation.

381

382 4.2 Isotopic composition of Mg flux to the Arctic Ocean

The Yenisey is the world's sixth largest river in terms of discharge and the largest 383 384 contributor of freshwater to the Arctic Ocean, providing 18% of the total annual river discharge (Holmes et al., 2013). It drains through rocks of highly variable lithology and 385 exhibits contrasting permafrost, forest, and wetland coverage. The western tributaries of 386 387 Yenisey River drain through thawed and frozen peatlands of Western Siberian Lowland and as such represent many other permafrost-affected Artic rivers of low runoff (e.g. Pechora, Ob, 388 Nadym, Pur and Taz). On the other hand the large eastern tributaries of Yenisey drain through 389 granites, basalts and carbonates of mountainous regions with high runoff thus representing 390 the other Central and Eastern Siberian rivers of the Lena basin. As such, the obtained results 391 can provide first-order estimates of isotopic composition of Mg flux from the largest Arctic 392 river. During the sampling campaigns of 2015, the riverine water samples have been collected 393 from the main channel of Yenisey as north as 66.5°N, representing ca. 98% of the total river 394 watershed, and their δ^{26} Mg values were -1.36±0.04 ‰, -1.13±0.02 ‰, -1.13±0.01 ‰ for 395 396 winter (March), spring (May) and summer (August) campaigns, respectively (Fig. 4). These

values suggest an 0.23% difference in the Yenisey water δ^{26} Mg value between winter and 397 spring. Partially, this difference may be due to release of ²⁶Mg from the RSM given that the 398 RSM concentration in winter is an order of magnitude lower than that during spring flood, as 399 reported at the Yenisey gauging station (McClelland et al., 2016). At the same time, the rivers 400 most likely to be affected by underground waters draining carbonate rocks and feeding the 401 river during winter (Vorogovka, P. Tunguska, N. Tunguska), the δ^{26} Mg was virtually the 402 403 same (i.e. 0.04‰ variation) in winter and summer. The difference between summer and winter values was not systematically different among tributaries. For N. Tunguska, Kas, P. 404 Tunguska, Vorogovka, this difference was < 0.5‰, whereas Sym, B. Pit, Tis, Dubches and 405 406 Garevka exhibited up to 0.27 ‰ lower isotopic composition in winter compared to summer. 407 As such, we cannot attribute the observed differences to one single factor such as carbonate rocks (N. Tunguska, Vorogovka, but also B. Pit), permafrost (N. Tunguska, Garevka) or 408 409 vegetation (all rivers).

Altogether, the Yenisey isotopic measurements of this and our previous study 410 (Mavromatis et al., 2016), together with those reported by Tipper et al. (2006) for the Lena 411 river suggest that Siberian rivers are characterized by an isotopic composition lower 412 413 compared to that of seawater or the Arctic Ocean (i.e -0.82‰; Teng et al., 2017). It can 414 reasonably be suggested that the parameters controlling the low isotopic composition of Yenisey and likely Lena is the weathering of the highly reactive Precambrian dolomites, 415 which are abundant in the southern Siberian Platform and are characterized by Mg isotope 416 417 compositions as low as -2.5‰ (Pokrovsky et al., 2011). Indeed, hydrochemical analyses of present day alkalinity (DIC) features in the Yenisey River demonstrate similar contributions 418 419 of carbonate and silicate weathering (53 and 47%, respectively, Tank et al., 2012). As such, the Mg isotopic signal of the Yenisey River may be explained by the linear mixture of 420 carbonate that span in the range -2.0 $\% \le \delta^{26} Mg_{carbonate} \le -2.5 \%$ and silicate (0.0% \le 421 δ^{26} Mg_{silicate} \leq -0.2‰) end members providing an average of ca. -1.2±0.1‰. 422

Although elemental fluxes in boreal and permafrost-affected rivers are known to 423 424 exhibit strong seasonal variations similar to water discharge (Guo et al., 2004, 2012; Bagard et al., 2011; 2013), the magnesium isotope composition of Yenisey over the hydrological year 425 exhibits rather small variability, ca. within $\pm 0.2\%$, whereas the Mg concentration at the 426 Yenisey river gauging station ranges from 62 to 250 µM L⁻¹ (Holmes et al., 2018). In order to 427 428 provide a first-order estimation of the average annual isotope composition of Mg discharge 429 flux by the Yenisey River to the Arctic Ocean, we can use discharge weighted fluxes as: $\delta^{26}Mg_{annual} = \delta^{26}Mg_{spring} \times 0.29 + \delta^{26}Mg_{summer} \times 0.265 + \delta^{26}Mg_{winter} \times 0.445$ 430 (1)where the subscripts "spring" (i.e. May to June), "summer" (i.e. July to September) and 431 "winter" (i.e. October to April) denote the isotopic composition of Yenisey River water 432 during the corresponding hydrological period, whereas the fractions of the annual fluxes for 433 Mg have been calculated after Holmes et al. (2012) similar to Mavromatis et al. (2016). For 434 435 the spring isotopic composition we use here the average of the measured Mg isotope composition of the post spring (June) and spring (May) sampling campaigns in years 2012 436 and 2015, respectively (i.e. -1.21±0.08‰). The resulting flux-averaged annual isotope 437 438 signatures of Mg from the Yenisey River to the Arctic Ocean is thereby estimated to be δ^{26} Mg_{annual} = -1.25 ± 0.15‰. This value is within uncertainty similar to that estimated earlier 439 by Mavromatis et al. (2016) and Hindshaw et al. (2019) as well as with the mean global 440 runoff of -1.09‰ estimated earlier by Tipper et al. (2006), but about 0.4‰ lighter compared 441 to the δ^{26} Mg of seawater (i.e -0.82‰; Teng et al., 2017). 442 Whether the 0.15‰ difference in δ^{26} Mg of global runoff and the Yenisey river is 443 significant cannot be unequivocally resolved. However, it is possible that Siberian permafrost-444

bearing rivers such as Yenisey (this study) and Lena ($\delta^{26}Mg = -1.28 \pm 0.08$ ‰; Tipper et al.,

446 2006) are indeed enriched in lighter Mg isotopes compared to the world rivers, even though

the discharge-weighted δ^{26} Mg for the world rivers is lacking. Because preferential removal of

heavier isotopes by vegetation would require strong non-stationary conditions which is not the case in Siberia, we argue that the dissolution of carbonate (dolomite) rocks in the watersheds of Central and Eastern Siberian rivers is the main cause of relatively negative δ^{26} Mg values of these rivers. In this regard, assessment of Mg isotope signature in large Siberian rivers not subjected to strong carbonate influence such as Ob, Pur and Taz of western Siberian lowland is essential for detailed constraining of the Mg isotopic budget of the Arctic Ocean.

454

455 **Conclusions**

456 The Yenisey river main channel, as well as it's large and medium tributaries were sampled over three hydrological periods, spring, summer and winter. This allowed to assess 457 seasonal variations in Mg isotopic ratios and to relate δ^{26} Mg values to river discharge. 458 landscape and lithological parameters of watersheds. Contrary to our expectations, the spring 459 flood (May) and winter (March) period, two most different months in terms of discharge and 460 degree of lithological impact on element source in the river water, did not show any 461 measurable difference in δ^{26} Mg signature of the river water (±0.1‰) for both the Yenisev 462 tributaries and its main channel. Moreover, the summer season which is characterized by 463 maximum impact of vegetation and maximally thawed soils, was not significantly (> 0.2%) 464 different from the other seasons. Despite these relatively homogeneous isotopic compositions 465 of the Yenisey basin in space and time, some fine features of Mg isotope fractionation were 466 revealed. 467

Some impact of river suspended matter on δ^{26} Mg in the river water was observed via ca. 0.6‰ increase in δ^{26} Mg accompanied with 5 times RSM concentration increase. A 0.2‰ difference in δ^{26} Mg of Yenisey main channel between summer and spring (-1.36 and -1.13‰, respectively) could be attributed to removal of heavy isotope by biotic processes at the watershed and in the main stream. Direct lithological impact on Mg isotope composition is

not seen, or the effect of dominant silicate (isotopically heavy) rock dissolution is completely
masked by the high reactivity of isotopically light dolomites and limestones. The average
annual isotopic flux of Mg by the Yenisey River to the Arctic Ocean is equal to -1.25‰
which is ~0.15‰ lower than the world average. This value is likely within the natural
variation of isotopic signature in rivers. Together with the low value of the Lena river
reported by Tipper et al. (2008), this may signify a pronounced influence of isotopically light
Precambrian dolomites and limestones for these two Siberian rivers.

The results of this study cast certain doubts on the usefulness of Mg isotope in rivers 480 as tracers of weathering processes and assessing lithological impact on isotopic signature of 481 482 riverine Mg flux, at least in the context of forested and permafrost-dominated watershed with highly variable lithology. Even minor proportion of isotopically light, highly reactive 483 dolomites and limestones are capable to completely offset the impact of less reactive, 484 isotopically heavy silicates. Further, because several drastically different processes such as 485 formation of secondary clays, carbonate precipitation, or the biological uptake, are 486 487 characterized by similar isotopic shift, the overall impact of these processes on Mg riverine isotopic signature may not be distinguishable. 488

489

490 Acknowledgments

491 The study was supported by RFFI (RFBR) grant No 19-55-15002 and by the French national
492 programmes INSU-LEFE and INSU-SYSTER.

493 **References**

494 Alekin O. A. (1970) Foundations of Hydrochemistry (Osnovy Gidrokhimii).

495 Gidrometeorological Izd-vo, Leningrad, p. 444.

496 Anis	imova N.	P. (1981)	Cryo	ohydr	ochemio	cal I	Features	of the	Permafrost 2	Zone.
----------	----------	------	-------	------	-------	---------	-------	----------	--------	--------------	-------

- 497 (Kriogidrokhimicheskie osobennosti merzloi zony). Nauka, p. 152 (in Russian).
- Bagard, M.L., Chabaux, F., Pokrovsky, O.S., Viers, J., Prokushkin, A.S., Stille, P., Rihs, S., 498
- 499 Schmitt, A.D., Dupre, B., 2011. Seasonal variability of element fluxes in two Central Siberian rivers draining high latitude permafrost dominated areas. Geochim.
- 500
- Cosmochim. Acta 75, 3335-3357. 501
- 502 Bagard, M.L., Schmitt, A.D., Chabaux, F., Pokrovsky, O.S., Viers, J., Stille, P., Labolle, F.,
- Prokushkin, A.S., 2013. Biogeochemistry of stable Ca and radiogenic Sr isotopes in a 503
- 504 larch-covered permafrost-dominated watershed of Central Siberia. Geochim.
- Cosmochim. Acta 114, 169-187. 505
- Beinlich, A., Austrheim, H., Mavromatis, V., Grguric, B., Putnis, C.V., Putnis, A., 2018. 506 Peridotite weathering is the missing ingredient of Earth's continental crust 507 composition. Nat. Commun. 9, 634. 508
- 509 Beinlich, A., Mavromatis, V., Austrheim, H., Oelkers, E.H., 2014. Inter-mineral Mg isotope
- 510 fractionation during hydrothermal ultramafic rock alteration - Implications for the 511 global Mg-cycle. Earth Planet. Sci. Lett. 392, 166-176.
- Black, J.R., Epstein, E., Rains, W.D., Yin, Q.Z., Casey, W.H., 2008. Magnesium-isotope 512 Fractionation During Plant Growth. Environ. Sci. Technol. 42, 7831-7836. 513
- Bochkarev P. F., 1959. Hydrochemistry of Rivers of Eastern Siberia (Gidrokhimiya rek 514 Vostochnoi Sibiri). Sibirskoe Izd-vo, Irkutsk, p. 156 (in Russian). 515
- 516 Bolou-Bi, E.B., Poszwa, A., Leyval, C., Vigier, N., 2010. Experimental determination of
- magnesium isotope fractionation during higher plant growth. Geochim. Cosmochim. 517
- Acta 74, 2523-2537. 518

519	Bolou-Bi E. B., Vigier N., Brenot A., Poszwa A. (2009) Magnesium isotope compositions of
520	natural reference materials. Geostand. Geoanal. Res. 33, 95-109.
521	Brenot, A., Cloquet, C., Vigier, N., Carignan, J., France-Lanord, C., 2008. Magnesium
522	isotope systematics of the lithologically varied Moselle river basin, France. Geochim.
523	Cosmochim. Acta 72, 5070-5089.
524	Dürr, H.H., Meybeck, M., Hartmann, J., Laruelle, G.G., Roubeix, V., 2011. Global spatial
525	distribution of natural riverine silica inputs to the coastal zone. Biogeosciences 8, 597-
526	620.
527	Fabre C., Sauvage S., Tananaev N., Espitalier G., Teisserenc R., Probst JL., Sanchez-Perez
528	J.M. (2019) Assessment of sediment and organic carbon exports into the Arctic ocean:
529	The case of the Yenisei River basin. Water Res., 158, 118-135.
530	Gaillardet, J., Dupre, B., Louvat, P., Allegre, C.J., 1999. Global silicate weathering and CO ₂
531	consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3-30.
532	Gaillardet J., Millot R., Dupré B., 2003. Chemical denudation rates of the western Canadian
533	orogenic belt: the Stikine terrane. Chem. Geol., 201, 257-279.
534	Geske, A., Goldstein, R.H., Mavromatis, V., Richter, D.K., Buhl, D., Kluge, T., John, C.M.,
535	Immenhauser, A., 2015. The magnesium isotope (δ 26Mg) signature of dolomites.
536	Geochim. Cosmochim. Acta 149, 131–151.
537	Gladyshev, M. I., Kolmakova, O. V., Tolomeev, A. P., Anishchenko, O. V., Makhutova, O.
538	N., Kolmakova, A. A., Kravchuk, E. S., Glushchenko, L. A., Kolmakov, V. I. and
539	Sushchik, N. N. (2015), Differences in organic matter and bacterioplankton between
540	sections of the largest Arctic river: Mosaic or continuum?. Limnol. Oceanogr., 60,
541	1314-1331.

542	Guo L., Zhang JZ., Gueguen C., 2004. Speciation and fluxes of nutrients (N, P, Si) from the
543	upper Yukon River. Global Biogeochem. Cycles 18, GB1038.
544	Guo L., Cai Y., Belzile C., Macdonald R., 2012. Sources and export fluxes of inorganic and
545	organic carbon and nutrient species from the seasonally ice-covered Yukon River.
546	Biogeochemistry 107, 187–206.
547	Hindshaw, R. S., Teisserenc, R., Le Dantec, T., & Tananaev, N. (2019). Seasonal change of
548	geochemical sources and processes in the Yenisei River: A Sr, Mg and Li isotope
549	study. Geochim. Cosmochim. Acta, 255, 222-236.
550	Holmes R. M., Coe M. T., Fiske G. J., Gurtovaya T., McClelland J. W., Shiklomanov A. I.,
551	Spencer R. G. M., Tank S. E. and Zhulidov A. V., 2013. Climate change impacts on
552	the hydrology and biogeochemistry of Arctic Rivers. In Climatic Changes and Global
553	Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies (eds.
554	C. R. Goldman, M. Kumagi and R. D. Robarts). John Wiley and Sons, pp. 1–26.
555	Holmes, R.M., McClelland, J.W., Peterson, B.J., Tank, S.E., Bulygina, E., Eglinton, T.I.,
556	Gordeev, V.V., Gurtovaya, T.Y., Raymond, P.A., Repeta, D.J., Staples, R., Striegl,
557	R.G., Zhulidov, A.V., Zimov, S.A., 2012. Seasonal and Annual Fluxes of Nutrients
558	and Organic Matter from Large Rivers to the Arctic Ocean and Surrounding Seas.
559	Estuaries Coasts 35, 369-382.
560	Holmes, R.M., McClelland J.W., Tank S.E., Spencer R.G.M., Shiklomanov A.I. (2018) Arctic
561	Great Rivers Observatory. Water Quality Dataset, Version 20180828
562	https://www.arcticgreatrivers.org/data
563	Huang, K.J., Teng, F.Z., Wei, G.J., Ma, J.L., Bao, Z.Y., 2012. Adsorption- and desorption-
564	controlled magnesium isotope fractionation during extreme weathering of basalt in
565	Hainan Island, China. Earth Planet. Sci. Lett. 359, 73-83.

566	Huh Y. and Edmond J. M. (1999) The fluvial geochemistry of the rivers of Eastern Siberia:
567	III. Tributaries of the Lena and Anabar draining the basement terrain of the Siberian
568	Craton and the Trans-Baikal Highlands. Geochim. Cosmochim. Acta 63, 967–987.
569	Huh Y., Chan LH., Zhang L., Edmond J. M., 1998a. Lithium and its isotopes in major world
570	rivers: implications for weathering and the oceanic budget. Geochim. Cosmochim.
571	Acta 62, 2039–2051.
572	Huh Y., Panteleyev G., Babich D., Zaitsev A., Edmond J. M., 1998b. The fluvial
573	geochemistry of the rivers of Eastern Siberia: II. Tributaries of the Lena, Omoloy,
574	Yana, Indigirka, Kolyma, and Anadyr draining collisional/accretionary zone of the
575	Verkhoyansk and Cherskiy ranges. Geochim. Cosmochim. Acta 62, 2053–2075.
576	Ilina S. M., Viers J., Lapitsky S. A., Mialle S., Mavromatis V., Chmeleff J., Brunet P.,
577	Alekhin Y. V., Isnard H. and Pokrovsky O. S. (2013) Stable (Cu, Mg) and radiogenic
578	(Sr, Nd) isotope fractionation in colloids of boreal organic-rich waters. Chem. Geol.
579	342, 63-75.
580	Jones, M.T., Pearce, C.R., Jeandel, C., Gislason, S.R., Eiriksdottir, E.S., Mavromatis, V.,
581	Oelkers, E.H., 2012. Riverine particulate material dissolution as a significant flux of
582	strontium to the oceans. Earth Planet. Sci. Lett. 355–356, 51–59.
583	Jones, M.T., Gislason, S.R., Burton, K.W., Pearce, C.R., Mavromatis, V., von Strandmann,
584	P., Oelkers, E.H., 2014. Quantifying the impact of riverine particulate dissolution in
585	seawater and ocean chemistry. Earth Planet. Sci. Lett. 395, 91–111.
586	Kimmig, S.R., Holmden, C., Bélanger, N., 2018. Biogeochemical cycling of Mg and its
587	isotopes in a sugar maple forest in Québec. Geochim. Cosmochim. Acta 230, 60-82.

588	Liu, X.M., Teng, F.Z., Rudnick, R.L., McDonough, W.F., Cummings, M.L., 2014. Massive
589	magnesium depletion and isotope fractionation in weathered basalts. Geochim.
590	Cosmochim. Acta 135, 336-349.

Mavromatis, V., Gautier, Q., Bosc, O., Schott, J., 2013. Kinetics of Mg partition and Mg
stable isotope fractionation during its incorporation in calcite. Geochim. Cosmochim.
Acta 114, 188-203.

594 Mavromatis V., Immenhauser A., Buhl D., Purgstaller B., Baldermann A. and Dietzel M.

595 2017. Effect of organic ligands on Mg partitioning and Mg isotope fractionation

596 during low temperature precipitation of calcite in the absence of growth rate effects.

597 Geochim. Cosmochim. Acta 207, 139–153.

Mavromatis, V., Meister, P., Oelkers, E.H., 2014a. Using stable Mg isotopes to distinguish
dolomite formation mechanisms: A case study from the Peru Margin. Chem. Geol.
385, 84-91.

601 Mavromatis, V., Pearce, C.R., Shirokova, L.S., Bundeleva, I.A., Pokrovsky, O.S., Benezeth,

P., Oelkers, E.H., 2012. Magnesium isotope fractionation during hydrous magnesium
carbonate precipitation with and without cyanobacteria. Geochim. Cosmochim. Acta
76, 161-174.

Mavromatis, V., Prokushkin, A.S., Pokrovsky, O.S., Viers, J., Korets, M.A., 2014b.

Magnesium isotopes in permafrost-dominated Central Siberian larch forest
watersheds. Geochim. Cosmochim. Acta 147, 76-89.

Mavromatis, V., Rinder, T., Prokushkin, A.S., Pokrovsky, O.S., Korets, M.A., Chmeleff, J.,

609 Oelkers, E.H., 2016. The effect of permafrost, vegetation, and lithology on Mg and Si

610 isotope composition of the Yenisey River and its tributaries at the end of the spring

flood. Geochim. Cosmochim. Acta 191, 32-46.

612	McClelland, J. W., Holmes, R. M., Raymond, P. A., Striegl, R. G., Zhulidov, A. V., Zimov, S.
613	A., Zimov, N., Tank, S. E., Spencer, R.G.M., Staples, R., Gurtovaya, T.Y., Grif, C.G.,
614	2016. Particulate organic carbon and nitrogen export from major Arctic rivers, Global
615	Biogeochem. Cy., 30, 629-643.
616	Opfergelt, S., Burton, K.W., Georg, R.B., West, A.J., Guicharnaud, R.A., Sigfusson, B.,
617	Siebert, C., Gislason, S.R., Halliday, A.N., 2014. Magnesium retention on the soil
618	exchange complex controlling Mg isotope variations in soils, soil solutions and
619	vegetation in volcanic soils, Iceland. Geochim. Cosmochim. Acta 125, 110-130.
620	Opfergelt, S., Georg, R.B., Delvaux, B., Cabidoche, Y.M., Burton, K.W., Halliday, A.N.,
621	2012. Mechanisms of magnesium isotope fractionation in volcanic soil weathering
622	sequences, Guadeloupe. Earth Planet. Sci. Lett. 341–344, 176-185.
623	Palmer, M.R., Edmond, J.M., 1989. The strontium isotope budget of the modern ocean. Earth
624	Planet. Sci. Lett. 92, 11-26.
625	Pearce, C.R., Parkinson, I.J., Gaillardet, J., Charlier, B.L.A., Mokadem, F., Burton, K.W.,
626	2015. Reassessing the stable ($\delta^{88/86}$ Sr) and radiogenic ($^{87/86}$ Sr) strontium isotopic
627	composition of marine inputs. Geochim. Cosmochim. Acta 157, 125-146.
628	Pogge von Strandmann, P.A.E., Burton, K.W., James, R.H., van Calsteren, P., Gislason, S.R.,
629	Sigfusson, B., 2008. The influence of weathering processes on riverine magnesium
630	isotopes in a basaltic terrain. Earth Planet. Sci. Lett. 276, 187-197.
631	Pokrovsky, O.S., Manasypov R.M., Loikoc S.V., Shirokova, L.S., 2016. Organic and organo-
632	mineral colloids in discontinuous permafrost zone. Geochim. Cosmochim. Acta 188,
633	1-20.

634	Pokrovsky, B.G., Mavromatis, V., Pokrovsky, O.S., 2011. Co-variation of Mg and C isotopes
635	in late Precambrian carbonates of the Siberian Platform: A new tool for tracing the
636	change in weathering regime? Chem. Geol. 290, 67-74.

- Pokrovsky, O.S., Reynolds, B.C., Prokushkin, A.S., Schott, J., Viers, J., 2013. Silicon isotope
 variations in Central Siberian rivers during basalt weathering in permafrost-dominated
 larch forests. Chem. Geol. 355, 103-116.
- Pokrovsky, O.S., Schott, J., Dupre, B., 2006. Trace element fractionation and transport in
 boreal rivers and soil porewaters of permafrost-dominated basaltic terrain in Central
 Siberia. Geochim. Cosmochim. Acta 70, 3239-3260.
- Pokrovsky, O.S., Schott, J., Kudryavtzev, D.I., Dupre, B., 2005. Basalt weathering in Central
 Siberia under permafrost conditions. Geochim. Cosmochim. Acta 69, 5659-5680.
- 645 Prokushkin, A.S., Pokrovsky, O.S., Shirokova, L.S., Korets, M.A., Viers, J., Prokushkin,
- 646 S.G., Amon, R.M.W., Guggenberger, G., McDowell, W.H., 2011. Sources and the
- 647 flux pattern of dissolved carbon in rivers of the Yenisey basin draining the Central
 648 Siberian Plateau. Environ. Res. Lett. 6.
- Riechelmann S., Mavromatis V., Buhl D., Dietzel M., Eisenhauer A., Immenhauser A., 2016.
 Impact of diagenetic alteration on brachiopod shell magnesium isotope (δ²⁶Mg)
 signatures: Experimental versus field data. Chem. Geol. 440, 191–206.

652 Riechelmann S., Mavromatis V., Buhl D., Dietzel M., Hoffmann R., Joens N., Kell-

- Duivestein I., Immenhauser A. 2018. Echinoid skeletal carbonate as archive of past
- seawater magnesium isotope signatures Potentials and limits. Geochim. Cosmochim.
- 655 Acta 235, 333–359.

656	Roth, VN., Dittmar T., Gaupp R., Gleixner, R. 2013. Latitude and pH driven trends in the
657	molecular composition of DOM across a north south transect along the Yenisei River.
658	Geochim. Cosmochim. Acta 123: 93–105.
659	Shevchenko V.P., Pokrovsky O.S., Vorobyev S.N., Krickov I.V., Manasypov R.M., Politova
660	N.V., Kopysov S.G., Dara O.M., Auda Y., Shirokova L.S., Kolesnichenko L.G.,
661	Zemtsov V.A., Kirpotin S.N. (2017) Impact of snow deposition on major and trace
662	element concentrations and fluxes in surface waters of Western Siberian Lowland.
663	Hydrology Earth System Sciences, 21, 5725–5746.
664	Shirokova, L.S., Mavromatis, V., Bundeleva, I.A., Pokrovsky, O.S., Benezeth, P., Gerard, E.,
665	Pearce, C.R., Oelkers, E.H., 2013. Using Mg Isotopes to Trace Cyanobacterially
666	Mediated Magnesium Carbonate Precipitation in Alkaline Lakes. Aquat. Geochem.
667	19, 1-24.
668	Tank S. E., Frey K. E., Striegl R. G., Raymond P. A., Holmes R. M., McClelland J.W.,
669	Peterson B. J., 2012. Landscape-level controls on dissolved carbon flux from diverse
670	catchments of the circumboreal. Global Biogeochem. Cycles 26, GB0E02.
671	Teng, F.Z., 2017. Magnesium Isotope Geochemistry, in: Teng, F.Z., Watkins, J., Dauphas, N.
672	(Eds.), Non-Traditional Stable Isotopes. Mineralogical Soc Amer & Geochemical Soc,
673	Chantilly, pp. 219-287.
674	Teng, F.Z., Li, W.Y., Rudnick, R.L., Gardner, L.R., 2010. Contrasting lithium and
675	magnesium isotope fractionation during continental weathering. Earth Planet. Sci.
676	Lett. 300, 63-71.
677	Tipper, E.T., Galy, A., Bickle, M.J., 2008. Calcium and magnesium isotope systematics in
678	rivers draining the Himalaya-Tibetan-Plateau region: Lithological or fractionation
679	control? Geochim. Cosmochim. Acta 72, 1057-1075.

680	Tipper, E.T., Galy, A., Gaillardet, J., Bickle, M.J., Elderfield, H., Carder, E.A., 2006. The
681	magnesium isotope budget of the modem ocean: Constraints from riverine magnesium
682	isotope ratios. Earth Planet. Sci. Lett. 250, 241-253.
683	Tipper, E.T., Lemarchand, E., Hindshaw, R.S., Reynolds, B.C., Bourdon, B., 2012. Seasonal
684	sensitivity of weathering processes: Hints from magnesium isotopes in a glacial
685	stream. Chem. Geol. 313, 80-92.
686	Wadleigh M. A., Veizer J., Brooks C., 1985. Strontium and its isotopes in Canadian rivers:
687	fluxes and global implications. Geochim. Cosmochim. Acta 49, 1727–1736.

Wimpenny, J., Colla, C.A., Yin, Q.-Z., Rustad, J.R., Casey, W.H., 2014. Investigating the
behaviour of Mg isotopes during the formation of clay minerals. Geochim.

690 Cosmochim. Acta 128, 178-194.

- Wimpenny, J., Gislason, S.R., James, R.H., Gannoun, A., Pogge Von Strandmann, P.A.E.,
 Burton, K.W., 2010. The behaviour of Li and Mg isotopes during primary phase
 dissolution and secondary mineral formation in basalt. Geochim. Cosmochim. Acta
 74, 5259-5279.
- Wombacher F., Eisenhauer A., Heuser A., Weyer S., 2009. Separation of Mg, Ca and Fe from
 geological reference materials for stable isotope ratio analyses by MC-ICP-MS and
 double-spike TIMS. J. Anal. At. Spectrom. 24, 627–636.

698

Table 1. List of riverine stations that are illustrated in Fig. 1 together with the basin area of each river as well as the abundances of major rocks in the

702 watershed.

Map ID	River name	Basin Area (km²)	Litholo	gy (%)						MAA T (°C)	Permafrost						
			basalt s	basalts (50%), sedimentar y silicates (50%)	granite s	sedime ntary silicate s	sedimentary silicates (90%), carbonates (10%)	sedimentar y silicates (50%), carbonates (50%)	carbonate s	Othe r		Continuous C (%)	Discontini ous D (%)	Isolated I (%)	Sporadic S (%)	Without permafrost (%)	
1	Angara	1051424	2.6	1.9	19.9	27.5	6.2	7.8	4.6	29.5	-3.3	4	0	33	4	58	
2	Kem'	9014	0.0	0.0	0.0	77.1	0.0	22.9	0.0	0.0	-1.0	0	0	0	0	100	
3	Bolshoy Pit	21598	0.3	0.0	13.6	8.5	74.9	2.0	0.8	0.0	-4.3	0	0	97	0	3	
4	Kiya	3373	0.0	0.0	18.2	8.8	64.6	0.0	4.1	4.3	-3.5						
5	Tis	2713	0.0	0.0	47.6	14.6	37.8	0.0	0.0	0.0	-3.6						
6	Kas	11775	0.0	0.0	0.0	84.1	0.0	15.9	0.0	0.0	-1.8	0	0	0	0	100	
7	Garevka	927	0.0	0.0	99.4	0.6	0.0	0.0	0.0	0.0	-4.0	0	0	81	0	19	
8	Sym	31849	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	-2.5	0	0	64	0	35	
9	Nizhnyaya Surnikha	476366	0.0	0.0	75.3	0.0	23.1	0.0	1.6	0.0	-3.6						
10	Tugulan	1195	0.0	0.0	0.0	97.8	2.1	0.0	0.1	0.0	-2.7						
11	Vorogovka	3758	4.0	0.0	22.5	20.8	45.0	0.0	7.7	0.0	-4.3	0	0	98	0	2	
12	Dubches	15376	0.0	0.0	0.0	99.9	0.1	0.0	0.0	0.0	-3.4	0	0	76	24	0	
13	Podkamennaya Tunguska	238708	12.1	30.1	1.8	33.0	4.1	10.5	8.4	0.0	-6.5	10	16	37	36	0	
14	Bakhta	36177	37.2	3.2	0.0	42.2	5.1	3.2	9.0	0.0	-6.6	0	10	10	79	0	
15	Yeloguy	27143	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	-3.9	0	0	12	88	0	
16	Komsa	1608	12.5	0.0	0.0	31.9	19.3	0.0	36.3	0.0	-4.9	0	0	0	100	0	
17	Sukhaya Tunguska	7165	33.9	0.0	0.0	48.3	0.0	13.1	4.8	0.0	-6.6	0	46	0	54	0	
18	Miroedikha	584	0.0	0.0	0.0	98.4	0.0	0.0	1.6	0.0	-6.5	0	0	0	100	0	
19	Turukhan	35726	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	-6.3	0	85	0	15	0	
20	Nizhnyaya Tunguska	476366	39.8	41.9	0.0	11.8	3.1	0.7	2.7	0.0	-9.2	76	12	2	10	0	

703 Table 2: Sampling date, geographic coordination of the stations, stable Mg and radiogenic Sr composition of riverine waters together with concentrations of Ca,

704 K, Mg, Na, Sr, SO₄, Cl and DIC in μM L⁻¹ and riverine suspended matter (RSM) for samples taken in the 2015 campaigns. The analytical uncertainty of the

⁸⁷Sr/⁸⁶Sr analyses has been estimated as ±0.000011 based on replicate analyses of SRM987 reference material.

Sampling		Sampling	δ²5Mg	2σ	δ ²⁶ Mg	2σ	⁸⁷ Sr/ ⁸⁶ Sr	Са	К	Mg	Na	Sr	SO4	Cl	DIC	RSM (mg/L)	Latitude (°N)	Longtitude
station		date	(‰)		(‰)													(°E)
Summer																		
E001	Tugulan	05/08/15	-0.43	0.01	-0.82	0.10	0.708727	469	18	189	176	0.86	24.79	1.76	305.70	4.13	60.79	89.78
E002	Kem'	03/08/15	-0.46	0.04	-0.90	0.02	0.709449	1382	33	411	360	3.05	9.87	15.23	477.77		58.52	92.08
E003	Turukhan	08/08/15	-0.45	0.04	-0.88	0.08	0.708872	213	6	125	88	0.31	6.68	6.73	231.85	4.58	65.9	87.58
E004	P. Tunguska	06/08/15	-0.64	0.03	-1.24	0.06	0.708998	891	26	492	816	8.01	582.91	255.99	397.94	1.73	61.62	90.18
E005	Kiya	04/08/15					0.713971	226	8	97	67	0.38	2.17	19.61	193.75	1.77	59.16	91.50
E006	Dubches	05/08/15	-0.52	0.05	-1.01	0.05	0.708880	408	11	258	148	0.57	3.48	10.60	279.52	12.75	60.99	89.61
E007	Sukhaya	08/08/15					0.708670	301	5	164	155	0.55	82.88	35.39	203.44	1.43	65.16	88.00
	Tunguska																	
E008	Miroedikha	08/08/15					0.708725	590	4	374	98	0.52	5.89	8.35	387.87	1.58	65.6	88.07
E009	Kas	04/08/15	-0.47	0.02	-0.91	0.01	0.709619	742	20	246	172	1.33	4.15	5.54	356.88	3.80	59.99	90.55
E010	Bakhta	06/08/15	-0.50	0.01	-0.98	0.02	0.708651	560	12	233	180	1.96	72.66	136.57	323.77	1.07	62.48	89.03
E011	Garevka	04/08/15	-0.48	0.02	-0.94	0.02	0.727949	96	10	39	61	0.18	2.64	10.70	119.33		59.85	90.79
E012	N. Tunguska	08/08/15	-0.45	0.04	-0.84	0.04	0.708540	553	14	173	898	1.94	1133.96	79.30	246.39	3.73	65.80	88.09
E013	Elogyi	07/08/15	-0.51	0.04	-0.98	0.02	0.708580	332	10	206	197	0.48	3.66	7.25	383.44	3.87	63.19	87.75
E014	Angara	03/08/15	-0.60	0.02	-1.17	0.01	0.709293	658	28	231	356	1.94	230.02	93.55	311.95	2.12	58.07	93.08
E015	N. Syrnikha	05/08/15					0.711289	461	7	266	42	0.60	3.39	98.57	299.57		60.41	90.13
E016	Sym	05/08/15	-0.39	0.02	-0.78	0.02	0.709603	244	14	106	107	0.50	3.56	7.63	191.29	9.02	60.25	90.05
E017	Bolshoi Pit	03/08/15	-0.63	0.01	-1.21	0.01	0.710689	311	10	135	65	1.36	10.57	57.67	230.11	4.18	59.03	91.73
E018	Vorogovka	05/08/15	-0.78	0.06	-1.49	0.04	0.709919	430	6	221	36	0.67	3.96	31.16	269.03		60.79	89.88
E019	Komsa	07/08/15	-0.61	0.03	-1.17	0.07	0.708735	221	8	147	90	0.51	23.75	62.48	391.51	2.36	63.26	87.72
E020	Tis	04/08/15	-0.72	0.01	-1.38	0.03	0.717517	214	9	133	60	0.32	4.03	24.63	186.49	1.42	59.55	90.92
E021	Yenisey 1	03/08/15					0.708354	482	17	111	111	1.07				2.35	58.02	93.20
E022	Yenisey 2	03/08/15	-0.66	0.03	-1.27	0.03	0.708841	623	24	195	286	1.81					59.00	91.71
E022*			-0.67	0.04	-1.31	0.05												
E023	Yenisey 3	05/08/15					0.708847	594	21	179	202	1.45				2.76	60.29	90.12
E024	Yenisey 5	06/08/15					0.708923	542	20	164	236	1.54				2.08	61.58	90.14
E025	Yenisey 6	06/08/15	-0.70	0.02	-1.31	0.02	0.708969	679	23	242	353	2.81				3.82	62.46	88.97
E026	Yenisey 7	07/08/15					0.708955	634	22	269	395	3.30				2.46	63.25	87.69
E027	Yenisey 8	07/08/15					0.708920	690	23	222	311	2.32				3.40	64.13	87.54
E028	Yenisey 9	05/08/15					0.708939	640	23	240	334	2.45				3.97	65.77	87.99
E029	Yenisey 10	09/08/15	-0.58	0.01	-1.13	0.01	0.709870	637	20	243	462	2.64				5.35	66.46	87.23
Spring																		
E030	Sym	27/05/15					0.711693	46	16	20	25	0.11	1.02	8.96	11.75	29.36	60.25	90.05
E031	Kas	26/05/15					0.709652	117	20	40	34	0.28	3.02	13.49	33.93	23.48	59.99	90.55
E032	Komsa	29/05/15					0.708730	85	5	51	23	0.16	2.94	8.59	40.49		63.26	87.72
E033	Kem'	25/05/15	-0.44	0.07	-0.88	0.04	0.709598	587	33	185	167	1.33	8.13	22.31	253.93		58.52	92.08

Sampling		Sampling	δ²⁵Mg	2σ	δ ²⁶ Mg	2σ	⁸⁷ Sr/ ⁸⁶ Sr	Са	К	Mg	Na	Sr	SO ₄	CI	DIC	RSM (mg/L)	Latitude (°N)	Longtitude
station		date	(‰)		(‰)													(°E)
E034	Garevka	26/05/15					0.726515	34	9	15	29	0.08	2.77	13.72	15.29		59.85	90.79
E035	Turukhan	30/05/15	-0.52	0.05	-1.01	0.03	0.709028	159	15	82	71	0.42	24.99	21.79	105.25	7.85	65.90	87.58
E036	Kiya	26/05/15					0.717154	71	7	27	28	0.13	1.56	15.29	50.82	7.21	59.16	91.50
E037	Angara	26/05/15	-0.58	0.02	-1.13	0.03	0.708962	461	26	189	348	1.59	217.29	91.86	191.31	6.83	58.07	93.08
E038	P. Tunguska	28/05/15	-0.52	0.03	-0.99	0.07	0.709117	147	15	74	55	0.68	22.72	27.23	77.38	9.65	61.62	90.18
E038*			-0.50	0.04	-1.00	0.05												
E039	N. Syrnikha	27/05/15						158	8	92	22	0.20	1.67	32.63	94.26		60.41	90.13
E040	Bolshoi Pit	26/05/15					0.713730	103	6	43	29	0.26	3.42	24.58	55.74	16.56	59.03	91.73
E041	Tis	26/05/15					0.720764	63	7	34	29	0.10	3.28	16.01	37.54	7.53	59.55	90.92
E042	Sukhaya	30/05/15					0.708653	89	6	52	38	0.15	18.93	11.08	50.00		65.16	88.00
	Tunguska																	
E043	Elogyi	29/05/15					0.708854	89	13	48	36	0.19	3.13	7.50	50.98	17.22	63.19	87.75
E044	Dubches	27/05/15					0.709093	83	14	47	33	0.15	1.95	8.64	39.51	34.65	60.99	89.61
E045	Vorogovka	27/05/15	-0.75	0.02	-1.42	0.06	0.710019	190	6	88	22	0.31	3.63	18.63	94.26		60.79	89.88
E046	N. Tunguska	30/05/15	-0.36	0.05	-0.70	0.12	0.708534	140	7	51	136	0.42	101.74	14.61	48.20	13.67	65.8	88.09
E047	Yenisey 1	25/05/15					0.708400	366	18	134	116	1.03				4.12	58.02	93.20
E048	Yenisey 2	26/05/15					0.709004	426	23	168	228	1.42					59.00	91.71
E049	Yenisey 3	27/05/15					0.713280	94	8	41	42	0.22				14.91	60.29	90.12
E050	Yenisey 4	27/05/15					0.708991	269	20	92	105	0.77				10.9	60.91	89.69
E051	Yenisey 6	28/05/15					0.709236	209	12	91	78	0.77					62.46	88.97
E052	Yenisey 7	29/05/15					0.709219	191	11	86	71	0.70				13.58	63.25	87.69
E053	Yenisey 8	29/05/15					0.709178	168	10	76	61	0.61				13.12	64.13	87.54
E054	Yenisey 10	30/05/15	-0.58	0.02	-1.13	0.02	0.709014	147	9	66	71	0.47					66.46	87.23
E054*			-0.55	0.04	-1.09	0.05												
Winter																		
Yenisey	Yenisey	02/03/15					0.708947	233	12	97	128	0.79					67.42	86.52
IGARKA	Igarka																	
J137	N. Tunguska	11/03/15	-0.44	0.01	-0.85	0.03	0.708722	411	14	170	119	0.76	762.43	2065.84	348.09		65.8	88.09
J138	Khoiba	10/03/15	-0.49	0.03	-0.95	0.05		213	14	108	131	0.47	1.39	3.76	70.01		60.91	89.51
J139	Devyatikha	11/03/15					0.710011	439	19	174	199	0.98	3.19	8.65	301.05		59.63	90.82
J140	Tankov	11/03/15					0.708671	305	12	123	47	0.56	2.43	6.59	93.55		60.70	89.97
J141	Chistoklet	12/03/15						624	17	185	166	1.14	3.46	9.37	342.16		59.39	91.11
J142	Turukhan	13/05/15					0.709781	970	25	349	329	2.16					65.9	87.58
J143	Isakova	11/03/15					0.713276	726	15	384	82	0.80	3.82	10.34	194.61		60.25	90.31
J144	Tugulan	05/03/15	-0.43	0.06	-0.84	0.08	0.719447	443	17	193	170	0.90	7.24	19.61	156.17		60.79	89.78
J145	Kas	28/01/15					0.709621	856	18	251	176	1.47					59.99	90.55
J146	Podbel	10/03/15					0.708880	421	10	179	108	0.67	1.23	3.34	135.25		61.18	89.46
J147	Kas	11/03/15	-0.47	0.02	-0.93	0.03	0.709612	859	18	253	169	1.49	4.28	11.60	220.13		59.99	90.55
J148	P. Tunguska	09/03/15	-0.63	0.03	-1.21	0.02	0.708969	1321	31	655	1159	16.22	459.71	1245.60	298.70		61.62	90.18
J149	Sym	28/01/15					0.709538	336	16	146	132	0.72					60.25	90.05
	Yenisey at	13/03/15	-0.54	0.05	-1.05	0.06	0.708613	714	23	187	226	1.69					59.00	91.42
J150	Ust-Pit																	

Sampling		Sampling	δ ²⁵ Mg	2σ	δ ²⁶ Mg	2σ	⁸⁷ Sr/ ⁸⁶ Sr	Са	к	Mg	Na	Sr	SO ₄	CI	DIC	RSM (mg/L)	Latitude (°N)	Longtitude
station		date	(‰)		(‱)													(°E)
J151	Кіуа	13/03/15	-0.68	0.04	-1.31	0.04	0.713038	305	10	148	74	0.57	1.73	4.68	231.47		59.16	91.5
J152	Khakhalevka	09/03/15					0.708823	1081	16	638	265	1.39	2.36	6.40	336.55		61.35	89.57
J153	Verkhnayaya	11/03/15					0.708883	223	13	120	140	0.51	3.77	10.23	80.91		60.47	89.98
J154	Razvilki	10/03/15						48	12	26	49	0.14	1.35	3.66	9.44		60.85	89.44
J155	B. Pit	13/03/15	-0.70	0.01	-1.35	0.03	0.710101	611	12	257	79	3.71	8.59	23.27	202.73		59.03	91.73
J156	Sovinskaya	12/03/15					0.709359	1500	25	437	310	3.37	1.88	5.11	341.05		59.16	91.40
J157	Tis	12/03/15	-0.79	0.03	-1.51	0.08		271	12	188	71	0.48	4.74	12.85	92.71		59.55	90.92
	Yenisey at	07/03/15	-0.49	0.03	-0.95	0.03	0.708995	499	18	170	155	1.12					60.54	89.41
J158	Zotino																	
J159	Vorogovka	07/03/15	-0.79	0.02	-1.53	0.05	0.709774	719	13	424	52	1.23	3.13	8.49	239.04		60.79	89.88
J160	Dubches	10/03/15	-0.62	0.01	-1.19	0.05	0.708902	611	14	321	185	0.80	2.19	5.93	200.76		60.99	89.61
J161	Garevka	11/03/15	-0.55	0.02	-1.05	0.04		123	14	51	75	0.21	1.50	4.07	165.89		59.85	90.79
	Yenisey at	13/04/15	-0.70	0.04	-1.36	0.04	0.708914	846	26	323	475	4.84					65.36	88.04
J162	Turukhnask																	
J163	Sym	12/03/15	-0.55	0.06	-1.05	0.10	0.709551	401	18	173	148	0.87	2.48	6.73	132.97		60.25	90.05
J164	Turukhan	13/04/15	-0.61	0.03	-1.17	0.04	0.708835	944	32	186	1268	4.40	50.33	136.38	348.09		65.90	87.58
J165	Pucheglazikha	12/03/15					0.709713	1263	22	371	309	2.39	2.38	6.46	337.86		59.35	91.17
J166	N. Surnikha	11/03/15					0.710521	676	12	361	48	0.88	1.67	4.53	172.76		60.41	90.13
<u>Reference</u>																		
materials**																		
DSM3 (70)			0.00	0.05	0.00	0.08												
CAM-1 (15)			-1.35	0.04	-2.65	0.07												
OUMg (15)			-1.43	0.08	-2.82	0.06												
IAPSO (6)			-0.42	0.04	-0.82	0.06												
JDo-1 (6)			-1.22	0.05	-2.39	0.08												

706 *Denotes full procedural analyses of duplicate samples

^{**} The number in parenthesis denotes number of replicates of each reference material.