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Abstract: We study the application of Optimal Control Theory to Ion Cyclotron Resonance. We test1

the validity and the efficiency of this approach for the robust excitation of an ensemble of ions with a2

wide range of cyclotron frequencies. Optimal analytical solutions are derived in the case without any3

pulse constraint. A gradient-based numerical optimization algorithm is proposed to take into account4

limitation in the control intensity. The efficiency of optimal pulses is investigated as a function of5

control time, maximum amplitude and range of excited frequencies. A comparison with adiabatic6

and SWIFT pulses is done. On the basis of recent results in Nuclear Magnetic Resonance, this study7

highlights the potential usefulness of optimal control in Ion Cyclotron Resonance.8
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1. Introduction10

Performing efficient and robust state control by means of external time-dependent system11

parameter is a fundamental challenge in many technological developments at macroscopic or12

microscopic scale [1–4]. In this latter case, open-loop control protocol, i.e. without any real time13

feedback from the experiment during the control process, is generally used for practical and technical14

reasons. The controls are only designed from a modeling of the system dynamics and the efficiency15

of the control scenario may suffer from the accuracy of the theoretical description. The robustness of16

a control process with respect to experimental imperfections is therefore a key parameter in view of17

experimental implementation. Different techniques extending from adiabatic pulses to optimal control18

theory (OCT) have been developed in this open-loop framework to find the pulse parameters [1,3,5–7].19

Optimal control tackles the question of bringing a dynamical system from one state to another with20

minimum expenditure of time and resources [1–4]. The modern version of OCT was born in the sixties21

with the Pontryagin Maximum Principle (PMP), which provides a general and rigorous mathematical22

framework for optimal control techniques [8–12]. OCT has become nowadays a key tool in many23

different domains extending from space dynamics to robotics or quantum mechanics [1,3,10]. Optimal24

process is defined from a cost functional (to minimize) which can depend on the state of the system25

and the control field. For systems with complex dynamics and optimization targets which are difficult26

to reach, it is necessary to use optimal control algorithms converging iteratively towards the optimal27
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solution. The flexibility of this approach makes it possible to adapt this tool to any experimental28

situation. Generally, it is possible to include constraints in the algorithms to account for requirements29

related to a specific material or device [1,3]. The only relative limitation concerns the accuracy of the30

modeling, even if robustness can be improved by controlling simultaneously an ensemble of systems31

which differ by the values of one or several constant parameters [13–16]. OCT has been applied32

to quantum systems first in the context of physical chemistry to steer chemical reactions or control33

specific degrees of freedom [5,17], followed by control of spin dynamics [18,19] for applications in34

Nuclear Magnetic Resonance (NMR) [14,16,20–24] and Magnetic Resonance Imaging [25–28]. It has35

become a key tool in this domain to improve the efficiency and the sensitivity of standard experimental36

setups [3]. In NMR and quantum physics, a well-known optimization method is GRAPE [29], which37

is a gradient-based algorithm [1]. This approach has demonstrated its efficiency in many different38

contexts.39

Fourier-Transform Ion Cyclotron Resonance (ICR) Mass Spectrometry [30,31] is a type of mass40

spectrometry based on cyclotron frequency of ions in a fixed magnetic field [32–34]. Ions are excited41

at their resonant cyclotron frequencies to larger cyclotron radii by an electric field orthogonal to the42

magnetic field. After the excitation pulse, the ions rotate freely with a frequency characteristic of43

their mass. The image current induced by the ions on a pair of electrodes is detected. The Fourier44

transform of the resulting transient signal leads to the mass spectrum after a proper calibration. In a45

homogeneous magnetic field, ICR allows to access the highest resolution available in mass spectrometry,46

while leading to extreme sensitivities. This spectrometry has experienced a recent renewal based on47

several methodological improvements and the search for very high resolutions, which are required48

to study complex biological or environmental mixtures. Several techniques developed and used in49

ICR has been inspired by equivalent approaches in NMR. An example is given by two-dimensional50

ICR [35–40] which was proposed in analogy to two-dimensional NMR spectroscopy [18,19]. Following51

this fruitful approach and given the success and efficiency of optimal control techniques in NMR, a52

question which naturally arises is the application of this method in ICR. This paper aims at taking a53

step toward the answer to this open issue. ICR Mass Spectrometry can provide very high resolution54

mass spectra over a large range of mass to charge ratio. In the ICR experiment, ions are initially at rest55

in the centre of the trap, and have to be excited in order to generate a resonant signal which can cover,56

in broad band experiments, frequencies from a few tens of kHz for high m/z up to 1 MHz or higher57

for the fastest species. However, this implies that all ions have to be excited over this frequency range58

in an even and controlled manner.59

We explore in this study how optimal control can be used to design efficient and robust excitation60

pulses in ICR. To the best of our knowledge, this has never been studied yet. Due to the wide61

bandwidth of ICR signal, excitation pulses are usually simple chirped adiabatic pulses with a frequency62

sweep. Some variations have been proposed such as off-resonance monochromatic pulses for selective63

excitation of given ions. Based on the linearity of ion dynamics, it has also been proposed to64

generate pulses by Fourier synthesis from a given excitation profile, in an approach called SWIFT (for65

Stored-waveform Inverse Fourier Transform) [41–43]. Optimal control is expected to allow a much66

wider range of possibilities such as the control of trajectory for given initial and final positions of the67

ion packet and for a given range of frequencies. In order to evaluate the contribution of OCT in ICR,68

we consider in this study the simplest modelling which is experimentally relevant. The experiment69

is considered in a simplified environment, with a uniform magnetic field and a time-dependent70

homogeneous electric field oriented along a single axis orthogonal to the magnetic field and with no71

static component. This geometry is unrealistic, as there is no trapping potential, but allows to consider72

the dynamics of the ions restricted to a plane with a pure cyclotron trajectory and a zero magnetron73

component. The time-dependent electric field aims at exciting in a robust manner an ensemble of74

different ions from the centre of the cell to a final position which depends in a controlled way of the75

ion frequency. The linearity of ion dynamics simplifies drastically the derivation of the optimal control76

law [9,44,45]. If there is no constraint on the intensity of the electric field, linear quadratic optimal77
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control theory (LQOCT) can be applied. Many mathematical results have been established in this78

case [9,47] and the optimal solution can be derived analytically. When constraints are accounted for,79

a numerical algorithm has to be used to solve the optimal equations. Note that very few studies80

have solved optimal control problems of linear systems at the microscopic scale [46–49,53]. ICR is an81

interesting example, relevant experimentally, to stimulate further work in this direction.82

The remainder of this paper is organized as follows. The formulation of the control problem and83

the description of the model system are outlined in Sec. 2. After a brief introduction to the principles of84

OCT, we apply OCT to ICR in Sec. 3. We describe the optimal control algorithm which allows to take85

into account experimental constraints on the control field. Numerical results in different experimental86

situations are given in Sec. 4. A comparison is made with the adiabatic and the SWIFT approaches.87

We conclude in Sec. 5 with an outlook and future perspectives. The Rotating Wave Approximation is88

discussed in Appendix A. Technical details about the adiabatic and SWIFT techniques are presented89

respectively in Appendices B and C. The application of LQOCT is described in Appendix D.90

2. Formulation of the control problem91

2.1. The model system92

We consider the simplest modeling of ion trajectories in ICR. The different ions in the experimental
cell are confined in the (x, y)- plane and are subjected to a constant magnetic field ~B and a
time-dependent electric field ~E respectively along the z- and x- axes of the laboratory frame. Note
that optimal control techniques can also be used if two control fields along the x- and y- directions are
available. The dynamics are governed by the Lorentz’s equation:

mk~̇vk = qk~E + qk(~vk × ~B), (1)

where mk, qk and ~vk are the mass, charge and speed of the ion k. ~̇vk denotes the time derivative of ~vk.
Equation (1) can be expressed as: 

ẋk = vxk

ẏk = vyk

v̇xk = ωk(ex + vyk )

v̇yk = −ωkvxk .

(2)

with the cyclotron frequency ωk =
qk B
mk

and~e = ~E/B. The coordinates (xk, yk) and (vxk , vyk ) describe93

respectively the position and the speed of the ion k in the (x, y)- plane. We assume that the frequency94

ωk belongs to the interval [ωmin, ωmax] which is defined by the ion packet under study. As described95

below, the aim of the control process is to excite the different ions in a robust way with respect to the96

parameter ω.97

The control problem can be defined as follows. Starting from the center of the cell (xk = 0, yk = 0)98

with a zero speed (vxk = 0, vyk = 0), the goal is to reach at a fixed control time t f a given radius r f99

and phase ϕ f . As an illustrative example, we will force the phase to vary linearly with ω, contrary to100

the standard result obtained with chirp pulses, where a quadratic phase dependence is observed (see101

Appendix B for details). We denote respectively by rk(t) and ϕk(t) the radius and the phase of ion k at102

time t. We assume in a first step that there is no constraint on the electric field. A limitation on the103

maximum pulse intensity is accounted for in Sec. 3.2.104

To simplify the notations, we omit below the index k. Using Eq. (2), it is straightforward to show
that Ω = ωx + vy is a constant of motion. At t = 0, since x(0) = 0 and vy(0) = 0, we deduce that
Ω = 0 so vy(t) = −ωx(t). One of the two coordinates vy(t) or x(t) can be eliminated. This also means
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that we cannot control simultaneously the position and the speed of the ion with only one control. We
arrive at: 

ẏ = vy

v̇y = −ω2Vx

V̇x = vy + ex

where Vx = vx/ω. We introduce the vector X = (y, vy, Vx) whose dynamics are governed by:

Ẋ = AX + Cex, (3)

with

A =

0 1 0
0 0 −ω2

0 1 0

 , C =

0
0
1


The dynamics of this linear system can be explicitly integrated as follows. The eigenvalues of A are
(0, iω,−iω) and the corresponding eigenvectors can be written as:

X0 =

1
0
0

 , X+ =

 1
iω
1

 , X− =

 1
−iω

1


At time t f , the state of the system is given by:

X(t f ) =
∫ t f

0
eA(t f−s)Cex(s)ds.

We have:
eAt = PeDtP−1,

where D = diag(1, iω,−iω) and

P =

1 1 1
0 iω −iω
0 1 1

 , P−1 =

1 0 −1
0 −0.5i/ω 0.5
0 0.5i/ω 0.5


We deduce that:

eAt =

1 sin(ωt)/ω −1 + cos(ωt)
0 cos(ωt) −ω sin(ωt)
0 sin(ωt)/ω cos(ωt)


and

X(t f ) =
∫ t f

0
dsex(s)

−1 + cos[ω(t f − s)]
−ω sin[ω(t f − s)]

cos[ω(t f − s)]

 (4)

2.2. The Rotating Wave Approximation105

The oscillating excitation field ex applied only along the x- axis can be expressed as the sum of106

two rotating fields, one in the same direction as the ions and the other in the opposite direction. We107

introduce the Rotating Wave Approximation (RWA) which assumes that the field rotating in opposite108

direction to the ions has a negligible effect on their trajectories. This approximation is verified if the109

range of frequencies around the central frequency ωo is not too large, as discussed in Appendix A.110

Note that RWA is a standard tool in NMR [19,50,51] where it is derived in a similar but different way111

due to the non-linearity of the system [52]. In particular for ICR, this approximation does not depend112
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on the amplitude of the excitation. Using RWA, we show below that the control of ions is equivalent to113

the control of an ensemble of springs of different frequencies [47,53].114

The derivation starts with the control of speeds which fulfill:{
v̇xk = ωkvyk + ωkex

v̇yk = −ωkvxk

In complex coordinates, we have:
v̇k = −iωkvk + ωkex(t), (5)

where vk = vxk + ivyk. We consider that ωk ∈ [ω0 − δω, ω0 + δω] where ω0 is the carrier frequency
of the electric field, ex(t) = e0(t) cos(ω0t + φ(t)), and δω is small compared to ω0. We also assume
that the amplitude e0(t) and the phase φ(t) vary slowly in time with respect to the frequency ω0. We
express the speed as: vk = ṽke−iω0t, where ṽk is the complex speed in the frame rotating at frequency
ω0. We deduce that:

˙̃vk = −i∆ωkṽk + ωk
e0

2
(e−iφ + e2iω0t+iφ),

where ∆ωk = ωk − ω0 is the detuning term. In the RWA, we neglect the rapidly oscillating term
exp(2iω0t) and we arrive at:

˙̃vk ' −i∆ωkṽk + ωk
e0

2
e−iφ. (6)

It is worth noting here that in the rotating frame, the dynamics are driven by two control parameters,115

e0 cos φ and e0 sin φ.116

Note that we recover here the control of an ensemble of springs. An additional step can be done
for the position of the ion k, xk = xk + iyk. We set xk = x̃ke−iω0t. It is then straightforward to show that:

˙̃xk − iω0x̃k = ṽk(t)

Since x̃k varies slowly with respect to eiω0t, we can neglect the time derivative ˙̃xk, which gives:

x̃k =
i

ω0
ṽk(t).

If the RWA is valid, we deduce that the speed control leads also to the control of the position of ions.117

3. Optimal Control Theory118

3.1. A short introduction to optimal control theory119

We briefly introduce in this section the tools of optimal control theory used in this study. In order
to keep the introduction as accessible as possible, some mathematical details are not specified. We refer
the interested reader to the specialized literature on the subject [1,2,9,12]. We consider a control system
described by the following differential equation:

q̇(t) = f (q(t), u(t)),

where q(t) ∈ Rn is the state of the system at time t, f a smooth function and u(t) ∈ R the control law.
We assume here that there is no constraint on the control amplitude. The goal of a control problem is
to bring the state of the system from the initial state q(0) = q0 as close as possible to a target state q f
in a time t f while minimizing a given cost functional J . For a distance to the target state defined by
||q(t f )− q f ||, a standard functional is:

J =
1
2
||q(t f )− q f ||2 + λ

∫ t f

0
u(t)2dt,
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where λ is a positive constant which expresses the relative weight between the distance to the target
state and the second term, which can be interpreted as the energy of the control. We formulate the
optimal control from the Pontryagin Maximum Principle (PMP) which gives necessary conditions for
a control solution to be optimal [2,4,8,10]. We introduce the Pontryagin Hamiltonian HP (the index P
corresponds to Pontryagin) as:

HP = p(t) · f (q(t), u(t))− λu(t)2

2
,

where p(t) ∈ Rn is the adjoint state. This state plays qualitatively the role of a Lagrange multiplier for
the optimization problem [9,12]. The state and the adjoint states of the dynamics fulfill the Hamilton’s
equation: q̇ = ∂HP

∂p = f (q, u)

ṗ = − ∂HP
∂q = −p · ∂ f (q,u)

∂q

with the following initial and final conditions q(0) = 0 and p(t f ) = − ∂J
∂q(t f )

= q f − q(t f ), while the

optimal control u∗ is given by ∂Hp
∂u = 0, i.e.

u∗ =
p
λ
· ∂ f (q, u∗)

∂u
.

In the non-linear case, these conditions can be solved only for simple low-dimensional systems [4,10,24]120

and numerical algorithms are used for more complex dynamics [1,29,54]. For linear systems, the121

optimal solutions can be derived explicitly if there is no additional constraint on the control field. This122

approach is known in the literature as Linear Quadratic Optimal Control [2,9,47] and is applied to ICR123

in Appendix D. When experimental limitations such as maximum pulse intensity are accounted for in124

the numerical optimization process, the control problem becomes non-linear and the optimal control125

law is derived numerically from iterative algorithms, which are described in Sec. 3.2.126

3.2. Optimal gradient-based algorithm127

The goal of this section is to develop a first-order gradient-based algorithm suited to this control128

problem [1]. We use a numerical optimization algorithm in order to take into account field amplitude129

constraint of the form |ex(t)| ≤ emax. This limitation makes the control problem non-linear and this130

latter cannot be solved analytically any more. Note that this algorithm can be seen as the counterpart131

of the GRAPE algorithm in NMR [29] and that other limitations such as spectral constraints could be132

added [55]. For question of numerical stability, we apply the algorithm in the system with the RWA133

and then we use the derived control law in the original dynamical system.134

We start from the differential system (6) written in the rotating frame for the ion k as:{
˙̃v(k)x = ∆ωk ṽ(k)y + ux

˙̃v(k)y = −∆ωk ṽ(k)x + uy

where ux = ω0
2 e0 cos φ and uy = −ω0

2 e0 sin φ. The two controls satisfy the limitation ux(t)2 + uy(t)2 ≤
u2

max with umax = ω0
2 emax. The corresponding target state is (ṽ(k)x f , ṽ(k)y f ). We consider a cost functional

J with no penalty on the control field defined as:

J =
1
2 ∑

k
[(ṽ(k)x f − ṽ(k)x (t f ))

2 + (ṽ(k)y f − ṽ(k)y (t f ))
2]. (7)
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The Pontryagin Hamiltonian can be expressed as:

HP = ∑
k
[∆ωk(p(k)y ṽ(k)x − p(k)x ṽ(k)y ) + ux p(k)x + uy p(k)y ].

The adjoint states fulfill the following relations:{
ṗ(k)x = −∆ωk p(k)y

ṗ(k)y = ∆ωk p(k)x .
(8)

and the gradients are given by:

∂HP
∂ux

= ∑
k

p(k)x ,
∂HP
∂uy

= ∑
k

p(k)y

The correction to the control fields δux(t) and δuy(t) at each step of the algorithm is proportional to
these gradients [1]. The final adjoint states can be expressed as:p(k)x (t f ) = (ṽ(k)x f − ṽ(k)x (t f ))

p(k)y (t f ) = (ṽ(k)y f − ṽ(k)y (t f )).

and Eq. (8) can be directly integrated backward in time. We thus consider the following gradient-based135

algorithm.136

1. Choose guess fields ux(t) and uy(t).137

2. Propagate forward the state of every ion k and compute (v(k)x (t f ), v(k)y (t f )).138

3. Propagate backward the adjoint state of the system from Eq. (8).139

4. Compute the corrections δux(t) and δuy(t) to the control fields, δux(t) = ε ∑k p(k)x , δuy(t) =140

ε ∑k p(k)y where ε is a small positive constant.141

5. Define the new control fields ux(t) 7→ ux(t) + δux(t) uy(t) 7→ uy(t) + δuy(t).142

6. Truncate the new control fields ux(t) and uy(t) to satisfy the constraint
√

ux(t)2 + uy(t)2 ≤ umax:

ux(t) 7→
ux(t)umax√

ux(t)2 + uy(t)2
, uy(t) 7→

uy(t)umax√
ux(t)2 + uy(t)2

.

7. Go to step 2 until a given accuracy is reached.143

Similar algorithms are used in NMR for taking into account pulse constraints [14–16]. The efficiency144

of such algorithms has been shown in different domains. The use of a gradient causes this type of145

algorithm to converge towards a local maximum of the optimization problem. Numerical simulations146

with different guess fields allow to partly overcome this limitation, even if the global maximum is not147

reached with certainty. The efficiency of this algorithm in ICR is illustrated numerically in Sec. 4.148

4. Numerical results149

We present numerical results obtained either with LQOCT (see Appendix D for details) or with
the gradient-based algorithm. A comparison with the SWIFT approach described in Appendix C is
also done. Different experimental constraints have to be satisfied by the control pulse. The objective is
to excite ions in a wide range of frequencies around a central frequency of the order of 500 kHz. The
excitation has to be as uniform as possible in radius and phase in the range [ fmin, fmax] and close to
zero outside. As a benchmark example, we choose in this section to consider the interval [400,600] kHz.
Using the linearity of the dynamics, these results can be transposed to another range of frequencies by
a scaling of the excitation pulse duration and of the pulse amplitude. For instance, if the total process
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time is increased by a factor α, then the range of frequencies and the amplitude of the electric field are
divided by the same parameter α. The description of the optimal control of this infinite dimensional
dynamical system is mathematically quite intricate, even if some results can be established [47,49].
For practical and numerical reasons, it is more convenient to consider a finite set of N systems by
discretizing the frequency interval. We thus consider the simultaneous control of each element of this
set. In this paper, we consider a regular discretization, but other choices could be possible, and the
frequency step is chosen small enough to avoid the discretization effect. Note that the same approach
is used in NMR to control a spin ensemble [14–16]. The required sharp excitation profile is modeled by
the following function:

r( f ) =
r0

2
[tanh(µ( f − fmin)) + tanh(µ( fmax − f ))],

where µ is a free parameter allowing to adjust the slope of the excitation gate. In the numerical150

simulations, µ is fixed to 0.1. We impose that the final radius is r f = 5 cm and a final phase varying151

linearly with the frequency, with a maximum variation of the order of 1o/1 Hz, which corresponds to152

17.45 rad/kHz. The final phase ϕ
(k)
f of the ion k is expressed as ϕ

(k)
f = −aωkt f , where a is a parameter153

characterizing the slope of the angular variation. The magnetic field is set to 7 T and the maximum154

electric field amplitude that can be generated is of the order of 103 V.m−1. The control time can be very155

long, of the order of few hundred ms, but more stable numerical results were achieved for duration of156

the order of few ms.157

We first present in Fig. 1 a series of simulations without limitation on the field intensity. The158

excitation pulse duration is chosen to be equal to 1 ms. The electric field is computed from a set of the159

order of 500 frequencies regularly spaced in the interval under study. Since the derived solutions are160

very sharp, this duration can be modified to some extent without changing the control pulse. Figure 1161

compares the results achieved by LQOCT and by the SWIFT approach. The optimal solutions can be162

computed by using or not the RWA. Note that the pulse computed in the RWA is then applied without163

any approximation to the original system. In the case displayed in Fig. 1, very similar efficiencies are164

obtained for the two optimal excitations. The optimal pulses are very similar to the SWIFT solution,165

even if the analytical expressions of the pulses are different. This point is not so surprising since166

for a linear system and a continuous range of frequencies, the control field is expected to be unique.167

This statement can be rigorously shown in the case of an ensemble of springs under some specific168

mathematical assumptions [47,49]. However, the optimal control method offers greater flexibility since169

one can play with different parameters such as the cost functional or the number of discrete frequencies170

to adjust the final result. We study in Fig. 2 the role of the phase slope of the excitation profile on the171

structure of the pulse. Figure 2 shows that this slope changes the position of the peak of the pulse. This172

position can be deduced from a Fourier transform of the profile. Very good results have been obtained173

for slopes in the range [0.05,0.95] with a maximum pulse amplitude almost constant. Pulse distortion174

appears when the slope parameter a is close to 0 or 1. For a = 0, it becomes very difficult to control all175

the ions which have to reach a fixed target state in a space-fixed frame, independently of their own176

frequency. Note that similar results were achieved in NMR [56,57], which highlights the similarities177

between the control of the two dynamics.178

We now focus on ion control with amplitude constraint. The numerical simulations have been179

carried out by assuming the RWA. The same set of discretized frequencies is chosen. We optimize180

piecewise constant functions with a time step lower than 1 µs to avoid discretization effect. The181

dynamics are integrated numerically through the formulas given in Sec. 2. More than 1000 iterations182

are usually needed to converge to an efficient solution. In a first step, we apply the gradient-based183

algorithm described in Sec. 3.2 with only one control field, namely E0(t) = e0(t)B and the phase184

φ(t) of the electric field is set to 0. We consider the same control problem as before and the optimal185

solutions derived above are used as guess field for the optimization algorithm. Figure 3 displays the186

best result achieved with this limitation. The maximum field amplitude can be reduced from 130 to187
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Figure 1. Comparison between the optimal and the SWIFT approaches for the robust control of an
ensemble of ions in the frequency range [400, 600] kHz. The small insert is a zoom of the profile around
the frequency f = 600 kHz. Panels (a) and (e) display the evolution of the final radius and phase as a
function of f . The black, blue (dark gray) and red (light gray) solid lines depict respectively the optimal
solutions computed without and with the RWA and the SWIFT pulse. The SWIFT and optimal control
laws are plotted in panels (b), (c) (optimal without RWA) and (d) (optimal with RWA). The number of
discretized frequency points is set to 601 in the optimization process in the range [350, 650] kHz.

100 V.m−1, while maintaining an almost ideal excitation profile. This reduction was made possible188

by a distribution of the energy along the control interval. Outside of t ' 0.5 ms, the amplitude of the189

optimized field is much larger than the one of the guess pulse. As a comparison, Fig. 3 also presents190

the profile obtained from the optimal pulse whose amplitude has been arbitrarily limited to 100 V.m−1,191

showing the non-trivial transformation made by the algorithm.192

The optimization algorithm fails to converge towards a very good excitation profile, when the193

maximum amplitude is much smaller than 100 V.m−1. This obstacle can be partly overcome by194
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Figure 2. Same as Fig. 1 but for different slopes of the excitation profile. The parameter a is fixed
respectively to 0.25 and 0.75 in panels (a) and (b).
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Figure 3. Panel (a) displays the final radius r as a function of the frequency f . The black, blue (dark
gray) and red (light gray) curves represent respectively the ideal profile, the one obtained with the
optimization algorithm and the one corresponding to a pulse whose amplitude has been abruptly
limited (see the text for details). The amplitude E0 in the rotating frame of the optimal fields with (black
curve) and without (red or light gray curve) constraints are depicted in panel (b).

considering in a second step two control fields (in the rotating frame) denoted E0x = e0B cos φ and195

E0y = e0B sin φ. An example is displayed in Fig. 4 for a maximum amplitude of 100 and 50 V.m−1. An196

almost perfect excitation profile is achieved in these two cases. Note the different structures of the197

fields along the x- and y- directions, namely even and odd functions. This observation was also made198

in some optimal control problems in NMR [16].199

A systematic analysis of the efficiency of the optimized control fields with respect to the maximum200

pulse amplitude and to the control duration is provided in Fig. 5. The efficiency of the control process201

is measured from the cost functional J given in Eq. (7). As could be expected, we observe that better202

results are achieved for larger maximum amplitude and control time. However, the final fidelity varies203

in a quite complex way with the control time. A saturation is observed for times of the order of few204

ms. It is not clear if this point is due to an intrinsic limitation of the control protocol or to convergence205

problems of the algorithm. Further investigations are needed to clarify this issue.206

5. Conclusions207

We have applied optimal control techniques to the robust excitation of ions in ICR. We have208

considered the simplified but realistic conditions of a two-dimensional trajectory and of a homogeneous209

magnetic field. In this model system, we propose different ways to solve the optimal control problems.210

Such methods are directly inspired from NMR in which OCT is a standard and efficient tool. In the211
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Figure 4. Plot of the optimal amplitudes E0x (blue or dark gray) and E0y (red or light gray) for a
maximum amplitude of 100 (panel (a)) and 50 V.m−1 (panel (b)). Panel (c) represents the corresponding
total amplitude E0 =

√
E2

0x + E2
0y.
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Figure 5. Evolution of the logarithm of the cost functional J as a function of the control time for
different maximum amplitudes (black: 30 V.m−1, blue or dark gray: 50 V.m−1, red or light gray:
70 V.m−1).

case without pulse limitation, the linearity of the dynamical equations allows to use LQOCT, which has212

the advantage to lead to an analytical formula of the control law. Very good results have been obtained213

both for the final radii and phases of the ions. A specific range of frequencies has been considered214

in this paper, but the same approach can be extended to broadband excitation from 100 to 900 kHz.215

However, this solution is both in shape and in amplitude very similar to the SWIFT pulse. The two216

solutions are expected to be equal for a continuous range of frequencies. More original control laws217

are derived when the pulse intensity is limited. Due to this constraint, optimal iterative algorithms218
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have to be used and we adapt to ICR the standard GRAPE algorithm, well-known in NMR. Even219

if this algorithm has some limitations, it allows to reduce the pulse intensity, by a factor larger than220

three in the examples under study. On the basis of NMR results, this algorithm is expected to be221

very efficient in the case of other excitation profiles. The very encouraging and promising results222

obtained in this investigation must now be confirmed by experimental implementation. Numerical223

simulations of this study are not fully realistic. Effects such as the magnetron motion, field geometry,224

field inhomogeneities or ion collisions are neglected. However, the model system we consider describes225

quite faithfully the main cyclotronic behavior and permits to grasp rapidly the main features of ion226

trajectories. Numerical codes have been developed to account for such experimental details. The227

relative simplicity of the application of numerical optimal algorithms makes it possible to adapt it228

straightforwardly to a new class of control problems. They could thus be combined with such codes.229

We are therefore quite confident about the extension of optimization procedures to these additional230

experimental constraints and limitations. Work is in progress on these different issues.231
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Abbreviations242

The following abbreviations are used in this manuscript:243

244

OCT Optimal Control Theory
LQOCT Linear Quadratic Optimal Control Theory
ICR Ion Cyclotron Resonance
PMP Pontryagin Maximum Principle
NMR Nuclear Magnetic Resonance
RWA Rotating Wave Approximation

245

Appendix A. The Rotating Wave Approximation246

We discuss in this section the validity of the Rotating Wave Approximation described in Sec. 2.2.
We consider the following dynamical system:

ż = −iωz + u cos(ω0t) (A1)

which corresponds to Eq. (5) of the main text. Equation (A1) describes a spring of frequency ω/(2π)

excited by an external field of constant amplitude u and of frequency ω0/(2π). Introducing the frame
rotating at ω0 with the transformation z = z̃e−iω0t, we arrive at:

˙̃z = −i∆ωz̃ +
u
2
(1 + e2iω0t),

where ∆ω = ω−ω0 is the detuning. In the RWA, we neglect the fast oscillating term and we get:

˙̃zr = −i∆ωz̃r +
u
2

.
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where z̃r denotes the approximate z̃- variable. We set δz̃ = z̃− z̃r and we obtain:

δ ˙̃z = −i∆ωδz̃ + ue2iω0t.

This differential system can be exactly integrated:

δz̃(t) =
∫ t

0
e−i∆ω(t−τ)ue2iω0τ .

This leads to:
δz̃(t) = ei(ω0− ∆ω

2 )t u
2ω0 + ∆ω

sin((ω0 +
∆ω

2
)t).

We deduce that the relative error due to the RWA can be expressed as:

| δz̃
z̃r
| = ∆ω

2ω0 + ∆ω
| sin((ω0 + ∆ω/2)t)

sin(∆ωt/2)
|.

A rough approximation gives:

| δz̃
z̃r
| ' ∆ω

2ω0 + ∆ω

RWA is therefore justified if ∆ω � 2ω0. Numerical simulations show that this formula overestimates247

the error and that RWA can be used in a quite wide interval around the carrier frequency of the248

excitation pulse.249

Appendix B. Adiabatic Excitation of ICR Process250

The goal of this paragraph is to compute the final states of the ions in the case of an adiabatic
excitation of the form ex = e0 cos(ωit + s

2 t2) where ωi is the initial frequency and s the sweep rate. We
recall that integrals of the form:

I(α, β) =
∫ T

0
exp[iαt2 + iβt]dt,

can be computed from the Erfi function. This result allows to compute exactly the dynamics of the
system. Starting from Eq. (4), the final state of the ICR process can be expressed as follows:

X(t f ) = e0

∫ t f

0
dt

− cos(ωit + st2/2) + cos(st2/2 + (ωi −ω)t + ωt f )/2 + cos(st2/2 + (ωi + ω)t−ωt f )

−ω[sin(st2/2 + (ωi −ω)t + ωt f )/2− sin(st2/2 + (ωi + ω)t−ωt f )/2
cos(st2/2 + (ωi −ω)t + ωt f )/2 + cos(st2/2 + (ωi + ω)t−ωt f )


and we finally obtain:xω(t f )/e0 = =[ e

iωt f

2 I(
s
2 , ωi −ω)− e

−iωt f

2 I( s
2 , ωi + ω)]

yω(t f )/e0 = <[−I( s
2 , ωi) +

e
iωt f

2 I(
s
2 , ωi −ω) + e

−iωt f

2 I( s
2 , ωi + ω)]

An approximation of the dynamics can be derived by using the stationary phase approximation. For

that purpose, we start from Eq. (5) and we assume that
∫ t f

0 ex(t)dt = 0. We have:

vk(t f ) = ie−iωkt f

∫ t f

0
dtex(t)eiωkt.

The stationary phase approximation can be stated as follows. We consider the following integral:

ĥ(ω) =
∫ +∞

−∞
h(t)eiφ(t)dt,
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where φ is a smooth function, which is assumed to be rapidly varying with respect to h. A stationary
point t0 is defined by φ(1)(t0) = 0, where φ(n) denotes the nth time derivative of φ. A Taylor expansion
around t = t0 leads to:

φ(t) = φ(t0) + (t− t0)φ
(1)(t0) +

(t− t0)
2

2
φ(2)(t0) + · · ·

We arrive at:251

ĥ(ω) ' h(t0)eiφ(t0)
∫ +∞

−∞
ei ξ2

2 φ(2)(t0)dξ

'
√

2π

φ(2)(t0)
h(t0)ei(φ(t0)+

π
4 ).

For a chirp excitation, the phase φ(t) is defined by φ(t) = ωit + st2

2 . The instantaneous frequency ω(t)
can be expressed as:

ω(t) = φ̇(t) = ωi + st,

where s = ω̇(t). In the example under study, the rate s is given by s = (ω f −ωi)/t f . We assume that252

s > 0 and we deduce that the Fourier transform of the control field is given by:253

êx(ω) =
∫ t f

0
ex(t)e−iωtdt

=
e0

2

∫ t f

0
[ei(ωit+ st2

2 −ωt) + e−i(ωit+ st2
2 +ωt)]dt.

We denote by φ1 and φ2 the arguments of the two exponential terms. It is straightforward to verify
that φ̇1(t) = 0 for t = t(ω)

1 = ω−ωi
s and that φ̇2(t) = 0 for t = t(ω)

2 = −ω−ωi
s . Neglecting the second

contribution since t(ω)
2 < 0 and assuming that t(ω)

1 is not too close to 0 and t f , we can consider that the
integral is defined from −∞ to +∞. We finally get:

êx(ω) = e0

√
π

2s
ei( π

4 +φ1(t
(ω)
1 )).

The phase spectrum φ(ω) = π
4 + φ1(t

(ω)
1 ) can be written as:

φ(ω) =
π

4
− (ω−ωi)

2

2s
.

Coming back to the original control problem, we obtain:

vk(t f ) ' e0

√
π

2s
exp[i(

3π

4
−ωt f +

(ωk −ωi)
2

2s
)].

In the range of validity of this approximation, we observe that the final radius of ions at time t = t f is254

a constant, while the phase varies quadratically with the frequency ω. A numerical example is given255

in Fig. 5. The frequency of the chirped pulse goes from 400 kHz to 600 kHz.256

Appendix C. Excitation by the SWIFT approach257

In this paragraph, we describe the application of the SWIFT method to the model system. We258

consider a specific approach in which the control law and the corresponding dynamics can be expressed259

analytically.260
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Figure A1. Excitation of an ensemble of ions by an adiabatic pulse: Evolution of the final radius as a
function of the frequency. The parameters are set to t f = 10 ms, E0=3.2 V/m and B0=7 T. The red (light
gray) solid line represents the stationary phase approximation. The vertical blue (dark gray) solid lines
indicate the range of frequency of the pulse.

The dynamics are governed by the differential system (2). In the RWA described in Sec. 2.2, the
dynamics can be approximated as:

˙̃vk = −i∆ωkṽk +
ω0

2
e0e−iφ,

where ṽk = ṽxk + iṽyk and the control field is expressed as ex(t) = e0(t) cos(ω0t + φ(t)). The
differential equation can be integrated and leads to:

ṽk(t f ) =
∫ t f

0
e−i∆ωk(t f−t) ω0

2
e0e−iφdt

We deduce that:

ṽ∗k (t f )e
−i∆ωkt f =

∫ t f

0
e−i∆ωkt ω0

2
e0eiφdt.

Introducing u(t) = e0eiφ and assuming that u is different from zero only in the interval [0, t f ], we
obtain: √

2π
ω0

2
û(∆ωk) = ṽ∗k (t f )e

−i∆ωkt f .

where we use the following definition for the Fourier transform:

f (t) =
1√
2π

∫ +∞

−∞
f̂ (ω)eiωtdω; f̂ (ω) =

1√
2π

∫ +∞

−∞
f (t)e−iωtdt.

The target states are defined as: {
r∆ωk = r0Π(∆ωk

δω )

φ∆ωk = a∆ωk + φ0

where Π is the gate function, with Π(x) = 1 if |x| ≤ 1
2 and 0 otherwise. The parameter δω is the width

of the distribution and φ0 is an arbitrary constant. We have:

xk = r∆ωk ei(a∆ωk+φ0).

In the RWA, starting from ṽk = −iω0x̃k, we arrive at:

ṽk(t) = −iω0r∆ωk ei(a∆ωk+φ0)eiω0t
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and
û(∆ω) =

2i√
2π

r∆ωk e−i∆ωk(t f +a)e−iφ0−iω0t f ,

which gives

u(t) = FT−1[
2i√
2π

r∆ωk e−i∆ωk(t f +a)e−iφ0−iω0t f ].

Since
1√
2π

∫ +∞

−∞
Π(

ω

δω
)eiωtdω =

δω√
2π

sinc(
δωt

2
),

we obtain:

u(t) =
r0δωeiφ1

π
sinc[

δω

2
(t− t0)],

with t0 = t f + a and φ1 an arbitrary phase. The original control field ex(t) = e0(t) cos(ω0t + φ(t)) is
then given by:

ex(t) =
r0δω

π
sinc(

δω

2
(t− t0)) cos(ω0t + φ1).

Since the choice of the initial phase φ1 is arbitrary, we finally get:

ex(t) =
r0δω

π
sinc(

δω

2
(t− t0)) cos(ω0(t f − t)).

The next step consists in integrating exactly the system dynamics using the original system and Eq. (4).
We have to compute terms of the form:{

Ic(t, ωs, ω) =
∫

sinc(ωs(t− t0)) cos(ω(t f − t))dt

Is(t, ωs, ω) =
∫

sinc(ωs(t− t0)) sin(ω(t f − t))dt.

For that purpose, we use the Sine and the Cosine Integral functions Si and Ci which are defined by:

Si(x) =
∫ x

0
sinc(t)dt, Ci(x) = −

∫ ∞

x

cos t
t

dt, x > 0.

We have the following results:261

Ic(t, ωs, ω) =
sin[(t0 − t f )ω]

2ωs

(
Ci[(t0 − t)(ω + ωs)]−Ci[(t0 − t)(ω−ωs)]

)
+

cos[(t0 − t f )ω]

2ωs

(
Si[(t0 − t)(ω−ωs)]− Si[(t0 − t)(ω + ωs)]

)
262

Is(t, ωs, ω) =
cos[(t0 − t f )ω]

2ωs

(
Ci[(t0 − t)(ω + ωs)]−Ci[(t0 − t)(ω−ωs)]

)
+

sin[(t0 − t f )ω]

2ωs

(
Si[(t0 − t)(ω + ωs)]− Si[(t0 − t)(ω−ωs)]

)
The final state of the dynamics is given by the following expressions:{

xω(t f ) =
∫ t f

0 dtex(t) sin[ω(t f − t)]

yω(t f ) =
∫ t f

0 dtex(t)(−1 + cos[ω(t f − t)]).

We then deduce:

xω(t f ) =
r0δω

2π
[Is(t f , ωs, ω0 + ω)− Is(0, ωs, ω0 + ω)− Is(t f , ωs, ω0 −ω) + Is(0, ωs, ω0 −ω)]
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and263

yω(t f ) =
r0δω

2π
[−2Ic(t f , ωs, ω0) + 2Ic(0, ωs, ω0)

+Ic(t f , ωs, ω0 + ω)− Ic(0, ωs, ω0 + ω) + Ic(t f , ωs, ω0 −ω)− Ic(0, ωs, ω0 −ω)]

The results achieved with this approach are described in Sec. 4.264

Appendix D. Application of LQOCT to ICR265

We apply in this section the PMP to ICR processes in the case without any amplitude constraint.
We denote by Xk the state associated with the frequency ωk as defined in Eq. (3) of Sec. 2.1 and
by (X(k)

1 , X(k)
2 , X(k)

3 ) the coordinates. {ωk} is the set of discrete frequencies used in the numerical
optimization. The optimal problem is defined through the cost functional J to minimize:

J =
1
2 ∑

k
[(X(k)

1 (t f )− X(k)
1 f )

2 + (X(k)
2 (t f )− X(k)

2 f )
2] +

λ

2

∫ t f

0
e2

xdt.

Since there is no final condition on X3(t f ), this term does not appear in the expression of J . The
Pontryagin Hamiltonian is given by:

HP = ∑
k
[p(k)1 X(k)

2 −ω2
k p(k)2 X(k)

3 + p(k)3 X(k)
2 + p(k)3 u]− λ

2
e2

x.

For the adjoint state, we have: 
ṗ(k)1 = 0

ṗ(k)2 = −p(k)1 − p(k)3

ṗ(k)3 = ω2
k p(k)2

with the final conditions: 
p(k)1 (t f ) = X(k)

1 f − X(k)
1 (t f )

p(k)2 (t f ) = X(k)
2 f − X(k)

2 (t f )

p(k)3 (t f ) = 0

(A2)

Note that p(k)1 is a constant of the motion. We deduce the dynamics of the adjoint state:
p(k)1 (t) = p(k)1 (t f )

p(k)2 (t) = A(k) cos(ωkt) + B(k) sin(ωkt)

p(k)3 (t) = −p(k)1 (t f ) + ωk[A(k) sin(ωkt)− B(k) cos(ωkt)]

(A3)

with A(k) = sin(ωkt f )
p(k)1 (t f )

ωk
+ p(k)2 (t f ) cos(ωkt f )

B(k) = sin(ωkt f )p(k)2 (t f )−
p(k)1 (t f )

ωk
cos(ωkt f )

The optimal control e∗x can be expressed as:

e∗x(t) =
1
λ ∑

k
p(k)3 (t) (A4)

which can be transformed into:

e∗x(t) =
1
λ ∑

k
[−p(k)1 (t f ) + p(k)1 (t f ) cos(ωk(t f − t))− p(k)2 (t f )ωk sin(ωk(t f − t))].
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The last step consists in computing the trajectory corresponding to this optimal control field. We obtain266

for an ion of frequency ω:267

X1(t f ) =
1
λ ∑

k
[p(k)1 (t f )(t f −

sin(ωt f )

ω
−

sin(ωkt f )

ωk
) + p(k)2 (t f )(1− cos(ωkt f )

+
p(k)1 (t f )

2
[
sin((ωk + ω)t f )

ωk + ω
+

sin((ωk −ω)t f )

ωk −ω
] +

ωk p(k)2 (t f )

2
[
cos((ωk + ω)t f )− 1

ωk + ω
+

cos((ωk −ω)t f )− 1
ωk −ω

]]

and268

X2(t f ) =
−ω

λ ∑
k
[p(k)1 (t f )

cos(ωt f )− 1
ω

+
p(k)1 (t f )

2
[
1− cos((ωk + ω)t f )

ωk + ω
+

cos((ωk −ω)t f )− 1
ωk −ω

]

+
ωk p(k)2 (t f )

2
[
sin((ωk + ω)t f )

ωk + ω
−

sin((ωk −ω)t f )

ωk −ω
]]

Such results can be written in a compact form as follows:{
λX(j)

1 (t f ) = ∑k[Rjk p(k)1 (t f ) + Sjk p(k)2 (t f )]

λX(j)
2 (t f ) = ∑k[Tjk p(k)1 (t f ) + Ujk p(k)2 (t f )]

where the matricesR, S , T and U are known explicitly and the index j labels the ion of the ensemble.
We finally arrive at the following system to fulfill:∑kRjkX(k)

1 f + SjkX(k)
2 f = λX(j)

1 (t f ) + ∑kRjkX(k)
1 (t f ) + SjkX(k)

2 (t f )

∑k TjkX(k)
1 f + UjkX(k)

2 f = λX(j)
2 (t f ) + ∑k TjkX(k)

1 (t f ) + UjkX(k)
2 (t f )

In matrix form, for N = 2, we have:
∑kR1kX(k)

1 f + S1kX(k)
2 f

∑k T1kX(k)
1 f + U1kX(k)

2 f

∑kR2kX(k)
1 f + S2kX(k)

2 f

∑k T2kX(k)
1 f + U2kX(k)

2 f

 =


λ +R11 S11 R12 S12

T11 λ + U11 T12 U12

R21 S21 λ +R22 S22

T21 U21 T22 λ + U22




X(1)
1 (t f )

X(1)
2 (t f )

X(2)
1 (t f )

X(2)
2 (t f )


This linear system allows to compute the final state of the system Xk(t f ), then the adjoint state from269

Eq. (A2) and (A3) and the optimal control field with Eq. (A4). We observe that the control law is270

expressed as a linear combination of cosine and sine functions of the frequencies ωk of the finite271

discretized set. Numerical results are presented in Sec. 4. Note that the same method can be applied in272

the RWA starting from Eq. (6) (see Ref. [49] for details).273
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