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Decontamination of Mutually Contaminated Models

Gilles Blanchard Clayton Scott
Universität Potsdam University of Michigan

Abstract

A variety of machine learning problems are
characterized by data sets that are drawn
from multiple different convex combinations
of a fixed set of base distributions. We call
this a mutual contamination model. In such
problems, it is often of interest to recover
these base distributions, or otherwise dis-
cern their properties. This work focuses on
the problem of classification with multiclass
label noise, in a general setting where the
noise proportions are unknown and the true
class distributions are nonseparable and po-
tentially quite complex. We develop a pro-
cedure for decontamination of the contami-
nated models from data, which then facili-
tates the design of a consistent discrimina-
tion rule. Our approach relies on a novel
method for estimating the error when pro-
jecting one distribution onto a convex combi-
nation of others, where the projection is with
respect to a statistical distance known as the
separation distance. Under sufficient condi-
tions on the amount of noise and purity of the
base distributions, this projection procedure
successfully recovers the underlying class dis-
tributions. Connections to novelty detection,
topic modeling, and other learning problems
are also discussed.

1 Introduction

This paper considers a general framework for multi-
class classification with label noise. As we develop
later, this framework encompasses or relates to several
other machine learning problems, including novelty de-
tection, crowdsourcing, topic modeling, and learning
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from partial labels. Each of these applications involves
mutual contamination models, meaning that observed
data are drawn from mixtures of the underlying prob-
ability distributions of interest, and therefore may be
viewed as being contaminated.

We begin by stating the problem of multiclass classi-
fication with label noise in a general setting. There
are L classes, each governed by a class-conditional dis-
tribution Pi. The learner observes training random
samples drawn from the contaminated distributions

P̃i =

L∑
j=1

πijPj , (1)

i = 1, . . . , L, where πij ≥ 0 and
∑
j πij = 1 for each

i. Here πij is the probability that an instance with
observed label i is actually a realization of Pj . We
consider a quite general setting where the πij are un-
known, and the distributions Pi are not amenable to
parametric modeling. We want to stress that the issue
of contamination of training data comes in addition
to, and is different from, the usual source of uncer-
tainty about the labels in “noisy classification”, which
traditionally simply means that the supports of the
true Pi can overlap (which we also allow here). In the
contamination setting, training a conventional classi-
fier directly on the contaminated training data will in
general lead to a biased classifier at test time (Scott
et al., 2013), and in particular be asymptotically in-
consistent.

Our contribution is to establish general sufficient con-
ditions on the true class-conditional distributions and
label noise mixing proportions for recovery of the true
distributions, which then enables the design of a con-
sistent discrimination rule. The sufficient conditions
essentially state that the examples drawn from P̃i come
“mostly” from Pi, and that the distributions {Pi} are
“pure” with respect to each other. Both of these no-
tions are made precise below.

At the heart of our approach is a novel technique for
“decontamination” of the contaminated models. In
particular, we show that under the sufficient condi-
tions, if we project the contaminated distribution P̃i
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onto the convex hull of the other contaminated distri-
butions, the “residual” distribution is the true class-
conditional distribution Pi. The projection is with re-
spect to a statistical distance known as the separation
distance, and a key part of our contribution is the de-
velopment of a universally consistent estimator of the
error of this projection. This estimator is valid regard-
less of whether the sufficient conditions for label noise
recovery hold, and is therefore of independent interest.

1.1 Motivation

The label noise model (1) is relevant in a number of
applications. For example, Scott et al. (2013) describe
a problem in nuclear particle classification. Each class
corresponds to a different type of nuclear particle, and
label noise comes from the fact that it is impossible to
eliminate different particle types from the background,
so that every training sample for a given particle type
is always contaminated with particles of other types.

Another potential application of the label noise model
is crowdsourcing, where the labels of training data sets
are provided by a mixture of expert and non-expert
sources. One approach to crowdsourcing is to assume
each annotator makes mistakes according to model (1),
where the contamination probabilities are specific to
each annotator. Then there is a label noise problem
for each annotator. The “two-coin” model of Raykar
et al. (2010) studies this setup in the two-class setting.

As a second formulation of crowdsourcing, consider
unlabeled data representing some mixture of the true
class-conditional distributions Pi, and suppose the
data is labeled by crowdsourcing. One simple labelling
model is as follows: with probability 1 − α, an exam-
ple is labeled by an expert, in which case the correct
label is always assigned. With probability α, a ran-
dom guesser assigns the label according to some pre-
determined distribution over class that is independent
of the actual example. This fits the contamination
model (1), and furthermore, as we argue in Sec. 5,
satisfies our sufficient conditions on the noise.

A third relevant application is novelty detection. Sup-
pose that for i < L and j 6= i, we have πij = 0. In
other words, the first L − 1 data samples are uncon-
taminated. The last data sample, on the other hand,
is drawn from a mixture of all classes. We may think
of this as a semi-supervised learning problem, where
the first L−1 random samples represent training data,
while the last sample is an unlabeled testing sample.
Then PL corresponds to a novel class that is not rep-
resented among the L − 1 training classes. We argue
in Sec. 5 that this setting also satisfies our sufficient
conditions on the noise, thus yielding a consistent dis-
crimination rule for multiclass novelty detection.

Several previous works on classification with label
noise also adopt (1) or an equivalent model, and
we refer the reader to these works for additional
applications of the label noise setting (Lawrence
and Schölkopf, 2001; Bouveyron and Girard, 2009;
Long and Servido, 2010; Manwani and Sastry, 2011;
Stempfel and Ralaivola, 2009; Natarajan et al., 2013).
Significantly, our works provides estimates of the pro-
portions πij , which are assumed known in several of
these earlier works.

Topic modeling is another problem that is closely re-
lated to multiclass label noise. In topic modeling, the
base distributions Pi correspond to topics, and each
P̃i corresponds to a document, viewed as a mixture of
topics. An important difference between topic model-
ing and classification with label noise is that in topic
modeling, typically far more documents are observed
than topics. Nonetheless, as we discuss in Sec. 5, our
sufficient conditions on the purity of the base distribu-
tions, when specialized to the discrete setting of topic
modeling, coincide with the “separability” condition
that has been widely adopted in that area.

Finally, we note that multiclass label noise has strong
similarities to the problem of learning from partial la-
bels (Cour et al., 2011). In this problem, every training
data point is labeled by a subset S ⊂ {1, . . . , L} of pos-
sible labels, as opposed to a single label as in standard
classification. The true label is one of the elements of
the subset, but it is not known which one. Therefore,
collecting all training examples sharing a common S
gives a contamination model P̃S =

∑
j∈S πS,jPj , and

there is a contamination model (with associated data)
for every observed S. We conjecture that this prob-
lem can be converted to a multiclass label noise prob-
lem, satisfying our sufficient conditions on the noise,
through appropriate resampling of the data. Some in-
sight is given in Sec. 5, although a full development is
deferred to future work.

1.2 Related Work

Our work extends the recent work of Scott et al.
(2013), reviewed in the next section, which studies la-
bel noise for binary classification (L = 2). We find
there to be some significant differences between the
multiclass and binary cases. Indeed the decontamina-
tion procedure is considerably more complex, as are
the sufficient conditions for recovery. Multiclass label
noise has received little attention in the literature. Ex-
isting theoretical work on label noise (of which we are
aware) focuses on the binary case; we refer the reader
to Scott et al. (2013) for a recent review.

The aforementioned projection in distribution space is
accomplished by means of a problem we call multi-
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sample mixture proportion estimation, which is ap-
parently new. It generalizes a two-sample version de-
veloped by Blanchard et al. (2010). It is also similar
to the problem of semi-supervised class proportion es-
timation; the latter problem essentially assumes that
the projection error is zero, and is only concerned with
estimating the mixing weights giving the projection
(Hall, 1981; Titterington, 1983; Latinne et al., 2001;
Du Plessis and Sugiyama, 2012). When the projec-
tion error is nonzero, as in our work, such methods
are inconsistent.

1.3 Outline

In the next section we review the work of Scott et al.
(2013) on label noise in the binary setting. Section
3 presents the aforementioned mixture proportion es-
timation problem and our universally consistent esti-
mator. Section 4 introduces sufficient conditions un-
der which this estimator successfully decontaminates
the noisy distributions in the multiclass label noise
setting. The final section connects our results more
concretely to the other learning problems mentioned
above. Proofs are contained in the supplemental file.

2 Label Noise in the Binary Case

Scott et al. (2013) study label noise in the binary case,
L = 2. Their work hinges on the following result,
which appears originally in Blanchard et al. (2010).

Proposition 1. Given probability distributions F0, F1

on a measurable space (X , C), define

κ∗(F0|F1) = max
{
κ ∈ [0, 1]

∣∣∣∃ a distribution G

s.t. F0 = (1− κ)G+ κF1

}
; (2)

If F0 6= F1, then κ∗(F0|F1) < 1 and the above supre-
mum is attained for a unique distribution G (which we
refer to as the residue of F0 w.r.t. F1). Furthermore,
the following equivalent characterization holds:

κ∗(F0|F1) = inf
C∈C,F1(C)>0

F0(C)

F1(C)
. (3)

The number κ∗(F0|F1) can be understood at the max-
imum possible proportion of F1 present in F0. The
result implies that the function 1− κ∗(F0|F1) is a sta-
tistical distance, i.e., a functional that is nonnegative
and equal to zero iff F0 = F1. This quantity has been
called the separation distance, and has arisen previ-
ously in studies of Markov chain convergence (Aldous
and Diaconis, 1987).

For the label noise/contamination model (1), the fol-
lowing two conditions are shown by Scott et al. (2013)
to be sufficient for decontamination:

• π12 + π21 < 1 ,

• κ∗(P1|P2) = κ∗(P2|P1) = 0.

The former condition bounds the total amount of label
noise, while the latter condition is referred to as mu-
tual irreducibility, and says that it is not possible to
write P1 as a nontrivial mixture of P2 and some other
distribution, and vice versa.

In particular, by a simple algebraic manipulation of
(1), it is shown that under the first condition

P̃1 = (1− κ1)P1 + κ1P̃2 (4)

P̃2 = (1− κ2)P2 + κ2P̃1, (5)

for unique κ1, κ2 < 1. It is then shown that if P1 and
P2 are mutually irreducible, then κ1 = κ∗(P̃1|P̃2) and
κ2 = κ∗(P̃2|P̃1) and therefore P1 and P2 are the respec-
tive residues of P̃1 w.r.t. P̃2 and P̃2 w.r.t. P̃1. This
establishes decontamination in the population case.

In the sample case, the problem of estimating κ∗ is
referred to as mixture proportion estimation. The
universally consistent estimator κ̂ of Blanchard et al.
(2010) for κ∗ is applied to estimate κ1 and κ2. Now all
terms in (4) and (5) can be estimated except for P1 in
(4) and P2 in (5). Therefore (4) and (5) can be solved
for (estimates of) P1 and P2, which are then available
for the design of a consistent discrimination rule.

Multiclass label noise can be treated analogously, al-
though the generalization is far from trivial.

3 Multi-Sample Mixture Proportion
Estimation

Let (X , C) be a measurable space, and let Fi be prob-
ability distributions on this space, i = 0, 1, . . . ,M .
Let SM denote the (M − 1)-dimensional simplex{
µ = (µ1, . . . , µM ) ∈ RM

∣∣∣∀i µi ≥ 0 and
∑
i µi = 1

}
.

For µ ∈ SM , denote the probability distribution
Fµ :=

∑M
i=1 µiFi. We first define the maximum

collective contaminating proportion of distributions
(Fi)1≤i≤M in F0 by the following generalization of the
binary case:

Definition 1. Given probability distributions Fi, i =
0, . . . ,M , define

κ∗(F0|F1, . . . , FM ) = max
µ∈SM

κ∗(F0|Fµ). (6)

If there is a unique Fµ achieving the maximum in this
definition, it may be thought of as the projection of F0

onto the convex hull of F1, . . . , FM with respect to the
separation distance. However, there exist simple ex-
amples for which Fµ attaining κ∗ is not unique; for ex-
ample, suppose M = 2. Let F0 be uniform on {0, 1, 2},
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F1 uniform on {0, 1}, and F2 uniform on {1, 2}. Then
κ∗ = 2

3 and any µ is optimal. Later, when we return to
the label noise problem, we give sufficient conditions,
analogous to those in the binary case, for the unicity
of µ, so that the projection is well defined.

Observe that the following equivalent characteriza-
tions for κ∗ hold:

κ∗(F0|F1, . . . , FM )

= max
µ∈SM

inf
C∈C:Fµ(C)>0

F0(C)

Fµ(C)
(7)

= max
{
κ ∈ [0, 1]

∣∣∣∃µ ∈ SM and a distribution G

s.t. F0 = (1− κ)G+ κFµ

}
(8)

= max
{ M∑
i=1

νi

∣∣∣ νi ≥ 0,

M∑
i=1

νi ≤ 1, and

∃ a distribution G s.t.

F0 =

(
1−

M∑
i=1

νi

)
G+

M∑
i=1

νiFi

}
. (9)

The equivalence of (6), (7) and (8) is a straightforward
consequence of the equivalent definitions (2) and (3)
in the 2-class case. The equivalence of (8) and (9)
is also clear from the representation κ =

∑
i νi and

µ = (ν1, . . . , νM )/κ. The fact that the maxima are
well-defined is justified formally in the supplemental
material. Finally, if the maximum is attained for a
unique G in (8)-(9), we refer to G as the residue of F0

w.r.t. F1, . . . , FM .

Suppose that for m = 0, 1, . . . ,M , we observe

Xm
1 , . . . , X

m
nm

iid∼ Fm

The random samples need not be independent of
each other. Let F̂i denote the corresponding em-
pirical distributions. By way of notation, set n :=
(n0, n1, . . . , nM ) and write n → ∞ to indicate
mini{ni} → ∞.

To define the estimator, let Ck ⊂ C, k ≥ 1 be VC
classes with VC dimensions Vk < ∞. For each 0 ≤
m ≤M,k ≥ 1 and δ > 0, define

εkm(δ) := 3

√
Vk log(n+ 1)− log δ/2

nm
.

By the VC inequality (Devroye et al., 1996), the fol-
lowing property holds:

P1 For each value of k, m, and δ > 0, the following
holds with probability at least 1− δ:

sup
C∈Ck

∣∣∣Fm(C)− F̂m(C)
∣∣∣ ≤ εkm(δ),

where the probability is with respect to the draw

of Xm
1 , . . . , X

m
nm

iid∼ Fm.

We also require that (Ck)k≥1 possess the following uni-
versal approximation property:

P2 For any probability distribution Q, any C∗ ∈ C:

lim inf
k→∞

inf
C∈Ck

Q(C∆C∗) = 0,

where C1∆C2 := (C1\C2) ∪ (C2\C1) is the sym-
metric difference.

Examples of such classes include histograms, decision
trees, neural networks, and generalized linear classi-
fiers (Devroye et al., 1996).

Given δ := (δ0, . . . , δM ), a vector with positive com-
ponents, we define the estimator

κ̂(F̂0|F̂1, . . . , F̂M ; δ)

= max
µ∈SM

inf
k

inf
C∈Ck

F̂0(C) + εk0(cδ0k
−2)(

F̂µ(C)−
∑
i µiε

k
i (cδik−2)

)
+

,

(10)

where c := 6/π2, and the ratio is defined as +∞ if the
denominator is zero. Also, denote µ̂ an arbitrary point
where the above maximum is attained; and finally ν̂ =
κ̂µ̂ (where the explicit dependence on F̂0, etc., has
been omitted to simplify notation). ν̂ is an estimate of
the contaminating proportions (ν1, . . . , νM ) achieving
the maximum in (9).

Proposition 2. Let (Ck)k≥1 be a sequence of classes of
sets with finite VC dimension and having the universal
approximation property P2.

• (a) It holds that κ̂ ≥ κ∗ with probability at least

1−
∑M
i=0 δi.

• (b) If for all i, δi(n) = 1/ni, then κ̂ converges
in probability to κ∗ as n → ∞, for any family of
generating distributions (Fi, i = 0, . . . ,M).

• (c) Let B∗ := Arg Maxµ∈SM
κ∗(F0|Fµ), i.e., B∗ is

the set of all mixture weights µ attaining the max.
in (6). Then under the assumptions of point (b),
d(µ̂,B∗) converges to zero in probability as n →
∞ (where d is any continuous distance function
on the simplex). A similar result holds for the
convergence in probability of ν̂ to the set of weight
vectors attaining κ∗ in (9).

The definition of the estimator (10) is an intuitive

generalization of the consistent estimator κ̂(F̂0|F̂1) of
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Blanchard et al. (2010), with an added maximum op-
eration over µ ∈ SM . The proof of the above re-
sult, however, does not follow trivially from the point-
wise consistency of κ̂(F̂0|F̂µ) to κ∗(F0|Fµ) for all fixed
µ ∈ SM , and requires a careful compactness argument.
Furthermore, point (c) entails that the weights defin-
ing the residue are estimated consistently if they are
unique (i.e., when B∗ contains a single element), which
they are in the label noise setting under the sufficient
conditions given below.

Practical feasibility. The focus of this work is on
identifiability and existence of a consistent estimator.
While a suitable practical implementation is left for
future work, we observe that there exist a priori rea-
sonable strategies to compute κ̂. Because the εk(. . .)
terms become eventually larger than 1 for large k, the
infimum over k can be limited to k ≤ kmax(n). The
inner infimum loop can then be computed exactly if
the classes Ck are finite (for instance, this is the case
for the pieces of dyadic regular partitions of order k).
The outer maximum loop can in turn be solved by
gradient ascent (in alternating steps with the infimum
solving step), which will converge to the global max-
imum since the inverse of the objective function is a
linear function of µ.

Henceforth δ will be omitted from the notation for κ̂,
and δi taken to equal 1/ni.

4 Multiclass Label Noise

The model in (1) may be concisely expressed as P̃ =
ΠP , where

P =

 P1

...
PL

 , P̃ =

 P̃1

...

P̃L

 ,
and Π = [πij ] is an L × L matrix with nonnegative
entries and rows summing to one. We begin with iden-
tifiability assumptions that enable decontamination.

4.1 Assumptions

We start with a generalization of mutual irreducibility:

Lemma 1. The following conditions on the family of
distributions P1, . . . , PL are equivalent:

• It is not possible to write∑
i∈I

εiPi = α

(∑
i/∈I

εiPi

)
+ (1− α)H,

where I ⊂ {1, . . . , L} such that 1 ≤ |I| < L, εi
are such that εi ≥ 0 and

∑
i∈I εi =

∑
i/∈I εi = 1,

α ∈ (0, 1], and H is a distribution.

• If
∑L
i=1 γiPi is a distribution, then γi ≥ 0 ∀i.

Definition 2. We say the distributions {Pi}1≤i≤L are
jointly irreducible iff the conditions in Lemma 1 hold.

Joint irreducibility says that every convex combination
of some portion of the Pis is irreducible w.r.t. every
convex combination of the remaining Pis. It general-
izes the notion of mutual irreducibility from the two-
class case (see Sec. 2). One case where it holds is when
the support of each Pi contains some region with posi-
tive probability that does not intersect the supports of
the other Pj , j 6= i. If each Pi is a class-conditional dis-
tribution, this means that every class has some exem-
plars that could not possibly arise from another class.
This assumption is not unreasonable in many, and per-
haps most, applications of interest. Joint irreducibility
can still hold even when all Pi have the same support,
as in the case of Gaussian densities with a common
variance (Scott et al., 2013).

We will also make assumptions on the contamination
weight matrix Π. Let πi be the transpose of the i-th
row of Π, which is a discrete probability distribution
on {1, . . . , L}. Let ei denote the length L vector with
1 in the ith position and zeros elsewhere.

Lemma 2. The following conditions on π1, . . . ,πL
are equivalent:

(a) For each `, the residue of π` with respect to
{πj , j 6= `} is e`.

(b) For every ` there exists a decomposition π` =
κ`e`+(1−κ`)π′` where κ` > 0 and π′` is a convex
combination of πj for j 6= `.

(c) Π is invertible and Π−1 is a matrix with strictly
positive diagonal entries and nonpositive off-
diagonal entries.

Definition 3. We say that Π is recoverable iff the
conditions in Lemma 2 hold.

This assumption ensures that the amount of contami-
nation is not too high. Some intuition is given by con-
dition (b). Fig. 1 depicts the case L = 3. In panel (i),
condition (b) is satisfied, while in panel (ii), condition
(b) is not satisfied. Clearly, in panel (i), the diagonal
entries π`` are much larger than they are in panel (ii),
and consequently the off-diagonal entries of Π will be
smaller. Note that for L = 2 classes, from condition
(c), recoverability is equivalent to π12 + π21 < 1, the
condition developed by Scott et al. (2013).

We exhibit a setting where Π is guaranteed to be re-
coverable. Assume c :=

∑M
i=1 ciei is a contaminating

“background noise” which is common to all observed
classes, albeit in possibly different proportions, i.e.,
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πi = κic+ (1− κi)ei, with κi ∈ [0, 1). Geometrically,
this means we shift by various amounts the vertices ei
of the simplex towards a common point c, or equiva-
lently that each π` belongs to the segment (ce`]. Panel
(iii) illustrates this situation.

Then we have∑
i

ci
1− κi

πi =

(
1 +

∑
i

ciκi
1− κi

)
c,

so that for instance for ` = 1 and κ1 > 0,

c1
1− κ1

π1 +
∑
i≥2

ci
1− κi

πi

=

(
1 +

∑
i

ciκi
1− κi

)(
1

κ1
π1 −

1− κ1
κ1

e1

)
,

and finally(
1 +

∑
i

ciκi
1− κi

)
(1− κ1)e1 + κ1

∑
i≥2

ci
1− κi

πi

= π1

1 +
∑
i≥2

ciκi
1− κi

 ,

which is also valid when κ1 = 0. Since all of the above
coefficients are positive, this implies condition (b) (or
(c) ) of Lemma 2 after normalization.

In Sec. 5 we consider various applications where the
recoverability assumption is satisfied.

4.2 Decontamination

The following result shows that the recoverability and
joint irreducibility conditions ensure decontamination
in the population (infinite sample) case. This result
is applied in the next subsection, in conjunction with
the estimator of Section 3, to establish a consistent
discrimination rule.

Proposition 3. If Π is recoverable and P1, . . . , PL are
jointly irreducible, then for each `, P` is the residue of
P̃` w.r.t. {P̃j , j 6= `}. Furthermore, in the representa-
tion

P̃` = (1− κ`)P` +
∑
j 6=`

ν`jP̃j , (11)

where κ` = κ∗(P̃` | {P̃j , j 6= `}), κ` < 1 and the ν`j are
unique.

The proof of this result shows that under the joint
irreducibility assumption, decontamination of the P̃`
is equivalent to decontamination of the discrete dis-
tributions π`, which may be viewed as contaminated
versions of the ei. In other words, the same weights

κ` and ν`j uniquely give the solutions of both approx-
imation problems. The desired solution of the dis-
crete problem is guaranteed by the recoverability as-
sumption on Π (so that e` is the residue of π` w.r.t.
{πj}j 6=`), and this ensures, by the equivalence of the

decontamination problems, that P` is the residue of P̃`
w.r.t. {P̃j , j 6= `}.

This equivalence leads to a second insight: By a con-
struction in the proof of Lemma 2, Π−1 can be ex-
pressed explicitly in terms of the optimal weights κ`
and ν`j . Therefore, under the assumptions of Proposi-
tion 3, Π−1 can be consistently estimated (i.e., recov-
ered) via the estimator in Section 3.

4.3 A Consistent Discrimination Rule

The decontamination result gives a way to accurately
estimate the true class-conditional error probabilities,
which can then be converted into a consistent dis-
crimination rule. These details now follow. For any
classifier, that is, any measurable function f : X →
{1, . . . , L}, denote Ri(f) := Pi(f(X) 6= i), where X
follows Pi. As a performance measure we adopt the
minmax criterion, which seeks to minimize

R(f) := max
1≤i≤L

Ri(f).

The optimal performance is the minmax error, R∗ :=
inff R(f), where the inf is over all classifiers. Note that
other performance measures could also be analyzed; we
focus on the minmax criterion for concreteness.

The crux of classifier design is accurate error estima-
tion. Denote R̃j`(f) := P̃j(f(X) 6= `). To motivate an
estimator for R`(f), the expression in (11) implies

R`(f) =
R̃``(f)−

∑
j 6=` ν`jR̃j`(f)

1− κ`
.

If Xj
1 , . . . , X

j
nj

iid∼ P̃j are the observed data from class
j, then ̂̃Rj`(f) :=

1

nj

nj∑
i=1

1{f(Xj
i )6=`}

estimates R̃j`(f). Now let (ν̂`j)j 6=` be any vector
achieving the maximum in the definition of κ̂` :=

κ̂( ̂̃P `|{ ̂̃P j , j 6= `}), so that κ̂` =
∑
j 6=` ν̂`j . By Proposi-

tion 2, this vector converges to the unique weights ν`j
in Proposition 3, motivating the following estimator:

R̂`(f) :=

̂̃R``(f)−
∑
j 6=` ν̂`j

̂̃Rj`(f)

1− κ̂`
.

It is well known in statistical learning theory that con-
sistency of a learning algorithm follows from uniform

6
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(i) (ii) (iii)

Figure 1: Illustration of the recoverability condition when L = 3. Panel (i): Low noise, Π recoverable. Each π`
can be written as a convex combination of e` and the other two πj (with a positive weight on e`), depicted here
for ` = 1. Panel (ii): High noise, Π not recoverable. Panel (iii): The setting of “common background noise.”

control of error estimates over a class of classifiers F ,
whose complexity may grow with sample size. Thus we
introduce a sequence (Fk)k≥1 of sets of classifiers with
VC dimension Vk < ∞. Since we are in a multiclass
setting, we adopt the following generalization of VC
dimension to multiclass, namely, define the VC dimen-
sion of class F to be the maximum (conventional) VC
dimension of the family of sets {x : f(x) 6= `}f∈F , over
` = 1, . . . , L. This particular multiclass generalization
of VC dimension allows our analysis to proceed using
only the standard VC inequality for binary classifiers
(or equivalently, for sets, as in Section 3). Indeed, the
VC inequality (Devroye et al., 1996) gives uniform con-

vergence of ̂̃Rj`(f) to R̃j`(f) over f in Fk, and together
with consistency of κ̂` and (ν̂`j) implies the following
result. Similar to Section 3, set n := (n1, . . . , nL) and
write n→∞ to indicate min{n`} → ∞.

Proposition 4. Let k(n) take positive integer values
and be such that as n→∞,

Vk(n) log n`

n`
→ 0,

1 ≤ ` ≤ L. Then under the assumptions of Proposi-

tion 3, supf∈Fk(n)
|R`(f)− R̂`(f)| i.p.→ 0 as n→∞.

This result allows us to analyze the estimation error
of a learning algorithm based on R̂`. To control the
approximation error, we choose (Fk) such that

P3 For any P1, . . . , PL, limk→∞ inff∈Fk
R(f) = R∗.

This condition is analogous to the condition for our
family of sets (Ck) in Section 3.

Let us now define a discrimination rule based on the
above error estimates. Define R̂(f) := max` R̂`(f).
Let τk be any sequence of positive numbers tending to

zero. Let f̂k denote any classifier

f̂k ∈
{
f ∈ Fk : R̂(f) ≤ inf

f∈Fk

R̂(f) + τk

}
.

The introduction of τk lets us avoid assuming the ex-
istence of an empirical risk minimizer. Finally, define
the discrimination rule f̂ := f̂k(n).

Theorem 1. Let k(n) take positive integer values and
be such that as n→∞, k(n)→∞ and

Vk(n) log n`

n`
→ 0, (12)

1 ≤ ` ≤ L. Then under P3 and the assumptions of

Proposition 3, R(f̂)
i.p.→ R∗ as n→∞.

Thus, if the noise is recoverable and the distributions
jointly irreducible, consistent classification is possible
in the multiclass label noise setting.

5 Discussion

We now develop connections between the above theo-
retical framework for multiclass label noise and various
applications mentioned in the introduction.

Consider the second crowdsourcing formulation, and
suppose that unlabeled data are drawn according to∑L
j=1 θjPj . Further suppose that with probability

1− α, the label is assigned correctly, while with prob-
ability α, the label is assigned according to some fixed
distribution, say the uniform distribution [ 1L , . . . ,

1
L ]T .

Let Y denote the true label of an example, and Ỹ the
crowdsourced label. By Bayes’ rule,

πij = Pr(Y = j | Ỹ = i)

∝ Pr(Ỹ = i |Y = j)Pr(Y = j)

= ((1− α)1{i=j} +
α

L
)θj .

7
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In vector form, this means πi ∝ (1 − α)θiei + α
Lθ,

where θ = [θ1, . . . , θL]T . This clearly satisfies the com-
mon background noise model described previously, and
therefore our noise condition is satisfied.

Next, consider the semi-supervised novelty detection
problem described in the introduction. In this case

Π =


1

1
. . .

πL1 πL2 · · · πLL


because the first L − 1 data samples are uncontam-
inated, while the last sample is an unlabeled testing
sample where PL governs the novelty class. It is easy
to see that Π is recoverable if and only if πLL > 0,
using condition (c) of Lemma 2. Therefore, as long as
there are at least some novel exemplars in the unla-
beled data, the noise condition is satisfied, and under
joint irreducibility we have a consistent discrimination
rule for multiclass, semi-supervised novelty detection.
We also note that the above is not the only approach to
novelty detection using mixture proportion estimation
(Sanderson and Scott, 2014).

Our work has an interesting connection to the problem
of topic modeling, itself linked to nonnegative matrix
factorization. In that problem, one also observes ran-
dom samples from several contaminated distributions
(“documents”) P̃i, but in the equation P̃ = ΠP , the
matrix Π is no longer square but now has far more
rows than columns. The distributions Pi are “top-
ics,” and the proportion πij reflects the prevalence of
topic j in document i. Existing work on topic mod-
eling typically represents the topics and documents as
discrete distributions on a finite vocabulary. One in-
teresting connection to our work is that in this discrete
setting, our joint irreducibility condition is equivalent
to a condition that has been previously shown to be
sufficient for identifiability of the topics. In particu-
lar, in the discrete setting, this assumption states that
for each topic, there exists at least one word occuring
with a positive probability in the given topic, and with
a probability of zero in the other topics (Donoho and
Stodden, 2004; Arora et al., 2012).

Finally, we return to the problem of learning from par-
tial labels (Cour et al., 2011). For the sake of ar-
gument we consider a simple form of the problem.
Suppose there are L = 3 classes, and that each ob-
served data point is labeled A = {1, 2}, B = {1, 3}, or
C = {2, 3}. The true label of each example is one of
the labels in the associated subset. Grouping together
observations according to the three “partial labels” (A,
B, or C), these three data samples are described by
the contamination models P̃S =

∑
j∈S πS,jPj , where

Figure 2: Learning from partial labels reduces to mul-
ticlass label noise in some cases.

S ∈ {A,B,C}. Each data sample arises from a convex
combination of two of the three base distributions, as
depicted in Fig. 2. Since these contaminated mod-
els lie on the boundary of the probability simplex,
they do not satisfy the recoverability assumption on
the noise. However, by resampling the data, we may
obtain random samples from distributions that do sat-
isfy the noise assumption. For simplicity, let’s assume
πS,j = 1/2 for each j ∈ S, i.e., each contaminated
model is an equal mixture of the two associated base
distributions. For every pair of contaminated models,
corresponding to subsets S and T , form a new random
sample by resampling from the two observed samples,
such that the new random samples are realizations of
1
2 P̃S + 1

2 P̃T . If Π and Π̈ denote the contamination
proportions before and after resampling, then

Π =

 1
2

1
2 0

1
2 0 1

2
0 1

2
1
2

 , Π̈ =

 1
2

1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
2

 .
The situation is depicted in Fig. 2. The rows (π̈i)

T

of Π̈ satisfy π̈i = 1
4ei + 3

4c, where c = [ 13 ,
1
3 ,

1
3 ]T ,

which is in the form of the common background noise
model, implying our noise condition. Our framework
can now be applied to the resampled data, assuming
joint irreducibility, to give a consistent discrimination
rule for learning from partial labels. If Π is perturbed
slightly, our noise assumption still holds, and we fur-
ther conjecture that this kind of resampling strategy
may be applied when L > 3 and when the pattern of
observed subsets is more general.
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A Proofs for Section 3

A.1 κ∗ and κ̂ are well-defined
Lemma A.1. The maximum operation in the definition of κ∗ and κ̂ is well-defined, that
is, the outside supremum is attained at at least one point.

We prove the statement for

κ∗ = max
µ

inf
C∈C:Fµ(C)>0

F0(C)

Fµ(C)
.

The argument for κ̂ is similar. Denote G(µ) = κ∗(F0|Fµ) = infC∈C:Fµ(C)>0
F0(C)
Fµ(C)

the maximum proportion of the mixture Fµ in the distribution F0.
We argue that G is an upper semicontinuous function. To see this, define for each

C ∈ C the function gC : SM → [0,∞] as

gC(µ) :=

{
F0(C)
Fµ(C) if Fµ(C) > 0 ;

+∞ if Fµ(C) = 0.

Then fC is an upper semicontinuous function: if µ ∈ SM is such that Fµ(C) > 0,
then fC is continuous at point µ. Otherwise, fC(µ) = ∞ and fC is trivially upper
semicontinuous at point µ. Clearly, one has G(µ) = infC∈C fC(µ) ; as an infimum of
upper semicontinuous functions, it is itself upper semicontinuous, and therefore attains
its maximum on the compact set SM .

A.2 Proof of Proposition 2
Point (a): We apply condition P1 for all k, i with δk,i = cδi/k

2. By the union bound,
with probability at least 1 −∑M

i=0 δi, it holds simultaneously for all k ≥ 1 and i =
0, . . . ,M that

∀k ≥ 1 , ∀i ∈ {0, . . . ,M} : sup
C∈Ck

∣∣∣Fi(C)− F̂i(C)
∣∣∣ ≤ εki (cδik

−2) (S.1)

1



Recall the notation (from the proof of Lemma A.1) G(µ) = infC∈C:Fµ(C)>0
F0(C)
Fµ(C)

and introduce

Ĝ(µ) := inf
k

inf
C∈Ck

F̂0(C) + εk0(cδ0k
−2)(

F̂µ(C)−∑i νiε
k
i (cδik−2)

)
+

.

Observe that when (S.1) is satisfied, this implies that for all µ ∈ SM , one has G(µ) ≤
Ĝ(µ). Taking the maximum over µ yields the first point.

Point (b): let ε > 0 be an arbitrary positive constant. For any µ ∈ SM , let Cµ ∈ C
with Fµ(Cµ) > 0 be such that F0(Cµ)

Fµ(Cµ)
≤ κ∗ + ε/4.

By continuity of the function µ 7→ Fµ(C) for any fixed C, there exists for each
µ ∈ SM an open neighborhood Nµ of µ for which both of the following conditions
are realized for all µ′ ∈ Nµ:

F0(Cµ)

Fµ′(Cµ)
≤ κ∗ +

ε

2
, (S.2)

and Fµ′(Cµ) ≥ 1

2
Fµ(Cµ). (S.3)

(For the second condition, we have used the fact that Fµ(Cµ) > 0). By compactness
of SM , there exists a finite subset SεM of SM such that (Nµ)µ∈SεM covers SM .

Denote F εmin := 1
2 minµ∈SεM Fµ(Cµ) ; it is a positive quantity since Fµ(Cµ) > 0

for any µ, and SεM is finite. For each µ ∈ SM , denote ζ(µ) an arbitrary element of the
finite net SεM such that µ ∈ Nζ(µ). By property (S.2), we have

sup
µ∈SM

F0(Cζ(µ))

Fµ(Cζ(µ))
≤ max
µ∈SεM

sup
µ′∈Nµ

F0(Cµ)

Fµ′(Cµ)
≤ κ∗ +

ε

2
, (S.4)

and by property (S.3):

inf
µ∈SM

Fµ(Cζ(µ)) ≥ min
µ∈SεM

inf
µ′∈Nµ

Fµ′(Cµ) ≥ F εmin. (S.5)

Denote Cε := {Cµ , µ ∈ SεM}. Let η ∈ (0, F εmin/2) be another arbitrary positive
constant. Consider the distribution Q = 1

M+1

∑M
i=0 Fi, to which we apply condition

P2. This entails that for each individual C ∈ C there exists a kC and C̃ ∈ CkC with

Q(C∆C̃) ≤ η

M + 1
,

implying for all i ∈ {0, . . . ,M}:
∣∣∣Fi(C)− Fi(C̃)

∣∣∣ ≤ Fi(C∆C̃) ≤ (M + 1)Q(C∆C̃) ≤ η,

and then also for all µ ∈ SM :

∣∣∣Fµ(C̃)− Fµ(C)
∣∣∣ ≤

M∑

i=1

µi

∣∣∣Fi(C)− Fi(Ĉ)
∣∣∣ ≤ η.

2



In what follows we use the shortened notation εki ≡ εki (cδik
−2), and further define

ε(ε, η) := maxi maxC∈Cε ε
kC
i . For fixed (ε, η), the quantity ε(ε, η) is defined as a

maximum of a finite number of functions decreasing to 0 as n → ∞, and therefore
ε also decreases to zero. Below, we assume that all components of n are chosen big
enough so that F εmin − η − 2ε(ε, η) > 0. It holds with probability 1−∑M

i=0 δi that

κ̂ ≤ sup
µ∈SM

inf
k

inf
C∈Ck

F0(C) + 2εk0(
Fµ(C)− 2

∑
i µiε

k
i

)
+

≤ sup
µ∈SM

inf
C∈C

F0(C̃) + 2εkC0(
Fµ(C̃)− 2

∑
i µiε

kC
i

)
+

≤ sup
µ∈SM

inf
C∈C

F0(C) + η + 2εkC0(
Fµ(C)− η − 2

∑
i µiε

kC
i

)
+

≤ sup
µ∈SM

F0(Cζ(µ)) + η + 2ε
kCζ(µ)

0(
Fµ(Cζ(µ))− η − 2

∑
i µiε

kCζ(µ)

i

)

+

≤ sup
µ∈SM

F0(Cζ(µ)) + η + 2ε(ε, η)(
Fµ(Cζ(µ))− η − 2ε(ε, η)

)
+

≤
(

sup
µ∈SM

Fµ(Cζ(µ))(
Fµ(Cζ(µ))− η − 2ε(ε, η)

)
+

)
sup
µ∈SM

F0(Cζ(µ)) + η + 2ε(ε, η)

Fµ(Cζ(µ))

≤
(

F εmin

(F εmin − η − 2ε(ε, η))+

)(
sup
µ∈SM

F0(Cζ(µ))

Fµ(Cζ(µ))
+ sup
µ∈SM

η + 2ε(ε, η)

Fµ(Cζ(µ))

)

≤
(

F εmin

(F εmin − η − 2ε(ε, η))+

)(
κ∗ +

ε

2

)
+

η + 2ε(ε, η)

(F εmin − η − 2ε(ε, η))+
,

where we have used (S.4) and (S.5) for the last inequality. By choosing first η small
enough, then all components of n0 big enough, the r.h.s. of the above inequality can
be made smaller than κ∗ + ε, for all n � n0 (� indicates the inequality holds for
all components). Since

∑M
i=0 δi → 0 as µ → 0, this implies the second part of the

proposition.
For the last point of the proposition, consider an arbitrary open set Ω containing

the set B∗. Then Ωc := SM \ Ω is a compact set; therefore, the function G(µ) :=

infC∈C,Fµ(C)>0
F0(C)
Fµ(C) , being upper semicontinuous (see proof of Lemma A.1), attains

its supremum κ̃ on Ωc. Observe that κ̃ > κ∗ must hold, otherwise we would have a
contradiction with the definition of B∗. Finally, we have:

P [µ̂ 6∈ Ω] ≤ P
[
µ̂ 6∈ Ω;G(µ̂) ≤ Ĝ(µ̂)

]
+ P

[
G(µ̂) > Ĝ(µ̂)

]

≤ P [κ̂ ≥ κ̃] +

M∑

i=1

δi,

3



where we have used that κ̂ = Ĝ(µ̂) by definition, and the argument used in the proof
of point (a). By point (b), the first probability converges to 0 as µ → ∞. Thus, the
probability that µ̂ ∈ Ω must converge to 1 as n→∞. This applies in particular to any
open set of the form Ωε := {µ : d(µ,B∗) < ε}, hence the conclusion.

B Proofs for Section 4

B.1 Proof of Lemma 1
Suppose the first condition does not hold, so that

∑

i∈I
εiPi = α

(∑

i/∈I
εiPi

)
+ (1− α)H.

Then
∑
i γiPi = H , where γi = εi

1−α for i ∈ I , and γi = − αεi
1−α for i /∈ I . Since∑

i/∈I εi = 1, at least one γi < 0, so the second condition is violated.
Now suppose the second condition is violated, say

∑
i γiPi = H . Let I = {i | γi ≥

0}, which has fewer than K elements by assumption. Since
∑
i γi = 1, we also know

1 ≤ |I| and further that Γ :=
∑
i∈I γi > 1. A violation of the first condition is obtained

by εi = γi/Γ for i ∈ I , εi = −γi/(Γ− 1) for i /∈ I (noting that
∑
i/∈I(−γi) = Γ− 1),

and α = (Γ− 1)/Γ.

B.2 Proof of Lemma 2
(a)⇒ (b): Follows immediately from the definition of the residue.

(b) ⇒ (c): By assumption, there exists κ > 0 such that π1 = κe1 + (1 − κ)η1,
where η1 =

∑L
i=2 µiπi, with µi ≥ 0, for all 2 ≤ i ≤ L. Thus,

e1 = κ−1π1 −
L∑

i=2

(1− κ)

κ
µiπi ;

a similar relation holds for all rows. This implies that Π is invertible and allows to
identify (for instance) the first row of Π−1 as (κ−1,− (1−κ)

κ µ2, . . . ,− (1−κ)
κ µL). This

implies (c).
(c)⇒ (a): Without loss of generality, consider ` = 1 and the problem of identifying

κ∗(π1|(πi)2≤i≤L), and the associated residue (if it exists). According to characteriza-
tion (9), this corresponds to the optimization problem

max
ν,γ

L∑

i=2

νi s.t. π1 = (1−
∑

i≥2
νi)γ +

∑

i≥2
νiπi,

over γ ∈ SL and ν = (ν2, . . . , νL) ∈ ∆L−1 =
{

(ν2, . . . , νL)|νi ≥ 0;
∑L
i=2 νi ≤ 1

}
.
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We now reformulate this problem. First, note that the constraint implies that admis-
sible ν are such that

∑
i≥2 νi < 1, otherwise we would have a linear relation between

the πi, contradicting invertibility of Π.
Then for an admissible ν, denote η(ν) := (1 −∑i≥2 νi)

−1(1,−ν2, . . . ,−νL).
Observe that the constraint of the optimization problem is equivalent to ΠTη = γ, or
η = (ΠT )−1γ. The inverse mapping of η to ν is ν(η) = η−11 (−η2, . . . ,−ηL), so that
the objective of the optimization can be rewritten as

−
∑L
i=2 ηi

eT1 η
= −1Tη

eT1 η
+ 1 = 1− 1

eT1 η
= 1− 1

eT1 (ΠT )−1γ
,

where 1 denotes a L-dimensional vector with all coordinates equal to 1. So finding the
point of maximum of the above problem is equivalent to the program

max
γ∈SL

eT1 (ΠT )−1γ s.t. ν((ΠT )−1γ) ∈ ∆L−1

The above objective function has the form aTγ, where a is the first column of Π−1

which, by assumption, has its first coordinate positive and the others nonpositive.
Therefore, the unconstrainted maximum over γ ∈ SM is attained uniquely for γ =
e1. We now check that this value also satisfies the required constraint. Observe
that (ΠT )−1e1 is the (transpose of) the first row of Π−1, denote this vector as b =
(b1, . . . , bL). We want to ensure that ν(b) = b−11 (−b2, . . . ,−bL) ∈ ∆L−1. By as-
sumption, b has its first coordinate positive and the others nonpositive, ensuring all
components of ν(b) are nonnegative. Furthermore, the sum of the components of ν(b)
is

L∑

i=2

− bi
b1

= 1−
∑L
i=1 bi
b1

= 1− 1

b1
≤ 1;

the last equality is because the rows of Π−1 sum to 1 (since Π is a stochastic matrix,
so is its inverse). It follows that ν((ΠT )−1e1) ∈ ∆L−1. Thus, the unique maximum
of the optimization problem is attained for γ = e1, establishing (a).

B.3 Proof of Proposition 3
We start with the following Lemma:

Lemma B.1. If Π is recoverable, thenπ1, . . . ,πL are linearly independent. IfP1, . . . , PL
are jointly irreducible, then they are linearly independent. If π1, . . . ,πL are linearly
independent and P1, . . . , PL are linearly independent, then P̃1, . . . , P̃L are linearly
independent.

Proof of the lemma: The first statement follows from characterization (c) of Lemma 2:
if Π is recoverable, it is invertible and thus has full rank.

For the second statement, suppose
∑
i βiPi = 0 is a nontrivial linear relation. Let

j be any index such that βj ≥ 0. Then
∑
i γiPi = Pj , where γi = βi if i 6= j, and

γj = βj + 1. Since at least one βi < 0, i 6= j, joint irreducibility is violated.
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For the third part, suppose
∑
i αiP̃i = 0. Since P̃i = πTi P , this implies

∑
i αiπ

T
i P =

0, which implies
∑
i αiπi = 0, which implies αi = 0.

Proof of Proposition 3: Consider ` = 1, the other cases being similar. Suppose G
is such that

P̃1 = (1−
∑

j≥2
νj)G+

∑

j≥2
νjP̃j . (S.6)

Note that P̃1, . . . , P̃L are linearly independent by Lemma B.1. This implies
∑
j≥2 νj <

1, because otherwise P̃1 =
∑
j≥2 νjP̃j .

Therefore, any G satisfying (S.6) has the form
∑L
i=1 γiPi. The weights γi clearly

sum to one, and by joint irreducibility, they are nonnegative. That is, γ := [γ1, . . . , γL]T

is a discrete distribution. Thus, Eqn. (S.6) is equivalent to

πT1 P = (1−
∑

j≥2
νj)γ

TP +
∑

j≥2
νjπ

T
j P .

By linear independence of P1, . . . , PL (see Lemma B.1) and taking the transpose, this
gives

π1 = (1−
∑

j≥2
νj)γ +

∑

j≥2
νjπj .

Therefore κ∗(P̃1|{P̃j , j 6= 1}) = κ∗(π1|{πj , j 6= 1}) < 1, and there is a one-to-
one correspondence between feasible G in the definition of κ∗(P̃1|{P̃j , j 6= 1}) and
feasible γ in the definition of κ∗(π1|{πj , j 6= 1}). Since Π is recoverable, the residue
of π1 w.r.t. {πj , j 6= 1} is γ = e1, and so the residue of P̃1 w.r.t. {P̃j , j 6= 1} is
G = eT1 P = P1.

To see uniqueness of the maximizing νj , suppose

P̃1 = (1− κ∗)G+
∑

j≥2
νjP̃j = (1− κ∗)G+

∑

j≥2
ν′jP̃j .

Lemma B.1 implies νj = ν′j .

B.4 Proof of Proposition 4
For brevity we at times omit the dependence of the errors and their estimates on f . For
any f ,

|R`(f)− R̂`(f)| =

∣∣∣∣∣∣
R̃`` −

∑
j 6=` ν`jR̃j`

1− κ`
−
̂̃R`` −

∑
j 6=` ν̂`j

̂̃Rj`
1− κ̂`

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
R̃`` −

∑
j 6=` ν`jR̃j`

1− κ`
−
̂̃R`` −

∑
j 6=` ν̂`j

̂̃Rj`
1− κ`

∣∣∣∣∣∣

+

∣∣∣∣∣∣

̂̃R`` −
∑
j 6=` ν̂`j

̂̃Rj`
1− κ`

−
̂̃R`` −

∑
j 6=` ν̂`j

̂̃Rj`
1− κ̂`

∣∣∣∣∣∣
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≤
|R̃`` − ̂̃R``|+

∑
j 6=` |ν`jR̃j` − ν̂`j

̂̃Rj`|
1− κ`

+

∣∣∣∣
1

1− κ`
− 1

1− κ̂`

∣∣∣∣

=
|R̃`` − ̂̃R``|+

∑
j 6=`

(
|ν`jR̃j` − ν̂`jR̃j` + ν̂`jR̃j` − ν̂`j ̂̃Rj`|

)

1− κ`
+

∣∣∣∣
1

1− κ`
− 1

1− κ̂`

∣∣∣∣

≤
|R̃`` − ̂̃R``|+

∑
j 6=`

(
|ν`j − ν̂`j |+ |R̃j` − ̂̃Rj`|

)

1− κ`
+

∣∣∣∣
1

1− κ`
− 1

1− κ̂`

∣∣∣∣ .

The VC inequality [1] implies that for any ε > 0, supf∈Fk(n)
|Ri`(f)−R̂i`(f)| ≤ ε

with probability tending to 1, since (12) holds, and by our convention for multiclass
VC dimension. Noting that κ` < 1 by Proposition 3, the other terms tend to zero in
probability by consistency of κ̂` and the ν̂`j . This completes the proof.

B.5 Proof of Theorem 1
Consider the decomposition into estimation and approximation errors,

R(f̂)−R∗ = R(f̂)− inf
f∈Fk(n)

R(f) + inf
f∈Fk(n)

R(f)−R∗.

The approximation error converges to zero by P3 and since k(n) → ∞. To analyze
the estimation error, let ε > 0. For each positive integer k, let f∗k ∈ Fk such that
R(f∗k ) ≤ inff∈Fk R(f) + ε

4 . Then

R(f̂)− inf
f∈Fk(n)

R(f) = R(f̂k(n))− inf
f∈Fk(n)

R(f)

≤ R(f̂k(n))−R(f∗k(n)) +
ε

4

≤ R̂(f̂k(n))− R̂(f∗k(n)) +
ε

2
(with probability tending to 0, by Proposition 4)

≤ τk(n) +
ε

2
≤ ε

where the last step holds for n sufficiently large. The result now follows.
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