
HAL Id: hal-03370877
https://hal.science/hal-03370877

Submitted on 8 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Memristive Logic-in-Memory Implementations: A
Comparison

Pietro Inglese, Elena Ioana Vatajelu, Giorgio Di Natale

To cite this version:
Pietro Inglese, Elena Ioana Vatajelu, Giorgio Di Natale. Memristive Logic-in-Memory Implementa-
tions: A Comparison. 16th International Conference on PRIME, Jul 2021, Online, Germany. �hal-
03370877�

https://hal.science/hal-03370877
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Memristive Logic-in-Memory Implementations: A
Comparison

Pietro Inglese, Elena Ioana Vatajelu, Giorgio Di Natale

Univ. Grenoble Alpes, CNRS, Grenoble INP*, TIMA, Grenoble, France
{pietro.inglese,ioana.vatajelu,giorgio.di-natale}@univ-grenoble-alpes.fr

Abstract — The technology evolution addresses the demand for

faster computers. Despite the achieved speed-up in terms of memory
and computation performances, the communication between the
memories and the processor remains a bottleneck of today’s
computers. The Computation in Memory (CiM) paradigm aims at
solving this problem by moving the computation directly inside the
memory, eliminating thus the need for data transfer between memory
and processor. Among the available CiM implementations, this study
focuses on the Logic-in-Memory (LiM) solutions, i.e., digital
operations to accelerate Boolean Logic. This work provides a
comparison among the most prominent LiM solutions in terms of
required memory resources (i.e., number of memristors) and number
of operations.

Keywords — Emerging technologies, Logic-in-Memory,

Memristors, Non-Volatile memories

I. INTRODUCTION

Among the most important challenges faced by today’s
computing systems are the memory wall (caused by the uneven
evolution of processing speed and memory access times and
bus data transfer) and the energy efficiency. Emerging non-
volatile memories are widely studied today as means to
maximize energy efficiency mainly due their ability to reduce
the static power consumption. These memories include
Resistive Random-Access Memories (RRAMs), Phase Change
Memories (PCMs), and Spin-Transfer Torque Magnetic RAMs
(STT-MRAMs). Another perceived advantage of emerging
non-volatile memories resides in their physical capabilities
which can be exploited to perform logic or arithmetic
operations directly inside the memory array, therefore
providing a solution to bypass the memory wall issue.

Several solutions to mitigate the memory wall by reducing
the data movement between memory and CPU have been
proposed. They can be classified in 3 main categories: (i)
Computation Near Memory [1], where the memory core is
placed as close as possible to the CPU, permitting to have a
shorter bus and therefore decrease the latency, (ii) Computation
via LUT, that exploits a Look-Up Table storing pre-calculated
operations, and the (iii) Computation in Memory (CiM) which
exploits memory technologies (both classical and emerging) to
perform calculations directly within the memory array. The
latter is considered the most efficient, since it is more flexible
than the Computation via LUT and completely eliminates the
need for data transfer via buses.
Depending on the exploited physical memory device
characteristic, CiM can allow to perform analog or digital
computations. Analog computations are mainly used to
perform additions and matrix multiplications mainly to design
accelerators for machine learning. Digital computations are
used to accelerate Boolean logic. In this scenario, a part or the
whole classical Arithmetic Logic Unit (ALU) embedded in the
processor is actually implemented directly within memory.
This is referred to as Logic-in-Memory (LiM) and it is the main
focus of this paper.

* Institute of Engineering Univ. Grenoble Alpes

In the last five years, the number of research papers dealing
with this topic on different levels of abstraction has increased
exponentially. In this context, research is focused on the design
of LiM architectures, the development of LiM-compatible
instructions set, the methods for system integration and
development of the programming model for LiM integration in
computing systems. Nevertheless, the actual status of the
research is fragmented and the reproduction of the reported
results, along with the choice of an implementation to be
adopted, are not trivial. For instance, [2] presents a review on
in-Memory Computing, focusing on the memories enabling it
and on its applications, [3] offers a classification of the in-
Memory Computing solutions, while [4] describes several
adder implementations. Besides the fragmentation, the use of
existing electrical models and their parameters is not always
supported by physical measurements on real devices.

While these comparative surveys show the characteristics
of existing solutions, a thorough analysis of the
implementations of Boolean functions is still missing.
Therefore, in this work we present a study of the existing LiM
implementations in order to perform a fair comparison in terms
of resources and efficiency. More in particular, we present a
thorough study of simple Boolean functions implemented in-
memory resulting in a comprehensive comparison of LiM
solutions in terms of required number of memristors and
number of operations.

The remainder of this paper is organized as follows. Section
II presents the Logic-in-Memory solutions and describes the
basic functioning and the primitive logics enabled. Section III
presents an analysis of the described solutions through the
basic Boolean logic blocks and a full adder implementation.
Finally, Section IV concludes the paper.

II. BACKGROUND

This section describes basic memory array modifications to
enable LiM and describes some selected LiM solutions.

In the traditional use of a memory array, a memory cell is
selected by means of address decoders, it is written into by the
write driver and read from with the help of the sense amplifiers.
The voltage levels required to enable the operations on the
memory cell are set by the voltage regulators. One memory
array communicates with the processor or other memory arrays
by means of bus connections. In order to enable the LiM
operations, several changes need to be implemented to the
memory array or/and to its peripheral circuitry. In this context,
the peripheral circuitry consists of standard memory periphery
(sense amplifier, write driver, address decoders). Moreover, in
some instances, additional logic is added to enable
computation.

Several LiM proposals exist in literature, some are general,
and can be used with any memory technology, others take
advantage of the device physics and are only suitable to be
implemented in a specific technology. In addition, some of the

existing LiM solutions are designed to implement specific logic
functions [5]–[11] henceforth called “primitive operations”,
while others propose solutions for the implementation of any
Boolean function [12].

The existing LiM solutions can be classified depending on
the way the inputs are stored (the memory content, i.e., stateful
logic, or an electrical signal, i.e., non-stateful logic) and
depending on where the operations are performed (in the
memory array, or in the periphery). In this context, three main
LiM classes can be distinguished. They are described in the
following and their characteristics are summarized in Figure 1.

A. Stateful Logic in LiM Array

The operations are performed within the memory array and
the data are stored as memory content. This solution is
proposed only for memristive crossbar (1R-RRAM) arrays.
The input data are stored within the memory array, and the
output (computation result) is obtained as memory content
within the memory array. Inputs and outputs are coded as the
resistive states of the storing memristors.

In order to enable LiM operations within the memory array,
several conditions need to be respected: (1) the memory cells
containing the input data and the memory cells to store the
result of the computation must share the same row (column);
(2) access to multiple memory cells should be enabled; (3)
specific control voltages (different than the memory read/write
voltages) to be applied for the completion of logic operations.
As a consequence, the write driver, the voltage regulator and
the address decoders of standard memory array have to be
modified to enable LiM.

LiM solutions pertaining to this class include: Memristor-
Aided Logic - MAGIC [5], with NOT and NOR as primitive
operations, FELIX [6], [7] with OR, NAND and MIN as
primitive operations, IMPLY [8], [9] with Boolean implication
as primitive operation, and Stateful Three-Input Logic [10]
with ORNOR3 (i.e., input1 OR (input2 NOR input3)) as
primitive operation.

B. Stateful Logic in LiM Array and its Periphery

The operations are performed within the memory array
periphery or by means of additional logic and the input data are
stored as memory content. This solution can be used with any
memory technology. The input data are stored within the
memory array, while the output (computation result) is
obtained as a voltage (or current) outside of the memory array.

In order to enable LiM operations within the periphery of
the memory array, several conditions need to be respected: (1)
the memory cells containing the input data must share the same
column; (2) access to multiple memory cells should be enabled
by modifying the address decoders; (3) the sense amplifiers
should be modified such that different references are allowed.
We refer to this class of solutions as Logic in Periphery (LIP).

The MRIMA architecture [12] is based on the Logic In
Periphery: it exploits re-configurable Sense Amplifiers (SAs)
to perform arithmetic and logic operations on STT-MRAM. All
Boolean functions can be implemented with this solution by
resorting to additional combinational gates.

C. Non-Stateful Logic in LiM Array and its Periphery

The operations are performed within the memory array and
by using additional logic, and the data are coded partially as
memory content and partially as voltage levels. This solution
can be used with resistive technology only. It uses two types of

input data: (1) memory content, (2) voltage level, while the
output (computation result) is obtained as memory content
within the memory array.

In order to enable this type of LiM operation several
conditions need to be respected: (1) specific control voltages
(different from the memory read/write voltages) to be applied
for the completion of logic operations, (2) specific registers to
store the inputs to be given as voltage levels. As a consequence,
the write driver, the voltage regulator and the address decoders
of standard memory array have to be modified to enable LiM.

An implementation of this solution is PLiM [11], which
implements, as primitive operation, a special case of majority
voter, where one of the inputs is negated (a.k.a., Resistive
majority).

CiM Solution #mem pts Gate Remarks Technology Operations

LIM Array

Stateful Logic

MAGIC

(NOR2)
3

input non-

destructive,

parallelizable

Memristive

crossbar

(1R-RRAM)

1. Initialize Rout

2. Apply proper voltages to

Rin, Rout

3. Obtain output in Rin_out

IMPLY

A  B
2

input destructive,

parallelizable

Stateful

Three-Input

Logic

(ORNOR3)

3 input destructive

LIM Array +

Periphery – Non

Stateful Logic

(Hybrid inputs)

PLiM

(RMAJ3)

3

(1 in the

array,

2 external)

input destructive,

requires input pre-

processing

Memristive

crossbar

(1R-RRAM)

1. Read inputs Rin and

convert to voltages

2. Apply the voltages to

Rin_out

3. Obtain output in Rin_out

LIM Array +

Periphery

Stateful Logic

Logic in

Periphery
2

input non-

destructive,

additional step to

store output in

memory

SRAM

1T1R-RRAM

STT-MRAM

1. Apply voltage on multiple

rows

2. Obtain output (via SA)

3. [Store output in memory]

Vw_in1

in3out

Vw_in2

V0

in1

V0

in2 out

VCOND

in1

VSET

in2out
RG WL

Vr

in1

Vr

in2

Iin

Iref

SA
Vout

WL

BL

V0

in1

V0

in2 in3out

RG

WL

WL

WL

Figure 1 – Primitive logic gates: Column 2 (CiM Solution) lists the

considered LiM solutions and the corresponding primitive operations. The
number of memory cells needed to implement a 2-input (1-bit) primitive
operation is summarized in Column 3 (#mem pts), while the schematic of
the “primitive operation” gate for each solution is illustrated in Column 4
(Gate). Column 7 (Operations) lists the algorithm executed to obtain the
result of the primitive operation. The executed operation can be input-

destructive or not (see column 5, Remarks). An input-destructive operation
is an operation that changes the value of the inputs after it is executed.

III. PROPOSED METHOD AND RESULTS

The goal of this work is to provide a comprehensive
comparison of existing LiM solutions and understand their
implementation complexity. The analysis has been performed
on basic Boolean functions, in order to be as generic as possible
and to provide the designer an indication of implementation
complexity and cost of each LiM solution. In addition, this
study can give an indication of which LiM solution is more
suitable for a target application, depending on the most used
Boolean functions.

In order to achieve a fair comparison among all solutions,
we mapped all the 0-input logic functions (TRUE and FALSE),
1-input logic functions (COPY, NOT), 2-input logic functions
(NOR, OR, NAND, AND, XNOR, XOR, NIMPLY, IMPLY)
and the Full Adder as 3-input logic function, by using the
primitive operations of MAGIC (and its extensions), IMPLY
(and ORNOR3) and PLiM solutions. The full adder has as inputs
�, � and ��� while the outputs are � and ��	
 .

��	
 = ��� + ��� + �� + ��� + �� + �����

� = ����� + �� + ���� + ��� + � + ��� + ��	
������

Tables I and II summarize the results of this study. Table I
shows the mapping of all considered Boolean functions on LiM
primitive operations. For each LiM implementation, the
primitive operations are written in blue. Each row contains the
mapping of the Boolean function defined in the first column.

Input #memristors #steps

0 0 1 1

0 1 0 1

TRUE (write 1) 1 1 1 1 0 1 1 + 0 1 + 0 1 + 0 1 + 0 1 + 0 1 + 0 1 1 1 1 1 1

FALSE (write 0) 0 0 0 0 0 1 1 + 0 1 + 0 1 + 0 1 + 0 1 + 0 1 + 0 1 1 1 1 1 1

in1 (COPY) 0 0 1 1 1 1 2 + 1 2 + 1 2 + 1 2 + 1 2 + 1 2 + 0 4 3 4 4 4 2 + 1

NOT in1 1 1 0 0 1 1 2 + 0 2 + 0 2 + 0 2 + 0 2 + 0 2 + 0 2 2 2 2 2 2 + 1

in1 NOR in2 1 0 0 0 2 1 3 + 0 3 + 0 3 + 1 3 + 0 3 + 0 3 + 1 2 2 9 5 2 6 + 4

in1 OR in2 0 1 1 1 2 1 3 + 1 3 + 0 3 + 1 2 + 1 3 + 1 3 + 1 4 2 7 3 4 4 + 3

in1 NAND in2 1 1 1 0 2 1 3 + 2 3 + 0 3 + 0 3 + 0 3 + 0 3 + 1 10 2 3 3 3 6 + 5

in1 AND in2 0 0 0 1 2 1 3 + 2 3 + 1 3 + 1 3 + 1 3 + 1 3 + 1 6 4 5 5 5 4 + 3

in2 IMP in1 1 0 1 1 2 1 3 + 1 3 + 1 3 + 1 2 + 0 3 + 1 3 + 0 6 4 5 1 1 2 + 2

in2 NIMP in1 0 1 0 0 2 1 3 + 1 3 + 1 3 + 1 3 + 0 3 + 1 3 + 1 4 4 7 3 3 4 + 3

in1 XOR in2 0 1 1 0 2 1 3 + 2 3 + 0 3 + 2 3 + 2 3 + 2 3 + 1 10 3 13 13 10 7 + 4

in1 EQUAL in2 (XNOR) 1 0 0 1 2 1 3 + 2 3 + 1 3 + 2 3 + 2 3 + 2 3 + 1 12 5 15 15 12 9 + 5

Input

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

Output

FA (sum) 0 1 1 0 1 0 0 1

FA (c_out) 0 0 0 1 0 1 1 1
9 + 1036 12 49+37 49+37 24

M
A

G
IC

F
E

L
IX

IM
P

L
Y

IM
P

L
Y

d
es

tr
.

O
R

N
O

R
3

R
M

A
J3

5 + 2 5+5 5 + 1

3 bit

3 2 5 + 4 5 + 1 5 + 2

R
M

A
J3

Gate Output #in #out

2 bit

M
A

G
IC

F
E

L
IX

IM
P

L
Y

IM
P

L
Y

d
es

tr
.

O
R

N
O

R
3

Table II – number of memristors and number of operations per Boolean function

For clarity, a unique syntax is used for all cells of Table I:

LiM_Boolean (used memory cells)

i-j) LiM_Boolean(used memory cells)

where the first line defines the name of the Boolean function
implemented in a specific LiM, together with the used memory
cells for inputs and outputs; the following lines describe the
algorithm used to map that function on primitive operations,
underlying the number of steps required for its execution (i-j).
In the case of majority voter requiring additional registers, the
algorithm contains extra read operations marked as ri.
 For each function, a number of memristors are used to store
the inputs (ini), the output (out), and intermediate results (fi).
The intermediate results are used to solve complex mapping
algorithm where several operations are executed in sequence,
and they are stored in so-called functional memristors. In case
of destructive operations (i.e., IMPLY), the content of one of the
input memristors is overwritten by the output (noted as iniout in
the table).

To validate the solutions, we have developed a script which
checks for the correctness of each Boolean function mapped on
LiM primitive operations.

Table II summarizes, for each Boolean function:

its truth table (column 2);
number of inputs and outputs of the function (columns 3

and 4);
for each LiM solution: number of used memristors, in the

form #(input and output) + #functional (columns from 5 to 10);
for each LiM solution: number of operations needed to

perform the computation (columns from 11 to 16). For the
PLiM implementation, the steps are indicated as the memory
cycles + the reading operations.

IV. CONCLUSIONS

In this paper we have presented an extensive study of the

most prominent LiM solutions and provided a comparison in

terms of required memory resources (i.e., number of

memristors) and number of operations to implement basic

Boolean functions.

The obtained results show big discrepancies among LiM

solutions in the number of steps to execute the operations. For

instance, the XOR requires many more steps if implemented

with IMPLY logic compared to FELIX. These results reflect the

complexity of each operation but do not directly translate into

an estimation of the actual execution time. This is due to the

fact that, due to physical and electrical characteristics of the

memristive devices, the timing of each operation can vary

significantly.

REFERENCES

[1] M. Gokhale et al., “Processing in memory: the Terasys massively
parallel PIM array,” Computer, vol. 28, no. 4, pp. 23–31, Apr. 1995.

[2] A. Sebastian et al., “Memory devices and applications for in-memory

computing,” Nature Nanotechnology, pp. 1–16, Mar. 2020.

[3] H. A. D. Nguyen et al., “A Classification of Memory-Centric

Computing,” J. Emerg. Technol. Comput. Syst., vol. 16, no. 2, p. 13:1-

13:26, Jan. 2020.
[4] P. L. Thangkhiew et al., “Efficient implementation of adder circuits in

memristive crossbar array,” in TENCON 2017 - 2017 IEEE Region 10

Conference, Nov. 2017, pp. 207–212.

[5] S. Kvatinsky et al., “MAGIC—Memristor-Aided Logic,” IEEE Trans.

Circuits Syst. II, vol. 61, no. 11, pp. 895–899, Nov. 2014.

[6] N. Peled et al., “X-MAGIC: Enhancing PIM Using Input Overwriting
Capabilities,” in 2020 IFIP/IEEE 28th International Conference on

Very Large Scale Integration (VLSI-SOC), Oct. 2020, pp. 64–69.

[7] S. Gupta et al., “FELIX: fast and energy-efficient logic in memory,” in

Proceedings of the International Conference on Computer-Aided

Design, San Diego California, Nov. 2018, pp. 1–7.
[8] E. Lehtonen and M. Laiho, “Stateful implication logic with

memristors,” in 2009 IEEE/ACM International Symposium on

Nanoscale Architectures, San Francisco, CA, USA, Jul. 2009, pp. 33–

36.

[9] S. Kvatinsky et al., “Memristor-Based Material Implication (IMPLY)

Logic: Design Principles and Methodologies,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 22, no. 10, pp.

2054–2066, Oct. 2014.

[10] A. Siemon et al., “Stateful Three-Input Logic with Memristive

Switches,” Sci Rep, vol. 9, no. 1, pp. 1–13, Oct. 2019.

[11] P.-E. Gaillardon et al., “The Programmable Logic-in-Memory (PLiM)

Computer,” in Proceedings of the 2016 Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2016, pp. 427–432.

[12] S. Angizi et al., “MRIMA: An MRAM-based In-Memory

Accelerator,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,

pp. 1–1, 2019.

