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ABSTRACT
This paper deals with acceleration of multidimensional sig-
nal acquisition. The signal is assumed to have multiple
discrete spatial dimensions where each point is time varying.
The one-dimensional Fourier transform of the time evolution
of each point is assumed to have an a priori known bounded
support. The Fourier transform of the spatial domain is
divided into several partitions, each of which can be se-
quentially acquired over time. We propose a method for
undersampling the time dimension that enables interleaving
of the samples hence speeding up signal acquisition. This
method, applied to realistic simulated magnetic resonance
spectroscopic imaging data (MRSI), leads to a reduction in
the acquisition time by a factor of three.

Index Terms— Irregular sampling, undersampling, sam-
ple selection, sensor placement, least-square, magnetic res-
onance spectroscopic imaging, spiral spectroscopic imaging

1. INTRODUCTION

Compressed Sensing (CS) [1], [2] introduced a new way
to sample, with a lowered sampling rate compared to the
Nyquist-Shannon criterion. The signal to be sampled has to
be sparse in a given space so that CS can be applied. CS
has already been used for several applications in medical
imaging [3], digital imaging [4] and radar imaging [5]. It is
based on three main steps: sparse representation, measure-
ment encoding, and sparse signal reconstruction [6].

For a known sparse spectra support, it is possible to
accelerate and simplify the reconstruction process. In [7],
[8] the l2 norm was used to reconstruct the signal with a
known sparse spectra support using the least square (LS)
overdetermined solution. In [7] optimal k-space sampling
in MRSI for images with a limited region of support is
investigated while in [8] a fast multidimensional NMR
spectroscopy for sparse spectra is proposed. Compared to
the orthogonal matching pursuit algorithm (OMP)[9], the LS
solution corresponds to only the last step of this algorithm
when all of the samples of the support are found [10].
In a noisy scenario, the reconstruction error depends on
the choice of the acquired time samples, but selecting the

optimal choice is combinatorial. Computationally efficient
methods leading to good suboptimal solutions are required.
The first proposed algorithm was the Sequential Backward
Selection (SBS) algorithm [11], iteratively removing samples
up to the desired number, minimizing the Mean Squared
Error (MSE) at each iteration. The same authors proposed
an equivalent constructive algorithm called the Sequential
Forward Algorithm (SFS), [12], but it requires a full rank
matrix to start with, and thus some already selected samples.
This sample selection problem is equivalent to a sensor
placement problem, and thus has several solving algorithms
and methods, such as approximating the problem using a
convex relaxation [13], [14], or greedy methods. The latter
consists in selecting samples one by one by optimizing
a proxy of ideal acquisition, such as the MSE [15], the
worst case error variance [16], the volume of the confidence
ellipsoid [17], or the frame potential [18]. An exhaustive bib-
liography is given in [19], with an extension to these greedy
methods, by searching samples among a given number of
groups. One can note that SBS is a backward version of the
greedy method minimizing the MSE, while SFS is identical
as soon as the number of selected samples leads to a full
rank matrix.

In the present study, we tackle the problem of the design
of a fast sampling strategy for multidimensional signal acqui-
sition, with its application to simulated magnetic resonance
spectroscopic imaging (MRSI) data [7]. Here we use the
sample selection algorithm in a different way, and we push
further the method to design a new sampling strategy taking
advantage of the multidimensional characteristic. The first
results from this study were presented in [20].

Magnetic resonance spectroscopic imaging (MRSI) sig-
nals consist of several spatially distributed one-dimensional
spectra. As for magnetic resonance imaging, the acquisition
is performed in a spatial two-dimensional spectrum domain
called the k-space, for which (kx,ky) represents the wave
numbers in each dimension. In MRSI, this k-space evolves in
time according to an oscillatory function with an exponential
decay. The oscillation frequencies are characteristic of the
molecular content under analysis. A two-dimensional Fourier
transform of the k-space is then necessary to spatially



localize the biochemical information, and a one-dimensional
Fourier transform along the time direction is needed to obtain
the magnetic resonance spectra. The time domain and the
k-space domain are separable. At each (kx,ky) point, the
associated spectrum is bandlimited. In in vivo magnetic
resonance spectroscopy, it is customary to consider that
molecular resonance frequencies in living tissues [21], [22]
and the expected ‘full width at half maximum’ (FWHM)
of the resonating peaks are known a priori. Moreover,
frequencies and FWHM are used as starting values and prior
knowledge in magnetic resonance signal quantification [23];
here, these are used to define this limited band a priori, i.e,
the spectral support.

For the purpose of generality of this work, we deal with
a spatio-temporal signal model y(U, n), where U is a K-
multidimensional space and n is the discrete time dimension.
It is assumed that y(U, n) can be fully acquired by sampling
it sequentially over different partitions of U .

For this particular MRSI application, U is the k-space.
Due to physical constraints, it is not possible to scan the
whole joint spatial and temporal dimensions of the signal
all at once. Indeed, at each scan, data points are sequentially
acquired over time and over limited regions of the k-space.
Given that the signal is transient, several scans are required
to obtain the full U space over time. As a result, the
full and dense sampling of this signal is time consuming.
This approach is similar to multiple measurement vector
methods [24], [25], which represent an extension of the
single measurement vector methods, with the difference
being that the acquisitions are sequential and the spectral
support is known.

Several fast k-space scanning or CS methods have
been proposed for MRSI [26], [22]. The undersampling
of the temporal dimension has never been proposed
except for a CS scenario [27]. In the special case of
sparse spectra, we show that subsampling the temporal
dimension enables interleaving of the acquisitions of the
partitions of U of the signal y(U, n). Therefore, it leads
to a decrease in the number of scans, and a reduction
of the acquisition time of the signal. We propose an
algorithm that specifies the signal acquisition scheme.

In this work, our main contribution is:
• a method to sample a multidimensional signal in a

multidimensional framework in order to accelerate the
acquisition while minimizing the MSE;

Other contributions include:
• a group extension of SBS, and its comparison to the

state-of-the-art of one-dimensonnal sensor placement;
• theorems required for our proposal;
• an application of the proposed method to a realistic

MRSI simulation with performances evaluation.
This paper is organized as follows. In section 2, we

first extend SBS to a group method and compare it with
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Fig. 1. MSE versus the sensor (or sample) number, for a
100 × 20 matrix Ψ, whose components follows a uniform
distribution in [0, 1], for the group greedy method and the
group SBS of size L ∈ [1, 5, 30]. MSE is averaged over 100
realizations.

a generic state-of-the-art method, and then apply it to a one
dimensional sparse-spectrum signal to define an acquisition
strategy. Finally two theorems are derived from this special
case. Section 3 uses these theorems to propose a multidimen-
sional signal acquisition algorithm. The MRSI application is
presented in section 4, followed by our conclusion and some
perspectives.

2. SAMPLE SELECTION FOR MSE
MINIMIZATION

2.1. Problem statement and state-of-the-art
We want to solve a linear inverse problem, expressed as

y = Ψx+ ν, (1)

where y is a N -samples measurement vector, x a M -samples
unknown vector, Ψ an N × M observation matrix, and
ν a white Gaussian zero mean noise which is identically
distributed, with variance σ2.

We use N measurements to estimate the M -dimensional
x vector, assuming N > M . In this case, the matrix system
is overdetermined, and the minimum variance unbiased
estimate of x is the Least Square (LS) solution

x̂ = (Ψ∗Ψ)
−1

Ψ∗y, (2)

where ∗ denotes the conjugate transpose.
Given that (1) is overdetermined, it is possible to subsam-

ple y, by selecting only P rows from Ψ, M ≤ P < N .
This sample selection problem is strictly equivalent to a

sensor placement problem: from the N possible samples,
which ones are the P best leading to a minimal error?

Here we arbitrarily fix P for targeted subsampling factor
of N/P . The lower the subsampling, the higher the error.



The choice of P is a tradeoff between subsampling and
increased MSE. The optimal solution can be found by an
exhaustive search, but this is computationally unaffordable.
Algorithms leading to good solutions in a reasonable time,
even if not optimal, are thus required.

Among these algorithms, greedy methods iteratively select
rows of Ψ one by one by optimizing a given criterion,
arbitrarily chosen as the Mean Squared Error (MSE).

In this work, we use the MSE criterion as it is commonly
used in MRSI.

The MSE of the estimate x̂ of (2) is

MSE(x̂) = E||x− x̂||2 = σ2tr[(Ψ∗Ψ)−1]. (3)

The idea of the greedy method is to iteratively select the row
of Ψ that minimizes MSE(x̂) at each iteration.

Note that when the number of selected rows is smaller
than the number of columns M , Ψ∗Ψ is singular. To avoid
this problem, Jiang et al. [19] replace this singular matrix
by Ψ∗Ψ + εI , where ε is a small number and I the identity
matrix. In addition, Jiang et al. extended the greedy method
by searching for L parallel groups at each iteration, with the
intuition that it expands the solution search, and should be
closer to optimal. They also compared their group greedy
method [19] with five methods: FrameSense [18], convex
relaxation, [13], SparSense [14], Greedy [16] [17] and
even random selection, demonstrating that the group greedy
method leads to the best results.

We propose here to expand the SBS method by using
the group idea of [19], and compare it to the group greedy
method using the same experiment.

The observation matrix Ψ is a 100× 20 uniform random
matrix with independent components following a uniform
distribution in [0; 1]. The greedy method and SBS are applied
to this matrix, for groups sizes of L ∈ [1, 5, 30], for a
number of selected rows ranging from 20 to 30. The MSE is
computed for each case and averaged over 100 realizations
of Ψ.

Fig. 1 shows the results. Overall, SBS gives better results
than the greedy method. Moreover, as expected, the bigger
the group, the lower the MSE, leading to a better sample
selection.

2.2. Application to sparse spectrum signals
In this section, we consider a sparse spectrum signal

y = F−1x, (4)

where y is an N -samples time-domain signal, with a sam-
pling period Ts, x its N -samples associated spectrum, and
F the unitary discrete Fourier matrix of size N × N ,
Fn,k = exp(−i2πnk/N)/

√
N .

Let xm be the restriction of x to its M non-zero values.
Equation (4) becomes

y = Axm, (5)

where A is the N ×M matrix that is obtained by selecting
from F−1 the columns that correspond to the M elements
of x in its sparse support S. A is the special case of Ψ in
(1).

We need to determine the best P samples of y to be
acquired using a MSE-minimization algorithm, leading to
a final A matrix of size P ×M .

The SBS algorithm and the greedy method have been
compared for group sizes of L ∈ [1, 5, 30] with three
types of support, which we define as compact, block, and
random. Each of these support types has M = 128 non-
zero values and the total sample number N = 1024. A
compact support is defined as M consecutive nonzero
frequency locations. A block support is defined as eight
different compact supports of size M/8 that are randomly
distributed. A random support is defined as M randomly
selected nonzero frequency locations.

Figure 2 shows the MSE evolution that is averaged on 50
random realizations of each support, versus the number P
of selected rows with N = 1024. Several conclusions arise.

i) The more “compact” the support, the lower the MSE.
ii) Except for random support, using groups is harmful.

When looking at the evolution of the MSE along the it-
erations, using groups shows better MSE at the beginning.
However, selecting these better groups finally leads to higher
MSE at the end. This shows the non-linearity of the iterative
search. However, when looking at individual realizations,
sometimes using large groups improves the MSE, while on
average it does not.

iii) The greedy algorithm is on average better than the
SBS one. Note that for certain realizations, SBS is better
than the greedy method.

Based on these observations and given the particularities
of the Fourier matrix, in the following, we choose to use as
an MSE-minimization algorithm the greedy method, with a
group size of 1.

2.3. Properties of the subsampled sparse Fourier matrix
The following theorems give some properties of the matrix
A in (5) with only P selected rows, which will be useful
for our acquisition method described in section 3.

Theorem 1.
Let A be the P ×M , M ≤ P ≤ N , matrix constructed with
the discrete Fourier transform matrix F−1 of size N × N
where N −M columns and N −P rows have been deleted.
The entries of A are (A)ns,ks = e2πinsks/N/

√
N , where

ks are the columns indexes corresponding to the support of
x. The indexes ns are in the list p of the P selected rows
in F−1. Consider a circular shift d, with period N , of the
indexes in p and select the corresponding rows in F−1: if
A∗A is nonsingular, then tr[(A∗A)−1] is invariant from this
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Fig. 2. MSE versus the sensor (or sample) number, for a Fourier matrix restricted to a random spectral support, for the
group greedy method and the group SBS of size L ∈ [1, 5, 30]. Left: compact support. Center: block support. Right: random
support. MSE is averaged over 50 realizations of each support.

circular shift.
Proof.
Consider a circular shift d of the selected P rows.

Write (Ad)ns,ks
= (A)ns+d,ks

= e2πi(ns+d)ks/N/
√
N.

with (ns + d) (mod N),

Then (Ad)ns,ks
= e2πidks/N (A)ns,ks

.

Then (Ad)ns,ks
= e2πidks/N (A)ns,ks

.
It follows that

Ad = ADd,

where Dd = diag(e2πidsks/N ), ks = 0, 1, . . . ,M − 1.
Note that Dd∗Dd = IM , with IM the M×M identity matrix.
Finally,

tr[(Ad∗Ad)−1] = tr[(Dd∗A∗ADd)−1]

= tr[(Dd)−1(A∗A)−1(Dd)−1∗]

= tr[(Dd∗)−1(Dd)−1(A∗A)−1]

= tr[(A∗A)−1]. �

Involvement of Theorem 1
For noisy data with the same hypothesis as in section 2.2,
the selected time samples to be acquired can be circularly
shifted, without increasing the resulting trace of the square
matrix (A∗A)−1, and therefore without increasing the
noise amplification. This enables more flexibility in the
choice of time samples used to solve (5) during the signal
acquisition and this is a key point for our method based on
the interleaved acquisition described in section 3.

Theorem 2.
Given the matrix A defined in Theorem 1, consider a
circular shift r of the support of x with period N , the
columns of the matrix A. If A∗A is nonsingular, then A∗A
is invariant from the circular shift, and so is tr[(A∗A)−1].

Proof.
Consider a circular shift r of the M selected columns.

Write (Ar)ns,ks
= (A)ns,ks+r

= e2πins(ks+r)/N/
√
N.

Then (Ar)ns,ks+r
= e2πirns/N (A)ns,ks

It follows that
Ar = DrA

where Dr = diag(e2πirns/N ), n = 0, 1, . . . , P − 1.
Note that Dr∗Dr = IP , where IP is the P × P identity
matrix.
Then Ar∗Ar = A∗Dr∗DrA = A∗A �

Involvement of Theorem 2
tr[(A∗A)−1] is invariant from any circular shift of the
spectrum support (mod N), which does not require a new
computation of the MSE minimization algorithm.

3. MULTI-SETS ACQUISITION
This section presents the signal model used in this study,
and an algorithm whose goal is to minimize the acquisition
time required to sample this signal.

3.1. Model of the temporal signal y(U, n)

Let y(U, n) be a multidimensional signal, where n is the
discrete time dimension, and U a K-dimensional space. U
is assumed to be divisable into Nu partitions Uu, such that

U = ∪Nu−1
u=0 Uu. (6)

Consequently, the signal y(U, n) over all partitions is the
union of each signal acquired over partitions

y(U, n) = ∪Nu−1
u=0 yu(n) ∀n ∈ [0, N − 1], (7)

where yu(n) is the signal acquired only on partition Uu.
At each n, it is assumed that only a single partition can

be sensed, leading to a single yu(n). The acquisition of a



single yu(n) over time is called time-scan in the following.
Nu time-scans of different signals yu(n) are required to
collect the full signal y(U, n) over of the Nu partitions. For a
uniformly sampled temporal dimension, the acquisition time
is

T fullacq = TscanN
full
acq , (8)

where Tscan = NTs is the duration of one time-scan,
Ts is the sampling time period of the signal yu(n) and
Nfull
acq = Nu the total number of time-scans.

To reduce the acquisition time, we subsample yu(n) to lower
the number of data points along the temporal dimension.
Each signal yu(n) is assumed to have an identical known
sparse spectral support S. Thus, the signals yu(n) can be
sub-sampled as described in section 2.2. Let {p} be the set
of all the selected time samples by the MSE-minimization
algorithm with Card({p}) = P < N , P ≥M .
As each yu(n) has the same spectral support S, it follows
that the selected samples {p} are also identical for each
yu(n). At each time sample p, Nu partitions have to be
acquired simultaneously and thus Nu time-scans are still
required. To reduce the acquisition time, the idea is to
take advantage of the unused time zones. The time indices
n /∈ {p} will be used to acquire other partitions of U .
From Theorem 1, these unused time zones can be filled by
a circular shift of {p}.
The ideal scenario would be to fill the NuP samples to be
acquired without any empty time zones during the N -points
time-scan. This results in NuP/N time-scans compared to
Nu time-scans in the full sampled acquisition. The best
acceleration factor is thus N/P . In practice, this is very
unlikely to happen.

3.2. Interleaving the acquisition in the time domain
The objective is to minimize the total number of time-scans
Nacq to acquire y(U, n). This objective requires that the
maximum number of partitions to be acquired for any n
should be minimal.

Let {p}u be the set of selected time samples for the signal
of the partition u, yu(n). Let Iu(n) be an index vector of
length N that indicates the P -samples to be acquired in
partition u, Iu(n) = 1 if n ∈ {p}u, 0 otherwise. The total
number of time-scans is then Nacq = max

n
(
∑Nu

u′=1 Iu′(n)).
The proposed algorithm minimizes the maximum number

of partitions to be acquired for any n. It searches at each
iteration j for a set {p}j that minimizes the number of
acquisitions considering only the first j partitions,

N j
acq = max

n

( j∑
u′=1

Iu′(n)
)
, (9)

where j is from 1 to Nu.
The algorithm selects the best circular shift of {p} that
minimizes N j

acq , to determine {p}j . In the case of multiple

solutions, the smaller shift is selected. The first iteration
sets {p}1 = {p}, and the final iteration acquire for each
partition. Let us define I1(n− d mod N) as the d circular
shift of I1(n).

Algorithm 1 Proposed algorithm
- Run the MSE-minimization algorithm to get {p}
- Set {p}1 = {p} and derive I1(n)
for j = 2 to Nu do

- Search dj such that min
dj

(max
n

(∑j
u′=1 Iu′(n)

)
),

with Ij(n) = I1(n− dj mod N)
- Set {p}j = {p, circularly shifted by dj}, derive Ij(n)

end for
- Nacq = NNu

acq = max
n

(∑Nu

u′=1 Iu′(n)
)

When the algorithm finishes, the Nu set of points {p}u
needed to acquire each partition are determined, as well as
the number of acquisition required to do so.

The new acquisition time of y(U, n) is then

Tacq = TscanNacq. (10)

Compared to Equation (8), the time acceleration factor is
Nfull
acq /Nacq = Nu/Nacq ≥ 1.

3.3. Illustration of the proposed algorithm
An illustrative example of the proposed algorithm is used
here, as a signal of size N = 16 with a spectrum block
support size M = 7. The number of partitions is set to
Nu = 3. The MSE-minimization algorithm is run with P =
8 time samples.

Figure 3 shows the iterative steps of the algorithm and the
sets {p}u and Iu(n) generated at each step. In this example,
the final number of acquisitions Nacq is 2, to give a time
acceleration factor of 3/2. For each iteration, the new time
samples are represented in red in Figure 3. In the first step,
{p}1 = {p} and I1(n) = 1 if n ∈ {p}1, 0 otherwise. In
the second step, there is no circular shift of {p}1, such that
the maximum of I1(n) + I2(n) is 1. In the third step, the
algorithm finds a solution such that the maximum of I1(n)+
I2(n) + I3(n) leads to two time-scans.

Figure 4 illustrates how the partitions are acquired at each
time-scan. During the first time-scan, it is always possible to
entirely acquire the signal over the first partition (in blue),
given that by definition a time-scan is the duration required
to acquire the signal. Given than the signal over the first
partition is subsampled, some time bins are unused. The
algorithm shifts the selected samples to fill these holes for the
other partitions. Consequently, 6 time samples related to the
second partition and 2 time samples related to the third one
are sampled during the first time scan. As a consequence, the
remaining points of the last two partitions can be sampled in



M 64 128 256
Nu(= Nfull

acq ) 2 4 8 16 2 4 8 16 2 4 8 16

Nacq

compact support 1 1 1 1 1 1 1 2 1 1 2 4
block support 1 1.0 1.6 2.3 1.0 1.5 2.4 4.5 1.6 2.4 5.2 11.5

random support 1 2.0 2.0 3.1 2 2.0 4.0 11.3 2 4 8 16
best Nacq = bNuM/Nc 1 1 1 1 1 1 1 2 1 1 2 4

Table 1. Given Nu, M and different support types, the highest number of acquisitions Nfull
acq (= Nu), the lowest Nfull

acq M/N
(rounded up) and the computed Nacq by the proposed algorithm are given, averaged over 100 realisations of the randomly
chosen support. The greedy algorithm was used with P = M and N = 1024.
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Fig. 3. Illustration of the proposed algorithm for N = 16, M = 7, and P = 8. At each iteration, {p}u is a circular shift of
{p}1 (in this case, 1 shift for {p}2 and 2 shift for {p}3) which minimizes the maximum value of

∑u
1 Iu(n). The maximum

corresponds to the number of time-scans needed to sample all of the partitions.

a second time scan, avoiding the third time scan that would
have been required in the case of an acquisition without
interleaving.

3.4. Study of the time acceleration factor
To evaluate the time acceleration factor reached by the
algorithm proposed in the previous section, the algorithm
is run to test different spectral supports.

The signal size is set to N = 1024; the spectrum has M
nonzero values, with M ∈ {64, 128, 256}; the support type
of the spectrum is compact, block or random (See section
2.2); the number of partitions is Nu ∈ {2, 4, 8, 16}.

The MSE-minimization algorithm is run with P = M
time points, which is the largest feasible subsampling with
a given sparse spectrum.

For each set of parameters, the algorithm is run on
100 realizations of the randomly chosen support. For each
run, the following are computed: the highest number of
acquisitions required Nfull

acq = Nu; the ideal lowest number
of acquisitions Nfull

acq M/N (rounded up); and the number
Nacq of acquisitions given by the proposed algorithm. The
results are averaged over the 100 realizations, as in Table 1.

We can see that the acquisition speed-up, which is defined
as Nfull

acq /Nacq , increases with the number of partitions
and decreases with the number of samples in the spectrum
support.
As expected, the sparser the spectrum, i.e., the lower the
M , the lower the number of acquisitions. In comparison,
the number of partitions Nu has less influence. The support
type has strong influence: the more ”compact” it is, the better
acquisition gain it gives. Interestingly, for a sparse spectrum
of M contiguous frequency samples, the algorithm always
gives the lowest possible number of acquisitions.

3.5. Performance and complexity of the algorithm
The algorithm proposed in section 3.2 searches sequentially
in Nu ×N circular shifts for the combination of shifts that
leads to the lowest number of time-scans. The total number
of possible combinations is NN

u . As seen in the previous
section, this algorithm actually gives the lowest possible
number of time-scans in the case of a compact support.

For the two other cases, an extensive search in the
NN
u possibilities is run over 100 iterations of both the

block and random supports, with a signal size N = 128,
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Fig. 4. Each row corresponds to a time-scan of the algorithm
illustrated in Figure 3. The first partition is in blue with a
square symbol, the second is in red with a circle symbol,
the third is in green with a cross symbol. Two time-scans
are enough to sample all of the time samples of all of the
partitions.

Nu = 4 partitions and spectra of M nonzero values,
M ∈ {8, 16, 32, 64}. When the spectrum is very sparse,
M = 8, many combinations lead to the best possible Nacq ,
and the proposed algorithm always finds this. On the other
hand, when half the spectrum points are used, M = 64, the
extensive search gets a better result than our algorithm in
each run for a random support, and in 44 runs for a block
support. For M = 16 and M = 32, the extensive search gets
a better Nacq in 3% of the runs for a block support, and in
27.5% of the runs for a random support.

The proposed algorithm first runs the MSE-minimization
algorithm, then performs circular shifts as detailed in section
3.2. The greedy MSE-minimization algorithm has a com-
plexity of O(NPM2) [19]. The proposed algorithm in sec-
tion 3.2 (excluding the MSE-minimization) has a complexity
of O(N2Nu). The LS reconstruction has a complexity of
O(M2P ) for each partition. Note that the selection of the
temporal samples to acquire (MSE-minimization) is used
only once before the acquisitions.

4. APPLICATION
4.1. Magnetic resonance spectroscopic imaging (MRSI)
Nuclear magnetic resonance relies upon in a physical phe-
nomenon that induces a perturbation of the macroscopic
magnetization of an ensemble of nuclear spins that interact
with a surrounding static magnetic field. This perturbation is
caused by radiofrequency pulses, which are more commonly
called excitation pulses, and lead to an electromagnetic sig-
nal response with frequencies related to the atoms considered
and their chemical environment [22]. This signal is called
the free induction decay and it is encoded in the k-space
with the help of magnetic field gradients. It is complex,
of the form y(kx, ky, t), depending on the time t and the

spatial two-dimensional excited environment. In magnetic
resonance imaging, the signal y(kx, ky, t) is acquired in the
Fourier domain, which is called the k-space excitation, at
a given t. To obtain the corresponding anatomic image, an
inverse Fourier transform is performed. In MRSI, we are also
interested in the temporal evolution of the signal, which is
why it is acquired for t = nTs, n ∈ [0, (N − 1)]. For each
(kx, ky), the signal is modeled by

ykx,ky (n) =
∑
j

aj(kx, ky)exp(i2πfjnTs−nTs/T ∗
2 ), (11)

where the time constant T ∗
2 is the transverse relaxation that

accounts for the spin-spin relaxation and the field inho-
mogeneity. Due to the term exp(−nTs/T ∗

2 ), its spectrum
is not strictly bandlimited because each spectral line be-
comes Lorentzian shaped; however, it can be approximately
considered as sparse [8]. The coefficients aj(kx, ky) are
complex and are the Fourier transform of the metabolic
image characterized by the frequency fj .

Each radiofrequency pulse excitation results in the same
free induction decay signal. Excitations can be repeated as
many times as necessary to get the joint spatial spectral
information. At the end of the scan, a delay can be added
to ensure that the macroscopic magnetization returns to its
original state. The time between two excitations is called the
repetition time, TR ≥ NTs.

In routine clinical work, the sequences that are commonly
used acquire the k−t space, (kx, ky)-point by (kx, ky)-point,
with the phase encoding method [26]. A single point of the
k-space and the whole temporal dimension is acquired at
each excitation. This results indeed in a long acquisition time
because, in that case, Nu, the number of partitions of the k-
space, will be very large (see equation (8)). For example,
for a 32×32 matrix, the number of (kx, ky) points is Nu =
32× 32 = 1024. To speed up the acquisition, it is possible
to group the k-space points into partitions, that have to be
acquired after each excitation, which leads to the model of
(6). However, due to technical constraints, the acquisition of
one partition is not instantaneous. The larger the partition
is, the longer the acquisition is. There is an issue if the
partition acquisition time is longer than the sampling time
period Ts, because this means that the next time sample is
to be acquired while the previous one is still in the process
of being acquired. Let Tpart be the acquisition time of each
partition. The acquisition of each partition lasts for Np =

bTpart

Ts
c time sampling periods and forbids the acquisition of

the next Np − 1 time sample. Np − 1 additional excitations
are required to acquire the full signal. This is called temporal
interleaving. Moreover, as the repetition time TR is longer
than NTs, the total time acquisition time can be rewritten
as

T full
′

acq = TRNuNp. (12)

Acquiring the whole signal requires Nu×Np excitations.
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Fig. 5. Illustration of the difference between I1(n) and I+1 (n) =
∑Np−1
d=0 I1(n− d) with Np = 4. The same parameters as
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right panel. I+1 (n) shows the number of excitations required for each n.
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Fig. 6. a) Referenced phantom at t=0 (based on 31P in vivo
image). Spectral images for (b) phosphocreatine, frequency =
0 Hz, (c) inorganic phosphate, f = 258 Hz, and (d) γ-
adenosine triphosphate, f = -129 Hz. The red cross is used
to locate the spectrum in Figure 8.

-2 0 2

k
x
(m-1)

-3

-2

-1

0

1

2

3

k
y(
m
-1
)

Fig. 7. Partitions of the k-space with Nu = 4 spirals

Choosing small partitions, which are faster to sample, de-
creases Np but increases the number of partitions Nu and
vice versa.

4.2. Time interleaved application to MRSI acquisition
The additional constraint of the noninstantaneous acquisition
of a partition requires an update of the proposed algorithm
in section 3.2. In the previously proposed algorithm, the
assumption of instantaneous acquisition of a partition is
equivalent to Np = 1. Iu(n) is the index vector that indicates
whether the time sample n of the partition u is to be ac-
quired, consequently forbidding any other acquisition at time
index n. With the constraint of the duration of one partition,
a time sample at position n forbids the Np − 1 following
sample to be acquired. As an example for Np = 2, if there
are two consecutive points to be acquired, the acquisition of
the first one blocks out the acquisition of the second. This
leads to at least two excitations to obtain the two points. By
setting I+u (n) =

∑Np−1
d=0 Iu(n−d), the number of excitations

to acquire the partition u is max(I+u (n)), as illustrated in
Figure 5.
It follows then that the algorithm in section 3.2 requires the
replacement of Iu(n) by I+u (n). To promote the scan of
the beginning of the free induction decay where the signal
magnitude is maximal, the {p}u are circularly left shifted,
if necessary, using Theorem 1.

The steps to fully reconstruct the spectroscopic image
y(x, y, f) are the following:

• determine the time samples {p}u for each partition,
through the algorithm in section 3.2 with I+u (n) instead
of Iu(n);

• acquire each partition yu(n) for n ∈ {p}u of the k-
space;

• apply LS reconstruction on each partition to obtain
yu(f) (Equation (3));

• merge all partitions to get the whole k − f space:
y(kx, ky, f) = ∪Nu−1

u=0 yu(f);
• apply a two-dimensional nonuniform discrete Fourier

transform [28], [29] to reconstruct the spectroscopic
image y(x, y, f).

Note that reproduction of the experiments of section 3.4
with the additional parameter Np shows that Np has similar
influence to Nu on the speed-up gain.

4.3. Simulation and Results
To compare the fully sampled method with the proposed
interleaved time undersampling method, we use a numerical



phantom of 31P spiral MRSI data, mimicking acquisition
of the thigh muscle, with three compartments as defined
in Figure 6-a and in which different metabolite ratios are
used. The acquisition is simulated with a field of view of
25 cm, and an image matrix size of 32× 32. The k-space is
partitioned in both methods with four spirals, as illustrated in
Figure 6. The simulation parameters are Nu = 4 partitions,
time sampling period Ts = 0.25 ms, N = 1024 time
samples, repetition time TR = 2s, and spiral of Np = 10
discrete time samples which corresponds to a duration of
Tpart = 2.5 ms. Each partition is a discrete spiral of 2048
points, which leads to 8192 points to sample the whole k-
space. The support of the phosphorus spectrum contains two
blocks, of total size M = 217 samples. Here, the support is
chosen such that the truncation of the spectral peaks is less
than 1% of the total peak energy. In practice, the resonance
frequency of the molecule is well known and the full
width at half maximum depends on the static magnetic field
homogeneity which is rather reproducible, so a support can
always be determined a priori. For the proposed interleaved
method, an objective of a best acceleration factor of 4 is
used by setting P = 256. As the spiral is not instantaneous
in practice, every sample of the spiral is phase-corrected
according to the Fourier shift theorem.

For the fully sampled spiral method, the acquisition time
is T full

′

acq = 80s. When applying the algorithm of section 4.2,
this results in an acquisition time Tacq = 26s, corresponding
to a reduction by a factor of 3.08.

The two methods are also compared in terms of the signal-
to-reconstruction error ratio (SRER), defined as

SRER = 10× log
E||x||2

E||x− xm||2
, (13)

with x the original spectrum and xm the reconstructed one,
both restricted to the spectral support.

Note that x, the original spectrum, is unknown. Incorpo-
rating (3) into (13), it follows

SRER = SNR− 10× log(tr[(A∗A)−1]), (14)

where SNR is the unknown signal-to-noise ratio

SNR = 10× log
E||x||2

σ2
. (15)

Only the full sampled spectrum xf can be known. Its LS
reconstruction is given by all the N rows of the matrix A.
The reconstruction error follows

E||x− xf ||2 = σ2M (16)

leading to the SRER for full sampling results

SRER f = SNR− 10× log(σ2M). (17)

The difference between the SRER f and the SRER cancels
the unknown SNR

SRER f− SRER = 10× log(
tr[(A∗A)−1]

M
). (18)

In our experiments, the obtained undersampling scheme
leads to SRER f− SRER = 7.5 dB.

SRER performance for a realistic simulation

Noisy spiral spectroscopic imaging data sets were gen-
erated, for both full sampling and subsampling with the
proposed time interleaved acquisition, by adding complex
white Gaussian noise samples to y(U, n) (in the k-space,
for all the partitions). The noise standard deviations were
chosen to get two SNRs: high SNR (≈ 27dB on average
over all the samples containing signal energy), and low SNR
(≈18dB, on average). 50 noisy data sets per SNR were drawn
and SRER as well as SRER f were computed for each set,
and SRER performance were analyzed on average over all
50 sets. The T ∗

2 used for the exponential decay of the free
induction decay signal was 100 ms.

The results for the generated phosphorus numerical phan-
tom of the thigh are shown in figures 6 (b, c, d) and
8 and table 2. Figure 6 shows the reconstructed phantom
with the use of spiral spatial sampling, full time sampling,
SNR =27.38 dB for different molecular frequencies (i.e. (b)
phosphocreatine (PCr) for f = 0 Hz, (c) inorganic phosphate
(Pi) for f = 258 Hz and (d) γ-adenosine triphosphate (γ-
ATP) for f = -129 Hz). Figure 8 shows the reconstructed
spectra at the location indicated by the red cross on Fig. 6,
with a noisy acquisition for the fully sampling method and
for the sub-sampling proposed method, with their respective
errors.

In table 2, results over all the voxels containing signals
and results restricted to the left ellipse of the signal from
Fig. 7a) (where all molecules are present, and thus with a
higher SNR with respect to the other regions) are given.
The average of the SRER f and SRER are computed over
the 50 noisy sets and are given over two selected region:
”Ellipse”, the voxels in the left ellipse, and ”All voxels”,
all the voxels with non-zero signal, plus or minus their
associated mean standard deviation. One can see that in
the noisiest scenario (SNR=18.67±2.61 dB), the theoretical
SRER difference between full and undersampled case (Equa-
tion 18) is recovered. With a higher SNR, the difference
is higher than expected: the choice of the spectral support,
which truncates the spectra that are not perfectly sparse,
leads to an additional error reconstruction compared to the
fully sampled case.

5. CONCLUSION & PERSPECTIVES
A new acquisition method of interleaved time samples in un-
dersampled signals is proposed here to speed up acquisition
times, assuming a sparse known support.

Undersampling such a monodimensional signal can be
done by minimizing the MSE of the LS reconstruction.
We show that a circular shift of the selected samples does
not change the reconstruction error. For multidimensional
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Fig. 8. Noisy reconstructed modulus spectrum from a voxel in the left ellipse (red cross in Figure 6-b) for the fully sampled
spiral method (left) and for the new proposed approach (right). The reconstruction error (shifted by -10) is given at the
bottom.

Ellipse All voxels Ellipse All voxels
SNR (dB) 20.81±0.83 18.67±2.61 29.56±0.85 27.38±2.61

SRER f (dB) 18.25±1.69 13.9±5.24 35.76±1.7 31.338±5.30
SRER (dB) 10.76±1.67 6,5±5.25 27.34±1.52 23.35±5.08

SRERf − SRER (dB) 7.49 7.4 8.42 8.04

Table 2. SRER performances for noisy phantoms of phosphorus spiral spectroscopic imaging, described in Fig 6. Two
standard deviations of noise were chosen, resulting in different averaged SNR according to the spatial regions analyzed
(”Ellipse”, voxels containing all molecules responses, ”All voxels”, any voxel containing nonzero signal).

signals, it means that different equivalent sets of samples can
be selected for each additional dimension. By interleaving
the partition sample acquisitions in the time domain, we
can then reduce the total acquisition time. The proposed
algorithm sequentially searches for the circular shift of
the undersampling for each partition that will minimize
the acquisition time. The proposed algorithm is applied
here to MRSI. Our MRSI acquisition and reconstruction
solution was compared to the results of a standard fully
sampled spiral acquisition method which is here taken as
the state-of-the art method. Note that among the accelerated
sampling schemes [30], the spiral ones are the most efficient
trajectories, offering the best acquisition time and spectral
bandwidth benefit with the smallest SNR loss, but they are
limited by a susceptibility to gradient infidelities. The results
demonstrated that the acquisition time is reduced by a factor
of 3.08 but the signal error SRER decreases by 7.5 dB in a
realistic noisy acquisition.
The proposed interleaved acquisition strategy can, in theory,
be generalized to three dimensional data (3D), with 3D
partitioning, and (any) 3D trajectories that would regularly
return to the center of k-space but that would also require to
be interleaved in the spectroscopic time dimension to reach
a desired spectral bandwidth.
Other reconstruction algorithms that require knowledge

of the support have been proposed in the literature and are
interesting in terms of reconstruction performance compared
to the L2 reconstruction when the SNR deteriorates. We
mention in particular the Approximate Message Passing for
multiple measurement vector method [31] or the modified
CS-based method for problems with partially known support
proposed in [32].

A future goal will be to apply this method to exercise
dynamics 31P applications, accurate fat/water quantification,
and 1H MRSI or hyperpolarized 13C studies. Magneto-
encephalography can also be considered here, as an in-
verse problem used for brain imaging [33], [34]. Magneto-
encephalography signals come from activated regions in the
brain. Taking several signals over time enables the magnetic
response of the brain to be followed over time. The activated
regions could be known a priori based on the knowledge of
brain functional structure, and our method can be applied.
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