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Abstract

Ecological systems can often be characterised by changes among a finite set of underlying states
pertaining to individuals, populations, communities or entire ecosystems through time. Owing to
the inherent difficulty of empirical field studies, ecological state dynamics operating at any level of
this hierarchy can often be unobservable or ‘hidden’. Ecologists must therefore often contend with
incomplete or indirect observations that are somehow related to these underlying processes. By
formally disentangling state and observation processes based on simple yet powerful mathematical
properties that can be used to describe many ecological phenomena, hidden Markov models
(HMMs) can facilitate inferences about complex system state dynamics that might otherwise be
intractable. However, HMMs have only recently begun to gain traction within the broader ecolog-
ical community. We provide a gentle introduction to HMMs, establish some common terminol-
ogy, review the immense scope of HMMs for applied ecological research and provide a tutorial
on implementation and interpretation. By illustrating how practitioners can use a simple concep-
tual template to customise HMMs for their specific systems of interest, revealing methodological
links between existing applications, and highlighting some practical considerations and limitations
of these approaches, our goal is to help establish HMMs as a fundamental inferential tool for
ecologists.
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INTRODUCTION

Ecological systems can often be characterised by changes
among underlying system states through time. These state
dynamics can pertain to individuals (e.g. birth, death), popu-
lations (e.g. increases, decreases), metapopulations (e.g.
colonisation, extinction), communities (e.g. succession) or
entire ecosystems (e.g. regime shifts). Gaining an understand-
ing of state dynamics at each level of this hierarchy is a cen-
tral goal of ecology and fundamental to studies of climate
change, biodiversity, species distribution and density, habitat
and patch selection, population dynamics, behaviour, evolu-
tion and many other phenomena (Begon et al., 2006). How-
ever, inferring ecological state dynamics is challenging for
several reasons, including: (1) these complex systems often dis-
play nonlinear, non-monotonic, non-stationary and non-
Gaussian behaviour (Scheffer et al., 2001; Tucker and Anand,
2005; Wood, 2010; Pedersen et al., 2011a; Fasiolo et al.,
2016); (2) changes in underlying states and dynamics can be
rapid and drastic, but also gradual and more subtle (Beisner

et al., 2003; Scheffer and Carpenter, 2003; Folke et al., 2004);
and (3) the actual state of an ecological entity, be it an indi-
vidual plant or animal, or a population or community, can
often be difficult or impossible to observe directly (Martin
et al., 2005; Kéry and Schmidt, 2008; Royle and Dorazio,
2008; Chen et al., 2013; Kellner and Swihart, 2014). Ecologists
must therefore often contend with pieces of evidence believed
to be informative of the state of an unobservable system at a
particular point in time (see Fig. 1).
Whether for management, conservation or empirical testing

of ecological theory, there is a need for inferential methods
that seek to uncover the relationships between factors driving
such systems, and thereby predict them in quantitative terms.
Hidden Markov models (HMMs) constitute a class of statisti-
cal models that has rapidly gained prominence in ecology
because they are able to accommodate complex structures that
account for changes between unobservable system states
(Ephraim and Merhav, 2002; Cappé et al., 2005; Zucchini
et al., 2016). By simultaneously modelling two time series –
one consisting of the underlying state dynamics and a second
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consisting of observations arising from the true state of the
system – HMMs are able to detect state changes in noisy
time-dependent phenomena by formally disentangling the
state and observation processes. For example, using HMMs
and their variants:

• Historical regime shifts can be identified from recon-
structed chronologies;

• Long-term dynamics of populations, species, communi-
ties and ecosystems in changing environments can be inferred
from dynamic biodiversity data;

• Species identity and biodiversity can be determined from
environmental DNA (eDNA);

• Hidden evolutionary traits can be accounted for when
assessing the drivers of diversification;

• Species occurrence can be linked to variation in habitat,
population density, land use, host–pathogen dynamics or
predator–prey interactions;

• Survival, dispersal, reproduction, disease status and
habitat use can be inferred from capture–recapture time
series;

• Animal movements can be classified into foraging,
migrating or other modes for inferences about behaviour,
activity budgets, resource selection and physiology; and

• Trade-offs between dormancy and colonisation can be
inferred from standing flora or fungal fruiting bodies.

The increasing popularity of HMMs has been fuelled by
new and detailed data streams, such as those arising from
modern remote sensing and geographic information systems

Figure 1 System state processes that can be difficult to observe directly, but can be uncovered from common ecological observation processes using hidden

Markov models. The state process (blue) can pertain to any level within the ecological hierarchy (‘Individual’, ‘Population’, ‘Community’ or ‘Ecosystem’)

and for convenience is categorised as primarily ‘Existential’, ‘Developmental’ or ‘Spatial’ in nature. The observation process (green) can provide

information about state processes at different levels of the hierarchy (green lines) and includes capture–recapture, DNA sampling, animal-borne telemetry,

count surveys, presence–absence surveys and/or abiotic measurements. Observation and state processes from lower levels can be integrated for inferences at

higher levels. For example, community-level biodiversity data could be combined with environmental data to describe ecosystem-level processes.
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(Viovy and Saint, 1994; Gao, 2002), eDNA (Bálint et al.,
2018) and genetic sequencing (Hudson, 2008), as well as
advances in computing power and user-friendly software (Vis-
ser and Speenkenbrink, 2010). However, despite their utility
and ubiquity in other fields such as finance (Bhar and
Hamori, 2004), speech recognition (Rabiner, 1989) and bioin-
formatics (Durbin et al., 1998), the vast potential of HMMs
for uncovering latent system dynamics from readily available
data remains largely unrecognised by the broader ecological
community. This is likely attributable to a tendency for the
existing ecological literature to characterise HMMs as a sub-
ject-specific tool reserved for a particular type of data rather
than a general conceptual framework for probabilistic mod-
elling of sequential data. This is also likely exacerbated by a
tendency for HMMs to be applied and described quite differ-
ently across disciplines. Indeed, many ecologists may not
recognise that some of the most well-established inferential
frameworks in population, community and movement ecology
are in fact special cases of HMMs.
Catering to ecologists and non-statisticians, we describe the

structure and properties of HMMs (HIDDEN MARKOV
MODELS), establish some common terminology (Table 1) and
review case studies from the biological, ecological, genetics and
statistical literature (ECOLOGICAL APPLICATIONS OF
HIDDEN MARKOV MODELS). Central to our review and
synthesis is a simple but flexible conceptual template that ecolo-
gists can use to customise HMMs for their specific systems of

interest. In addition to highlighting new areas where HMMs
may be particularly promising in ecology, we also demonstrate
cases where these models have (perhaps unknowingly) already
been used by ecologists for decades. We then identify some
practical considerations, including implementation, software
and potential challenges that practitioners may encounter when
using HMMs (IMPLEMENTATION, CHALLENGES AND
PITFALLS). Using an illustrative example, we provide a step-
by-step tutorial on some of the more technical aspects of HMM
implementation in the Supplementary Tutorial. The overall aim
of our review is thus to provide a synthesis of the various ways
in which HMMs can be used, reveal methodological links
between existing applications and thereby establish HMMs as a
fundamental inferential tool for ecologists working with
sequential data.

HIDDEN MARKOV MODELS

We begin by providing a gentle introduction to HMMs, includ-
ing model formulation, inference and extensions. Although we
have endeavoured to minimise technical material and provide
illustrative examples wherever possible, we assume the reader
has at least some basic understanding of linear algebra concepts
such as matrix multiplication and diagonal matrices (e.g. see
Appendix A in Caswell, 2001) and probability theory concepts
such as uncertainty, random variables and probability distribu-
tions (Gotelli and Ellison, 2013, Chapters 1–2).

Table 1 Glossary

Term Definition Synonyms

Conditional

independence property

Assumption made for the state-dependent process: conditional on the state at time

t, the observation at time t is independent of all other observations and states

Forward algorithm Recursive scheme for updating the likelihood and state probabilities of an HMM

through time

Filtering

Forward–backward
algorithm

Recursive scheme for calculating state probabilities for any point in time:

PrðSt ¼ ijx1, . . .,xTÞ
Local state decoding; smoothing

Hidden Markov model

(HMM)

A special class of state-space model with a finite number of hidden states that

typically assumes some form of the Markov property and the conditional

independence property

Dependent mixture model; latent

Markov model; Markov-switching

model; regime-switching model; state-

switching model; multi-state model

Initial distribution δð Þ The probability of being in any of the N states at the start of the sequence:

δ¼ Pr S1 ¼ 1ð Þ, . . .,Pr S1 ¼Nð Þð Þ
Initial probabilities; prior probabilities

Markov property Assumption made for the state process: PrðStþ1jSt, St�1, . . .Þ¼PrðStþ1jStÞ
(‘conditional on the present, the future is independent of the past’)

Memoryless property

Sojourn time The amount of time spent in a state before switching to another state Dwell time; occupancy time

State process Stð Þ Unobserved, serially correlated sequence of states describing how the system

evolves over time: St∈ 1, . . .,Nf g for t¼ 1, . . .,T

Hidden/latent process; system process

State transition

probability γij
� � The probability of switching from state i at time t to state j at time tþ1,

γij ¼PrðStþ1 ¼ jjSt ¼ iÞ, usually represented as an N�N transition probability

matrix Γð Þ
State-dependent

distribution

ðfðxtjSt ¼ iÞÞ

Probability distribution of an observation xt conditional on a particular state

being active at time t, usually from some parametric class (e.g. categorical,

Poisson, normal) and represented as an N�N diagonal matrix

P xtð Þ¼ diagðfðxtjSt ¼ 1Þ, . . ., fðxtjSt ¼NÞÞ

Emission distribution; measurement

model; observation distribution; output

distribution; response distribution

State-dependent process

Xtð Þ
The observed process within an HMM, which is assumed to be driven by the

underlying unobserved state process

Observation process

State-space model A conditionally specified hierarchical model consisting of two linked stochastic

processes, a latent system process model and an observation process model

Viterbi algorithm Recursive scheme for finding the sequence of states which is most likely to have

given rise to the observed sequence

Global state decoding
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Basic model formulation

Hidden Markov models (HMMs) are a class of statistical mod-
els for sequential data, in most instances related to systems
evolving over time. The system of interest is modelled using a
state process (or system process; Table 1), which evolves dynam-
ically such that future states depend on the current state. Many
ecological phenomena can naturally be described by such a pro-
cess (Fig. 1). In an HMM, the state process is not directly
observed – it is a ‘hidden’ (or ‘latent’) variable. Instead, obser-
vations are made of a state-dependent process (or observation
process) that is driven by the underlying state process. As a
result, the observations can be regarded as noisy measurements
of the system states of interest, but they are typically insufficient
to precisely determine the state. Mathematically, an HMM is
composed of two sequences:

• An observed state-dependent process X1,X2, . . .,XT; and

• An unobserved (hidden) state process S1,S2, . . .,ST.

In most applications, the indices refer to observations made
over time at a regular sampling interval (e.g. daily or annual
rainfall measurements), but they can also refer to position (e.g.
in a sequence of DNA; Henderson et al., 1997; Eddy, 2004) or
order (e.g. in a sequence of marine mammal dives; DeRuiter
et al., 2017). HMMs can also be formulated in continuous time
(Jackson et al., 2003; Amoros et al., 2019), but these models
have tended to be less frequently applied in ecology (but see
Langrock et al., 2013; Choquet et al., 2017; Olajos et al., 2018).
Among the many HMM formulations of relevance to ecology
that we highlight in ECOLOGICAL APPLICATIONS OF
HIDDEN MARKOV MODELS, some example observation
sequences X1, . . .,XTð Þ and underlying states S1, . . .,STð Þ include:
• Xt ¼ Observation of feeding/not feeding, with underlying

state St ¼ Hungry or sated;

• Xt ¼ Count of individuals, with underlying state St ¼
True population abundance; and

• Xt ¼ Daily rainfall measurement, with underlying state
St ¼ Wet or dry season.

Unlike the larger class of state-space models (see Box 1), the
state process within an HMM can take on only finitely many
possible values: St∈ 1, . . .,Nf g for t¼ 1, . . ., T. The basic HMM
formulation further involves two key dependence assumptions:
(1) the probability of a particular state being active at any
time t is completely determined by the state active at time
t�1 (the so-called Markov property); and (2) the probability
distribution of an observation at any time t is completely
determined by the state active at time t (Fig. 2). The latter
assumption is a conditional independence property, as this
implies that Xt is conditionally independent of past and future
observations, given St. Whether these simplifying assumptions
can faithfully characterise the underlying dynamics for the
system of interest must be carefully considered (see Challenges
and pitfalls).
As a consequence of these assumptions, HMMs generally

facilitate model building and computation that might other-
wise be intractable. A basic N-state HMM that formally dis-
tinguishes the state and observation processes can be fully
specified by the following three components: (1) the initial

distribution, δ¼ Pr S1 ¼ 1ð Þ, . . .,Pr S1 ¼Nð Þð Þ, specifying the
probabilities of being in each state at the start of the
sequence; (2) the state transition probabilities,
γij ¼PrðStþ1 ¼ jjSt ¼ iÞ, specifying the probability of switching
from state i at time t to state j at time tþ1 and usually repre-
sented as an N�N state transition probability matrix:

where ∑N
j¼1γij ¼ 1; and 3) the state-dependent distributions,

fðxtjSt ¼ iÞ, specifying the probability distribution of an obser-
vation xt conditional on the state at time t and usually repre-
sented as an N�N diagonal matrix:

or, equivalently, P xtð Þ¼ diagðfðxtjSt ¼ 1Þ, . . .,fðxtjSt ¼NÞÞ for
computational purposes (see Inference). These distributions can
pertain to discrete or continuous observations and are generally
chosen from an appropriate distributional family. For example,
behavioural observation Xt∈ feeding,notfeedingf g could be
modelled using a categorical distribution (MacDonald and
Raubenheimer, 1995), count Xt∈ 0,1,2, . . .f g using a non-nega-
tive discrete distribution (e.g. Poisson; Besbeas and Morgan,
2019, and measurement Xt∈ 0,∞½ Þ using a non-negative contin-
uous distribution (e.g. zero-inflated exponential; Woolhiser and
Roldan, 1982). After specifying δ, Γ and P xtð Þ in terms of the
particular system of interest, one can proceed to drawing infer-
ences about unobservable state dynamics from the observation
process.
We note that Markov models (Grewal et al., 2019) are com-

monly used for inferring community- or ecosystem-level
dynamics (Waggoner and Stephens, 1970; Wootton, 2001;
Tucker and Anand, 2005; Breininger et al., 2010) and providing
measures of stability, resilience or persistence (Li, 1995; Paw-
lowski and McCord, 2009; Zweig et al., 2020), especially in sys-
tems composed of sessile organisms such as plant (Horn, 1975;
van Hulst, 1979; Usher, 1981; Talluto et al., 2017, but see Chen
et al., 2013) or benthic communities (Tanner et al., 1994; Hill
et al., 2004; Lowe et al., 2011). A Markov model can simply be
viewed as an HMM where it is assumed that the state process is
perfectly observed, that is, Xt ¼St with P xtð Þ a matrix with
entry one in row st, column st, and otherwise zeros. For exam-
ple, patch dynamics HMMs (MacKenzie et al., 2003) are simply
generalisations of well-known Markov models for patch
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dynamics (Hanski, 1994; Moilanen, 1999) for cases when pres-
ence–absence data are subject to imperfect detection. Likewise,
any Markov model can naturally be embedded as the state pro-
cess within an HMM for less observable phenomena.

Inference

In addition to the ease with which a wide variety of ecological
state and observation process models can be specified (see

ECOLOGICAL APPLICATIONS OF HIDDEN MARKOV
MODELS), a key strength of the HMM framework is that
efficient recursive algorithms are available for conducting sta-
tistical inference. Here we will briefly outline some of the most
common inferential techniques for HMMs, but motivated
readers can find additional technical material and a worked
example on model fitting, assessment and interpretation in the
Supplementary Tutorial. Using the forward algorithm (also
known as filtering), the likelihood Lðθjx1, . . .,xTÞ as a

Box 1 Where do HMMs reside in the taxonomic zoo of latent variable models?

Latent state (or latent variable) models come in many different forms, with a particular variant often evolving its own nomen-
clature, notation and jargon that can be confusing for non-specialists. Here we use broad and non-technical strokes to differen-
tiate the HMM from its close relatives in the taxonomy of latent state models, with the aim to more clearly position HMMs
relative to alternative modelling frameworks. Above all, these models are united by assuming latent states – a fundamental
property of the system being modelled that is either partially, or completely, unobservable. They also tend to make a clear dis-
tinction between an observation process model – describing noise in the data – and the hidden state process model – describing
the underlying patterns and dynamics of interest.
The umbrella terms mixed effects, multilevel or hierarchical models (e.g. Skrondal and Rabe-Hesketh, 2004; Gelman and

Hill, 2006; Royle and Dorazio, 2008; Lee and Song, 2012) typically include the most widely known types of latent variable
models (e.g. Clogg, 1995). These often treat latent variables as random effects assumed to arise from a distribution as struc-
tural elements of a hierarchical statistical model. There is therefore not only random variation in the observations, but also
in the parameters of the model itself. While there are special cases and generalisations that are not so easily classified, a
simplified taxonomy for a subset of hierarchical latent variable models can be based on the structural dependence in the hid-
den state process and whether the state space of this hidden process is discrete (i.e. taking on finitely many values) or
continuous:

State space

Continuous Discrete

Temporal dependence State-space model Hidden Markov model

Temporal independence Continuous mixture model Finite mixture model

Latent variable models with a continuous state space and no temporal dependence in the hidden state process fall under
the broad class of continuous mixture models (e.g. Lindsay, 1995), with ecological applications including the modelling of
closed population abundance (Royle, 2004), disease prevalence (Calabrese et al., 2011) and species distribution (Ovaskainen
et al., 2017). State-space models (SSMs) are a special class of latent variable model where the observation process is condi-
tionally specified by a (typically continuous) hidden state process with temporal dependence (e.g. Durbin and Koopman,
2012; Auger-Méthé et al., 2020), with applications including population dynamics (Schnute, 1994; Wang, 2007; Tavecchia
et al., 2009; Newman et al., 2014), disease dynamics (Rohani and King, 2010; Cooch et al., 2012) and animal movement
(Patterson et al., 2008; Hooten et al., 2017; Patterson et al., 2017). An HMM is a special class of SSM where the state
space is finite (see ECOLOGICAL APPLICATIONS OF HIDDEN MARKOV MODELS for many ecological examples).
Finite mixture models (e.g. Frühwirth-Schnatter, 2006) assume the state space is finite with no temporal dependence in the
hidden state process (e.g. the latent states are non-Markov or do not change over time), with examples including static spe-
cies occurrence (MacKenzie et al., 2002), closed population capture–recapture (Pledger, 2000) and species distribution (Pled-
ger and Arnold, 2014) models. HMMs and SSMs can therefore be regarded as specific variations of a hierarchical model
with serial dependence, where the random effects vary over time. Furthermore, an HMM can be viewed as a discrete version
of a SSM or a time-dependent version of a finite mixture model.
It is important to note that things are not quite as simple as depicted above. For example, while an SSM with discrete

latent variables can encompass features of an HMM (Jonsen et al., 2005), an SSM with a finite state space is not necessarily
an HMM. An HMM might include continuous random effects on its parameters or a state-dependent observation distribu-
tion specified as a finite mixture (Altman, 2007). If the number of states becomes very large in an HMM, then it can
become a discrete approximation of an SSM with a continuous state space (Besbeas and Morgan, 2019). In the Extensions
section and the Challenges and Pitfalls section, we consider circumstances where application of a standard HMM is not sup-
ported and other approaches or extensions might be required. [Correction added on 10 November 2020, after first online
publication: Box 1 has been relocated to page 5.]
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function of the unknown parameters θð Þ given the observation
sequence x1, . . .,xTð Þ can be calculated at a computational cost
that is (only) linear in T. The parameter vector θ, which is to
be estimated, contains any unknown parameters embedded in
the three model-defining components δ, Γ and P xtð Þ. Made
possible by the relatively simple dependence structure of an
HMM, the forward algorithm traverses along the time series,
updating the likelihood step-by-step while retaining informa-
tion on the probabilities of being in the different states (Zuc-
chini et al., 2016, pp. 37–39). Application of the forward
algorithm is equivalent to evaluating the likelihood using a
simple matrix product expression,

Lðθjx1, :::,xTÞ¼ δP x1ð ÞΓP x2ð Þ⋯ΓP xT�1ð ÞΓP xTð Þ1, (1)

where 1 is a column vector of ones (see Supplementary Tuto-
rial for technical derivation).
In practice, the main challenge when working with HMMs

tends to be the estimation of the model parameters. The two
main strategies for fitting an HMM are numerical maximisation
of the likelihood (Myung, 2003; Zucchini et al., 2016) or Baye-
sian inference (Ellison, 2004; Gelman et al., 2004) using Markov
chain Monte Carlo (MCMC) sampling (Brooks et al., 2011).
The former seeks to identify the parameter values that maximise
the likelihood function (i.e. the maximum likelihood estimates
θ), whereas the latter yields a sample from the posterior distri-
bution of the parameters (Ellison, 2004). Specifically for the
maximum likelihood (ML) approach, the forward algorithm
makes it possible to use standard optimisation methods
(Fletcher, 2013) to directly numerically maximise the likelihood
(eqn 1). An alternative ML approach is to employ an expecta-
tion–maximisation (EM) algorithm that uses similar recursive
techniques to iterate between state decoding and updating the
parameter vector until convergence (Rabiner, 1989). For
MCMC, many different strategies can be used, but these tend
to differ in appropriateness and efficiency in a manner that can
strongly depend on the specific model and data at hand (Gilks
et al., 1996; Gelman et al., 2004; Brooks et al., 2011; Robert
and Casella, 2004).
The forward algorithm and similar recursive techniques can

further be used for forecasting and state decoding, as well as to
conduct formal model checking using pseudo-residuals (Zuc-
chini et al., 2016, Chapters 5 & 6). State decoding is usually
accomplished using the Viterbi algorithm or the forward–back-
ward algorithm (also known as smoothing), which respectively
identify the most likely sequence of states or the probability of
each state at any time t, conditional on the observations. Fortu-
nately, practitioners can often use existing software for most
aspects of HMM-based data analyses and need not dwell on
many of the more technical details of implementation (see

IMPLEMENTATION, CHALLENGES AND PITFALLS
and Supplementary Tutorial).
To illustrate some of the basic mechanics, we use a simple

example based on observations of the feeding behaviour of a
blue whale (Balaenoptera musculus; cf. DeRuiter et al., 2017).
Suppose we assume that observations of the number of feeding
lunges performed in each of T¼ 53 consecutive dives
(Xt∈ 0,1,2, . . .f g for t¼ 1, . . .,T) arise from N¼ 2 states of feed-
ing activity. Building on Fig. 2, we could for example have:

Fig. 3 displays the results for this simple two-state HMM
assuming Poisson state-dependent (observation) distributions,
XtjSt ¼ i∼Poisson λið Þ for i∈ 1,2f g, when fitted to the full
observation sequence via direct numerical maximisation of
eqn 1. The rates of the state-dependent distributions were esti-
mated as λ̂1 ¼ 0:05 and λ̂2 ¼ 2:82, suggesting states 1 and 2
correspond to ‘low’ and ‘high’ feeding activity respectively.
The estimated state transition probability matrix,

suggests interspersed bouts of ‘low’ and ‘high’ feeding activity,
but with bouts of ‘high’ activity tending to span fewer dives.
The estimated initial distribution δ̂¼ 0:75,0:25ð Þ suggests this
individual was more likely to have been in the ‘low’ activity
state at the start of the sequence. Most ecological applications
of HMMs involve more complex inferences related to specific
hypotheses about system state dynamics, and a great strength
of the HMM framework is the relative ease with which the
basic model formulation can be modified to describe a wide
variety of processes (Zucchini et al., 2016, Chapters 9–13).
Next we highlight some extensions that we consider to be
highly relevant in ecological research.

Extensions

The dependence assumptions made within the basic HMM are
mathematically convenient, but not always appropriate (see
Box 2). The Markov property implies that the amount of time
spent in a state before switching to another state – the so-called
sojourn time – follows a geometric distribution. The most likely

Figure 2 Dependence structure of a basic hidden Markov model, with an observed sequence X1, . . .,XT arising from an unobserved sequence of underlying

states S1, . . .,ST.
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length of any given sojourn time hence is one unit, which may
not be realistic for certain state processes. The obvious exten-
sion is to allow for kth-order dependencies in the state process
(Fig. 4a), such that the state at time t depends on the states at
times t�1,t�2, . . ., t�k. An alternative assumes the state pro-
cess is ‘semi-Markov’ with the sojourn time flexibly modelled
using any distribution on the positive integers (Choquet et al.,
2011; van de Kerk et al., 2015; King and Langrock, 2016).
HMMs are often used to infer the drivers of ecological state

processes by relating the state transition probabilities to
explanatory covariates (Fig. 4b). Indeed, any of the parame-
ters of a basic HMM can be modelled as a function of covari-
ates (e.g. sex, age, habitat type, chlorophyll-a) using an
appropriate link function (McCullagh and Nelder, 1989). Link
functions lð Þ can relate the natural scale parameters θð Þ to a
T� r design matrix of covariates Zð Þ and r-vector of working
scale parameters β∈rð Þ such that l θð Þ¼Zβ (see White and
Burnham, 1999; MacKenzie et al., 2002; Patterson et al.,
2009, for common examples of link functions in HMMs).
When simultaneously analysing multiple observation
sequences, heterogeneity across the different sequences can be
modelled through explanatory covariates or mixed HMMs
that include random effects (Altman, 2007; Schliehe-Diecks
et al., 2012; Towner et al., 2016).
At the level of the observation process, it is relatively straight-

forward to relax the conditional independence assumption. For
example, it can be assumed that the observation at time t
depends not only on the state at time t but also the observation
at time t�1 (Fig. 4c; Langrock et al., 2014b; Lawler et al.,
2019). It is also straightforward to model multivariate

observation sequences using multivariate state-dependent distri-
butions (Choquet et al., 2013; Phillips et al., 2015; van Beest
et al., 2019), where it is often assumed that the different vari-
ables observed are conditionally independent and a univariate
distribution is specified for each of the variables (Fig. 4d).
Owing to the Markov property, this does not imply that the
individual components are serially independent or mutually
independent (Zucchini et al., 2016, Chapter 9). However, this
assumption is not required and will not always be appropriate,
in which case a multivariate distribution should be considered.

ECOLOGICAL APPLICATIONS OF HIDDEN MARKOV

MODELS

In their classic textbook, Begon et al. (2006) present the evo-
lutionary foundation of ecology and its superstructure built
from individual organisms to populations, communities and
ecosystems. At each level of this hierarchy, we will illustrate
how HMMs can be used for identifying patterns and dynam-
ics of many different types of ecological state variables that
would otherwise be difficult or impossible to observe directly.
For each application, we emphasise the two principal compo-
nents of any HMM – the observation process and the state
process – as a conceptual template for ecologists to formulate
HMMs in terms of their particular systems of interest.
The observation process in ecological studies is often driven

by many factors, including the system state variable(s) of
interest, the biotic and/or abiotic components of the system,
and study design (Fig. 1). Among the most common types of
observation processes in ecology are capture–recapture

Figure 3 Estimated state-dependent distributions (top row) and Viterbi-decoded states from a two-state HMM fitted to counts of feeding lunges performed

by a blue whale during a sequence of T¼ 53 consecutive dives. Here the most likely state sequence identifies periods of ‘low’ (state 1; blue) and ‘high’ (state

2; black) feeding activity.
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(Williams et al., 2002), DNA sampling (Bohmann et al., 2014;
Rowe et al., 2017; Bálint et al., 2018), animal-borne telemetry
(Cooke et al., 2004; White and Garrott, 1990; Hooten et al.,
2017), count surveys (Buckland et al., 2004; Charmantier
et al., 2006; Nichols et al., 2009), presence–absence surveys
(Koleff et al., 2003; MacKenzie et al., 2018) and abiotic mea-
surement (e.g. temperature, precipitation, sediment type).
These observation processes are not mutually exclusive, can
contribute information at different levels of the hierarchy and
can be pooled for inference (Schaub and Abadi, 2011; Gime-
nez et al., 2012; Evans et al., 2016).
Using Fig. 1 as our expositional roadmap, we begin with

applications for individual-level state dynamics. We then work

our way up to the population, community and ecosystem
levels. Within each level of the ecological hierarchy, we find it
convenient to distinguish ‘existential’, ‘developmental’ and
‘spatial’ states. Although there is inevitably some degree of
overlap, particularly at the higher levels of the hierarchy that
are inherently spatial, we use this distinction in an attempt to
separate states of being that in isolation can be viewed as
essentially non-spatial from state dynamics that are more
strictly spatial in nature. We further delineate the non-spatial
states as ‘existential’ based on a fundamental measure of exis-
tence at each level of the hierarchy and ‘developmental’ based
on state characteristics that can drive the dynamics of this
fundamental measure of existence. We employ these categories

Box 2 To HMM, or not to HMM, that is the question

The structure of a statistical model should be congruent with the data-generating process in question. HMMs are neither a
panacea nor a black box – the appropriateness and feasibility of a particular model will be case-dependent and requires careful
consideration. In determining if HMMs are appropriate for describing a particular system, one must consider two questions:

(1) Do the hidden state dynamics display time dependence which can be represented using Markov chains? If the current system
state is not related to the previous state(s), then a latent variable model without time dependence should be considered (see
Box 1). Diagnostics examining temporal patterns in residuals (Li, 2003) can help to empirically determine if the assumptions
of conditional independence and Markovity are sufficient (see Supplementary Tutorial). When the first-order Markov
assumption may not be appropriate for the state process, one can further ask the question: can system memory be ade-
quately approximated while preserving Markovity? Faithful representation of system memory may require the inclusion of
informative covariates or more complex time dependence structures, and it is possible to expand HMMs to higher order
Markovian or semi-Markovian dependence (Zucchini et al., 2016, Chapter 12). While modelling this higher order temporal
dependence is sometimes preferable (Hestbeck et al., 1991), it is more complex and thus less widely used. General time-ser-
ies modelling often captures complex dependence structures using autoregressive processes (Durbin and Koopman, 2012,
Chapter 3), and more complicated variations of HMMs can capture some of these features (Lawler et al., 2019). However,
other latent variable approaches will often be better suited for more complex temporal dependence structures. There is no
foolproof or automatic way to make this determination, and we must typically rely on residual diagnostics (Li, 2003; Zuc-
chini et al., 2016, Chapter 6) and expert knowledge of the system dynamics.

(2) Can the system be well described by a feasibly finite set of latent states? Our review highlights a wide range of ecological sce-
narios where the possible states of the system of interest form (or can be approximated by) a finite set. The number of parame-
ters and the computational burden of an HMM can become large with increases in state dimension, and this can be of
particular concern when the finite set of states is a coarser approximation of a finer discrete space (e.g. population abundance)
or a continuous space (e.g. spatial location). Such approximations have strengths and weaknesses. When used as discrete approx-
imations to state-space models with continuous support (see Box 1), HMMs can be useful when arbitrary constraints on the
state space are required (e.g. restricting aquatic organisms to location states off land) or when combining both discrete and con-
tinuous state processes. However, an HMM for a large number of states with a fully parameterised transition probability matrix
– where transitions between any of the states are possible – will be computationally expensive, perhaps prohibitively so. Systems
with large state spaces can often be approximated by an HMM when transitions between states are local – where transitions can
only occur between neighbouring states – and the transition probabilities therefore include a relatively small number of parame-
ters that describe this local behaviour. For example, Thygesen et al. (2009), Pedersen et al. (2011b), and Glennie et al. (2019) use
these properties of sparsity to make an HMM approach computationally efficient for very large state spaces. In short, large
numbers of states do not necessarily prohibit application of an HMM; this is dependent on the computer resources available
and the properties of the state process. Alternatively, it is possible to reduce the size of an infeasible state space by making a
coarser approximation (e.g. binning abundance states together into larger states; Zucchini et al., 2016, pp. 162–163; Besbeas and
Morgan, 2019). Appropriateness will depend on the sensitivity of the inference to the precise value of the state process and is
best investigated by varying the coarseness of the approximation. If the set of states is too coarse-grained, approximation might
lead to spurious inference about the latent states. For example, coarse-graining could result in masking or misclassification of
meaningfully distinct states. The decision of the appropriate number of states can be challenging; there is again no foolproof or
automatic way to determine this, and we must usually rely on expert knowledge of the specific system of interest. When the finite
state space of an HMM is infeasible or inappropriate, it will often be better to consider other approaches (e.g. Patterson et al.,
2008; Cooch et al., 2012; Patterson et al., 2017; Auger-Méthé et al., 2020). [Correction added on 3 November 2020, after first
online publication: Box 2 has been relocated to page 8.]
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simply for ease of exposition and view them as neither
exhaustive nor mutually exclusive.
Although typically not referred to as HMMs in the ecologi-

cal literature, several subfields of ecology have been using
HMMs for individual- to community-level inference for dec-
ades. HMMs have also become standard in biological
sequence analysis and molecular ecology (Durbin et al., 1998;
Barbu and Limnios, 2009; Yoon, 2009), and there is much
crossover potential for state-of-the-art bioinformatic methods
to other applications in ecology (Jones et al., 2006; Tucker
and Duplisea, 2012). HMMs are also used for very specialised
tasks of relevance to ecology, such as counting annual layers
in ice cores (Winstrup et al., 2012) or characterising plant
architectures (Durand et al., 2005). There are therefore many
example HMM applications within some areas of ecology, of
which only a handful can be covered in the material that fol-
lows. However, in other areas the promise of HMMs has only
just begun to be recognised.

Individual level

Existential state
At the level of an individual organism, a fundamental mea-
sure of existence is to be alive or not (i.e. dead or unborn).
We will therefore begin by demonstrating that one of the
oldest and most popular inferential tools in wildlife ecology,
the Cormack-Jolly-Seber (CJS) model of survival (Williams
et al., 2002), is a special case of an HMM. The CJS model
estimates survival probabilities (ϕ) from capture–recapture
data. Capture–recapture data consist of n sequences of

encounter histories for marked individuals collected through
time, where for each individual the observed data are repre-
sented as a binary series of ones and zeros. For the CJS
model, Xt ¼ 1 indicates a marked individual was alive and
detected at time t, while Xt ¼ 0 indicates non-detection.
Marked individuals can either be alive or dead at time t, but
the ‘alive’ state is only partially observable and the ‘dead’
state is completely unobservable. Under this observation pro-
cess, if Xt ¼ 1 it is known that the individual survived from
time t�1 to time t (with probability ϕ) and was detected
with probability p. However, when Xt ¼ 0 there are two pos-
sibilities: (1) the individual survived to time t (with probabil-
ity ϕ) but was not detected (with probability 1�p); or (2)
the individual did not survive from time t�1 to time t (with
probability 1�ϕ).
Although not originally described as such, the CJS model is

simply a two-state HMM that conditions on first capture. Fram-
ing the observed and hidden processes within the dependence
structure of a basic HMM (Fig. 2), we could for example have:

The state-dependent observation distribution for Xt is a simple
Bernoulli (i.e. a coin flip) with success probability p if alive
and success probability 0 if dead:

(a) (b)

(c) (d)

Figure 4 Graphical models associated with different extensions of the basic HMM formulation: (a) state sequence with memory order 2; (b) influence of

covariate vectors z1, . . .,zT on state dynamics; (c) observations depending on both states and previous observations; (d) bivariate observation sequence,

conditionally independent given the states.
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f Xt ¼ xtjSt ¼ ið Þ¼ pxtð1�pÞ1�xt if i¼ alive

0xtð1�0Þ1�xt ¼ 1�xt if i¼dead

 !

We thus have the initial distribution

state transition probability matrix

and state-dependent observation distribution matrix

The CJS model is thus a very simple HMM with an absorbing
‘dead’ state and only two unknown parameters (ϕ and p). As an
HMM, it can not only be used to estimate survival, but also the
point in time when any given individual was most likely to have
died (based on local or global state decoding; see Table 1).
The classic Jolly-Seber capture–recapture model and its var-

ious extensions (Pradel, 1996; Williams et al., 2002) go a step
further by incorporating both birth and death processes. It
simply involves extending the two-state model to an addi-
tional ‘unborn’ (UB) state. We could for example now have:

To formulate a three-state HMM with an additional ‘unborn’
state, we must extend our components for the hidden and
observed processes accordingly:

and

where

βt ¼
α1 if t¼ 1

αtQt�1
l¼1ð1�βlÞ

ift>1

8<
: ,

α1 is the probability that an individual was already in the
population at the beginning of the study, αt is the probability
that any given individual was born at time t∈ 2, . . .,Tf g, and
βt is the probability that an individual entered the population
on occasion t given it had not already entered up to that time.
Importantly, note that the two-state and three-state HMMs
rely on the exact same binary data Xt∈ 0,1f gð Þ, but we are
able to make additional inferences in the three-state model by
re-formulating the observed and hidden processes in terms of
both birth and death. While we have employed these well-
known individual-level capture–recapture models to initially
demonstrate the key idea of linking observed state-dependent
processes to the underlying state dynamics via HMMs, these
types of inferences are not limited to traditional capture–re-
capture observation processes. For example, telemetry and
count data can also be used in HMMs describing individual-
level birth and death processes (Schmidt et al., 2015; Cowen
et al., 2017).

Developmental state
Individual-level data often contain additional information
about developmental states such as those related to size
(Nichols et al., 1992), reproduction (Nichols et al., 1994),
social groups (Marescot et al., 2018) or disease (Benhaiem
et al., 2018). However, assigning individuals to states can be
difficult when traits such as breeding (Kendall et al., 2012),
infection (Chambert et al., 2012), sex (Pradel et al., 2008) or
even species (Runge et al., 2007) are ascertained through
observations in the field. This difficulty has motivated models
for individual histories that can not only account for multiple
developmental states (Lebreton et al., 2009), but also uncer-
tainty arising from partially or completely unobservable states
(Pradel, 2005). Such multi-state models can be used for testing
a broad range of formal biological hypotheses, including
host–pathogen dynamics in disease ecology (Lachish et al.,
2011), reproductive costs in evolutionary ecology (Garnier
et al., 2016) and social dominance in behavioural ecology
(Dupont et al., 2015). For example, it is straightforward to
extend the capture–recapture HMM to multiple ‘alive’ states
parameterised in terms of state-specific survival probabilities
ϕð Þ and transition probabilities between these ‘alive’ states
ψð Þ. Consider a three-state HMM for capture–recapture data
that incorporates reproductive status, where St ¼B indicates
‘alive and breeding’ and St ¼NB indicates ‘alive and non-
breeding’:
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and

where I xt ¼ kð Þ is an indicator function taking the value 1
when xt ¼ k and 0 otherwise. To assess the costs of repro-
duction, a biologist will be interested in the probability of
breeding in year t, given breeding ψB,B ¼ 1�ψB,NB

� �
or not

ψNB,B

� �
in year t�1, as well as assessing any differences in

survival probability between breeders ϕBð Þ and non-breeders
ϕNBð Þ. By simply re-expressing the δ, Γ and P xtð Þ compo-
nents in terms of the specific state and observation pro-
cesses of interest, such models can be used to infer the
dynamics of conjunctivitis in house finches (Conn and
Cooch, 2009), senescence in deer (Choquet et al., 2011),
reproduction in Florida manatees (Kendall et al., 2012),
interspecific competition between ungulates (Gamelon et al.,
2020) and life-history trade-offs in elephant seals (Lloyd
et al., 2020). Similar HMMs can also be used to investigate
relationships between life-history traits and demographic
parameters that are important in determining the fitness of
phenotypes or genotypes (Stoelting et al., 2015). Several
measures of individual fitness have been proposed, but one
commonly used for field studies is lifetime reproductive suc-
cess (Rouan et al., 2009; Gimenez and Gaillard, 2018).
These approaches can be readily adapted to quantify other
measures of fitness (McGraw and Caswell, 1996; Link
et al., 2002; Coulson et al., 2006; Marescot et al., 2018).
Inferences about developmental states are of course not lim-

ited to traditional capture–recapture data, and significant
advancements in animal-borne biotelemetry technology have
brought many new and exciting opportunities (Cooke et al.,
2004; Hooten et al., 2017; Patterson et al., 2017). For exam-
ple, telemetry location data can be used to identify migratory
phases (Weng et al., 2007), predation events (Franke et al.,
2006) or the torpor-arousal cycle of hibernation (Hope and
Jones, 2012). The multi-state (i.e. hidden Markov) movement
model is often used to infer these types of movement beha-
viour modes from trajectories in two-dimensional space, where
the observations are typically expressed in terms of the bivari-
ate sequence of Euclidean distances (or ‘step lengths’) and
turning angles between consecutive locations (Franke et al.,
2004; Morales et al., 2004). For a model involving N¼ 2
states that assumes conditional independence between step

length (Xt; in meters) and turning angle (Yt; in radians) as in
Fig. 4d, we could for example have:

These states could correspond to ‘resident’ (state 1) and ‘tran-
sient’ (state 2) behavioural phases, such that within state 2 the
movements tend to be longer and directionally persistent (i.e.
with turning angles concentrated near zero). When assuming
conditional independence of the observations, the bivariate
state-dependent distribution for Xt,Ytð Þ is simply the product
of two univariate state-dependent distributions,

f xt,ytjSt ¼ ið Þ¼ f xtjSt ¼ ið Þf ytjSt ¼ ið Þ:

These univariate distributions are typically assumed to be the
gamma or Weibull distribution for step length and the von
Mises or wrapped Cauchy distribution for turning angle.
Unlike our previous examples so far, the number of underly-
ing states in these types of HMMs is generally not clear a pri-
ori and needs to be selected based on both biological and
statistical criteria (Pohle et al., 2017). Another difference is
that there is often no predetermined structure in the state
transition probability matrix,

and all entries are freely estimated (but still subject to
∑N

j¼1γij ¼ 1). As a consequence, the characteristics of the
model states as represented by the state-dependent distribu-
tions are fully data driven, and hence may not correspond
exactly to biologically meaningful entities (see IMPLEMEN-
TATION, CHALLENGES AND PITFALLS).
Similar HMMs for animal movement have been used, inter

alia, to identify wolf kill-sites (Franke et al., 2006), the rela-
tionship between southern bluefin tuna behaviour and ocean
temperature (Patterson et al., 2009), activity budgets for har-
bour seals (McClintock et al., 2013), hunting strategies of
white sharks (Towner et al., 2016), the behavioural response
of northern gannets to frontal activity (Grecian et al., 2018)
and how common noctules adjust their space use to the lunar
cycle (Roeleke et al., 2018). Driven by the influx of new
biotelemetry sensor technology, HMMs have also been used
to analyse the sequences of dives of marine animals (Hart
et al., 2010; Quick et al., 2017; DeRuiter et al., 2017; van
Beest et al., 2019). The remote collection of activity data at
potentially very high temporal resolutions using accelerome-
ters is another emerging application area (Diosdado et al.,
2015; Leos-Barajas et al., 2017b; Papastamatiou et al., 2018a,
b; Adam et al., 2019b). These HMM formulations are concep-
tually very similar to the movement model outlined above,
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with the state process corresponding to behavioural modes (or
at least proxies thereof), and the activity data represented by
the state-dependent process. Fig. 5 illustrates a possible work-
flow for inferring four behavioural modes from high-resolu-
tion accelerometer data collected from a striated caracara
(Phalcoboenus australis) over a period of 1 hour. Here the vec-
tor of dynamic body acceleration was used as a univariate
summary of the three-dimensional raw acceleration data, and
a gamma distribution was used for the state-dependent obser-
vation process. In this example, the HMM can be regarded as
a clustering scheme which maps observed input data to unob-
served underlying classes with biological interpretations
roughly corresponding to ‘resting’, ‘minimal activity’ (e.g.
preening), ‘moderate activity’ (e.g. walking, digging) and ‘fly-
ing’. Complete details of this analysis, including each step of
the workflow and example R (R Core Team, 2019) code, can
be found in the Supplementary Tutorial.

Spatial state
HMMs can also be used for inferences about the unobserved
spatial location of an individual. For example,

capture–recapture data can consist of sequences of observa-
tions arising from a set of discrete spatial states, where these
often refer to ecologically important geographic areas, such as
wintering and breeding sites for migratory birds (Brownie
et al., 1993) or spawning sites for fish (Schwarz et al., 1993).
For a three-state HMM with two sites (A and B), where
St ¼A indicates ‘alive at site A’ and St ¼B indicates ‘alive at
site B’, we could for example have:

Clearly, this discrete-space HMM is structurally identical to the
multi-state capture–recapture HMMs already described in the
previous section; the only difference is the state transition prob-
ability parameters are now interpreted as site-specific survival
and movement probabilities between the sites (e.g. fidelity or
dispersal; Lagrange et al., 2014; Cayuela et al., 2020). Based on
global state decoding, these HMMs can therefore also be used

Figure 5 Illustration of a possible workflow when using an HMM to infer behavioural modes from the vector of dynamic body acceleration data of a

striated caracara (Phalcoboenus australis) over a period of 60 min (see Fahlbusch & Harrington, 2019, for data details). Four behavioural modes were

identified and biologically interpreted to be associated with resting (yellow), minimal activity (orange), moderate activity (blue) and flying (green).
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to infer the most likely spatial state for periods when an individ-
ual was alive but its location was not observed.
Another important application of HMMs is for geolocation

based on indirect measurements that vary with space, such as
light, pressure, temperature and tidal patterns (Thygesen et al.,
2009; Rakhimberdiev et al., 2015). Although too technical to be
described in detail here, geolocation HMMs can be particularly
useful for inferring individual location from archival tag data
(Basson et al., 2016). These HMMs have even been extended to
include state-switching behaviours such as those described in the
previous section (Pedersen et al., 2008, 2011b). Animal movement
behaviour HMMs have also been extended to accommodate par-
tially observed location data common to marine mammal satellite
telemetry studies (Jonsen et al., 2005; McClintock et al., 2012).

Population level

We consider two ways that inference on the population level
can arise: (1) an individual-level model, based on data from
multiple individuals (e.g. capture–recapture), quantitatively
connected to a population-level concept through an explicit
model; or (2) a population-level model, based on population-
level data (e.g. counts or presence–absence), with no explicit
model for processes at the individual level.

Existential state
A fundamental existential state at the population level is abun-
dance, the number of individuals alive in a population at a partic-
ular point in time. A common way to infer this using
capture–recapture HMMs is to formally link abundance to the
individual-level processes (e.g. survival, recruitment) that drive its
dynamics. Intuitively, the abundance model specifies how many
individuals go through the life history specified by the HMM.
For the abundance component, the key pieces of information are
the number of individuals in the population that were detected at
least once nð Þ and the probability of being detected at least once,
given an individual was alive at any time during the study p∗ð Þ.
The former is observed while the latter can be calculated as

p� ¼ 1�δP x1 ¼ 0ð ÞΓ 1ð ÞP x2 ¼ 0ð ÞΓ 2ð Þ⋯Γ T�1ð ÞP xT ¼ 0ð Þ1
using notation for the Jolly-Seber HMM presented in Individ-
ual level. This HMM formulation is equivalent to the original
Jolly-Seber open population model (shown in Glennie et al.,
2019), where population abundance at each time t is derived
from the individual-level process parameters.
Instead of inducing changes in abundance through individ-

ual-level HMMs, abundance itself can be modelled as the hid-
den state within an HMM (Schmidt et al., 2015; Cowen et al.,
2017; Besbeas and Morgan, 2019). Here population dynamics
are inferred from population-level surveys (Buckland et al.,
2004), where the observation process can include counts or
other quantities that are noisy measurements of the true abun-
dance (the hidden state), and the state transition probability
matrix Γð Þ is naturally formulated in terms of the well-known
Leslie matrix for population growth (Caswell, 2001). For
example, for imperfect count data Xt∈ 0,1,2, . . .f g that were
collected from a population of true size St∈ 0,1, . . .,Nmaxf g
(note the requirement to specify a maximum possible popula-
tion size Nmax), we could have:

and

Each state transition probability γij
� �

describes the popula-
tion dynamics from time t to time tþ1 and can be parame-
terised in terms of survival, reproduction, emigration, the
current population size Stð Þ and any additional population
structure (e.g. sex or age classes; see Population level - Devel-
opmental state). The state-dependent distributions fðxtjSt ¼ iÞ
can take many different forms depending on the specific
observation process, but common choices for count data are
binomial or Poisson models (Schmidt et al., 2015; Besbeas
and Morgan, 2019). Sometimes count data alone can be insuf-
ficient for describing complex population processes, and this
has led to integrated population modelling (Schaub and
Abadi, 2011) that uses auxiliary data such as capture–recap-
ture, telemetry or productivity data (Schmidt et al., 2015; Bes-
beas and Morgan, 2019).

Developmental state
Populations have more structure than simply their overall
abundance or density. Sex, age demographics, size of breeding
sub-population, fitness of individuals, and behavioural or
genetic heterogeneity all have an impact on the development
of a population (Seber and Schofield, 2019). Many of these
processes can be accounted for within the HMM framework
presented in the previous section for individual-level data. As
before, the idea is to extend the ‘alive’ state to a more com-
plex network of states whose state-dependent distributions
and transitions match the structure in the population. Combi-
nations of these individual attributes provide the opportunity
to build a rich state process to describe the population
dynamics. This framework is built around the idea that indi-
viduals are the singular units that together drive population
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change, but there has also been increasing use of HMMs from
a different viewpoint: that of evolutionary processes at lower
levels of organisation (e.g. genes).
With recent advances in genetic sequencing, the need for inter-

preting and modelling biological sequences (e.g. protein or
DNA) has boosted the development of HMMs in molecular
ecology (Durbin et al., 1998; Boitard et al., 2009; Yoon, 2009;
Ghosh et al., 2012). Many of these applications use HMMs
strictly as a tool for biological sequence analysis (e.g. identifying
species from DNA barcodes; Hebert et al., 2016) and are too
technical to delve into detail here, but HMMs for molecular
sequence data are commonly formulated in terms of evolution-
ary state dynamics, including for example speciation and extinc-
tion (Hobolth et al., 2007; Soria-Carrasco et al., 2014; Crampton
et al., 2018; Olajos et al., 2018), hybridisation (Schumer et al.,
2018; Palkopoulou et al., 2018), mutualism (Werner et al., 2018),
hidden drivers of diversification (Caetano et al., 2018) and evolu-
tionary rates among sites (Felsenstein and Churchill, 1996).
Telemetry locations are another form of individual-level

data that, when combined across individuals, can provide
population-level inferences about movement, space use and
resource selection (Hooten et al., 2017). As such, telemetry
data can be well suited for addressing hypotheses related to
intraspecific interactions. While such applications are still rela-
tively rare, location data have been used in HMMs investigat-
ing intraspecific competition in marine mammals (Breed et al.,
2013), herding in ungulates (Langrock et al., 2014a) and social
behaviour in fish (Bode and Seitz, 2018).
Similar to approaches for inferring population-level devel-

opmental states from individual-level data, a rich structure
can also be specified within an HMM for population-level
data. Multiple states and processes can be represented: age
classes/survival, size classes/growth, sex/birth, genotypes and
metapopulations are all states or networks of states with spec-
ified connections (Newman et al., 2014). Such HMMs can be
informed by a wide variety of population-level observations,
for example counts of plants (Borgy et al., 2015) or animals
(Schmidt et al., 2015), as well as auxiliary individual-level
observations (Besbeas and Morgan, 2019). From this general
viewpoint, HMMs can be seen as the structure behind open
population N-mixture models (Schmidt et al., 2015; Cowen
et al., 2017), distance sampling models (Sollmann et al., 2015)
and approximate state-space population dynamics models
(Besbeas and Morgan, 2019).

Spatial state
The spatial state of a population can be conceived as a surface
(or map) quantifying density at each point in space, and popu-
lation models for individual-level data can be extended to allow
density to change over space (Borchers and Efford, 2008).
Inferring density as a spatial population state, however,
requires spatial information within the data. Spatial capture–re-
capture surveys (Royle et al., 2013), an extension of capture–re-
capture, collect precisely these data. Spatial capture–recapture
HMMs can be formulated in terms of survival, recruitment,
movement and population density (Royle et al., 2018; Glennie
et al., 2019) and are readily extendable for relating environment
and population distribution across space, including how distri-
bution is affected by landscape connectivity, dispersal, resource

selection or environmental impacts such as oil spills (McDonald
et al., 2017; Royle et al., 2018).
A different viewpoint is to consider population-level data

that are commonly collected over both space and time: pres-
ence–absence data. These data provide information on a pop-
ulation’s spatial state that is not derived from abundance and
arise from the monitoring of spatial units for the (apparent)
presence or absence of a species. One of the most popular
tools for analysing these data are patch (or site) occupancy
models, which can be used to infer patterns and dynamics of
species occurrence while accounting for imperfect detection
(MacKenzie et al., 2018). As with capture–recapture models,
patch occupancy models are also HMMs (Royle and Kéry,
2007; Gimenez et al., 2014) where, instead of the state dynam-
ics of individual organisms, the hidden process describes the
state dynamics of sites. Let St ¼O indicate ‘occupied’ and
St ¼U indicate ‘unoccupied’, where the species can be
detected Xt,k ¼ 1ð Þ or not Xt,k ¼ 0ð Þ during multiple visits
k¼ 1, . . .,K to each site, with the following representation:

and

where ψ1 is the initial patch occupancy probability at time t¼ 1,
p is the species detection probability at each occupied patch and
Γ is composed of the local colonisation κð Þ and extinction εð Þ
probabilities. Single-season (or static) occupancy models
(MacKenzie et al., 2002) are obtained as a special case with
T¼ 1 or ε¼ κ¼ 0 (Gimenez et al., 2014). This HMM can not
only be used to estimate patch occupancy, extinction and
colonisation probabilities, but also the most likely state and
times of any colonisation or extinction events within a patch.
The flexibility of the HMM formulation allows patch occu-
pancy to be conveniently extended to cope with site-level
heterogeneity in detection using finite mixtures (Louvrier et al.,
2018) or a discrete measure of population density (Gimenez
et al., 2014; Veran et al., 2015) and even false positives due to
species misidentification (Miller et al., 2011; Louvrier et al.,
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2019). Just as with multi-state capture–recapture HMMs (see
Individual level - Developmental state), species occurrence
HMMs can be readily extended to multiple ‘occupied’ states
accommodating reproduction (MacKenzie et al., 2009; Martin
et al., 2009), disease (McClintock et al., 2010) and other (meta-)
population dynamics (Lamy et al., 2013).
Inferences from HMMs for presence–absence data are not

limited to occupancy models that account for imperfect spe-
cies detection. For example, Pluntz et al., (2018) developed an
HMM characterising seed dormancy, colonisation and germi-
nation in annual plant metapopulations based entirely on
presence–absence observations of standing flora. In their
study, the presence of a completely unobservable soil seed
bank was the hidden state of interest, and they modified the
dependence structure of a basic HMM such that the seed
bank state dynamics at time t depended not only on the seed
bank state at time t�1, but also on the presence or absence
of standing flora at time t. Let St ¼AA indicate ‘seed bank
absent at time t�1, flora absent at time t’, St ¼PA indicate
‘seed bank present at time t�1, flora absent at time t’ and
St ¼PP indicate ‘seed bank present at time t�1, flora present
at time t’, where standing flora is present Xt ¼ 1ð Þ or not
Xt ¼ 0ð Þ during visit t to each site and is assumed to be
detected without error. We could for example have:

where ψ0 is the probability that a seed bank was present the
year before the first observation, g is the probability of germi-
nation and survival to reproduction, s is the probability of
seed bank survival, c is the probability of external colonisa-
tion and P xtð Þ is a 3�3 diagonal matrix of ones. Similar for-
mulations could be applied to other organisms with dormant
life stages (e.g. fungi, crustaceans).

Community level

Community-level studies often focus on a subset of species
based on taxonomy, trophic position or particular interactions
of interest, and the diversity of topics addressed in community
ecology reflects its large scope (Vellend, 2010, 2016). Here we
will only scratch the surface of two study systems that can be
formulated as HMMs for multi-species presence–absence data

commonly collected from field surveys or (e)DNA samples:
(1) patch systems composed of (potentially) many species; and
(2) patch systems composed of a few (possibly interacting)
species.

Existential state
A fundamental measure of biodiversity is the number of spe-
cies within a community (species richness). This community-
level state is often unobservable in studies of natural systems
(Dorazio et al., 2006), even for communities composed
entirely of sessile organisms (Conway-Cranos and Doak,
2011; Chen et al., 2013). Multi-species occupancy HMMs
expand single-species occupancy HMMs (see Population level)
to the community level using presence–absence data for each
species that could (potentially) occupy the sampling units
within a study area (MacKenzie et al., 2018, Chapter 15). By
combining single-species HMMs, either independently or by
sharing common parameters among species (Evans et al.,
2016; Guillera-Arroita, 2017), community-level attributes (e.g.
species richness) and species-level attributes (e.g. patch occu-
pancy) can be integrated within a single modelling framework
(Royle and Dorazio, 2008, Chapter 12). By jointly modelling
species- and community-level processes, the approach pro-
posed by Dorazio and Royle (2005) and its extensions (re-
viewed by Kery and Royle, 2015, Chapter 11) facilitate the
simultaneous testing of formal hypotheses about factors influ-
encing occupancy (Rich et al., 2016; Tenan et al., 2017), spe-
cies richness (Sutherland et al., 2016) and their dynamics
through time (Russell et al., 2009; Dorazio et al., 2010), with
important consequences for conservation and management
(Zipkin et al., 2010). Although these community dynamics
models are typically fitted using hierarchical Bayesian meth-
ods and not explicitly referred to as HMMs, they share the
same properties and can be similarly decomposed in terms of
δ, Γ and P xtð Þ. Viewing the species richness of a community
as analogous to the abundance of a population, HMM formu-
lations similar in spirit to those described in Population level
could account for species that were never detected (sensu Dor-
azio et al., 2006).

Developmental state
Many community-level attributes can be constructed from
‘metacommunity’ HMMs for species richness at both the com-
munity and metacommunity level (Dorazio and Royle, 2005;
Kery and Royle, 2015, Chapter 11). Species richness at each
site is the α diversity metric, and total richness in the whole
metacommunity is the γ diversity (Magurran, 2004, Chapter
6). A possible metric for the β diversity is the similarity Jac-
card index: the proportion of species that occur at two sites
among the species that occur at either site. Multi-species occu-
pancy models have also been used to address variation in
community attributes within distinct regions using Hill num-
bers for species richness, Shannon diversity and Simpson
diversity (Broms et al., 2015; Sutherland et al., 2016; Tenan
et al., 2017; Boron et al., 2019). Dynamic multi-species occu-
pancy HMMs can provide inferences about changes in com-
munity composition and structure over time, entry (or
‘turnover’) probabilities of ‘new’ species into the community
and species ‘extinction’ probabilities from the community
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(Russell et al., 2009; Dorazio et al., 2010). Although to our
knowledge this has not yet been attempted, community assem-
bly or succession dynamics could naturally be parameterised
in terms of such quantities within a multi-state, multi-species
HMM describing transitions among different community
states (e.g. disturbed, climax). Community structure and com-
position also depend on interspecific interactions, and multi-
species occupancy HMMs can empirically test for any such
evidence (Gimenez et al., 2014; Rota et al., 2016; Davis et al.,
2018; MacKenzie et al., 2018; Marescot et al., 2020). To date
these co-occurrence models have mostly been used to infer
predator–prey interactions (Miller et al., 2018b; Murphy
et al., 2019). Other emerging frameworks for inferences about
processes that structure communities could also potentially be
formulated as HMMs to account for observation error in
presence–absence or count data (Ovaskainen et al., 2017).

Spatial state
Understanding geographic variation in the size and structure
of communities is one of the major goals in ecology. While
we have so far focused on some of the more ‘non-spatial’
aspects of community-level inference, all multi-species pres-
ence–absence HMMs are of course inherently spatial and also
describe community distribution. Dynamic multi-species occu-
pancy models provide inferences about changes in community
distributions (Russell et al., 2009; Dorazio et al., 2010), and,
when spatio-temporal interactions between species are of pri-
mary interest, dynamic co-existence HMMs can incorporate
local species extinction and colonisation to investigate inter-
specific drivers of co-occurrence dynamics and community dis-
tribution (Fidino et al., 2019; Marescot et al., 2020). As a
final illustrative example, suppose we have the states St ¼A
(respectively St ¼B and St ¼AB) for ‘site occupied by species
A’ (respectively by species B and by both species) and St ¼U
indicates ‘unoccupied site’. Define Xt,k∈ 0,1,2,3f g, where 0
indicates neither species was detected, 1 indicates only species
A was detected, 2 indicates only species B was detected and 3
indicates both species were detected on the kth visit at time t.
We could for example have:

This model is more complex than previous examples, but it
can still be readily expressed in terms of δ, Γ and P xtð Þ for
inferring patterns and drivers of species co-existence distribu-
tion dynamics (see Appendix A in Supplementary Material).

Ecosystem level

Despite the well-recognised need for reliable inferences about
broad-scale ecological dynamics in the face of climate change
and other challenges (Turner et al., 1995), HMMs have thus
far seldom been applied at the ecosystem level. This is likely
attributable to many factors, including the difficulty of
obtaining and integrating observational data at the large spa-
tio-temporal scales required (Jones et al., 2006; Bohmann

et al., 2014; Dietze et al., 2018; Estes et al., 2018; Com-
pagnoni et al., 2019). Although there are fewer examples in
the literature, HMMs have been used to make ecosystem-
level inferences about stability and regime shifts (Gal and
Anderson, 2010; Gennaretti et al., 2014; Economou and
Menary, 2019), climate-driven community and disease
dynamics (Moritz et al., 2008; Martinez et al., 2016; Miller
et al., 2018a), the effects of management action on habitat
dynamics (Breininger et al., 2010), climatic niches (Tingley
et al., 2009) and ecosystem health (Xiao et al., 2019).
HMMs are also frequently used by atmospheric scientists,
hydrologists and landscape ecologists to describe regional- to
global-scale ecosystem processes such as precipitation (Zuc-
chini and Guttorp, 1991; Srikanthan and McMahon, 2001),
streamflow (Jackson, 1975; Bracken et al., 2014), wetland
dynamics (Siachalou et al., 2014) and land cover dynamics
(Aurdal et al., 2005; Lazrak et al., 2010; Trier and Salberg,
2011; Abercrombie and Friedl, 2015; Siachalou et al., 2015).
While many of these examples tend to focus on a few speci-
fic biotic and/or abiotic components in which to frame
ecosystem state dynamics, we can envision future applica-
tions adopting a more holistic approach that integrates
increasingly more complex ecosystem-level processes with
observational data arising from a variety of sources and spa-
tio-temporal scales (see FUTURE DIRECTIONS).

IMPLEMENTATION, CHALLENGES AND PITFALLS

Software

Recent advances in computing power and user-friendly soft-
ware have made the implementation of HMMs much more
feasible for practitioners. However, the features and capabili-
ties of the software are varied, and it can be challenging to
determine which software may be most appropriate for a
specific objective. We briefly describe some of the HMM
software currently available, limiting our treatment to freely
available R (R Core Team, 2019) packages and stand-alone
programs that we believe are most accessible to ecologists
and non-statisticians. While most HMM packages in R
include data simulation, parameter estimation and state
decoding for an arbitrary number of system states, they dif-
fer in many key respects (Table 2). Some of the more gen-
eral packages provide greater flexibility for specifying state-
dependent probability distributions (Visser and Speenken-
brink, 2010; Jackson, 2011; Harte, 2017; McClintock and
Michelot, 2018). One of the earliest and most flexible HMM
packages, depmixS4 (Visser and Speenkenbrink, 2010),
can accommodate multivariate HMMs, multiple observation
sequences, parameter covariates, parameter constraints and
missing observations. Similar to depmixS4 in terms of
features and flexibility, momentuHMM (McClintock and
Michelot, 2018) can also be used to implement mixed
HMMs (DeRuiter et al., 2017), hierarchical HMMs (Leos-
Barajas et al., 2017a; Adam et al., 2019a), zero-inflated prob-
ability distributions (Martin et al., 2005) and partially
observed state sequences. In addition to the R packages pre-
sented in Table 2, there are numerous R and stand-alone
software packages that are less general and specialise on
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particular HMM applications in ecology, as well as general
statistical programs with which these types of models can be
relatively easily implemented (see Appendix B in Supplemen-
tary Material).

Challenges and pitfalls

HMMs are natural candidates for conducting inference
related to a wide range of ecological phenomena, but they are
not a panacea (see Box 2). There are many ecological pro-
cesses that cannot be faithfully characterised under the simpli-
fying assumptions of HMMs, in which case other latent
variable models may be more appropriate (see Box 1). When
HMMs are appropriate, it can be challenging to tailor HMMs
to real data, even when using user-friendly software packages.
Here we briefly highlight those issues that, based on our expe-
rience, constitute the key challenges when using HMMs to
analyse ecological data. Other important aspects of statistical
practice that are not unique to HMMs, such as model check-
ing and selection (e.g. Zucchini et al., 2016, Chapter 6), are
covered in more detail in the Supplementary Tutorial.
Depending on the complexity of the state and observation pro-

cesses, various modelling decisions may need to bemade. Among
these are the number of states to include, whether to incorporate
covariates for the model parameters and whether the basic
dependence structure is sufficient. These decisions tend to be
case-dependent and require expert knowledge of the system of
interest, so we make no attempt to provide general guidance in
this respect. However, in some cases the model structure may be
a direct consequence of the ecological process. For example, in
the CJS model, the two states (alive or dead) and also the state-
dependent (Bernoulli) distributions follow immediately from the
capture–recapture process. In situations with more complex
data, such as multivariate time series related to animal behaviour
(DeRuiter et al., 2017; Ngô et al., 2019; van Beest et al., 2019), it
takes experience and a good intuition both for the data and for
the HMM framework to identify an adequatemodel formulation
(Pohle et al., 2017).
Unlike other statistical models such as linear regression,

there is no analytical solution for HMM parameter estima-
tion. One must therefore resort to numerical procedures, all
of which involve technical challenges: local maxima for maxi-
mum likelihood estimation (Myung, 2003), or label switching
(Jasra et al., 2005) and poor mixing (Brooks et al., 2011) for
MCMC sampling. Any increase in model complexity with
respect to the number of states or the parameters tends to
rapidly exacerbate these problems. When working with
HMMs, it is thus important to develop an appreciation for
these challenges and the associated risks. For maximum likeli-
hood estimation, the risk of false convergence to a local rather
than the global maximum of the likelihood must not be
underestimated. In addition to the general advice to avoid
overly complex models (Lavine, 2010; Cole, 2019), the main
strategy to reduce this risk is to try many initial parameter
vectors within the maximisation.
While it is tempting to interpret the states of an HMM fit-

ted to ecological data as biologically meaningful entities, this
is not always justifiable. Outside the standard capture–recap-
ture or species occurrence applications, HMMs are often

applied in an unsupervised learning context (see Figs 3 and 5,
Supplementary Tutorial), such that the state characteristics
are completely data driven rather than pre-defined (Leos-
Barajas et al., 2017b). The model then picks up the statisti-
cally most relevant modal patterns in the data, and these may
or may not correspond closely to ecologically meaningful
states. It is thus important not to over-interpret the model
states, as in some cases they may only be crude proxies for
the ecological system states of interest. A classic example is
the simple N¼ 2 state HMM for animal movement behaviour
based on step lengths and turning angles (Morales et al.,
2004), where evidence of an area-restricted search-type state is
often labelled as ‘foraging’. Although for many animals area-
restricted search is commonly associated with foraging, one
usually cannot definitively conclude when an individual was
actually foraging based solely on location data. Furthermore,
while it can be useful to refer to these modalities using
descriptive terms such as ‘foraging’ (or ‘resident’) and ‘search-
ing’ (or ‘transient’), this does not mean that an animal has
only two modes of behaviour.

FUTURE DIRECTIONS

We have highlighted many realised and potential applications
of HMMs in ecology. We anticipate increased application and
development of HMMs as ecologists continue to discover how
this relatively simple and flexible class of statistical models
can reveal complex state dynamics that are inherently difficult
to observe. Indeed, a Web of Science search for ‘hidden Mar-
kov’ suggests a rapidly increasing awareness of these models
within the ecological community (Fig. 6). Given differences in
terminology and a tendency for ecologists to use HMMs with-
out explicitly referring to them as such, the use of HMMs is
surely becoming even more widespread.
In order for the power and flexibility of HMMs to be har-

nessed by the broader ecological community, researchers must
first be able to recognise the limitations of their data and how
these can be leveraged by formally linking observable phenom-
ena to the actual ecological processes of interest. Such hierarchi-
cal modelling exercises are critical to reliable inference (Royle
and Dorazio, 2008; Kery and Royle, 2015), and it is no coinci-
dence that HMMs have independently ‘evolved’ in different eco-
logical contexts over the years. By assuming a discrete state
space with basic dependence structures, HMMs can easily cap-
ture complex system processes, such as those involving serial cor-
relation, nonlinearity, non-normality and non-stationarity, in a
tractable manner that goes well beyond the examples highlighted
here. Instead of viewing these as a series of disparate domain-
specific applications of HMMs, we view them as a synthesis of
the process by which ecologists can begin to critically think
about their own sequential data, relate them to their particular
system of interest and formulate an HMM for their specific
domain using a simple conceptual template.
We foresee HMMs being more frequently used to integrate

biotic and abiotic observations at large spatio-temporal scales
to investigate complex ecosystem-level processes. The state
process of the HMM could itself be at the ecosystem level
(e.g. alternative stable states), or it could simply be used to
account for unobservable state dynamics at lower levels of the
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hierarchy as a component of a larger (non-Markovian) ecosys-
tem-level process model. Recent HMM methodological devel-
opments such as hierarchical formulations that allow data
collection and/or state transitions to occur at multiple tempo-
ral resolutions (Fine et al., 1998; Leos-Barajas et al., 2017a;
Adam et al., 2019a), nonparametric approaches avoiding
restrictive distributional assumptions (Yau et al., 2011; Lan-
grock et al., 2018) and coupled HMMs for interacting state
processes associated with different sequences (Sherlock et al.,
2013; Touloupou et al., 2020) extend our capability to incor-
porate complex data structures and hierarchical relationships
scaled from the individual to ecosystem level.
Despite this great potential, there remain several hurdles to

the widespread implementation of HMMs describing long-
term, broad-scale ecological dynamics (Turner et al., 1995;
Lindenmayer et al., 2012; Haller, 2014). First, much like
regression and analysis of variance, HMMs must become a
familiar and accessible instrument within the ecologist’s statis-
tical ‘toolbox’. This has been the primary motivation for our
review, and we hope our illustrative examples have provided a
template by which researchers can begin to formulate HMMs
according to their specific state and observation processes of
interest. Second, although this challenge is by no means unique
to HMMs, ecosystem-level inferences continue to be limited by
data availability, accessibility and compatibility (Jones et al.,
2006; Dietze et al., 2018; Estes et al., 2018; Compagnoni et al.,
2019; Halbritter et al., 2020), which can compromise our

ability to empirically link observation and state processes oper-
ating at different spatio-temporal scales. Third, as with any
application of HMMs, such endeavours will require a faithful
conceptualisation of ecosystem dynamics that is amenable to
this discrete-state modelling framework, as well as the identifi-
cation and integration of observation processes that can pro-
vide information about the underlying system.
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