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LOCALIZATION OF EIGENVECTORS OF NON-HERMITIAN BANDED
NOISY TOEPLITZ MATRICES

ANIRBAN BASAK, MARTIN VOGEL, AND OFER ZEITOUNI

Abstract. We prove localization with high probability on sets of size of order N/ logN for
the eigenvectors of non-Hermitian finitely banded N ×N Toeplitz matrices PN subject to small
random perturbations, in a very general setting. As perturbation we consider N × N random
matrices with independent entries of zero mean, finite moments, and which satisfy an appropriate
anti-concentration bound. We show via a Grushin problem that an eigenvector for a given
eigenvalue z is well approximated by a random linear combination of the singular vectors of
PN − z corresponding to its small singular values. We prove precise probabilistic bounds on the
local distribution of the eigenvalues of the perturbed matrix and provide a detailed analysis of
the singular vectors to conclude the localization result.

1. Introduction and statement of results

1.1. The setting. The spectrum of non-Hermitian operators is inherently sensitive to tiny per-
turbations due to the fact that their resolvent may be large even far away from the spectrum.
This is in stark contrast to the Hermitian case, where due to the spectral theorem, the norm of the
resolvent is effectively controlled by the distance of the spectral parameter to the spectrum. This
spectral instability of non-Hermitian operators, although traditionally an adversary for numerical
analysis [70, 72], has recently shown itself at the origin of beautiful new results in a variety of con-
texts. For instance in the theory of non-linear partial differential equations for instance, spectral
instability may help to explain the blow up in finite time of solutions to certain non-linear diffusion
equations which, when solely studying the spectrum of the linearized operator, were expected to
have stable solutions [58, 54, 30].

In mathematical physics non-Hermitian operators appear in a large variety of subjects, such
as open quantum systems [50, 51, 52]. In quantum mechanics, the study of scattering systems
[26, 37, 60, 66, 48, 25] naturally leads to the concept of quantum resonances which can be described
by the eigenvalues of a non-Hermitian operator obtained from a complex deformation [66] of a
Hermitian quantum Hamiltonian. In physical models an “ideal” operator can be perturbed by
many different sources, some of which are uncontrolled by experimentalists. To account for these
error terms disorder is introduced and, in view of the phenomenon of spectral instability, it is
therefore relevant to investigate the influence of random perturbations on the spectral data of
non-Hermitian operators. The recent works [62, 41, 24] investigate for instance the distribution of
the quantum resonances of random Schrödinger operators such as the celebrated Anderson model
[6].

In this paper we consider large deterministic non-Hermitian N × N Toeplitz matrices PN
with small additive random perturbations. It was shown in a series of recent results that the
spectra of such matrices, apart from finitely many fluctuating outliers [7, 8, 9, 65, 64], mimic the
absolutely continuous spectra of the associated infinite dimensional Laurent operator on Z. This
is particularly striking since a perturbation of size O(N−∞) is sufficient to produce this effect,
whereas the spectrum of the unperturbed matrix is far from the spectrum of the Laurent operator.

The aim of this paper is to discuss the eigenvectors associated with the eigenvalues of such
perturbed Toeplitz matrices. Are the eigenvectors localized or delocalized? The precise meanings
of these notions vary over different subjects, however, they all serve to capture how much an `2
normalized eigenvectors concentrates on or spreads out over certain parts of its support.
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In random matrix theory there are several ways of testing for localization or delocalization of
`2 normalized eigenvectors ψ. One way is by comparing their `p norms for 2 < p 6 +∞ with
N1/p−1/2. Complete delocalization is said to occur when ‖ψ‖p = O(N1/p−1/2) (up to some loga-
rithmic factors) since N1/p−1/2 is the `p norm of the fully delocalized vector (N−1/2, . . . , N−1/2).
Conversely localized eigenvectors have a large `p norm, as for instance the fully localized vector
(0, 0, 1, 0, . . . , 0) has `p norm equal to one. These notions were used for instance to prove delocal-
ization via optimal `p bounds of the eigenvectors of Wigner matrices [29, 28], for non-Hermitian
random matrices [56], and for the adjacency matrix of Erdős-Rényi graphs [27]. Recently, local-
ization and delocalization of eigenvectors for the adjacency matrix of critical Erdős-Rényi graphs
were established in [2].

There is a complementary notion of delocalization, known as no-gaps delocalization, which
asserts that for any subset I ⊂ [N ], with |I| reasonably large, one has ‖ψ‖`2(I) & |I| (again
allowing for logarithmic factors). Recently, such delocalizations have been established for Wigner
matrices and matrices with independent and identically distributed (i.i.d.) entries (cf. [56, 43, 45]).

In the field of quantum chaos [59], in the setting of Hermitian pseudo-differential operators,
localization and delocalization of normalized eigenvectors are studied via their associated semi-
classical defect measures. Translated to the matrix setting [5], we note that

∑N
x=1 |ψ(x)|2δx, where

δx denotes the Dirac measure at x, defines a probability measure. One says that quantum ergodic-
ity occurs when

∑N
x=1 a(x)|ψ(x)|2 is close to 1

N

∑N
x=1 a(x) for most eigenvectors ψ, and uniquely

quantum ergodicity occurs when this holds for all eigenvectors. In contrast, scarring occurs when
we have concentration of the form

∑
x∈Λ |ψ(x)|2 > 1− ε, ε > 0, of the eigenvector on some small

set Λ. On the other hand, if ‖ψ‖p � Nf(p) for some f(p) 6= 1/2 − 1/p, then the eigenstate ψ is
termed to be non-ergodic and multi-fractal [44]. These notions were recently applied to the study
of the eigenfunctions of the discrete Laplacian on large regular graphs [3, 4], and to the proof
of delocalization of eigenvectors of generalized Wigner matrices [16]. See also [10] for results on
deformed Wigner matrices.

In this paper we prove that the eigenvectors of non-selfadjoint Toeplitz matrices subject to small
random perturbations localize on a set of cardinality N/ logN in the sense that they scar on a set
of size N/ logN with probability close to one.

To the best of our knowledge, this is the first instance where localization results are proved in
the setting of noisy perturbations of non-Hermitian matrices.

It will be seen below that for eigenpairs (λ, ψ), the length of the localizing set for ψ and the
rate of decay of the slowest decaying pure state associated to λ have the same order of magnitude
(see Remark 9.4). On the other hand, pure states can be related to the Lyapunov spectra of the
associated transfer matrices (cf. [7, Section 1.2]). Therefore, the reader may note that our result
on the localization has the same flavor as the one predicted in the case of the random Schrödinger
operator on a strip, where it is conjectured that the rate of decay of eigenfunctions is neither
slower nor faster than the one prescribed by the slowest Lyapunov exponent (see [33] and the
references therein).

1.2. The results. Let N± ∈ Z be such that −N− 6 N+ and either N+ 6= 0 or N− 6= 0. Let
ai ∈ C, i ∈ Z, be such that aN+ 6= 0, a−N− 6= 0, and ai = 0 for i 6∈ [−N−, N+]. Introduce
the symbol p(ζ) =

∑N+

−N− ajζ
−j and the associated N × N Toeplitz matrix PN with entries

PN (i, j) = ai−j , that is

PN =



a0 a−1 . . . a−N− . . .
a1 a0 a−1 . . . . . .
...

. . . . . . . . .
...

aN+ . . . . . . . . . . . .
...

. . . . . . . . .
...

. . . . . . aN+ . . . a0


. (1.1)

(We refer to Section 4 for an introduction to the terminology, especially with respect to symbols.)
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We consider in this paper noisy perturbations of PN of the form

PQN,γ = PN +N−γQN , γ > 1, (1.2)

with QN an N ×N (random) matrix satisfying Assumptions 1.1 and 1.2 below. The first assump-
tion is on the existence of finite moments.

Assumption 1.1. Let {Qi,j}Ni,j=1 be the entries of the N ×N noise matrix Q = QN .
(i) The entries of Q are jointly independent and have zero mean.
(ii) For any h ∈ N there exists an absolute constant Ch <∞ such that

N
max
i,j=1

E[|Qi,j |2h] 6 Ch.

For notation convenience, we take the sequence Ch increasing in h. To introduce the second
assumption, recall Lévy’s concentration function, defined for any complex-valued random variable
X and ε > 0 by

L(X, ε)
def
= sup

w∈C
P(|X− w| 6 ε). (1.3)

Assumption 1.2. Assume that there exist absolute constants η ∈ (0, 1] and C1.2 <∞, such that

L(Qi,j , ε) 6 C1.2ε
1+η, (1.4)

for all sufficiently small ε > 0, uniformly for all N and i, j ∈ {1, 2, . . . , N}.

(The standard example of a noise matrix satisfying Assumptions 1.1 and 1.2 is the complex Ginibre
matrix, i.e. with i.i.d. entries that are standard complex Gaussian variables.)

It was recently shown in [7, 8, 64, 65] that all but o(N) of the eigenvalues {λNi } of P
Q
N,γ lie in

a small neighborhood of the curve p(S1), where S1 := {z ∈ C : |z| = 1}; in fact, it was shown in
those references that the empirical measure of eigenvalues of PQN,γ ,

LN := N−1
N∑
i=1

δλNi
, (1.5)

converges weakly to the push forward of the uniform measure on S1 by p. As part of our study,
we will obtain more precise information, and show (see Theorem 1.5 and Sections 5-7) that most
of the eigenvalues lie in certain neighborhoods of width of order logN/N that are separated from
p(S1) by distance of the same order.

Our goal in this paper is to study the eigenvectors associated with the latter (random) eigenval-
ues. Roughly speaking, we will show that those we will show that those eigenvalues ẑ away from
certain isolated bad points of p(S1) have corresponding eigenvectors which are close to a random
linear combination of the eigenvectors ej of (PN − ẑI)∗(PN − ẑI) associated with its smallest
eigenvalues. In particular we will show that this random linear combination of vectors localizes at
scale N/ logN . To state our results precisely requires the introduction of some machinery, which
we now do.

Sometimes, the symbol p possesses a natural contraction, defined as follows. Set

g(p) := gcd{|j| : j 6= 0 and aj 6= 0}. (1.6)

If g0 := g(p) > 1 then p(ζ) = qp(ζ
g0) for some Laurent polynomial qp. If g0 = 1 then qp = p. For

ε > 0 and a set B ⊂ C, Bε denotes the ε-blow up of B, that is the Minkowski sum of the sets B
and D(0, ε), the open disc of radius ε centered at zero.

Definition 1.3 (Set of bad points). Let B1 be the collection of self intersection points of qp(S1),
and let B2 be the set of branch points, i.e. points z where the Laurent polynomial p(·) − z has
double roots. Set Bp := B1 ∪ B2 and Gp,ε := p(S1) \ Bεp.

In Definition 1.3, a point w ∈ C is a self intersection point of qp(S1) if there exist ζ1 6= ζ2 ∈ S1 so
that qp(ζ1) = qp(ζ2) = w.

Throughout the paper, we make the following assumption on the symbol p.

Assumption 1.4. The symbol p satisfies a−N− , aN+ 6= 0, and B1 is a finite set.
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Under Assumption 1.4, Bp is a finite set. Indeed, B2 is precisely the set of all z’s such that
the discriminant of the polynomial ζ 7→ ζN+p(ζ) − z vanishes, and [15, Lemma 11.4] yields that
B2 is a finite set. We note that by [40], unless N− = N+ and |a−N− | = |aN+ |, B1 has cardinality
bounded above by (N+ + N− − 1)2, so symbols avoiding this situation satisfy Assumption 1.4.
For z ∈ C let

d(z) = indp(S1)(z)

denote the winding number of the curve p(S1) around z. We now describe the collection of
eigenvalues of interest to us. For 0 < ε,C <∞ and N large enough so that 2C logN/N < ε, set

Ω(ε, C,N) := {z ∈ C : C−1 logN/N < dist(z,Gp,ε) < C logN/N, d(z) 6= 0}, (1.7)

where for a set B ⊂ C and w ∈ C we denote dist(w,B) := infw′∈B |w − w′|. Let NΩ(ε,C,N),N,γ :=

|{λNi ∈ Ω(ε, C,N)}| denote the number of eigenvalues of PQN,γ that lie in Ω(ε, C,N).
The following theorem, a combination of the convergence of LN discussed above and Theorems

5.4, 5.7, and 7.1 below, shows that most eigenvalues of PQN,γ lie in Ω(ε, C,N) for appropriate ε, C.

Theorem 1.5. Let Assumptions 1.1, 1.2, and 1.4 hold. Fix µ > 0 and γ > 1. Then there exist
0 < ε1.5, C1.5 <∞ (depending on γ, µ and p only) so that

P
(
NΩ(ε1.5,C1.5,N),N,γ < (1− µ)N

)
→N→∞ 0. (1.8)

Theorem 1.5 may be of independent interest since it improves upon previous results [7, 8, 64, 65]
by providing a much sharper estimate on the position of the eigenvalues of PQN,γ . We refer the
reader to Sections 5–7 for its proof. In what follows, we fix µ > 0, γ > 1 and consider the ε1.5

and C1.5 determined by Theorem 1.5. We then consider eigenvalues λNi ∈ Ω(ε1.5, C1.5, N). By
Theorem 1.5, most eigenvalues are of this type. Notice also that for any z ∈ Ω(ε1.5, C1.5, N), we
have that d = d(z) 6= 0.

The main result of this paper is the following description of the (right) eigenvectors of PQN,γ .

Theorem 1.6. Fix ε1.5, C1.5 and the notation as above.
1. The following occurs with probability approaching one as N →∞. For each ẑ ∈ Ω(ε1.5, C1.5, N)

which is an eigenvalue of PQN,γ, let v = v(ẑ) denote the corresponding (right) eigenvector, normal-
ized so that ‖v‖2 = 1. Then there exists a vector w with ‖w‖2 = 1 such that

‖v − w‖2 = o(1), (1.9)

and a constant c > 0, depending on γ, so that for any ` ∈ [N ],

‖w‖`2([`,N ]) 6 e−c` logN/N/c, if d > 0,

‖w‖`2([1,N−`]) 6 e−c` logN/N/c, if d < 0.
(1.10)

The vector w can be taken as a (random) linear combination of the |d| eigenvectors of (PN −
ẑI)∗(PN − ẑI) corresponding to the |d| smallest eigenvalues.

2. Fix z0 = z0(N) ∈ Ω(ε1.5, C1.5, N) deterministic, C0, C̃0 large, and η > 0 small. Then, there
exist constants c1 = c1(η, C0, C̃0) and c0 = c0(γ) ∈ (0, 1), with c0 → 1 as γ → 1 and c0 → 0
as γ → ∞, so that, with probability at least 1 − η, for every ẑ = λNi ∈ D(z0, C0 logN/N), any
0 < ` 6 `′ 6 C̃0N/ logN satisfying `′ − ` > N c0 and all large N ,

‖w‖2`2([`,`′]) > c1(`′ − `) logN/N, if d > 0,

‖w‖2`2([N−`′,N−`]) > c1(`′ − `) logN/N, if d < 0.
(1.11)

Further, for any 0 < c′ 6 C̃0,
‖v‖2`2([1,c′N/ logN ]) > c

′c1/2, if d > 0,

‖v‖2`2([N−c′N/ logN,N ]) > c
′c1/2, if d < 0.

(1.12)

Theorem 1.6 shows a localization phenomenon, numerically illustrated in the examples of Figure
1: for all eigenvalues in the good regions, the corresponding eigenvectors localize at scale N/ logN ,
and for most eigenvalues, this is the scale at which the eigenvector is “spread out”. (Contrast the
situation with the regime γ < 1, where delocalization is observed in simulations, see Figure 2;
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Figure 1. Eigenvectors (left panel) and eigenvalues (right panel) for N = 4000, γ = 1.2
and symbol ζ+ζ2. Plotted are the moduli of the entries of the eigenvector that corresponds
to the eigenvalue marked with a red ×. The top two rows correspond to situations covered
by Theorem 1.6; note the localization, which occurs at scale N/ logN . The bottom row is
not covered by Theorem 1.6, because the chosen eigenvalue is at vanishing distance from
B1.

we discuss predictions for that regime in Section 3.1, after we introduce relevant notions and in
particular the relevant Grushin problem.)

Building on Theorem 1.6, equipped with a local estimate on the number of eigenvalues λNi
in regions of diameters O(logN/N) (see Theorem 7.4) and applying a Fubini type argument,
one can show that except for an arbitrarily small fraction of the eigenvalues, the corresponding
eigenvectors v(λNi ) localize at scale N/ logN . In particular, we prove the following result.

Corollary 1.7. Let Assumptions 1.1, 1.2, and 1.4 hold. Then, for any µ > 0 there exists µ1, µ2 >
0 so that with |supp µ1

(v)| := min{|I| : ‖v‖`2(I) > 1− µ1},

lim sup
N→∞

1

N
E#{i : supp µ1

(v(λNi )) < µ2N/ logN} 6 µ.

Theorem 1.6 states that the eigenvectors of PQN,γ corresponding to most eigenvalues ẑ can be
approximated by a random linear combination of the eigenvectors ej of (PN − ẑI)∗(PN − ẑI)
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Figure 2. Eigenvectors (left panel) and eigenvalues (right panel) for N = 4000, γ = 0.8
and symbol ζ+ ζ2. These cases are not covered by Theorem 1.6. Note the stark difference
with the corresponding situations in Figure 1, in both the location of eigenvalues relative
to p(S1) and in the localization properties of eigenvectors.

associated with its |d| smallest eigenvalues. These are precisely the right singular vectors of PN−ẑI
associated with its |d| smallest singular values. However, these singular vectors ej are (in general)
difficult objects to study and do not admit an easy description. Therefore, we will approximate
these singular vectors with certain quasimodes of the operator PN . The term quasimode for PN
and a (quasi-)eigenvalue z refers to a approximate `2-normalized eigenvectors ψ ∈ CN of PN − z
in the sense that

‖(PN − z)ψ‖ → 0, N →∞.

In the literature quasimodes are also referred to as pseudo-eigenvectors or pseudomodes. In Section
9, we describe a |d|-dimensional space of quasimodes associated with PN−zI, and in Section 10.2,
we show that the eigenvectors ej of (PN−zI)∗(PN−zI) associated with its |d| smallest eigenvalues
are close to these quasimodes. We refer to Propositions 9.6 and 10.3 for the precise construction,
which we do not repeat here. We emphasize however that the construction of the ej-s depends on
p, N and z only and not on Q (even if eventually the value of z to which it will be applied will
depend on Q).

The upper bound (1.10) is due to the decaying nature of these |d| linearly independent quasi-
modes either to the left (when d < 0) or to the right (when d > 0). These quasimodes decay
exponentially quickly, |u(n)| � e−rn or |u(n)| � e−r(N−n), however, at different rates r > 0. Out
of these |d| quasimodes the first (|d|−g0) (recall (1.6)) quasimodes decay at a constant rate r > 0,
resulting in them being completely localized to a point, i.e. either on the left or right hand side
of the interval [1, N ]. In contrast, the rest decay at a rate r � logN/N , which implies that they
localize at a scale N/ logN . In contrast, the lower bound (1.11) follows upon showing that w has
a non-negligible projection (in `2) onto S, the subspace spanned by the last g0 quasimodes that
decay precisely at rate logN/N .

Note that Theorem 1.6 and Corollary 1.7 establish absences of quantum ergodicity and no-gaps
delocalization, and show that the semiclassical defect measure in this setting is the Dirac measure
at zero or one, depending on whether d is positive of negative.
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One may wonder whether the assumption ẑ ∈ D(z0, C0 logN/N) in the second part of Theorem
1.6 is optimal. It will be clear from the proof that to derive (1.11) one needs to control the
supremum of the random field z 7→ f̃(z)tQẽ(z) for some ẽ(z), f̃(z) ∈ CN such that the Lipschitz
norms of the functions z 7→ ẽ(z) and z 7→ f̃(z) are O(N/ logN) and O(1), respectively. It is
then standard to check that the supremum of the field {ẽ(z)tQf̃(z)} can only be bounded by an
O(1) quantity in discs of radius O(logN/N). The boundedness of this random field is crucial in
deriving that w has non-negligible projection onto S. Repeating the same reasoning one can also
observe that for all ẑ simultaneously in the good region, with probability approaching one, the `2
norm of the projection of w onto S is at least of the order logN/N , and we believe that this is
the correct picture.

1.3. Connection to pseudospectra and pseudo-eigenvectors. Roughly speaking, the pseu-
dospectrum of an operator represent the spectrum of the operator when subjected to the worst-case
perturbation. However, here we study the spectrum under a typical perturbation. Nevertheless,
in many scenarios the spectrum of random perturbations of a non-self-adjoint operator closely
resembles the pseudospectral level lines of the unperturbed operator (cf. [7, Section 1.3] and the
references therein). There have been attempts to understand pseudospectral properties of Toeplitz
matrices. It was proved that the ε-pseudospectrum of an unperturbed Toeplitz matrix converges
to an ε-neighborhood of the spectrum of the limiting Toeplitz operator [55]. On the other hand,
in [14] it is shown that for PN any asymptotically good pseudo-eigenvector must be asymptotically
strongly localized, meaning that almost all its mass is carried either by the subset [1, jN ] or the
subset [N − jN , N ] for any sequence {jN} such that jN → ∞ as N → ∞. Note the contrast
with the localization behavior of the eigenvectors of the noisy version of PN : they localize with
jN � N/ logN .

For a more general model, the twisted Toeplitz matrices, a special case of the Berezin-Toeplitz
quantization of the two dimensional torus, it has been shown in [71] that if certain (anti-)twist
condition is satisfied by the symbol of the operator, then the pseudo-eigenvectors are localized
in the form of localized wave packets. This has been generalized in [13] to the Berezin-Toeplitz
quantizations of compact symplectic Kähler manifolds. In the field of microlocal analysis of
pseudo-differential operators, the analogue of this (anti-)twist condition is the non-vanishing of
the Poisson bracket of the real and imaginary parts of the principal symbol of the operator. This
condition, also known as Hörmander’s commutator condition [39], is a corner stone in the now
classical theory of local (non-)solvability of partial differential equations. In the works [19, 20, 21,
76, 23, 53] it was linked via a WKB construction to the construction of wave packet pseudomodes
of Schrödinger operators with complex potentials, and more generally to nonselfadjoint pseudo-
differential operators.

1.4. Extensions. A natural extension of our results would be to the region γ ∈ (1/2, 1], see
Section 3.1 for a discussion. We mention a couple of additional potentially interesting extensions,
of broad interest.

Sup-norm delocalization versus no-gaps delocalization. As already mentioned in Section
1.1, there are two complementary notions of delocalizations in the random matrix literature. It is
shown in [11, 57] that both these notions of delocalization hold for Wigner matrices under various
assumptions on it entries. There is no reason to believe that these two notions of delocalizations
should hold simultaneously in any given setting.

Indeed, from the proof of Theorem 1.6 it follows that when PN is a Jordan block, i.e. its symbol
is p(ζ) = ζ, and γ > 3/2 we have that ‖v‖∞ �

√
logN/N for an eigenvector v corresponding

to a bulk eigenvalue. See Remark 11.2 for further details. Thus, in this simple setting, the
eigenvectors corresponding to most of the eigenvalues are completely delocalized according to the
sup-norm criterion. However, they do not satisfy no-gaps delocalization. It is worth investigating
whether one indeed has that ‖v‖∞ �

√
logN/N for all γ > 1 and any finitely banded PN .

Localization for the outlier eigenvalues and multi-fractal structure. Based on simulations
and some heuristic arguments, we predict that the eigenvector ψ corresponding to an eigenvalue
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residing at a distance of order Nα−1, α ∈ (0, 1], from the spectral curve localizes at scale N1−α.
This shows in particular that for such a ψ one has ‖ψ‖p � N

(α−1)·( 1
2
− 1
p

), establishing that such
eigenvectors are multi-fractal. The same reasoning shows that the eigenvectors corresponding
to outlier eigenvalues, i.e. those are at a distance of order one from p(S1), would be completely
localized. That is, most of their mass is carried by finitely many entries. It seems plausible that
the methods of our current work could be adapted to prove these results.

1.5. Structure of the paper. In Section 2, we introduce a Grushin problem for a matrix P ,
which allows us to represent the null space of P , if non-empty, in terms of a certain resolvent
expansion, see Lemma 2.1. Section 3 then provides a sketch of the proof of Theorem 1.6. Section
4 discusses results on Toeplitz and related operators that are used later in the paper. Sections
5-7 are devoted to estimates on the location of “most” eigenvalues of PQN,γ , which together yield
Theorem 1.5. The following Section 8 derives estimates on the resolvent of of PN − zI, for
appropriate z in the “good” region. Section 9 is devoted to the study of quasimodes of Toeplitz
matrices, which are the building blocks for the eigenvectors of PQN,γ and eventually give the vector
w in the statement of Theorem 1.6. Section 10 gives estimates on the singular values and vectors
of PN − z, and bounds on various norms of matrices appearing in the Grushin problem. Finally,
Section 11 collects all preparatory material and provides the proof of Theorem 1.6.

1.6. Notation. We use the following set of notation throughout this paper. The notation a� b
means that Ca 6 b for some sufficiently large constant C > 0. Writing a � b means that there
exists a constant C > 1 such that C−1a 6 b 6 Ca. The notation a & b is used to denote that
a > C−1b, while we write a = o(b) to denote a 6 C−1b for all C < ∞. Constants C, C̃ > 0
denoted explicitly in the proofs may change value from line to line, while constants such as C1.2

will be kept fixed throughout. The notation f = O(N) means that there exists a constant C > 0
(independent of N) such that |f | 6 CN . When we want to emphasize that the constant C > 0
depends on some parameter k, then we write Ck, or with the above notation Ok(N).

We use the standard notation of ceiling and floor: for x ∈ R we write dxe := max{n ∈ Z;n > x}
and bxc := max{n ∈ Z;n 6 x}, respectively. For m,n ∈ Z the notation [m,n] is used to denote
the discrete interval {m,m+1, . . . , n} and we use the shorthand [n] to denote the discrete interval
[1, n].

We identify `2(K) ' `2K := {u ∈ `2(Z); suppu ⊂ K} and we will frequently identify `2[0,N−1] '
CN so the norm ‖ · ‖ and Hermitian scalar product 〈·|·〉 on CN will be the ones of `2[0,N−1]. When
the Euclidean norm and inner products are considered over some specific discrete interval I we
write ‖ · ‖`2(I) and 〈· | ·〉`2(I). The notation ‖ · ‖∞ is used to denote the supremum norm for a
vector. For a matrix A the notations ‖A‖ and ‖A‖HS denote its operator norm, and Hilbert-
Schmidt norms, respectively. For a vector v ∈ CN we write v∗ ∈ (CN )∗ for its natural dual with
respect to the Hermitian scalar product, i.e. v∗u = 〈u|v〉 for any v ∈ CN .

For a N × N matrix A we denote by t1(A) 6 . . . 6 tN (A) the eigenvalues of
√
A∗A. The

singular values s1(A) > · · · > sN (A) of A are then given by

sN−n+1(A) = tn(A), n = 1, . . . , N. (1.13)

For brevity, we sometimes write smax(A) and smin(A) for the maximum and the minimum singular
values of A. We let Id denote the identity matrix, viewed as element in Cd×d.

The following standard conventions are followed:

a ∨ b def
= max{a, b}, a, b ∈ R,

0∏
1

aj = 1, and
0∑
1

aj = 0.

We also use the Dirac notation δn,m = I(m = n). The notation Θ(·) denotes the Heaviside
function, that is Θ(x) = 0 when x 6 0, and Θ(x) = 1 for x > 0. For z ∈ C and r > 0, we write
D(z, r) ⊂ C for the (open) disc of radius r centered at z. For ε > 0 and a set B ⊂ C, Bε denotes
the ε-blow up of the set B, that is the Minkowski sum of the sets B and D(0, ε). The notation
B∪̇B′ is used to denote a disjoint union. For a set D ⊂ C we use both cl(D) and D to denote its
closure. The complement of an event A is denoted A{.
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2. The Grushin Problems

We begin by setting up, in some generality, a well-posed Grushin problem, based on [73, 36],
see also [65, 64]. It, and its behavior under perturbations, will play a crucial role in our analysis.

Roughly speaking, the Grushin problem amounts to replacing an operator of interest by an
enlarged bijective system. In the context of linear partial differential equations, the study of such
enlarged system of operators can be traced back to Grushin [35], where it was used to study
hypoelliptic operators. In a different setting, such an enlarged system was used by Sjöstrand [61],
whose notation we use. It has also been quite useful in bifurcation theory, numerical analysis, and
for treatments of spectral problems arising in electromagnetism and quantum mechanics. See the
review paper [67].

2.1. Grushin problem for the unperturbed operator. Let P be a complex N ×N -matrix.
(In our application, we will often take P = PN − zI where PN is the (deterministic) Toeplitz
matrix with symbol p and z is a random parameter close to the spectral curve p(S1). Then, all
objects implicitly depend on z, and we supress this dependence in notation when not needed.)
Let

0 6 t21 6 · · · 6 t2N (2.1)
denote the eigenvalues of P ∗P with associated orthonormal basis of eigenvectors e1, . . . , eN ∈ CN .
The spectra of P ∗P and PP ∗ are equal and we can find an orthonormal basis f1, . . . , fN ∈ CN of
eigenvectors of PP ∗ associated with the eigenvalues (2.1) such that

P ∗fi = tiei, P ei = tifi, i = 1, . . . , N. (2.2)

Let 0 < α� 1 and let M > 0 be the number of singular values ti ∈ [0, α], i.e.

0 6 t1 6 · · · 6 tM 6 α < tM+1 6 · · · 6 tN . (2.3)

Let δi, 1 6 i 6M , denote an orthonormal basis of CM . Put

R+ :=
M∑
i=1

δi ◦ e∗i , R− :=
M∑
i=1

fi ◦ δ∗i , (2.4)

Then the Grushin problem

P :=

(
P R−
R+ 0

)
: CN × CM −→ CN × CM (2.5)

is bijective. To see this we take (v, v+) ∈ CN × CM and proceed to solve

P
(
u
u−

)
=

(
v
v+

)
. (2.6)

We write u =
∑N

1 u(j)ej and v =
∑N

1 v(j)fj . Similarly, we express u−, v+ in the basis δ1, . . . , δM .
The relation (2.2) then shows that (2.6) is equivalent to{∑N

1 tiu(i)fi +
∑M

1 u−(j)fj =
∑N

1 v(j)fj ,

u(j) = v+(j), j = 1, . . . ,M,
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which can be written as
tiu(i) = v(i), i = M + 1, . . . , N,(

ti 1

1 0

)(
u(i)

u−(i)

)
=

(
v(i)

v+(i)

)
, i = 1, . . . ,M.

(2.7)

Since (
ti 1
1 0

)−1

=

(
0 1
1 −ti

)
,

we see that
P−1 =: E =

(
E E+

E− E−+

)
(2.8)

with

E =
N∑

M+1

1

ti
ei ◦ fi, E+ =

M∑
1

ei ◦ δ∗i , E− =
M∑
1

δi ◦ f∗i , and E−+ = −
M∑
1

tjδj ◦ δ∗j . (2.9)

From (2.3) and (2.9) it follows that we have the following norm estimates

‖E(z)‖ 6 1

α
, ‖E±‖ = 1, ‖E−+‖ 6 α. (2.10)

Next, we recall a general fact on well-posed Grushin problems.

Lemma 2.1. Let H be an N -dimensional complex Hilbert space, and let N > M > 0. Suppose
that

P =

(
P R−
R+ 0

)
: H× CM −→ H× CM

is a bijective matrix of linear operators, with inverse

E =

(
E E+

E− E−+

)
.

Then, E+ : N (E−+)→ N (P ) is bijective with inverse R+ �N (P ), and E∗− : N (E∗−+)→ N (P ∗) is
bijective with inverse R∗− �N (P ∗).

Proof. From PE = 1, we get that PE+ +R−E−+ = 0 and so

E+ : N (E−+)→ N (P ). (2.11)

Similarly, we get from EP = 1 the equation E−P + E−+R+ = 0, and hence

R+ : N (P )→ N (E−+). (2.12)

The identity EP +E+R+ = 1 yields that E+R+ = 1 on N (P ), which, together with R+E+ = 1,
shows that (2.11), (2.12), are bijective and inverser to each other. The proof of the second claim
is similar, one can follow the same arguments applied to P∗E∗ = E∗P∗ = 1. �

2.2. Grushin problem for the perturbed operator. Now we turn to the perturbed operator

P δ := P + δQ, 0 6 δ � 1. (2.13)

where Q is a complex N ×N -matrix (eventually, random). Let R± be as in (2.4), and put

Pδ :=

(
P δ R−
R+ 0

)
: CN × CM −→ CN × CM (2.14)

with P = P0. Applying E (see (2.8)) from the right to (2.14) yields

PδE = IN+M +

(
δQE δQE+

0 0

)
. (2.15)

Suppose that (I + δQE) is invertible. It is then straightforward to check that Pδ is invertible,
with inverse

(Pδ)−1 =: Eδ =

(
Eδ Eδ+
Eδ− Eδ−+

)
, (2.16)
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where
Eδ = E(I + δQE)−1, Eδ− = E−(I + δQE)−1, (2.17)

Eδ−+ = E−+ − E−(I + δQE)−1δQE+, (2.18)

and
Eδ+ = E+ − E(I + δQE)−1δQE+. (2.19)

We note that if one takes P = PN−zIN with z an eigenvalue of PN +δQ, then Lemma 2.1 applied
to P δ gives a convenient description of the null-space of P , which is precisely the eigenspace of
PN +δQ corresponding to the eigenvalue z. This observation will be a crucial part of our analysis,
see (3.1) below.

Remark 2.2. Under the additional assumption that

2δ‖Q‖α−1 6 1, (2.20)

which will occur in our setup of Q as in Assumption 1.1 if δ = N−γ with γ > 3/2 (and with
α � N−1), we obtain by a Neumann series argument that

Eδ =

(
Eδ Eδ+
Eδ− Eδ−+

)
= E +

∞∑
n=1

(−δ)n
(
E(QE)n (EQ)nE+

E−(QE)n E−(QE)n−1QE+

)
, (2.21)

where by (2.20), (2.10),

‖Eδ‖ = ‖E(1 + δQE)−1‖ 6 2‖E‖ 6 2α−1,

‖Eδ+‖ = ‖(1 + δQE)−1E+‖ 6 2‖E+‖ 6 2,

‖Eδ−‖ = ‖E−(1 + δQE)−1‖ 6 2‖E−‖ 6 2,

‖Eδ−+ − E−+‖ = ‖E−(1 + δQE)−1δQE+‖ 6 2‖δQ‖ 6 α.

(2.22)

In particular, in that case,

Eδ+ = E+ − δQE(1 +O(δ‖Q‖α−1))E+ (2.23)

and
Eδ−+ = E−+ − δE−(1 +O(δ‖Q‖α−1))QE+. (2.24)

3. Structure of the proof of Theorem 1.6

A key ingredient for the proof Theorem 1.6 is Theorem 1.5. The proof of the latter result splits
into two parts: In the first part we show that all eigenvalues must be separated from p(S1) by a
distance of the order logN/N . At a very high level it involves an expansion of the determinant of
PQN,γ − zIN , with z ∈ C, identifying the dominant term in that expansion, and showing that the
dominant cannot be equal to zero (with probability approaching one) when z is in the vicinity of
the spectral curve. We refer the reader to Section 5-6 for further details on these steps. The second
part of Theorem 1.5 requires us to show that most of the eigenvalues must be within a distance
O(logN/N) from spectral curve, again with probability approaching one. This is achieved by an
application of Jensen’s formula together with upper and lower bounds on the log-potential of LN
(see (1.5)). See Section 7 for details.

In the remainder of this section we describe the structure of the proof of Theorem 1.6, taking for
granted Theorem 1.5 and various technical estimates. The proof of Theorem 1.6 begins with the
Grushin problem for P δz = PQN,γ − zI, see (2.16), for δ = N−γ , z which is roughly an eigenvalue,
and M = |indp(S1)(z)| (this will lead to tM+1 & logN/N and α bounded below by a constant
multiple of logN/N , see Proposition 10.1). To keep track of the dependence on z, throughout this
section we write E(z), E+(z), etc. To relate the null-space of P δz with the null space of Eδ−+(z)
we will use Lemma 2.1 in an indirect manner: As in its proof note that from (2.14) and (2.16),

Eδ(z)P δz + Eδ+(z)R+(z) = I and Eδ−(z)P δz + Eδ−+(z)R+(z) = 0. (3.1)
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If z = ẑ were an eigenvalue of PQN,γ with corresponding normalized eigenvector v then, with
notation as in Section 2 and recalling the definition of Eδ+(z), we would obtain from (3.1) that
since {ei(ẑ)} forms an orthonormal basis of CN ,∑N

i=M+1
(ei(ẑ)

∗v) · ei(ẑ) = (I − E+(ẑ)R+(ẑ))v

= (I − Eδ+(ẑ)R+(ẑ))v − E(ẑ)(I + δQE(ẑ))−1δQE+(ẑ)R+(ẑ)v

= E(ẑ)(I + δQE(ẑ))−1δQE+(ẑ)R+(ẑ)v. (3.2)

Consider first the case where γ is large (γ > 3/2 will do). Since ‖Q‖ = O(N1/2+ε), for any ε > 0,
with high probability, we obtain that N−γ‖Q‖α−1 = o(1) and therefore (2.20) holds. Using then
(2.23)-(2.24), the projection of v on span(ei(z), i >M +1) is negligible, which yields the first part
of Theorem 1.6.

To see the second part, still in the case of large γ (here we will need γ > 2) and z = ẑ, we
obtain from (3.1) that

0 = −Eδ−+(ẑ)R+(ẑ)v = −E−+(ẑ)R+(ẑ)v + δE−(ẑ)QE+(ẑ)R+(ẑ)x (3.3)

−δ2E−(ẑ)(I + δQE(ẑ))−1QE(ẑ)QE+(ẑ)R+(ẑ)v,

where we also have used the resolvent expansion. By the same reasoning as above, the third term
in (3.3) turns out to be of order o(δ), hence negligible compared to the first two terms. Therefore,
recalling the definitions of E±(z), E−+(z), and R+(z) we obtain that, with aj = (ej(ẑ)

∗v),

− E−+(ẑ)R+(ẑ)v + δE−(ẑ)QE+(ẑ)R+(ẑ)v

=

M∑
i=1

aitiδi + δ

M∑
i=1

 M∑
j=1

aj(fi(ẑ)
∗Qej(ẑ))

 δi = o(δ). (3.4)

Now, again by Proposition 10.1, there exists M > M0 > 0 so that tj decay exponentially in N for
j ∈ [M0]. Thus, we obtain from (3.4) that for γ large,∥∥∥∥∥∥

M0∑
i=1

 M∑
j=1

aj · (fi(ẑ)∗Qej(ẑ))

 δi
∥∥∥∥∥∥ = o(1).

Assume now that aj = o(1) for j = M0 + 1, . . . ,M . Using a basic chaining argument we would
then conclude that ∥∥∥∥∥∥

M0∑
i=1

M0∑
j=1

aj · (fi(ẑ)∗Qej(ẑ))

 δi
∥∥∥∥∥∥ = ‖aTA‖ = o(1),

where A is the M0 ×M0 matrix with entries Ai,j = fi(ẑ)
∗Qej(ẑ). If ẑ were deterministic, we

would have that the smallest singular value of A is o(1) and this would lead to a contradiction.
Since ẑ is actually random, we will proceed by using the fact that the functions fi, ei are localized,
which makes the minimal singular value of A continuous in z.

When γ ∈ (1, 2], we cannot use in (3.2) and (3.3) an a-priori bound of the form (2.20). Instead,
we use a lower bound on the minimum singular value of I + δQE, see (10.10), and the resolvent
expansion to replace (I+δQE)−1 by

∑L
i=0(−δQE)i+(−δQE)L+1(I−δQE)−1 for an appropriate

L. Proposition 10.11 and the a-priori bounds on the minimal singular value of I + δQE suffice to
control the sum, and again we use a net in order to work with deterministic z’s.

To carry out this program necessitates a fair amount of auxillary results. We need a-priori
estimates for the singular values and associated quasimodes of PN − zI for z close to the location
of eigenvalues of PQN,γ . So we begin in Section 4 with a fairly detailed analysis of the singular
values and vectors of PN−zI (for general z), and relate the singular values to the winding number
of p around z (we will stay away of the bad set Bp of Definition 1.3, so that the winding number is
locally constant and the distance of z from p(S1) is controlled). In Sections 5-7 we provide precise
estimates for the range of zs that we need to consider, that is, for the location of the eigenvalues
of PQN,γ . Those precise estimatess are then used in Section 9 in constructing the quasimodes of
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(PN − zI)(PN − zI)∗, in terms of the roots of the symbol p− z. These quasimodes are then used
in Section 10, where we show that the eigenvectors are appropriate linear combinations of the
localized quasimodes.

3.1. The case γ < 1 - discussion and speculations. We end this section with some brief
remarks concerning γ < 1. In that regime, the single entries of δQ = N−γQ are larger than
N−1, and in particular are asymptotically larger than the distance of the eigenvalue from the
spectral curve. In particular, when writing the Grushin problem (2.14), one is forced to take
M growing with N (in fact, essentially M � N2(1−γ); This is forced by the requirement that
‖E−(δQ)E+‖ < M/N). The resulting eigenvector of P δ are expected to be a combination of
the M bottom quasimodes, with random coefficients. Since the quasimodes oscillate at scale
N/M = N2γ−1, the combination is expected to converge to a γ-dependent Gaussian process with
correlation length of that scale. The simulations in Figure 2 are in line with this picture, although
proving it require ideas going beyond the methods of this paper.

4. Analysis of Toeplitz matrices

In this section we begin with presenting some fundamental results about the calculus of Toeplitz
matrices. In particular we will focus on symbols given by Laurent polynomials and we will discuss
the quantization procedure which maps such a symbol to an operator acting on functions on Z,
`2(Z), `2([0,∞[), and `2(Z/NZ).

4.1. Toeplitz matrices. We begin by recalling some well known facts about Toeplitz matrices,
see for instance [15] and the references therein.

For a u ∈ `2(Z) we define the Fourier transform by

Fu(ξ) =
∑
n∈Z

une−inξ, ξ ∈ R/2πZ, (4.1)

so that F : `2(Z)→ L2(R/2πZ, dξ2π ) is unitary, and

F−1(f)(n) = fn =
1

2π

∫
R/2πZ

f(ξ)einξdξ. (4.2)

We consider the symbol class of continuous functions on the unit circle S1 with absolutely
convergent Fourier series called the Wiener algebra

W := {a ∈ C(S1);
∑
n∈Z
|an| < +∞}. (4.3)

Using the Fourier transform we can represent a symbol p ∈W by

p(eiξ) =
∑
n∈Z

pn e−inξ, ξ ∈ R/2πZ. (4.4)

We can quantize the symbol p ∈W by

Op(p)
def
= F−1 pF . (4.5)

Using Parseval’s equality it is easy to see that p(τ) : `2(Z) → `2(Z) is a bounded operator; it is
also straight forward to check that the `2 adjoint of Op(p) is given by

Op(p)∗ = Op(p̃), p̃(ζ)
def
= p(1/ζ). (4.6)

Let τ denote the right shift operator (τψ)(n) = ψ(n− 1) on `2(Z) or more generally on functions
ψ : Z → C. Notice that τeinθ = e−iθeinθ, so the symbol of τ is given by e−iξ = 1/ζ, ζ ∈ S1. So
we can express (4.5) as well as

Op(p) =
∑
n∈Z

pn τ
n. (4.7)

which can be seen to act more generally on function ψ : Z→ C.
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Let K ⊂ Z be a finite subset or an infinite interval. We identify `2(K) ' `2K := {u ∈
`2(Z); suppu ⊂ K}, and we define

PK
def
= PK(p)

def
= 1KOp(p)1K : `2K → `2K . (4.8)

When K is finite we call PK a Toeplitz matrix and when K is infinite, for example K =]−∞, 0]
or K = [0,∞[ we call PK an infinite Toeplitz matrix. For simplicity we will sometimes write
PN = PN (p) when K = [0, N − 1] and P (p) when K = [0,∞[.

Notice that the matrix elements of PN are given by

PN (ν, µ) = pν−µ, ν, µ ∈ [0, N − 1]. (4.9)

A counter part to the Toeplitz matrices are the Hankel matrices. Let R be the reflection operator
defined by (Rψ)(n) = ψ(−n) on functions ψ : Z→ C. Let

χn(ζ) = ζn, ζ ∈ S1, n ∈ Z. (4.10)

For a ∈W we define the Hankel matrix of a by

H(a)
def
=
∞∑
1

anH(χn), H(χn) = 1[0,∞[τ
n−1R1[0,∞[. (4.11)

Represented as infinite matrices we see that Toeplitz matrices carry the same entry on the diag-
onals, whereas Hankel matrices carry the same entry on the anti-diagonals, for instance

T (a) =


a0 a−1 a−2 . . .
a1 a0 a−1 . . .
a2 a1 a0 . . .
. . . . . . . . . . . .

 , H(a) =


a1 a2 a3 . . .
a2 a3 . . . . . .
a3 . . . . . . . . .
. . . . . . . . . . . .

 . (4.12)

Note that H(χn) = 0 for n 6 0, and that H(χn) has rank n for n > 1.

The quantization procedures p 7→ Op(p) and p 7→ PK(p) are clearly linear. Composition of
such operators is however more complicated. Given a, b ∈W we have that

Op(ab) = Op(a)Op(b). (4.13)

However, the composition of two Toeplitz matrices is in general not a Toeplitz matrix but only a
Toeplitz matrix modulo two products of Hankel matrices, see for instance [15, Proposition 3.10].
Given a, b ∈W we have, with ΠN = 1[0,N−1] and Π̃N = ΠNH(χN )ΠN , that

TN (ab) = TN (a)TN (b) + ΠNH(a)H (̃b)ΠN + Π̃NH(ã)H(b)Π̃N . (4.14)

In this paper we mainly consider the operator

Op(p) =

N+∑
−N−

ajτ
j , a−N− , a−N−+1, . . . , aN+ ∈ C, a±N± 6= 0 (4.15)

acting on `2(Z) or, more generally, on functions ψ : Z→ C, whose coefficients satisfy Assumption
1.4, and with symbol p given by

C\{0} 3 ζ 7→ p(ζ) =

N+∑
−N−

ajζ
−j . (4.16)

4.2. Circulant matrices. In this section we discuss circulant matrices, which are close relatives
of Toeplitz matrices that play an important role in our analysis.

For N > 1 and p ∈W we consider Op(p) (4.7) acting on `2(Z/NZ) which we identify with the
space of N -periodic functions on Z. To distinguish this case from the other operators considered
in this paper, we write

PZ/NZ
def
= Op(p) : `2(Z/NZ)→ `2(Z/NZ). (4.17)
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For ν ∈ Z/NZ we get that

(PZ/NZu)(ν) =
∑
n∈Z

u(ν − n) =
∑

µ∈Z/NZ

∑
k∈Z

pν−µ+kN u(µ),

so the matrix elements of PZ/NZ are given by

PZ/NZ(ν, µ) =
∑
k∈Z

pν−µ+kN , µ, ν ∈ Z/NZ. (4.18)

Identifying [0, N − 1] ' Z/NZ, we see by (4.9) that for p as in (4.16),

PZ/NZ(ν, µ)− PN (ν, µ) = pν−µ+N + pν−µ−N
def
= B(ν, µ), µ, ν ∈ [0, N − 1], (4.19)

where B is of rank N+ +N−. Using the discrete Fourier transform, with

FN = N−1/2(exp(−2πinm/N))06n,m6N−1

we may represent PZ/NZ by

PZ/NZ = F∗N diag(p(e2πil/N ); 0 6 l 6 N − 1)FN , (4.20)

which immediately shows that the spectrum of PZ/NZ is given by σ(PZ/NZ) = {p(e2πil/N ); 0 6
l 6 N − 1)}.

4.3. Roots of a Laurent polynomial. In this section we discuss the roots of the Laurent
polynomial

p(ζ) =

N+∑
−N−

ajζ
−j , −N− 6 N+, a−N− , a−N−+1, . . . , aN+ ∈ C, a±N± 6= 0. (4.21)

It will be convenient to extend the symbol p to a holomorphic map p̃ : Ĉ → Ĉ on the extended
complex plane Ĉ def

= C ∪̇ {∞}. Here Ĉ is a complex manifold, equipped with the topology given
by U ∈ Ĉ open if either U ⊂ C open or Ĉ\U ⊂ C is compact, and with the equivalence class
of holomorphic atlases represented by {id : C → C, φ : Ĉ\{0} → C} where φ(∞) = 0 and
φ(z) = 1/z for z /∈ {0,∞}. In what follows we will drop the tilde notation and denote by p also
the extension.

We exclude the case of constant Laurent polynomials, i.e. we assume that

N± > 0 when N∓ = 0. (4.22)

We say that ζ ∈ C ∪̇{∞} is a root of (4.21) when

p(ζ) =

N+∑
−N−

ajζ
−j = 0, (4.23)

and, by using the change of coordinates ζ = 1/ω, we have that ζ =∞ is a root if ω = 0 is a root
of p(1/ω). We keep in mind that in the sequel we will be interested in symbols whose coefficients
aj may depend on a spectral parameter z ∈ C. For instance the coefficient of order zero of the
symbol p(ζ)− z is a0 − z, and all the other coefficients remain independent of z.

Lemma 4.1. The Laurent polynomial (4.21), assuming (4.22), has N = N+ ∨ 0 + N− ∨ 0 roots
in C ∪̇ {∞}. Assume that 0 /∈ p(S1), and let

ζ+
1 , . . . , ζ

+
m+

denote the roots in D(0, 1), (4.24)

and
ζ−1 , . . . , ζ

−
m− denote the roots in (C ∪̇ {∞})\D(0, 1), (4.25)

where m+ +m− = N (working with the convention that when m+ = 0 resp. m− = 0, we have no
roots (4.24) resp. (4.25)). We can distinguish the following three cases:

Case 1 If N± > 0, then we have that

0 < |ζ+
1 | 6 · · · 6 |ζ

+
m+
| < 1 < |ζ−1 | 6 · · · 6 |ζ

−
m− | < +∞ (4.26)
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Case 2 When N+ < 0, then we have that∞ is not a root but 0 is a root of (4.23) of multiplicity
m0 ∈ [1 ∨ |N+|, |N−|] . In this case, we have that

0 = |ζ+
1 | = · · · = |ζ

+
m0
| < |ζ+

m0+1| 6 · · · 6 |ζ
+
m+
| < 1 < |ζ−1 | 6 · · · 6 |ζ

−
m− | < +∞. (4.27)

Case 3 When N− < 0, then 0 is no root, but ∞ is a root of multiplicity m∞ ∈ [1∨ |N−|, |N+|],
and we may order the roots as

0 < |ζ+
1 | 6 · · · 6 |ζ

+
m+
| < 1 < |ζ−1 | 6 · · · 6 |ζ

−
m−−m∞ | < +∞ = |ζ−m−−m∞+1| = · · · = |ζ

−
m− |.
(4.28)

Proof. 1. If N± > 0, we see that neither 0 nor ∞ can be a root of (4.23), which therefore has the
same roots as

ζN+p(ζ) =

N++N−∑
0

aN+−jζ
j = 0, (4.29)

a polynomial of degree N+ + N−. We order its N+ + N− roots, counted with their multiplicities,
as in (4.24), (4.25), with m+ +m− = N+ + N−, and we conclude (4.26).

2. When N+ < 0 then (4.23) is given by

p(ζ) =

N−∑
|N+|

a−jζ
j = 0, (4.30)

a polynomial of degree N− and so we have N− roots in C and ∞ cannot be a root. It follows
from (4.30) that 0 is a root with multiplicity

m0 = min{j ∈ {|N+|, . . . ,N−}; aj − zδj,0 6= 0}, (4.31)

where we recall the Dirac notation from Section 1.6. Notice that max{1, |N+|} 6 m0 6 |N−|. In
this case, we denote the roots as in (4.24), (4.25) and (4.27).

3. If N− < 0 then (4.23) is given by

p(ζ) =

N+∑
|N−|

ajζ
−j = 0. (4.32)

So 0 is not a root, however, ∞ maybe be one. Performing the change of variables ω = 1/ζ we see
that p(1/ω) satisfies the assumptions of Step 2 with the roles N− and N+ exchanged and roots
ω±j = 1/ζ±j . Hence, we conclude (4.28) when Case 3 holds. �

4.4. Kernels of P[0,∞[ − z and P]−∞,0] − z. In this section we discuss how to construct the
elements of the kernels of P[0,∞[ − z and P]−∞,0] − z, see (4.8), where p is as in (4.16), (4.15),
z ∈ C\p(S1).

Recall that the index of a Fredholm operator A on a Hilbert space is given by

Ind(A) = dimN (A)− dimN (A∗).

Here N (A) denotes the kernel of A, and note that the kernel of A∗ is isomorphic to the cokernel of
A. We know from [15, Theorem 1.9], [65] that PK − z, for K =]−∞, 0] and [0,∞[, are Fredholm
operators, and that the winding number indp(S1)(z) of the curve p(S1) around z is related to the
Fredholm index of PK − z as follows:

Ind(P[0,∞[ − z) = indp(S1)(z), Ind(P]−∞,0] − z) = −indp(S1)(z). (4.33)

Using Lemma 4.1 one can express the winding number of p(S1) around z by

indp(S1)(z) =
1

2πi

∫
S1

d

dη
log(p(η)− z)dη = m+ − (N+ ∨ 0) = (N− ∨ 0)−m−. (4.34)
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Remark 4.2. If the symbol p− z satisfies Case 2 of Lemma 4.1, then indp(S1)(z) = m+ > 0, and
if it satisfies Case 3, then indp(S1)(z) = −m− < 0.

When comparing with the literature, for instance [15], then the right hand sides of the equations
in (4.34) and (4.33) have the opposite sign. This discrepancy comes from our choice to write the
Fourier series (4.1) with a minus instead of a plus sign in the exponential.

Our aim is now to give explicit expressions for the kernel vectors of P[0,∞[ − z and P]−∞,0] − z
depending on the roots of the symbol p − z. We will only treat the case when the symbol
satisfies the assumptions of Case 1 of Lemma 4.1 since the other two cases are non-generic.
Furthermore, we will only work in the case where all roots of p − z are simple. We will see that
under these assumptions the kernel vectors will be given by exponential solutions as in (4.37)
below, corresponding to the roots in C\{0}.

4.4.1. Exponential solutions. We begin with a slightly more general discussion on exponential
solutions. Let ζ ∈ C\{0} be a root of (4.23) with multiplicity mult(ζ), then the exponential
functions

Z 3 ν 7→ fζ,k(ν)
def
= νk(ζν), 0 6 k 6 mult (ζ)− 1 (4.35)

are solutions to
Op(p)fζ,k = 0, on Z, (4.36)

and these functions are linearly independent, by the following proposition.

Proposition 4.3 ([65, Proposition 3.1]). Let ζ1, ..., ζN ∈ C \ {0} be distinct numbers and let
1 6 mj < ∞, 1 6 j 6 N. The functions fζj ,k : Z → C, 1 6 j 6 N, 0 6 k 6 mj − 1 are linearly
independent. More precisely, if K ⊂ Z is an interval with #K = m1 +m2 + ...+mN, then fζj ,k |K
form a basis in `2(K).

This result together with Lemma 4.1 immediately yield the following result.

Proposition 4.4 ([65, Proposition 3.7]). Let p be as in (4.21), (4.22) with N± > 0. Suppose that
0 /∈ p(S1), that all roots of p(ζ) are simple and ordered as in (4.26).

Then, the space of exponential solutions to Op(p)u = 0 is of dimension m+ + m−, and the
general solution is of the form

u(ν) =

m+∑
j=1

a+
j (ζ+

j )ν +

m−∑
j=1

a−j (ζ−j )ν , a±j ∈ C. (4.37)

The subspace of solutions decaying as ν → +∞ is given by

a−j = 0, for 0 6 j 6 m− (4.38)

and the subspace of solutions decaying as ν → −∞ is given by

a+
j = 0, for 1 6 j 6 m+ (4.39)

Proof. The statement on the dimension and (4.37) are an immediate consequence of Lemma 4.1
and Proposition 4.3. The last statement is a consequence of the fact that |ζ+

j | < 1 and |ζ−j | > 1. �

4.4.2. Eigenvectors in Case 1. We recall [65, Proposition 3.6] in a slightly modified form to fit
our somewhat different notation.

Proposition 4.5. Let p be as in (4.21), (4.22) with N± > 0. Let K ⊂ Z be an interval of length
6 N+ + N−. Any function u : K → C can be extended to a solution ũ : Z→ C to Op(p)ũ = 0.
The space of such extensions is affine of dimension N+ + N− −#K. In particular the extension
is unique when N+ + N− = #K.

Let p be as in (4.15), (4.16) and let z ∈ C\p(S1). We assume that the symbol p(ζ)− z satisfies
Case 1 of Lemma 4.1 (with p(ζ)− z replacing p(ζ) in (4.21)). This translates to

• N± > 0,

• or z 6= a0 when N− = 0, or z 6= 0 when N− < 0,

• or z 6= a0 when N+ = 0, or z 6= 0 when N+ < 0.

(4.40)
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By Lemma 4.1, we have m+ +m− = N+ ∨ 0 +N− ∨ 0 roots of p(ζ)− z.

We now turn to the operators P[0,∞[ − z and P]−∞,0] − z. The two cases are similar, so we
focus on the first one and identify [0,∞[' N whenever convenient. The following discussion is a
modified version of the one in [65], presented here for the reader’s convenience.

Let u ∈ `2(N) be so that (P[0,∞[ − z)u = 0 on N. When N+ > 0 we put

u(−N+) = · · · = u(−1) = 0, (4.41)

and when N+ 6 0, we do not put (4.41). Then we see that, for ν = 0, 1, . . . , N+∑
−N−

ajτ
j − z

u(ν) = 0. (4.42)

Continuing, we then know how to extend u �[−(N+∨0),∞[ to a function ũ : Z → C satisfying
(Op(p) − z)ũ = 0 on Z, by solving (4.42) with u replaced by ũ and for ν = −1,−2, . . . . More
precisely, the equation for ν = −1 defines uniquely ũ(−N+ ∨ 0 − 1) and the next one gives
ũ(−N+ ∨ 0− 2). Continuing in this way we get a solution ũ of (Op(p)− z)ũ = 0 on Z. Since we
are in Case 1, Proposition 4.4 implies that ũ is of the form (4.37).

Since u ∈ `2(N), it follows by (4.38) that

ũ(ν) =

m+∑
j=1

a+
j (ζ+

j )ν . (4.43)

When N+ > 0 we have by construction that ũ(ν) = u(ν) = 0 for ν ∈ [−N+,−1], which implies
that the coefficients a+

j in (4.43) are determined by

0 = A

 a+
1
...

a+
m+

 , A = (A+
1 , . . . ,A

+
m+

) ∈ CN+×m+ ,

A+
j = ((ζ+

j )ν)−N+6ν6−1, for j = 1, . . . ,m+.

(4.44)

Notice that A is a rectangular matrix of size N+ × m+. Recall from Proposition 4.3 that the
exponential functions (4.35) restricted to an interval K b Z of length |K| = m+ are linearly
independent. Thus, the linear system in the first line of (4.44) has m+−N+ linearly independent
solutions if m+−N+ > 0, and none when m+−N+ < 0. This implies that dimN (P[0,+∞[− z) =
(m+ −N+) ∨ 0.

Similarly, when N+ 6 0, we have no constraints on the coefficients in (4.43), which yieldsm+∨0
linearly independent solutions, so dimN (P[0,+∞[ − z) = m+ ∨ 0. Thus

dimN (P[0,+∞[ − z) = (m+ −N+ ∨ 0) ∨ 0. (4.45)

Similarly one also obtains the corresponding statements for the kernel of (P]−∞,0] − z) with the
N+, m+ replaced by N−, m−. Summing up what we have proven so far, we get in view of (4.33),
(4.34), see [65] for similar statements:

Proposition 4.6. Let p be as in (4.15), (4.16). Let z ∈ C\p(S1). Assume that the assumptions
of Case 1 in Lemma 4.1 hold for p(ζ)− z, see also (4.40). Then

dimN
(
P[0,+∞[ − z

)
= indp(S1)(z) ∨ 0

and u ∈ N
(
P[0,+∞[ − z

)
if and only if u ∈ `2([0,∞[) is such that ũ defined above is of the form

ũ(ν) =

m+∑
j=1

a+
j (ζ+

j )ν , a+
j ∈ C, (4.46)

with a+
j additionally satisfying (4.44) when N+ > 0. Furthermore,

dimN
(
P]−∞,0] − z

)
= (−indp(S1(z)) ∨ 0.
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and u ∈ N
(
P]−∞,0] − z

)
if and only if u ∈ `2(]−∞, 0] is of the form

ũ(ν) =

m−∑
j=1

a−j (ζ−j )ν , a−j ∈ C, (4.47)

with a−j additionally satisfying the analog of (4.44) (with m+, N+, ζ
+
j replaced by m−, N−, ζ−j and

the corresponding vectors A−j indexed over 1 6 ν 6 N−), when N− > 0.

5. Separation of the eigenvalues from the spectral curve

As discussed in the introduction, in our setup all but o(N) of the eigenvalues of PQN,γ lie in a
small neighborhood of p(S1). In this section we obtain complementary, precise estimates on the
location of (all) the eigenvalues for the finitely banded case: we will show that if the perturbation
is small in the sense that γ > 1, then the eigenvalues avoid certain N -dependent regions, referred
to as forbidden tubes (see Definition 5.1 below), around the spectral curve. These tubes are
determined in terms of the roots of the Laurent polynomial pz(·) = 0, where

pz(ζ)
def
= p(ζ)− z =

N+∑
−N−

ajζ
−j − z = 0, (5.1)

with ζ ∈ C∪̇{∞} and z ∈ C. As before, we will exclude the trivial case N± = 0. Furthermore, if
N+ < 0 then we modify p by setting aj = 0 for j = N+ + 1, . . . , 0. This allows us, without loss of
generality, to assume that N+ > 0.

To state the main result of this section we need to introduce some notation. With the goal of
being consistent with the notation of [9], we write {ηj(z)}m̃j=1 for the negative of the roots of pz(·) =

0 arranged in a non-increasing order of their moduli. For z /∈ p(S1) we let m+ = m+(z) denote
the number of roots of pz(·) that are in D(0, 1), while the number of roots in (C∪ {∞}) \D(0, 1)
is denoted m− = m−(z). Therefore,

m̃
def
= m+ +m− = N+ + max{N−, 0},

and

|η1(z)| > |η2(z)| > · · · > |ηm−(z)| > 1 > |ηm−+1(z)| > · · · > |ηm̃(z)|.

Compared with the previous notation, see e.g. Lemma 4.1, we have that ηi = −ζ−m−−i+1 for
i = 1, . . . ,m− and ηm−+i = −ζ+

m+−i+1 for i = 1, . . . ,m+. Recall the notation g(·) from (1.6). The
parameter g(·) will determine the width of forbidden tubes, see Remark 5.6.

The definition of the forbidden tubes also involves the winding number of p(S1). For d ∈ Z we
set

Sd
def
= {z ∈ C \ p(S1) : m+(z)−N+ = d}. (5.2)

Note that for z ∈ Sd, the winding number indp(S1)(z) equals d. Also observe that on Sd the
functions z 7→ m±(z) are constants and those common values are determined by d and N±.

Recall that cl(A) denotes the closure of a set A ⊂ C. We can now define the forbidden tubes.

Definition 5.1 (Forbidden tubes). Let p(·) be a Laurent polynomial. For z ∈ C, let pz(·) be as
in (5.1), and write g(p) = g0 ∈ Z. Fix ε0 > 0, γ′ > 1, and ε′0 > 0 such that ε′0 < ε0.

• For d ∈ [0, m̃] ∩Z we set T dε′0,ε0
def
= T d,(1)

ε′0,ε0
∪ T d,(2)

ε′0,ε0
, where for d > 0

T d,(1)
ε′0,ε0

def
= cl

({
z ∈ Sd : max

{
|ηm−+g0+1(z)|, |ηm−(z)|−1

}
6 1− ε0,

1− ε′0 6 |ηm−+g0(z)| 6 |ηm−+1(z)| < 1
})
,
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T 0,(1)
ε′0,ε0

= ∅, and

T d,(2)
ε′0,ε0

def
=
{
z ∈ Sd : max

{
|ηm−+1(z)|, |ηm−−g0(z)|−1

}
6 1− ε0,

1− ε′0 6 |ηm−−g0+1(z)|−1 6 |ηm−(z)|−1 < 1
}
.

• For d ∈ [−m̃, 0) ∩Z we set T dε′0,ε0
def
= T d,(1)

ε′0,ε0
∪ T d,(2)

ε′0,ε0
, where

T d,(1)
ε′0,ε0

def
= cl

({
z ∈ Sd : max

{
|ηm−+1(z)|, |ηm−−g0(z)|−1

}
6 1− ε0,

1− ε′0 6 |ηm−−g0+1(z)|−1 6 |ηm−(z)|−1 < 1
}
,

T d,(2)
ε′0,ε0

def
=
{
z ∈ Sd : max

{
|ηm−+g0+1(z)|, |ηm−(z)|−1

}
6 1− ε0,

1− ε′0 6 |ηm−+g0(z)| 6 |ηm−+1(z)| < 1
}
.

For all d, set T̂ d,(s)γ′,ε0

def
= T d,(s)(γ′−1) logN/N,ε0

, s ∈ {1, 2}, and write T̂ dγ′,ε0
def
= T̂ d,(1)

γ′,ε0
∪ T̂ d,(2)

γ′,ε0
.

Note that T̂ dγ′,ε0 is a (union of) tubes of vanishing width, whereas the width of T dε′0,ε0 is small but
fixed. When the choices of the parameters γ′, ε0, ε

′
0 are clear from the context we will suppress the

dependence of the tubes on these parameters, and write T d, T̂ d, T d,(s), and T̂ d,(s), for s ∈ {1, 2}.

Remark 5.2. The map z 7→ {ηj(z)}m̃j=1 is continuous in the symmetric product topology [74,
Appendix 5, Theorem 4A]. Therefore, the map z 7→ (|η1(z)|, |η2(z)|, . . . , |ηm̃(z)|) is continuous as
well. This implies in particular that for d > 0 and any z ∈ T d,(1)

ε0,ε0 , one has that

max
{
|ηm−+g0+1(z)|, |ηm−(z)|−1

}
6 1− ε0, and 1− ε′0 6 |ηm−+g0(z)| 6 |ηm−+1(z)| 6 1,

where m± are determined by d and N±. When d < 0 a similar assertion holds for z ∈ T d,(1)
ε0,ε′0

.

Remark 5.3. While proving the results in this section, and Sections 6 and 7 we will need to
consider ε0 and ε′0 such that ε′0/ε0 is a small fraction depending only on the degree of the Laurent
polynomial p(·). The specific choices will be spelled out during the proofs.

We illustrate Definition 5.1 in some examples. Consider first the simplest setup when the
Toeplitz matrix PN is the Jordan block JN given by (JN )i,j = 1j=i+1 for i, j ∈ [N ]. In this case,
T 1,(1) = D(0, 1) \D(0, 1− ε′0), whereas T 0,(2) is D(0, 1 + ε′0) \D(0, 1). The rest of the tubes are
empty. When the spectral curve p(S1) is a Limaçon, i.e. PN = JN +J2

N has symbol p(ζ) = ζ+ ζ2,
the union of the tubes is a region around the entire spectral curve, except for a small neighborhood,
determined by ε0, around the point on p(S1) where the curve intersects itself. See Figure 3.

Below is the first main result of this section. Hereafter, for any z ∈ C we use the shorthand
P δz := PQN,γ − zIN .

Theorem 5.4. Fix γ > 1. Set δ = N−γ. Let p(·) be a Laurent polynomial and PN be the N ×N
Toeplitz matrix with symbol p(·), and the entries of the noise matrix Q satisfies Assumption 1.1.
Then, for any ε̃0 > 0 there exists some constant ĉγ,ε̃0 > 0, depending on ε̃0 and γ, such that

lim
N→∞

P
(
∃z ∈ S ĉγ,ε̃0 logN/N

0 \ (Bε̃01 ∪ B
ε̃0
2 ) : det(P δz ) = 0

)
= 0.

Remark 5.5. The proof of Theorem 5.4 yields that one can take

ĉγ,ε̃0 =
γ′ − 1

sup
(p(S1))ε̃0\Bε̃02

maxj∈[m̃] | ddzηj(z)|
, (5.3)

for any γ′ such that 1 < γ′ < γ. By the Implicit Function Theorem we have that

sup
D

max
j∈[m̃]

∣∣∣∣ ddz ηj(z)
∣∣∣∣ = O(1), (5.4)
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T̂ 1,(1)
γ′,ε0

T̂ 1,(2)
γ′,ε0

T̂ 2,(1)
γ′,ε0

S0

S1S2

Figure 3. The different tubes for the Limaçon, where p(ζ) = ζ + ζ2, N+ = 0, and
d = 0, 1, 2 according to whether z is outside the curve, inside the larger loop, or inside
the inner loop. The shaded disc is Bε̃01 , for some ε̃0 > 0 (recall Definition 1.3). Theorem
5.4 precludes the appearance of eigenvalues of small random additive perturbations of
PN = JN + J2

N in a region away of the shaded area that includes S0 ∪ T̂ 1,(1)
γ′,ε0

, while

Theorem 5.7 handles T̂ 1,(2)
γ′,ε0

∪ T̂ 2,(1)
γ′,ε0

.

for any bounded domain D such that dist (D,B2) > 0. Therefore, if we impose the additional
assumption that dist (p(S1),B2) > 0, then for ε̃0 > 0 sufficiently small the constant ĉγ,ε̃0 in
Theorem 5.4 can be chosen to be free of ε̃0. In particular, in the simplest case when PN = JN ,
the elementary Jordan block, Theorem 5.4 holds with any ĉγ,ε̃0 = ĉγ < (γ − 1). We note that in
that example with QN a complex Ginibre matrix, Davies and Hager [22] showed that for γ > 7,
with high probability all eigenvalues are contained in D(0, 1 − (γ − 3)logN/N). Thus, Theorem
5.4 provides a sharper result for general finitely banded Toeplitz matrices, under a fairly generic
assumption on QN .

Remark 5.6. Let g0 ∈ N and consider the symbol p(ζ) = ζg0. Then the empirical measures of the
eigenvalues of random perturbations of the corresponding Toeplitz matrices converge to the uniform
measure on S1, see [7, 8, 65]. However, using (5.3), one obtains from Theorem 5.4 that for γ > 1,
with high probability the eigenvalues must be inside the disk of radius 1 − g0 · (γ′ − 1) logN/N ,
for any γ′ < γ. The radius of the disk can be shown to tight upto o(logN/N). Thus, although the
parameter g(p) plays no role in determining the limit of the empirical measure of the eigenvalues
of randomly perturbed Toeplitz matrices, it indeed plays a role in determining the separation of the
eigenvalues from the limiting spectral curve.

Theorem 5.4 shows that all eigenvalues of P δ must be at a distance at least ĉγ,ε̃0 logN/N from
the portion of p(S1) that intersects cl(S0). To prove the localization of the eigenvectors we need
to extend this picture to the regions with non-zero winding number. This is done in the result
below.

Theorem 5.7. Fix ε0 > 0, γ′ + 1 > γ > γ′ > 1 and d ∈ [−m̃, m̃] ∩ Z. Assume that the noise
matrix Q satisfies Assumptions 1.1 and 1.2. Then, for all ε̃0 > 0, we have

lim
N→∞

P
(
∃z ∈ T̂ dγ′,ε0 \ B

ε̃0
2 : det(P δz ) = 0

)
= 0.

While proving Theorems 5.4 and 5.7, for convenience, we will avoid neighborhoods of bad points
as defined in Definition 1.3. With additional efforts, it seems possible to extend our results also
to neighborhoods of some bad points, in particular those in B1. We do not purse that direction
here.

Remark 5.8. Theorems 5.4 and 5.7 hold for γ > 1. We believe, and simulations suggest (see
Figure 2), that this threshold for γ is sharp. That is, for γ < 1 one may find eigenvalues in cl(S0)
with non-negligible probability. Furthermore, the width of the tube, namely a constant multiple of
logN/N , is also sharp. See also Theorem 7.1.
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Remark 5.9. The papers [63, 64, 65] provide complementary estimates on the location of the
eigenvalues around the curve p(S1), showing that for the finitely banded case, γ sufficiently large
and any δ0 > 0, all but O(N2δ0) eigenvalues reside inside a tube around the spectral curve of width
O(N−δ0), with high probability.

Remark 5.10. The proofs of Theorems 5.4 and 5.7 yield quantitative bounds on probabilities of
the events considered. From the proof it follows that, for any K? ∈ N, the probability that there is
no eigenvalue in S ĉγ,ε̃0 logN/N

0 \ (Bε̃01 ∪B
ε̃0
2 ) can be bounded by O(N−K?). If additional assumptions

on the moments of entries of Q are imposed then this bound can be further improved. For example,
the assumption that the entries of Q have a uniform stretched exponential tail decay would imply a
stretched exponential tail decay of the probability as well. On the other hand, the proof of Theorem
5.7 yields that the probability that there are no eigenvalues of P δz in T̂ dγ′,ε0 \ B

ε̃0
2 can be bounded by

O(N−(γ−γ′)η/8), for η > 0 as in Assumption 1.2.

Remark 5.11. The determinant of a matrix and its transpose are the same. Furthermore, if Q
satisfies Assumptions 1.1 and 1.2 then so does QT. Therefore, whenever PN is a lower triangular
Toeplitz matrix, to prove Theorems 5.4 and 5.7 we can work with PT

N . Thus, while proving these
two theorems, without loss of generality, we may and will assume that N− > 1.

5.1. Decomposition of the determinant. In this section we decompose the determinant of P δz
into the sum of homogeneous polynomials {detk(z)}Nk=0 in the entries of the noise matrix Q, see
(5.6) and (5.5) below. We then suitably preprocess detk(z) so that various bounds on those terms
can be derived, leading to a proof of Theorems 5.4 and 5.7. At a high level, this decomposition
and some of the preprocessing steps are as in [8, 9], where these were used to study the empirical
measure of the eigenvalues and the process of outlier eigenvalues, respectively. However, in [8, 9]
it was sufficient to derive bounds when z avoids an N -independent region around the spectral
curve p(S1). Here, we need to consider an N -dependent region around it, and this requires better
bounds and a more sophisticated analysis than in [8, 9], especially in the proof of Theorem 5.7.

For k ∈ [N ] we set

detk(z) = detk,N (z) :=
∑

X,Y⊂[N ]
|X|=|Y |=k

(−1)sgn(σX) sgn(σY ) det(Pz[X
c;Y c])N−γk det(Q[X;Y ]), (5.5)

where for a matrix A the notation A[X;Y ] denotes the sub-matrix of A induced by the rows in
X and columns in Y , Xc := [N ] \X, Y c := [N ] \ Y , and for Z ∈ {X,Y }, σZ is the permutation
on [N ] which places all the elements of Z before all the elements of Zc, but preserves the order of
the elements within the two sets. Additionally denote det0(z) := det(Pz). From [8, Lemma A.1]
it follows that

det(Pz +N−γQ) =
N∑
k=0

detk(z). (5.6)

We next represent {detk(z)}Nk=1 as linear combinations of products of determinants of certain
bidiagonal and upper triangular Toeplitz matrices with coefficients that are determinants of sub-
matrices of Q. If Pz is an upper triangular matrix, as {−ηj(z)}m̃j=1 are the roots of the equation
pz(·) = 0, it is immediate to check that

Pz = a−N− ·
m̃∏
j=1

(JN + ηj(z)IN ), (5.7)

where we recall that JN is the elementary Jordan block given by (JN )i,j = δi+1,j for i, j ∈ [N ],
using the Dirac notation from Section 1.6. Then the desired representation is a consequence of
the Cauchy-Binet theorem. For a general Toeplitz matrix, (5.7) does not hold. However, as in [8],
Pz = PN (z) can be viewed as a certain sub-matrix of an upper triangular finitely banded Toeplitz
matrix with a slightly larger dimension, and one can use a product form for the latter coupled
with the Cauchy-Binet theorem. To use this idea efficiently we borrow the following definition
from [8]. As already alluded to above, without loss of generality, we will assume that N+ > 0 and
N− > 1.
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Definition 5.12 (Toeplitz with a shifted symbol). Let PN (p) be a Toeplitz matrix with the finite
symbol

p(τ) =

N+∑
j=−N−

ajτ
j , N+ > 0, N− > 1.

For n > N+ +N−, z ∈ C and N̄+, N̄− ∈ N0 such that N̄+ +N̄− = N+ +N−
def
= Ñ , let Pn(p, z; N̄−)

denote the n× n Toeplitz matrix with symbol

p̃(τ)
def
=

N+∑
j=−N−

a′jτ
j+(N−−N̄−),

where a′j := aj − zδj,0, j = −N−,−N− + 1, . . . , N+.

From Definition 5.12 it follows that

P
N̂+

(p, z; Ñ) =



aN+ · · · a0 − z · · · a−N− 0 · · · 0

0 aN+ a0 − z
. . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . a−N−

...
. . . . . . . . .

...
...

. . . . . . a0 − z
...

. . . . . .
...

0 · · · · · · · · · · · · · · · 0 aN+


, N̂+ := N +N+.

(5.8)
Therefore,

PN (pz) = PN (p, z;N−) = P
N̂+

(p, z; Ñ)[[N ]; [N̂+] \ [N+]].

Recalling (5.5) and writing S + ` for the Minkowski sum of the sets S and {`}, we obtain that

detk(z) =
∑

X,Y⊂[N ]
|X|=|Y |=k

(−1)sgn(σX) sgn(σY )D(X,Y ) ·N−γk · det(Q[X;Y ]), (5.9)

where
D(X,Y ) = D(X,Y, z)

def
= det(P

N̂+
(p, z; Ñ)[Xc;Y c +N+]). (5.10)

To derive upper bounds on {detk(z)}Nk=0 we will use Assumption 1.1 to compute high moments
of the former (and also use Markov’s inequality). By (5.9), this requires the computation of high
moments of D(X,Y ) for any X,Y ⊂ [N ]. To this end, we first simplify the expression forD(X,Y ).
Because P

N̂+
(p, z; Ñ) is an upper triangular Toeplitz matrix and {ηj(z)}m̃j=1 are the negative of

the roots of the equation pz(·) = 0, we obtain as in (5.7) that

P
N̂+

(p, z; Ñ) =
Ñ∑
`=0

(aN+−` − zδ`,N+)J `
N̂+

= a−N−

m̃∏
j=1

(J
N̂+

+ ηj(z)IN̂+
). (5.11)

We split the product in (5.11) into three blocks: in the first block we consider the product over
the roots that are greater than one in moduli and separated from one, in the second block we
will have product over the roots that are close to one in moduli, and in the third we consider the
product over the rest. To write this decomposition efficiently we set

m̂1 = m̂1(z)
def
=

{
m− for z ∈ T d,(1),

m− − g0 for z ∈ T d,(2),
(5.12)

and introduce, recalling (1.6) and that g(p) = g0,

Pz = P
N̂+

(z)
def
=

m̂1+g0∏
j=m̂1+1

(J
N̂+

+ ηj(z)IN̂+
). (5.13)
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(Note that if g0 = 1 then Pz is a bidiagonal matrix. The case g0 > 1, in which Pz is an upper
triangular finitely banded Toeplitz matrix with bandwidth g0, requires a special combinatorial
analysis contained in Section 5.3 below.) We now obtain from (5.11) that

P
N̂+

(p, z; Ñ) = a−N−

m̂1∏
j=1

(J
N̂+

+ ηj(z)IN̂+
) · Pz ·

m̃∏
j=m̂1+g0+1

(J
N̂+

+ ηj(z)IN̂+
), (5.14)

where, as is our convention, an empty product equals one. Notice that in the special case g0 =
1, the decompositions (5.11) and (5.14) are identical. Before going further let us explain the
advantage of the decomposition (5.14) over (5.11).

When z avoids a N -independent region around the spectral curve all the roots of pz(·) = 0 are
also bounded away from the unit circle. For such z’s using the decomposition (5.11) appropriate
bounds on quantities analogous to D(X,Y, z) were derived in [8, 9]. Under the setup of Theorem
5.7, when γ > g0, suitable adaptations of the arguments in [8, 9] yield good bounds on D(X,Y, z),
and these adaptations fail when γ 6 g0. At a high level this is due to the fact that the arguments
in [8, 9], while applying the Cauchy-Binet theorem to obtain a bound on D(X,Y, z), bound each
of the roots {−ηj(z)}m̃j=1 by their moduli. Since, for any z ∈ T d, there are g0 many roots close to
one in moduli, this requires γ > g0. To push the analysis to the case g0 > γ > 1, we will use that
the roots of the symbol of the Toeplitz matrix Pz are those of pz(·) = 0 that are close to the unit
circle. Instead of bounding each of these roots by their moduli, obtaining a bound on minors of
Pz by combinatorial means yields cancellations. Therefore, (5.14) is more useful than (5.11) in
the proof of Theorem 5.7, when 1 < γ 6 g0.

We now turn to deriving a tractable representation of D(X,Y, z). Set

m̂2 = m̂2(z) := m̃− m̂1(z)− g0. (5.15)

Fix k ∈ [N ], and sets {Xi}m̂1+1
i=1 and {Yi′}m̂2+1

i′=1 such that |Xi| = k + N+, for i ∈ [m̂1 + 1], and
|Yi′ | = k +N+, for i′ ∈ [m̂2 + 1]. Write

Xi :=
{
xi,1 < xi,2 < · · · < xi,k+N+

}
, Xk := (X1, X2, . . . , Xm̂1+1), (5.16)

Yi′ :=
{
yi′,1 < yi′,2 < · · · < yi′,k+N+

}
, and Yk := (Y1, Y2, . . . , Ym̂2+1). (5.17)

Set

D1(Xk) = D1(Xk, z) :=

m̂1∏
i=1

det
(

(J
N̂+

+ ηi(z)IN̂+
)[X̌i; X̌i+1]

)
(5.18)

and

D2(Yk) = D2(Yk, z) :=

m̂2∏
i′=1

det
(

(J
N̂+

+ ηi′+m̂1+g0
(z)I

N̂+
)[Y̌i′ ; Y̌i′+1]

)
, (5.19)

where Ž := [N̂+]\Z for any Z ⊂ [N̂+]. We emphasize the notational difference between Ž and Zc.
The former will be used to write the complement of Z when viewed as a subset of [N̂+], whereas
for the latter Z will be viewed as a subset of [N ].

Now using the Cauchy-Binet theorem and the representation (5.14) we find that

D(X,Y ) =
∑
Xk,Yk

aN−k−N− ·D1(Xk) · det(Pz[X̌m̂1+1; Y̌1]) ·D2(Yk), (5.20)

where the sum above is taken over (Xk,Yk) such that

X1 = X ∪ [N̂+] \ [N ] and Ym̂2+1 = (Y +N+) ∪ [N+]. (5.21)

Next using [8, Lemma A.3] we find that

det((J
N̂+

+ ηi(z)IN̂+
)[X̌i; X̌i+1]) = ηi(z)

xi+1,1−1 ·

k+N+∏
`=2

ηi(z)
xi+1,`−xi,`−1


· ηi(z)N̂+−xi,k+N+ · 1 {xi+1,` 6 xi,` < xi+1,`+1, ` ∈ [k +N+]} , (5.22)
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where we have set xi+1,k+N++1 = N̂+ +1 for convenience. Thus, in light of (5.22), we may restrict
the sum in (5.20) over Xk belonging to

L̂
(1)
k := {Xk : 1 6 xi+1,1 6 xi,1 < xi+1,2 6 xi,2 < · · · < xi+1,k+N+ 6 xi,k+N+ 6 N̂+}. (5.23)

It will also be convenient to further partition the set of all Xk ∈ L̂
(1)
k so that D1(Xk) is constant

in each block of that partition. To this end, for any ` := (`1, `2, . . . , `m̂1+1) with 0 6 `i 6 N̂+ for
i ∈ [m̂1], and k ∈ [N ], we let

L
(1)
`,k := {Xk ∈ L̂

(1)
k :

xi+1,1 +

k+N+∑
j=2

(xi+1,j − xi,j−1) + (N̂+ − xi,k+N+) = `i + k +N+, for all i = 1, 2, . . . , m̂1}.

If Xk ∈ L
(1)
`,k for some `, by (5.22), we have that

m̂1∏
i=1

det
(

(J
N̂+

+ ηi(z)IN̂+
)[X̌i; X̌i+1]

)
=

m̂1∏
i=1

ηi(z)
`i . (5.24)

Recall that for z ∈ T d the roots {ηi(z)}m̂1
i=1 are greater than one in moduli and bounded away

from one. Thus, for large values of {`i}m̂1
i=1 the rhs of (5.24) will be exponentially (in N) large.

It would be useful to factor out this exponential factor. So, using the observation that

xi+1,1 +

k+N+∑
j=2

(xi+1,j − xi,j−1) +

k+N+∑
j=1

(xi,j − xi+1,j) + (N̂+ − xi,k+N+) = N̂+,

we have the following equivalent representation of L(1)
`,k:

L
(1)
`,k =

{
Xk ∈ L̂k :

k+N+∑
j=1

(xi,j − xi+1,j + 1) = ˆ̀
i; i ∈ [m̂1]

}
, where ˆ̀

i := N̂+ − `i. (5.25)

Since xi+1,j 6 xi,j for any i ∈ [m̂1], and j ∈ [k +N+], we further note from (5.25) that

ˆ̀
i > k +N+, for i = 1, 2, . . . , m̂1. (5.26)

This lower bound will be used later in the proof.
Equipped with the above set of notation we now find that, for any Xk ∈ L

(1)
`,k,

D1(Xk) =

m̂1∏
i=1

ηi(z)
N̂+ ·

m̂1∏
i=1

ηi(z)
−ˆ̀

i . (5.27)

Thus we indeed have thatD1(Xk) is constant for Xk ∈ L
(1)
`,k. We now adopt a similar decomposition

of the set of indices Yk so that again inside each of the blocks D2(Yk) will remain the same. This
necessitates the following notation: By a similar reasoning to the above the sum over Yk in (5.20)
can be restricted to the following set

L̂
(2)
k := {Yk : 1 6 yi′+1,1 6 yi′,1 < yi′+1,2 6 yi′,2 < · · · < yi′+1,k+N+ 6 yi′,k+N+ 6 N̂+}. (5.28)

Next, for q := (q1, q2, . . . , qm̂2
) with 0 6 qi′ 6 N̂+ for i′ ∈ [m̂2] we write

L
(2)
q,k := {Yk ∈ L̂

(2)
k :

yi′+1,1 +

k+N+∑
j=2

(yi′+1,j − yi′,j−1) + (N̂+ − yi′,k+N+) = qi′ + k +N+, for i′ ∈ [m̂2]}. (5.29)
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Using [8, Lemma A.3] we observe that for Yk ∈ L
(2)
q,k,

D2(Yk) =

m̂2∏
i′=1

ηi′+m̂1+g0
(z)qi′ . (5.30)

Now upon recalling the restriction on X1 and Ym̂2+1 from (5.21), we deduce from (5.20), (5.27),
and (5.30) that, for any X,Y ⊂ [N ] such that |X| = |Y | = k, we have the representation

D(X,Y, z) = aN−k−N− ·

[ ∑
Xk∈L

(1)
k

∑
Yk∈L

(2)
k

D1(Xk) · det(Pz[X̌m̂1+1; Y̌1]) ·D2(Yk)

]

= aN−k−N− ·
m̂1∏
i=1

ηi(z)
N̂+ ·

[∑
`,q

∑
Xk∈L

(1)
`,k

∑
Yk∈L

(2)
q,k

m̂1∏
i=1

ηi(z)
−ˆ̀

i

· det(Pz[X̌m̂1+1; Y̌1]) ·
m̂2∏
i′=1

ηi′+m̂1+g0
(z)qi′ · 1

X1=X∪[N̂+]\[N ]
· 1Ym̂2+1=(Y+N+)∪[N+]

]
. (5.31)

5.2. Bound on D(X,Y ). In this section we state bounds on D(X,Y, z) which will be used in
Section 6.1 to compute high moments of the non-dominant terms in the expansion det(P δz ). While
stating (and deriving) such bounds it will be convenient to scale D(X,Y, z) (and detk(z)) by the
order of magnitude of the dominant term in the expansion of det(P δz ). Therefore, for z ∈ T d we
define

K(z) = K(z, d, ε′0, ε0) := aN−N− ·N
−γd̂ ·

m̂1+g0∏
j=1

ηj(z)
N , (5.32)

where m̂1 is as in (5.12) and

d̂ = d̂(z) :=

{
d− g0 if z ∈ T d,(1),

d if z ∈ T d,(2).
(5.33)

Recalling (5.12) and (5.15), this implies that

d̂(·) = m̂2(·)−N+ on T d. (5.34)

For z ∈ T d, further set

d̂etk(z) := detk(z)/K(z), k = 0, 1, 2, . . . , N, (5.35)

and for any X,Y ⊂ [N ] such that |X| = |Y | = k,

D̂ = D̂(X,Y, z) :=
D(X,Y, z)

Nγ(m̂2−N+) · K(z)
=

D(X,Y, z)

aN−N− ·
∏m̂1+g0
j=1 ηj(z)N

, (5.36)

where the last equality is due to (5.32) and (5.34).
The following is the first main result of this subsection. Its proof spans over this and the next

subsection.

Lemma 5.13. Let p(·) be a Laurent polynomial with N+ > 0, N− > 1 and g(p) = g0 ∈ N. Fix
ε′0, ε0 > 0 such that ε′0/ε0 is sufficiently small. Fix X,Y ⊂ [N ] such that |X| = |Y | = k so that
X = {x1 < x2 < · · · < xk} and Y = {y1 < y2 < · · · < yk}. Assume d̂ > 0. Then we have the
following bounds on D̂(X,Y, z), for all z ∈ T dε′0,ε0.

(i) There exists a constant C5.13 < ∞ depending only on ε0 and p so that for any k ∈ N
satisfying k +N+ > m̂2,

|D̂(X,Y, z)| 6 Cm̂1(k+N+)
5.13 · |ηm̂1+1(z)|−NG(k,z)

·

∑
q>0

(
q(m̂2 + 1) + m̂2(k +N+ + 1)

m̂2(k +N+ + 1)

)(
1− ε0

2

)q
· I(X,Y, q)

 , (5.37)
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where

G(k, z) :=


k +N+ − m̂2 if m̂2 6 k +N+ < m̂2 + g0 and z ∈ T d,(1),

g0 if k +N+ > m̂2 + g0 and z ∈ T d,(1),

0 if z ∈ T d,(2),

(5.38)

and

I(X,Y, q) :=

m̂2−N+∏
j=1

1{yj6q} ·
k∏

j=k+N+−m̂2+1

1{N−xj6q}. (5.39)

(ii) Let k ∈ N be such that k +N+ < m̂2. Then, for all large N ,

|D̂(X,Y, z)| 6
(

1− ε0

4

)N
.

Remark 5.14. The roots of pz(·) = 0 can be partitioned into blocks of cardinality g(p) = g0 such
that all g0 roots in any of those blocks have the same modulus. One also has that N+ is a multiple
of g0. Therefore, d = m+ − N+ > 1 implies that d > g0. On the other hand, for d = 0 we have
that T d,(1) = ∅. Hence, whenever needed, we will use the bound on D̂(X,Y, z) derived in Lemma
5.13 for all z ∈ T d,(1) and all d > 0.

Some explanations of the bounds stated in Lemma 5.13 are in order. We will see in Section 6
that, for k0 6 N such that k0 +N+ = m̂2(z), detk0(z) will be the dominant term in the expansion
(5.6), and we will show in Corollary 6.13 that it has the same order of magnitude as that of K(z).
The other detk(z) will be negligible compared to detk0(z). Since the entries of the noise matrix
are independent and of zero mean, one gets from (5.9) that

E[|detk(z)|2] = N−2γk
∑

X,Y⊂[N ]
|X|=|Y |=k

|D(X,Y, z)|2 ·E(| det(Q[X;Y ])|2). (5.40)

Therefore, the bound in Lemma 5.13(ii) indeed shows that, for k such that k +N+ < m̂2(z) one
has that detk(z) is exponentially small compared to detk0(z).

The implication of the bound in Lemma 5.13(i) is a bit more delicate. Notice from (5.37)-(5.39)
that the number of choices of the largest (m̂2 − N+) elements of X is bounded by O(qm̂2−N+).
Same holds for the smallest (m̂2 − N+) elements of Y . Since there is a factor in (5.37) which is
exponential in q those elements of X and Y are essentially fixed for the purpose of computation
of the second moment of detk(z). This observation, as well as the factor |ηm̂1+1(z)|−NG(k,z) in
(5.37), are crucial in determining the correct order of magnitude for detk(z) for k > m̂2(z)−N+.
Now summing over the allowable ranges of the rest of the elements of X and Y , i.e. those which
are free, using (5.40) one obtains that, for k > m̂2(z)−N+ and z ∈ T̂ dγ′,ε0 with 1 < γ′ < γ, detk(z)

is polynomially small compared to detk0(z). See the proof of Lemma 6.2 for details.
The proof of Lemma 5.13 requires two auxiliary lemmas. Before stating them we introduce the

notation

xi = xi(Xk) :=

k+N+∑
j=1

xi,j ; for i ∈ [m̂1 + 1], and yi′ = yi′(Yk) :=

k+N+∑
j=1

yi′,j ; for i′ ∈ [m̂2 + 1].

(5.41)
Below is the first auxiliary lemma. In its statement we use the notation of Lemma 5.13.

Lemma 5.15. Fix ` ∈ [N̂+]m̂1 and q ∈ [N̂+]m̂2. For Xk ∈ L
(1)
`,k and Yk ∈ L

(2)
`,k, set

F1 = F1(Xk, `, z) :=

m̂1∏
i=1

ηi(z)
−ˆ̀

i , (5.42)

F2 = F2(Yk, q, z) :=

m̂2∏
i=1

ηm̂1+g0+i(z)
qi and F̃2 = F̃2(Yk, q, z) :=

m̂2∏
i=1

(
ηm̂1+g0+i(z)

ηm̂1+g0
(z)

)qi
.

(5.43)
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Assume ε′0 6 ε0/3. Then, for any z ∈ T dε′0,ε0 we have

∑
`

∑
Xk∈L

(1)
`,k

|F1| · 1{X1=X∪([N̂+]\[N ])} 6

(
1

ε0

)m̂1(k+N+)

, (5.44)

∑
q

∑
Yk∈L

(2)
q,k

|F2| · 1{Ym̂2+1=(Y+N+)∪[N+]} 6

(
2(m̂2 + 1)

ε0

)m̂2(k+N++1)+1

, (5.45)

and∑
q: q=q

∑
Yk∈L

(2)
q,k

∣∣∣F̃2

∣∣∣ · 1{Ym̂2+1=(Y+N+)∪[N+]} 6

(
q(m̂2 + 1) + m̂2(k +N+ + 1)

m̂2(k +N+ + 1)

)(
1− ε0

2

)q
, (5.46)

where

q = q(q) :=

m̂2∑
i′=1

qi′ . (5.47)

Proof. We first prove (5.44). We will iteratively sum over the collection of indices Xk such that
X1 = X ∪ ([N̂+] \ [N ]), starting from Xm̂1+1. For Xk ∈ L

(1)
`,k we note that F1 depends on Xk only

through the values of `. Thus, to compute the sum over Xk such that Xk ∈ L
(1)
`,k it is enough to

find a bound on the number of possible choices for all those indices.
In the first step we keep the collection of indices (X1, X2, . . . Xm̂1

) frozen. Then, upon recalling

(5.25) we observe that the number of choices of {xm̂1+1,j}
k+N+

j=1 is bounded above by
( ˆ̀

m̂1
−1

k+N+−1

)
.

We iterate this argument for any i ∈ [m̂1]. The number of choices of the indices {xi+1,j}k+N+

j=1 ,

upon keeping the collection of indices (X1, X2, . . . , Xi) frozen, is at most
( ˆ̀

i−1
k+N+−1

)
. This yields

that ∑
Xk∈L

(1)
`,k

|F1| · 1X1=X∪([N̂+]\[N ])
6

m̂1∏
i=1

( ˆ̀
i − 1

k +N+ − 1

)
· (1− ε0)

ˆ̀
i , (5.48)

where we recalled (5.12) and used that for z ∈ T d,

max

{
m̃

max
j=m̂1+g0+1

|ηj(z)|,
m̂1

max
j=1
|ηj(z)|−1

}
= max

{
|ηm̂1+g0+1(z)|, |ηm̂1

(z)|−1
}
6 1− ε0. (5.49)

Finally, to compute the sum over ˆ̀
1, ˆ̀

2, . . . , ˆ̀
m̂1

we use the following combinatorial identity: For
any λ ∈ (0, 1) and m ∈ N ∑

s>m

(
s− 1

m− 1

)
· λs−m = (1− λ)−m. (5.50)

Indeed, applying the above identity with λ = (1− ε0), m = k+N+ and s = ˆ̀
i for i = 1, 2, . . . , m̂1

we deduce (5.44). Note also that we also used the lower bound ˆ̀
i > k +N+ (see (5.26)).

We now turn to the proof of (5.45). We first prove the following intermediate step.∑
q:q=q

∑
Yk∈L

(2)
q,k

|F2| · 1{Ym̂2+1=(Y+N+)∪[N+]} 6

(
q(m̂2 + 1) + m̂2(k +N+ + 1)

m̂2(k +N+ + 1)

)
(1− ε0)q . (5.51)

To obtain (5.51), we sum over the indices {Yi′}m̂2
i′=1 iteratively, starting with Y1. It is straight-

forward to see that, upon keeping the other indices frozen, the number of choices for the indices
{y1,j}k+N+

j=1 such that Yk ∈ L
(2)
q,k is bounded above by

(q1+k+N+

k+N+

)
. We use the same reasoning to
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successively bound the number of allowable choices of Y2, . . . , Ym̂2
. It yields that the number of

choices of Yk such that Yk ∈ L
(2)
q,k and Ym̂2+1 = (Y +N+) ∪ [N+] is bounded above by

m̂2∏
i′=1

(
qi′ + k +N+

k +N+

)
6

(
q + k +N+

k +N+

)m̂2

6

(
m̂2(q + k +N+)

m̂2(k +N+)

)
.

Thus, by (5.49), we have that the lhs of (5.51) is bounded above by∑
q: q=q

∑
Yk∈L

(2)
q,k

|F2| · 1{Ym̂2+1=(Y+N+)∪[N+]} 6

(
m̂2(q + k +N+)

m̂2(k +N+)

)
· |{q : q = q}| · (1− ε0)q. (5.52)

Noting that, for any q > 0,

|{q : q = q}| =
(
q + m̂2 − 1

m̂2 − 1

)
6

(
q + m̂2

m̂2

)
, (5.53)

that
(
a
b

)(
c
d

)
6
∑b+d

k′=0

(
a
k′

)(
c

b+d−k′
)

=
(
a+c
b+d

)
, and substituting in (5.52) we obtain (5.51). To derive

(5.45) from (5.51) we observe that

(1− ε) 6
(

1− ε

2m?

)m?
, for ε ∈ (0, 1/2) and m? ∈ N, (5.54)

and use (5.50) again.
Finally, to prove (5.46) applying (5.49) we find that whenever ε′0 6 ε0/3,

sup
z∈T d

{
m̃

max
i=m̂1+g0+1

∣∣∣∣ ηi(z)

ηm̂1+g0
(z)

∣∣∣∣} 6 1− ε0

2
,

Repeating the proof of (5.51), the bound in (5.46) follows. �

The next lemma is the second auxiliary result to be used in the proof of Lemma 5.13, and uses
its notation.

Lemma 5.16. Fix Xm̂1+1, Y1 ⊂ [N +N+] such that |Xm̂1+1| = |Y1| = k +N+, where k 6 N . If

xm̂1+1,j > y1,j ; j ∈ [k +N+], and xm̂1+1,j < y1,j+g0 ; j ∈ [k +N+ − g0], (5.55)

then, for all z ∈ T d,∣∣det(Pz[X̌m̂1+1; Y̌1])
∣∣ 6 g

(2+g0)(k+N+)
0 · |ηm̂1+1(z)|g0(N−k)+y1−xm̂1+1 . (5.56)

On the other hand, if (5.55) does not hold then the lhs of (5.56) vanishes.

The proof of Lemma 5.16 is postponed to Section 5.3. In that section a Toeplitz minor would
be represented as a certain skew Schur polynomial and using that representation Lemma 5.16 will
be proved. We now prove Lemma 5.13.

Proof of Lemma 5.13(i) for z ∈ T d,(1). Fix k ∈ N such that k + N+ > m̂2. Fix `, q,Xk, and Yk
such that Xk ∈ L

(1)
`,k, Yk ∈ L

(2)
q,k, and (5.21) holds. We also assume that (5.55) holds, for otherwise

by the second half of Lemma 5.16 there is no contribution to the sum in (5.31).
We first show that for such pairs (Xk, `) and (Yk, q) one must have

I(X,Y, q) = 1, (5.57)

where we recall (5.39) and (5.47) for the definitions of I and q. To see (5.57), as Yk ∈ L
(2)
q,k, we

note that for any j ∈ [m̂2]

ym̂2+1,j =

j−2∑
i=0

(ym̂2+1−i,j−i − ym̂2−i,j−i−1) + ym̂2−j+2,1 6
j−1∑
i=0

qm̂2−i =

m̂2∑
λ=m̂2−j+1

qλ 6 q. (5.58)
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Similarly, as Xk ∈ L
(1)
`,k and Yk ∈ L

(2)
q,k, using that (5.55) holds, we also observe that

(N +N+ − x1,j) 6 (N̂+ − xm̂1+1,j)
(5.55)
6 (N̂+ − y1,j)

= (N̂+ − yk+N++1−j,k+N+) +

k+N+−j−1∑
i=0

(yi+2,j+i+1 − yi+1,j+i) 6
k+N++1−j∑

λ=1

qλ 6 q, (5.59)

where in the last step we also used that

j > k +N+ − m̂2 + 1 > 1 =⇒ k +N+ + 1− j 6 m̂2.

The inequalities (5.58)-(5.59) together with (5.21) now establish (5.57). This implies that while
summing over the indices in (5.31), without loss of generality we can assume that (5.57) holds.

Before evaluating that sum we do some more simplifications to the representation in (5.31). As
Xk ∈ L

(1)
`,k, recalling the definition of {xi}m̂1+1

i=1 from (5.41) we see that

xm̂1+1 =

m̂1∑
i=1

(xi+1 − xi) + x1 = m̂1(k +N+)−
m̂1∑
i=1

ˆ̀
i + x1.

Thus, for any Xk ∈ L
(1)
`,k,

D̂1 = D̂1(Xk, `, z) :=

m̂1∏
i=1

ηi(z)
−ˆ̀

i · ηm̂1+1(z)−xm̂1+1

=

m̂1∏
i=1

(
ηi(z)

ηm̂1+1(z)

)−ˆ̀
i

· ηm̂1+1(z)−m̂1(k+N+) · ηm̂1+1(z)−x1 . (5.60)

On the other hand, for any Yk ∈ L
(2)
q,k,

y1 = y2 − q1 + (N − k) = y3 + 2(N − k)− q1 − q2 = · · · = ym̂2+1 + m̂2 · (N − k)−
m̂2∑
i=1

qi.

This yields that

D̂2 = D̂2(Yk, `, z) :=

m̂2∏
i=1

ηm̂1+g0+i(z)
qi · ηm̂1+1(z)y1

=

m̂2∏
i=1

(
ηm̂1+g0+i(z)

ηm̂1+1(z)

)qi
· ηm̂1+1(z)m̂2(N−k)+ym̂2+1 . (5.61)

Fix k such that k + N+ > m̂2 + g0. For Xk ∈ L
(1)
`,k and Yk ∈ L̂

(2)
k , upon using that m̂2 > 0 and

(5.55), we find that

ym̂2+1

(5.41)
>

k+N+∑
j=m̂2+g0+1

ym̂2+1,j

(5.28)
>

k+N+−m̂2∑
j=g0+1

y1,j

(5.55)
>

k+N+−m̂2−g0∑
j=1

xm̂1+1,j

(5.26)
>

k+N+−m̂2−g0∑
j=1

x1,j −
m̂1∑
i=1

ˆ̀
i + (k +N+)m̂1

(5.41)
> x1 −

m̂1∑
i=1

ˆ̀
i + (k +N+)m̂1 − N̂+(m̂2 + g0). (5.62)
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Note that for k ∈ N such that m̂2 6 k +N+ 6 m̂2 + g0, the sum over j in the left side of (5.62)
is empty. Therefore, by (5.26) and as X1 ⊂ [N̂+] we obtain that for such values of k,

ym̂2+1 > x1 −
m̂1∑
i=1

ˆ̀
i + (k +N+)m̂1 − N̂+(k +N+). (5.63)

Now as z ∈ T d,(1) we have |ηm̂1+1(z)| 6 1. Thus, recalling (5.42)-(5.43) and (5.38), and using
(5.62)-(5.63) we deduce that

|D̂1| · |D̂2| 6 |F1| · |F̃2| · |ηm̂1+1(z)|−NG(k,z)−m̃(k+N+). (5.64)

On the other hand, from (5.60)-(5.61), (5.31), and (5.36) it follows that∣∣∣D̂(X,Y, z)
∣∣∣ 6 |a−N− |−k m̂1∏

i=1

|ηi(z)|N+

m̂1+g0∏
i=m̂1+1

|ηi(z)|−N ·

[∑
`,q

∑
Xk∈L

(1)
`,k

∑
Yk∈L

(2)
q,k

|D̂1| (5.65)

·
∣∣∣∣det(Pz[X̌m̂1+1; Y̌1])

ηm̂1+1(z)y1−xm̂1+1

∣∣∣∣ · |D̂2| · 1X1=X∪[N̂+]\[N ]
· 1Ym̂2+1=(Y+N+)∪[N+] · I(X,Y, q)

]
,

where we also used that g(p) = g0 (recall (1.6) for the definition of g(·)) implies that

|ηm̂1+1(z)| = |ηm̂1+2(z)| = · · · = |ηm̂1+g0
(z)|. (5.66)

It is clear that if z ∈ T d for some d then z lies in compact domain in C. As the map z 7→
maxm̃j=1 |ηj(z)| is continuous, we therefore have that

max
d

sup
z∈T d

m̃
max
j=1
|ηj(z)| <∞.

Therefore, continuing from above, applying Lemma 5.16, from (5.57) and (5.64) we deduce that,
there exists some constant C̃5.13 <∞ such that∣∣∣D̂(X,Y, z)

∣∣∣ 6 C̃m̂1(k+N+)
5.13 · |ηm̂1+1(z)|−NG(k,z)−m̃(k+N+)·[∑

`,q

∑
Xk∈L

(1)
`,k

∑
Yk∈L

(2)
q,k

|F1| · |F̃2| · 1X1=X∪[N̂+]\[N ]
· 1Ym̂2+1=(Y+N+)∪[N+] · I(X,Y, q)

]
.

Finally we use Lemma 5.15 and

1− ε′0 6
m̂1+g0

min
j=m̂1+1

|ηj(z)| =
m̂1+g0
max

j=m̂1+1
|ηj(z)| 6 1, for z ∈ T d,(1), (5.67)

to derive the desired bound. This completes the proof of Lemma 5.13(i) for z ∈ T d,(1). �

Proof of Lemma 5.13(ii) for z ∈ T d,(1). As k +N+ < m̂2, for any Yk ∈ L
(2)
q,k we have that

q
(5.47)
>

k+N++1∑
i=1

qi

(5.29)
> y2,1 +

k+N+∑
j=2

(yj+1,j − yj,j−1) + (N̂+ − yk+N++1,k+N+)− (k +N+)(k +N+ + 1)

> N̂+ − m̂2
2, (5.68)

where in the second inequality we used that

y2,1 6 q1 + k +N+, y3,2 − y2,1 6 q2 + k +N+, . . . , N̂+ − yk+N++1,k+N+ 6 qk+N++1 + k +N+,

and in the last we telescoped the sum and used again that k + N+ < m̂2. This implies that the
set L(2)

q,k is empty unless (5.68) holds.
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On the other hand, recalling (5.42)-(5.43), and using (5.31) and (5.36) we note that

∣∣∣D̂(X,Y, z)
∣∣∣ 6 |a−N− |−k · m̂1∏

i=1

|ηi(z)|N+ ·
m̂1+g0∏
i=m̂1+1

|ηi(z)|−N ·[∑
`,q

∑
Xk∈L

(1)
`,k

∑
Yk∈L

(2)
q,k

|F1| ·
∣∣det(Pz[X̌m̂1+1; Y̌1])

∣∣ · |F2| · 1X1=X∪[N̂+]\[N ]
· 1Ym̂2+1=(Y+N+)∪[N+]

]
.

From Lemma 5.16 we have that∣∣∣∣∣det(Pz[X̌m̂1+1; Y̌1])∏m̂1+g0

i=m̂1+1 ηi(z)
N

∣∣∣∣∣ 6 g
(g0+2)(k+N+)
0 |ηm̂1+1(z)|y1−xm̂1+1−kg0 6 (1 + 2ε′0)m̂2N , (5.69)

for all large N , where in the first step we have used (5.66) and in the second nequality we used
(5.67), that y1 > 0, xm̂1+1 6 m̂2N̂+, and k +N+ 6 m̂2.

Therefore, applying Lemma 5.15, and (5.68)-(5.69), we deduce that

∣∣∣D̂(X,Y, z)
∣∣∣ (5.69),(5.44)

6

(
1

ε0

)m̂1(k+N+)

· (1 + 2ε′0)m̂2N ·

∑
q

∑
Yk∈L

(2)
q,k

|F2| · 1Ym̂2+1=(Y+N+)∪[N+]


(5.46)
6

(
1

ε0

)m̂1(k+N+)

·(1+2ε′0)m̂2N ·

∑
q

(
q(m̂2 + 1) + m̂2(k +N+ + 1)

m̂2(k +N+ + 1)

)(
1− ε0

2

)q
· 1{q>N̂+−m̂2

2}

 .
(5.70)

Since for any fixed n1 ∈ N and n2 ∈ N large enough, depending only on ε0 and n1, one has∑
q>n2

qn1

(
1− ε0

2

)q
6

(
1− 3ε0

8

)n2

,

and ε′0/ε0 is sufficiently small, upon using (5.53), the claimed bound on D̂(X,Y, z) now follows
from (5.70). This completes the proof of part (ii) for z ∈ T d,(1). �

Next we prove Lemma 5.13 for z ∈ T d,(2). It requires some minor modifications compared to
the case z ∈ T d,(1).

Proof of Lemma 5.13 for z ∈ T d,(2). First let us prove part (i). We begin by noting that (5.57)
continues to holds even for z ∈ T d,(2) and k 6 N such that k + N+ > m̂2. Recall (5.42)-(5.43).
We use (5.31) and (5.36) to note that∣∣∣D̂(X,Y, z)

∣∣∣
6 |a−N− |−k

m̂1∏
i=1

|ηi(z)|N+

m̂1+g0∏
i=m̂1+1

|ηi(z)|−N ·

[∑
`,q

∑
Xk∈L

(1)
`,k

∑
Yk∈L

(2)
q,k

|F1| ·
∣∣det(Pz[X̌m̂1+1; Y̌1])

∣∣ · |F2|

· 1
X1=X∪[N̂+]\[N ]

· 1Ym̂2+1=(Y+N+)∪[N+] · I(X,Y, q)

]
. (5.71)

As z ∈ T d,(2) implies that |ηm̂1+1(z)| > 1, applying Lemma 5.16, and using that y1 6 xm̂1+1, we
obtain that ∣∣∣∣det(Pz[X̌m̂1+1; Y̌1])

ηm̂1+1(z)Ng0

∣∣∣∣ 6 g
g0+2(k+N+)
0 . (5.72)
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Thus, from (5.71), we now derive that∣∣∣D̂(X,Y, z)
∣∣∣ 6 |a−N− |−k · gg0+2(k+N+)

0 ·
m̂1∏
i=1

|ηi(z)|N+ ·[∑
`,q

∑
Xk∈L

(1)
`,k

∑
Yk∈L

(2)
q,k

|F1| · |F2| · 1X1=X∪[N̂+]\[N ]
· 1Ym̂2+1=(Y+N+)∪[N+] · I(X,Y, q)

]
.

The claimed bound on D̂(X,Y, z) now follows upon using Lemma 5.15, in the same way as for
z ∈ T d,(1). This completes the proof of part (i) of the lemma for z ∈ T d,(2).

We now turn to the proof of the second part. To this end, we note that all the steps of the
proof of Lemma 5.13(ii) continues to hold under the current setup, except for the bound (5.69).
In fact, under our current setup, the bound (5.69) can be improved to (5.72). Thus, repeating
rest of the arguments in the proof of Lemma 5.13(ii) used for z ∈ T d,(1), the proof of the second
part of this lemma completes for z ∈ T d,(2). �

5.3. Toeplitz minors as skew Schur polynomials. The goal of this section is to prove Lemma
5.16. This will follow from the following bound on minors of finitely banded Toeplitz matrices.

Proposition 5.17. Let g?, N̂ ∈ N. Fix a compact domain D ⊂ C and let z ∈ D. Let T̂
N̂

(z) =

T̂
N̂

(p̂z) be the N̂ × N̂ Toeplitz matrix with symbol

p̂z(τ) :=

g?∑
j=0

â−j(z)τ
−j , a0(z), a−1(z), . . . , a−g?(z) ∈ C; a0(z) 6= 0, a−g?(z) = 1∀z ∈ D. (5.73)

Denote {η̂j(z)}g?j=1 to be the roots of the polynomial p̂z(·) = 0. Assume that, for some constant
c1 ∈ (0, 1),

inf
z∈D

min
k 6=j

∣∣∣∣1− η̂j(z)

η̂k(z)

∣∣∣∣ > c1. (5.74)

Then for any

X := {x1 < x2 < · · · < xn} ⊂ [N̂ ] and Y := {y1 < y2 < · · · < yn} ⊂ [N̂ ]

we have that∣∣∣det(T̂
N̂

(z)[X̌, Y̌])
∣∣∣ 6 c−g?n1 g2n

? ·
g?∏
j=1

|η̂j(z)|N̂−n ·
(

g?
min
j=1
|η̂j(z)|

)ȳ−x̄
·
n∏
i=1

1{xi>yi} ·
n−g?∏
i=1

1{xi<yi+g?},

(5.75)
where X̌ := [N̂ ] \ X, Y̌ := [N̂ ] \Y,

x̄ :=

n∑
i=1

xi, and ȳ :=

n∑
i=1

yi.

Remark 5.18. The bound on the order of magnitude of Toeplitz minors derived via Proposition
5.17 can be seen to be optimal when the roots of p̂z(·) = 0 have the same moduli. However, it
is suboptimal when the roots have different moduli. For example, consider the case g? = 2 and
choose z ∈ C such that |η̂1(z)|/|η̂2(z)| > (1 + ε′) for some ε′ > 0. To see the sub optimality of the
bound now let X = {N̂ − 1, N̂} and Y = {1, 2}.

Since we will apply Proposition 5.17 for a Toeplitz matrix for which the roots of its symbols
have the same moduli, we have not tried to derive a version of Proposition 5.17 that captures the
optimal order of magnitude even when roots have different moduli.

As already mentioned in Section 5.2, to prove Proposition 5.17 (and hence Lemma 5.16) we
will use the fact a Toeplitz minor can be expressed as certain skew Schur polynomial, see Remark
5.25 below for historical background. To state the relevant result and carry out the proof of
Proposition 5.17 we need to borrow some notations from the theory of symmetric functions. The
references [46, 68] are excellent resources for this purpose.

We start with the definition of complete homogeneous symmetric polynomials.
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Definition 5.19 (Complete homogeneous symmetric polynomial). Fix w, r ∈ N. The r-th com-
plete homogeneous polynomial in w variables, to be denoted by hr(·), is the sum of all monomials
of total degree r. That is, for (t1, t2, . . . , tw) ∈ Rn,

hr(t1, t2, . . . , tw) :=
∑

16s16s26···6sr6w

r∏
u=1

tsu .

We further set h0 := 1 and hr := 0 for r < 0.

We next proceed to define the notion of skew Schur polynomials.

Definition 5.20 (Skew partitions and skew Schur polynomials). Fix w,m ∈ N. A vector λ =
(λ1, λ2, . . . , λm) with λi ∈ Z, i ∈ [m], and λ1 > λ2 > · · · > λm > 0 is called an integer partition
(or in short a partition), of length `(λ) = m and weight |λ| =

∑m
i=1 λi.

For two partitions µ and λ we write µ ⊆ λ if `(µ) 6 `(λ) and µs 6 λs for all s ∈ [`(µ)]. In
that case, the pair (λ,µ) is called a skew partition and is often denoted by λ/µ.

Given a skew partition λ/µ we define the skew Schur polynomial in w variables as follows:

sλ/µ(·) := det
[
(hλu−µv−u+v(·))

`(λ)
u,v=1

]
, (5.76)

where {h·(·)} are the complete homogeneous symmetric polynomials in w variables as in Definition
5.19, and the partition µ is extended to have length `(λ) by appending zeros. When µ is an empty
partition the polynomial sλ/∅ is called a Schur polynomial and is written as sλ. Thus, for any
given partition λ, we have

sλ = det
[
(hλu−u+v)

`(λ)
u,v=1

]
. (5.77)

Remark 5.21. Skew Schur polynomials admit a combinatorial description in terms of skew semi-
standard Young tableaux. The equivalence of these two definitions is due to the first Jacobi-Trudi
identity (see [68, Theorem 7.16.1]). Since we do not require the notion of Young tableaux elsewhere
in this paper we have chosen (5.76) as the definition of the skew Schur polynomial sλ/µ. We refer
the reader to [68, Chapter 7.10] for a detailed overview of these matters.

The following identity, known already to Jacobi (see [68, Exercise 7.4] or [18, Theorem 3.2])
provides an efficient representation of complete homogeneous symmetric polynomials.

Lemma 5.22. Let r, w ∈ N and (t1, t2, . . . , tw) ∈ Rn. If {ts}ws=1 are pairwise distinct then

hr(t1, t2, . . . , tw) =
w∑
j=1

tr+w−1
j∏

k∈[w]\{j}(tj − tk)
.

The next lemma, which is a key to the proof of Proposition 5.17, states that a Toeplitz minor
can be expressed in terms of skew Schur polynomials.

Lemma 5.23 ([47, Theorem 2.1]). Consider the setup of Proposition 5.17. Then

det(T̂
N̂

(z)[X̌; Y̌]) = (−1)|λ0|+|µ0| · â0(z)N̂−n · sλ0/µ0
(η̂1(z)−1, η̂2(z)−1, . . . , η̂g∗(z)

−1),

where

λ0 := (N̂−n+1−y1, N̂−n+2−y2, . . . , N̂−yn) and µ0 := (N̂−n+1−x1, N̂−n+2−x2, . . . , N̂−xn).

Remark 5.24. The reader may note that the expression for the Toeplitz minor stated in Lemma
5.23 is somewhat different than the one in [47, Theorem 2.1]. This is due to the fact that [47]
expresses the minor in terms of the roots of the polynomial pz(τ) := τg? · p̂z(τ), where p̂z(·) is as
in (5.73), while {η̂j(z)}g?j=1 are the roots of p̂z(·) = 0 which are indeed the reciprocals of those of
pz(·) = 0.

Remark 5.25. It was first noted by Bump and Diaconis [17] that any Toeplitz minor can be
expressed in terms of skew Schur polynomials. They expressed such minors as an integral of
certain functions involving skew Schur polynomials over the unitary group (see [17, Theorem 3]).
Later Alexandersson in [1] expressed minors of triangular Toeplitz matrices as certain skew Schur
polynomials (see [1, Proposition 3]). Maximenko and Moctezuma-Salazar [47] gave a different proof
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of such a representaion for non-triangular banded Toeplitz matrices. Here we use the formulation
of [47] which is the most convenient for our setup.

Before proving Proposition 5.17 we make the following elementary observation.

Lemma 5.26. Consider the setup of Proposition 5.17. If X,Y ⊂ [N̂ ] are such that either there
exists an i ∈ [n] for which xi < yi or there exists an i ∈ [n− g?] such that xi > yi+g?, then

det(T̂
N̂

(z)[X̌; Y̌]) = 0.

Proof. We note that T̂
N̂

(z) is an upper triangular Toeplitz matrix with the symbol p̂z(·) (see
(5.73)). As {η̂j}g?j=1 are the roots of p̂(1/·) = 0, it follows that

T̂
N̂

(z) =

g?∏
j=1

(J
N̂
− η̂j(z)IN̂ ).

Therefore, by the Cauchy-Binet theorem we have that

det(T̂
N̂

(z)[X̌; Y̌]) =

g?∑
`=2

∑
Z`⊂[N̂ ]
|Z`|=n

g?∏
j=1

det((J
N̂
− η̂j(z)IN̂ )[Žj ; Žj+1]), (5.78)

where we set Z1 = X and Zg?+1 = Y. For ` ∈ [g? + 1], we index the elements of Z` as follows:

Z` := {z`,1 < z`,2 < · · · < z`,n}.

By [8, Lemma A.3] we note that

det((J
N̂
− η̂`(z)IN̂ )[Ž`; Ž`+1]) 6= 0

if and only if
z`+1,1 6 z`,1 < z`+1,2 6 z`,2 < · · · < z`+1,n 6 z`,n 6 n. (5.79)

Therefore, in (5.78) we can restrict the sum over {Z2, Z3, . . . , Zg?} such that (5.79) holds for all
` ∈ [g?]. On the other hand, if (5.79) holds for all ` ∈ [g?], as Z1 = X and Zg?+1 = Y, we derive
that for all i ∈ [n]

yi = zg?+1,i 6 zg?,i 6 · · · 6 z1,i = xi,

and for any i ∈ [n− g?]

xi = z1,i < z2,i+1 < z3,i+2 < · · · < zg?+1,i+g? = yi+g? .

Therefore, if either of the above two conditions are violated for some i ∈ [n], then there must be
an ` ∈ [g?] such that (5.79) is violated. In that case, the sum {Z2, Z3, . . . , Zg?} in (5.78) is an
empty sum and hence det(T̂

N̂
(z)[X̌; Y̌]) = 0. �

We are now ready to prove Proposition 5.17.

Proof of Proposition 5.17. From (5.76) we see that

sλ0/µ0
(·) = det

[
(hxv−yu(·))nu,v=1

]
, (5.80)

where λ0 and µ0 are as in Lemma 5.23. Set ξ̂ := (ξ̂1, ξ̂2, . . . , ξ̂g?), where ξ̂i := η̂−1
i (z) for i ∈ [n].

Using (5.80) in the first equality and Lemma 5.22 in the second, we have that

sλ0/µ0
(ξ̂) =

∑
π

sgn(π)

n∏
v=1

hxv−yπ(v)
(ξ̂)

=

g?∑
j1,j2,...,jn=1

n∏
u=1

ξ̂g∗−1
ju∏

ku∈[g?]\{ju}(ξ̂ju − ξ̂ku)
·

[∑
π

sgn(π) ·
n∏
v=1

ξ̂
xv−yπ(v)

jv
·
n∏
v=1

1{xv>yπ(v)}

]
, (5.81)

where the sum in the first step and the innermost sum in the second step are over all permutations
π on [n], and in the last step we also used the fact that hr(·) = 0 for r < 0.
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We claim that there are at most gn? many permutations π such that the summand in the
innermost sum in (5.81) is nonzero. That is, there are at most gn? many permutations π such that

xv > yπ(v), for all v ∈ [n]. (5.82)

Equipped with this claim, upon crudely bounding each term appearing in the sums in (5.81) by
its maximum, it now follows that

∣∣∣sλ0/µ0
(ξ̂)
∣∣∣ 6 g2n

?

 g?
max
j=1

 ∏
k∈[g?]\{j}

∣∣∣∣∣ 1

1− (ξ̂k/ξ̂j)

∣∣∣∣∣

n

·
(

g?
max
j=1
|ξ̂j |
)x̄−ȳ

6 g2n
? ·c

−g?n
1 ·

(
g?

max
j=1
|ξ̂j |
)x̄−ȳ

,

(5.83)
where the last inequality is due to (5.74). Now, using Lemmas 5.23 and 5.26, and noting that

â0(z) = (−1)g?
g?∏
j=1

η̂j(z), (5.84)

we obtain (5.75) from (5.83).
Thus, to finish the proof it remains to prove the claim regarding the number of permutations

π satisfying (5.82). To do that, by Lemma 5.26, without loss of generality, we may assume that
xv < yv+g? for all v ∈ [n− g?].

Now we bound the number of choices of π satisfying (5.82) as follows:
• As x1 < y1+g? , y1 < y2 < · · · < yn, and x1 > yπ(1) we find that π(1) ∈ [g?]. That is, the
number of choices for π(1) is g?.
• Having chosen π(1) we now choose π(2). Using the same argument as above we note that
π(2) ∈ [g? + 1]. As π(1) ∈ [g?] ⊂ [g? + 1] the number of choices for π(2) is again at most
g?.
• Continuing from the above, we find that for any given v ∈ [n − g?] we must have π(v) ∈

[v + g? − 1]. On the other hand π(1),π(2), . . . ,π(v − 1) ∈ [v + g? − 2]. Thus the number
of choices for π(v) is at most g?.
• Finally π(n− g? + 1),π(n− g? + 2), . . . ,π(n) can be chosen in at most g?!(6 gg?? ) ways.

This proves the claim and hence we have the desired bound. �

We end this section with the proof of Lemma 5.16. This is a direct consequence of Proposition
5.17.

Proof of Lemma 5.16. We recall from (5.13) that Pz is an upper triangular Toeplitz matrix of
dimension N̂+ such that the roots of its symbols are {−ηj(z)}m̂1+g0

j=m̂1+1. Note that g(p) = g0 (see
(1.6) for a definition of g(·)) implies that there exists η̃(z) ∈ C such that

ηm̂1+j(z) = η̃(z) · e2π
√
−1j/g0 , j ∈ [g0]. (5.85)

Upon recalling the definition of the tube T d we see that

1− ε0

3
6 inf

z∈T d
|ηm̂1+g0

(z)| 6 sup
z∈T d

|ηm̂1+1(z)| 6 1 +
ε0

3
.

This further implies that for any z ∈ T d we have that η̃(z) 6= 0. Therefore, we indeed have that

min
i 6=j∈[g0]

∣∣∣∣ ηm̂1+i(z)

ηm̂1+j(z)
− 1

∣∣∣∣ > g−1
0 . (5.86)

Recall also, see e.g. (5.66), that

|ηm̂1+1(z)| = |ηm̂1+2(z)| = · · · = |ηm̂1+g0
(z)|.

As |Xm̂1+1| = |Y1| = k + N+ the bound (5.56), as well as the fact that that the lhs of (5.56)
equals zero when (5.55) is violated, is now immediate from Proposition 5.17. This completes the
proof. �
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6. Proofs of the separation Theorems 5.4 and 5.7

In this section, we complete the proofs of Theorems 5.4 and 5.7, based on Lemma 5.13. The
proof is split into four parts: first, upon employing Lemma 5.13, we derive correct order of mag-
nitudes (of moments) of detk(z), per fixed z and k corresponding to non-dominant terms, in the
regions of interest. Next, in order to control supz detk(z), we derive bounds on the moments on
the supremum of the derivative of detk(z). Combining these steps and a covering argument, we
get the desired bounds for supz detk(z) for non-dominant terms in the expansion (5.6). The third
part of the proof derives a uniform lower bound on the dominant term, using Assumption 1.2.
In the last step, we combine the above ingredients with geometric information on the forbidden
regions to deduce Theorems 5.4 and 5.7.

6.1. Step 1: moment bounds on the non-dominant terms (per fixed z). In this section
we derive bounds on the moments of detk(z). Recall (5.6), (5.35), (5.12), and (5.15), and note
that m̂1 and m̂2 (which depend on z) are constant on the tubes T d,(1) and T d,(2) with fixed d.
We first consider the case of small k.

Lemma 6.1. Let Assumption 1.1 hold. Fix ε′0, ε0 > 0 such that ε′0/ε0 is sufficiently small. Fix
d > 0 and s ∈ {1, 2}. Then, for all large N ,

max
k<m̂2−N+

sup
z∈T d,(s)

ε′0,ε0

E

[∣∣∣d̂etk(z)
∣∣∣2] 6 (1− ε0

8

)N
. (6.1)

Proof. Fix s ∈ {1, 2}. Since the entries of Q are independent with zero mean and bounded
variance, we get that for any X∗,Y∗,X′,Y′ ⊂ [N ]

E
[
det(Q[X∗;Y∗]) · det(Q[X′;Y′])

]
6 C1

{
k! if X∗ = X′, Y∗ = Y′, and |X∗| = |Y∗| = k,
0 otherwise. (6.2)

Therefore, upon recalling (5.9), (5.35)-(5.36), and (5.40) we find that

E

[∣∣∣d̂etk(z)
∣∣∣2] 6 C1N

2γ(m̂2−N+−k) · k!
∑

X,Y⊂[N ]
|X|=|Y |=k

|D̂(X,Y, z)|2. (6.3)

Since there are at most
(
N
k

)2
choices for the sets X,Y ⊂ [N ] such that |X| = |Y | = k, the claimed

upper bound now follows from Lemma 5.13(ii). This completes the proof. �

Next we derive bound on the second moment of detk(z) for k > m̂2 −N+.

Lemma 6.2. In the setup of Lemma 6.1, we have the following bounds, for all large N .
(i) Fix γ′ with 1 < γ′ < γ. Then for any k ∈ N such that m̂2 −N+ 6 k 6 N we have

sup
z∈T̂ d,(s)

γ′,ε0

E

[∣∣∣d̂etk(z)
∣∣∣2] = O

(
N−(γ−γ′)·(k+N+−m̂2)

)
, s = 1, 2.

(ii) For k0 = m̂2 −N+ we have

sup
z∈T d,(s)

ε′0,ε0

E

[∣∣∣d̂etk0(z)
∣∣∣2] = O(1), s = 1, 2.

(iii) For any k ∈ N such that m̂2 −N+ 6 k 6 N we have

sup
z∈T d,(2)

ε′0,ε0

E

[∣∣∣d̂etk(z)
∣∣∣2] = O

(
N−(γ−1)·(k+N+−m̂2)

)
.

Remark 6.3. Lemma 6.2(ii) shows that the supremum of the second moment of d̂etk(z), for
k = k0, is well controlled in the tubes T d that are of small but fixed width, whereas Lemma 6.2(i)
shows that the same can be said for any k > k0 only in the tubes T̂ d that are of of vanishing width.
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In part (iii) we see that one has such a control for z ∈ T d,(2) but, as will be seen during the course
of the proof, those bounds fail for z ∈ T d,(1) \ T̂ d,(1).

Proof of Lemma 6.2. We start with the proof of part (i), beginning with s = 1. Denote

dq :=

(
q(m̂2 + 1) + m̂2(k +N+ + 1)

m̂2(k +N+ + 1)

)(
1− ε0

2

)q
. (6.4)

As

|ηm̂1+1(z)| > 1− (γ′ − 1)
logN

N
, for z ∈ T̂ d,(1)

γ′,ε0
, (6.5)

by Lemma 5.13(i) we have that

∑
X,Y⊂[N ]
|X|=|Y |=k

|D̂(X,Y, z)|2 6 2Ĉ
2m̃(k+N+)
5.13 ·N2(γ′−1)G(k,z)

 ∑
X,Y⊂[N ]
|X|=|Y |=k

∑
q,q′>0

dqdq′ · I(X,Y, q)

 . (6.6)

We claim that, for any q > 0,

|{X,Y ⊂ [N ] : |X| = |Y | = k and I(X,Y, q) = 1}| 6 (2m̂2)!

(
q + 2m̂2

2m̂2

)
·
(

N

k +N+ − m̂2

)2

.

(6.7)
Indeed, upon recalling (5.39), we note that for a given q > 0,

I(X,Y, q) = 1 =⇒ max

{
k

max
j=k+N+−m̂2+1

(N − xj),
m̂2−N+
max
j=1

yj

}
6 q.

Thus the number of choices of {xj}kj=k+N+−m̂2+1 and {yj}m̂2−N+

j=1 is at most

q2(m̂2−N+) 6 q2m̂2 6 (2m̂2)!

(
q + 2m̂2

2m̂2

)
.

Now choose the remaining elements of X and Y to obtain (6.7).
Next applying (5.50) and (5.54) we have∑

q′>0

dq′ 6

(
4(m̂2 + 1)

ε0

)m̂2(k+N++1)+1

.

On the other hand, (5.50), (5.54), and (6.7) yield that ∑
X,Y⊂[N ]
|X|=|Y |=k

∑
q>0

dq · I(X,Y, q)

 6 (2m̂2)! ·
(

4(m̂2 + 2)

ε0

)m̂2(k+N++3)+1

·N2(k+N+−m̂2)k2m̂2(k!)−2.

Plugging in the last two bounds in (6.6) and using that G(k, z) 6 k +N+ − m̂2, we deduce that∑
X,Y⊂[N ]
|X|=|Y |=k

|D̂(X,Y, z)|2 6 Cm̃(k+N+)
1 ·N2γ′(k+N+−m̂2) · k2m̂2 · (k!)−2,

for some constant C1 <∞. Upon using (6.3) part(i) of the lemma follows for s = 1.
Turning to s = 2 we observe that, as G(k, ·) ≡ 0 on T d,(2)

ε′0,ε0
and T d,(2)

ε′0,ε0
⊃ T̂ d,(2)

γ′,ε0
for all large N ,

the upper bound (6.6) continues to hold in with N2(γ′−1)G(k,z) replaced by one. Thus, repeating
the rest of the arguments we derive part (i) for s = 2, as well as part (iii). The proof of part (ii) is
exactly the same, where we again note that G(k0, ·) ≡ 0 on T d,(1)

ε′0,ε0
and use that k0 +N+− m̂2 = 0.

This completes the proof of the lemma. �
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While applying Theorem 5.7 to derive the localization of the eigenvectors we will choose 1 <
γ′ < γ such that (γ − γ′) is (fixed but) arbitrarily close to zero. For such choice of parameters, if
k+N+−m̂2 is small then Lemma 6.2 does not yield a sufficiently strong probability bound to carry
out the covering argument. To overcome this caveat we control high moments of detk(z) for such
choices of k, which when applied together with Markov’s inequality produce desired probability
bounds.

Lemma 6.4. Consider the same setup as in Lemma 6.2. There exists a constant Ĉ6.4 < ∞
(depending on p(·) and ε0 only) so that, for all h, k,K0 ∈ N such that m̂2 −N+ 6 k 6 K0 −N+,
we have

sup
z∈T̂ d,(1)

γ′,ε0

E

[∣∣∣d̂etk(z)
∣∣∣2h] 6 C6.4N

−2h(γ−γ′)·(k+N+−m̂2) (6.8)

and
sup

z∈T d,(2)

ε′0,ε0

E

[∣∣∣d̂etk(z)
∣∣∣2h] 6 C6.4N

−2h(γ−1)·(k+N+−m̂2), (6.9)

where
C6.4 = C6.4(h,K0, m̃, m̂2) := Ĉm̃K0h

6.4 · (K0h)8K0h · C2K0h.

Proof. We start with the proof of (6.8). Note that it suffices to show that for any z ∈ T̂ d,(1)
γ′,ε0

,

Tk(z) := N2γh(k+N+−m̂2)E

[∣∣∣d̂etk(z)
∣∣∣2h] 6 Ĉm̃K0h

6.4 · (K0h)8K0h · C2K0h ·N2hγ′(k+N+−m̂2). (6.10)

Turning to prove (6.10), using (5.9), (5.32), and (5.35)-(5.36) we find that

Tk(z) = E

[∑
X

∑
Y

2h∏
i=1

(−1)sgn(σ
X(i) ) sgn(σ

Y (i) ) ·
h∏
i=1

D̂(X(i), Y (i), z) ·
h∏
i=1

det(Q[X(i);Y (i)])

·
2h∏

i=h+1

D̂(X(i), Y (i), z) ·
2h∏

i=h+1

det(Q[X(i);Y (i)])

]
, (6.11)

where the sum is taken over

X := {X(1), X(2), . . . , X(2h)} and Y := {Y (1), Y (2), . . . , Y (2h)},
and for i ∈ [2h],

X(i) := {x(i)
1 < x

(i)
2 < · · · < x

(i)
k } ⊂ [N ] and Y (i) := {y(i)

1 < y
(i)
2 < · · · < y

(i)
k } ⊂ [N ].

Associate to X the partition PX determined by the equivalence relation x(i′)
j′ ∼ x

(i′′)
j′′ iff x(i′)

j′ =

x
(i′′)
j′′ , for some i′ 6= i′′ ∈ [2h] and j′, j′′ ∈ [k]. Similarly, associate to Y the partition PY .
As the entries of Q are independent and are of zero mean it is straightforward to observe that

for any (X,Y ) such that either PX or PY has an equivalence class of size one, the expectation of
the summand on the rhs of (6.11) equals zero. Hence, to compute a bound on the rhs of (6.11)
we only need to consider partitions PX and PY such that each of their equivalence classes has
size at least two. For brevity we term them pair partitions. Fix one such pair of partitions (P, P̃)

and a pair (X,Y ) such that PX = P and PY = P̃.
For any i ∈ [2h] the determinant det(Q[X(i);Y (i)]) is a linear combination of k! terms each of

which are products of k independent entries of the sub matrix Q[X(i);Y (i)]. Therefore denoting

Q := E

∣∣∣∣∣∣
h∏
i=1

det(Q[X(i);Y (i)]) ·
2h∏

i=h+1

det(Q[X(i);Y (i)])

∣∣∣∣∣∣
 ,

by the triangle inequality, we note that Q is a sum of at most (k!)2h terms of the form

E

[∣∣∣∣∣
b∏

w=1

Qcwuw,vw ·Q
c′w
uw,vw

∣∣∣∣∣
]
, (6.12)
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for some b ∈ N and collections of positive integers {cw}bw=1 and {c′w}bw=1 such that

b∑
w=1

cw =

b∑
w=1

c′w = kh,

where Quw,vw denotes the (uw, vw)-th entry of Q and the collection {(uw, vw)}bw=1 is pairwise dis-
joint. Thus {Quw,vw}bw=1 are jointly independent. Upon using Hölder’s inequality and Assumption
1.1(ii) it follows that (6.12) is bounded above by

b∏
w=1

(
E
[
|Quw,vw |2kh

]) cw+c′w
2kh

6 C2kh 6 C2K0h,

where in the last step we use that k 6 K0 and that Cw is increasing in w. This, in turn implies
that Q 6 K2K0h

0 · C2K0h. Plugging this bound in (6.11), and applying Lemma 5.13(i), (6.5), and
that G(k, z) 6 k +N+ − m̂2, we now deduce that

Tk(z) 6 2Ĉ
2hm̃(k+N+)
5.13 ·N2h(γ′−1)·(k+N+−m̂2) ·K2K0h

0 · C2K0h·∑
P,P̃

∑
q#

∑
Y :PY =P̃

∑
X:PX=P

2h∏
i=1

dq(i) · I(X(i), Y (i), q(i))

 , (6.13)

where q# := (q(1), q(2), . . . , q(2h)), and the outer sum is over all pair partitions P and P̃. To
evaluate the sum in (6.13) we will compute the sum in a specific order. To execute this step we
need a few definitions.

We split the elements of X and Y into generating and non-generating elements as follows: For
any i ∈ [2h] we term the collection of elements {x(i)

j }kj=k+N+−m̂2+1 and {y
(i)
j }

m̂2−N+

j=1 non-generating
elements. The rest of the elements ofX and Y are termed generating elements. Let (p1, p2, . . . , pb),
for some b > 0, be the equivalence classes of PX , the partition associated withX. For w ∈ [b], we
say that pw is non-generating if it contains at least one non-generating element of X. Otherwise
pw will be said to be generating. The same convention is adopted for Y .

We are now ready to derive the desired upper bound on (6.13). We proceed as follows:

• Fix a couple of pair partitions P and P̃. Note that, as k 6 K0, the number of choices of
(P, P̃) is bounded above by (K0h)4K0h.
• We next evaluate the innermost sum in (6.13), fixing q#. Since PX = P one only needs
to sum over the possible (common) values of the equivalence classes of P.
• Let (p1, p2, . . . , pb) be the equivalence classes of P and without loss of generality assume
that (p1, p2, . . . , pb0) are generating for some b0 6 b. Notice that the number of elements
of X is 2kh. If PX = P for some X and P is a pair partition then b0 6 (k+N+− m̂2)h.
• As X ⊂ [N ] the total number of possible values of {pw}b0w=1 is bounded above by N b0 6
N (k+N+−m̂2)h.
• On the other hand, upon recalling (5.39) we find that

2h∏
i=1

I(X(i), Y (i), q(i)) = 1 =⇒ pw > N − q#, w ∈ [b] \ [b0 + 1],

where q# :=
∑2h

i=1 q
(i). Thus, the number of choices for the of non-generating equivalences

classes is bounded above by qb# 6 q
K0h
# .

• We repeat the same idea as above to compute the second sum in (6.13).
Putting all the above pieces together we now obtain from (6.13) that

Tk(z) 6 2Ĉ2hm̃K0
5.13 · (2K0h)8K0h · C2K0h ·N2(k+N+−m̂2)γ′h

∑
q#

qK0h
#

2h∏
i=1

·dq(i)

 . (6.14)
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Applying (5.50) and (5.54) one can note that the sum over q# in (6.14) is bounded by C̃m̃K0h, for
some constant C̃ <∞, depending only on m̂2 and ε0. Together, this yields (6.10) and completes
the proof of (6.8).

To prove (6.9) we simply note that, again by Lemma 5.13, (6.13) continues to hold for any z ∈
T d,(2)
ε′0,ε0

with N2h(γ′−1)·(k+N+−m̂2) replaced by one. Therefore, repeating the rest of the arguments
we obtain (6.9) and complete the proof of the lemma. �

6.2. Step 2: uniform upper bounds on non-dominant terms. In this section we derive
uniform upper bounds on the non-dominant terms in the expansion (5.6). The following is the
main result of this section.

Theorem 6.5. Let Assumption 1.1 hold. Fix parameters γ′, ε0, ε
′
0, ε̃0 > 0 such that (γ − 1)∨ 1 <

γ′ < γ and ε′0/ε0 is sufficiently small. Let d > 0 . Then, for all large N ,

max
s∈{1,2}

P

 sup
z∈T̂ d,(s)

γ′,ε0

∣∣∣∣∣∣
∑

k 6=m̂2−N+

d̂etk(z)

∣∣∣∣∣∣ > N−(γ−γ′)/4

 6 1/N. (6.15)

Furthermore, for all large N ,

P

 sup
z∈T d,(2)

ε′0,ε0

∣∣∣∣∣∣
∑

k 6=m̂2−N+

d̂etk(z)

∣∣∣∣∣∣ > N−(γ−γ′)/4

 6 1/N. (6.16)

The difference between (6.15) and (6.16) is that the former yields bounds for tubes with dimin-
ishing width (in N), while the latter provides bounds for certain tubes of fixed width. The bound
(6.16) will be used in the proof of Theorem 5.4.

To prove Theorem 6.5 we will use the uniform bounds on the moments of d̂etk(z) that were
derived in Section 6.1. We will also need a bound on the second moment of the supremum of the
derivatives of d̂etk(z).

Lemma 6.6. Consider the same setup as in Theorem 6.5. Then there exist constants 0 <
c6.6, C6.6 < ∞, depending only on γ′ and ε̃0, such that for any d > 0 and k ∈ [N ] we have
that

max
s∈{1,2}

E

 sup

z∈
(
T̂ d,(s)
γ′,ε0

\Bε̃02

)c6.6 logN/N

∣∣∣∣ ddz d̂etk(z)

∣∣∣∣2
 6 C6.6

(
N

logN

)3

(6.17)

and

E

 sup

z∈
(
T d,(2)

ε′0,ε0
\Bε̃02

)c6.6 logN/N

∣∣∣∣ ddz d̂etk(z)

∣∣∣∣2
 6 C6.6

(
N

logN

)4

. (6.18)

The proof of Theorem 6.5 will also require estimates on the non-random term in the expansion
of det(P δz ), as follows. Recall the notation d̂, see (5.33), and that P δz = PQN,γ − zIN .

Lemma 6.7. Consider the same setup as in Lemma 6.1. We have the following bounds.
(a) If d̂ > 0 then, for all large N ,

sup
z∈T d,(s)

ε′0,ε0
\Bε̃02

|d̂et0(z)| 6
(

1− ε0

4

)N
, s ∈ {1, 2}. (6.19)

(b) Fix d > 0 and ε̃ > 0. Let d̂ > 0. Then there exists a constant c? ∈ (0, 1) so that, with
X? := [N ] \ [N − m̂2 +N+] and Y? := [m̂2 −N+],

c? 6 inf
z∈T d,(s)

ε′0,ε0
\Bε̃02

|D̂(X?, Y?, z)| 6 sup
z∈T d,(s)

ε′0,ε0
\Bε̃02

|D̂(X?, Y?, z)| 6 c−1
? , s ∈ {1, 2}. (6.20)
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Remark 6.8. Note that if d̂ = 0 then X? = Y? = ∅. Therefore, in that case d̂et0(z) = D̂(X?, Y?, z)

(see (5.9)-(5.10) and (5.34)-(5.36)). Thus, for d̂ = 0 Lemma 6.7(ii) provides a lower bound on
the (dominant term) d̂et0(z).

Equipped with Lemmas 6.6 and 6.7 we now prove Theorem 6.5.

Proof of Theorem 6.5 (assuming Lemmas 6.6 and 6.7) . Fix s ∈ {1, 2} and K0 = K0(γ, γ′, m̃) =
d30/(γ − γ′)e+ m̃. We first show that for any k such that k +N+ > K0,

max
s∈{1,2}

P

 sup
z∈T̂ d,(s)

γ′,ε0
\Bε̃02

∣∣∣d̂etk(z)
∣∣∣ > N−2

 6 2/N3. (6.21)

To see (6.21), denote

F(z) :=

{
|d̂etk(z)| 6 N−

(k+N+−m̂2)(γ−γ′)
4

}
and

F0 :=

 sup

z∈
(
T̂ d,(s)
γ′,ε0

\Bε̃02

)c6.6 logN/N

∣∣∣∣ ddz d̂etk(z)

∣∣∣∣ > N3

 .

Applying Lemma 6.6 (in particular (6.17)) and Markov’s inequality we obtain that

P(F0) 6 N−3. (6.22)

From our choice of K0 and Lemma 6.2(i) it follows that

sup
z∈T̂ d,(s)

γ′,ε0

P(F(z)c) 6 N−15. (6.23)

Let N be a net of T̂ d,(s)γ′,ε0
of mesh size N−6, which has cardinality at most O(N12). Then, (6.22)-

(6.23) yield that
P(∪z∈NF(z)c ∪ F0) 6 2/N3. (6.24)

On the other hand, we find that for all large N and z′ ∈ N the ball D(z′, N−6) is contained in
the (c6.6 logN/N)-blow up of T̂ d,(s)γ′,ε0

\ Bε̃02 . Thus, using the triangle inequality and the first order
Taylor series expansion, we see that on the event ∩z′∈NF(z′) ∩ Fc0 ,

|d̂etk(z)| 6 sup
z′∈N

|d̂etk(z
′)|+ dist (z,N ) · sup

z′∈
(
T̂ d,(s)
γ′,ε0

\Bε̃02

)c6.6 logN/N

∣∣∣∣ ddz d̂etk(z
′)

∣∣∣∣ (6.25)

6 N−
1
4

(k+N+−m̂2)·(γ−γ′) +N−3 6 N−2,

for all large N , where in the last step follows from the facts that k +N+ > K0 and our choice of
K0. Therefore, from (6.24) we now have (6.21).

Next we claim that

P

 sup
z∈T̂ d,(s)

γ′,ε0
\Bε̃02

∣∣∣d̂etk(z)
∣∣∣ > N−2

 6 2/N3, (6.26)

for any k ∈ N such that k + N+ < m̂2. Indeed, by Lemma 6.1, we see that (6.23) continues to
hold in this case. Thus, repeating the same proof as for (6.21), we obtain (6.26).

Now we aim to show that

P

 sup
z∈T̂ d,(s)

γ′,ε0
\Bε̃02

∣∣∣d̂etk(z)
∣∣∣ > 2N−

1
2

(γ−γ′)

 6 2/N3, (6.27)

for any k such that m̂2+1 6 k+N+ 6 K0. To this end, we set h0 = h0(γ, γ′, m̃, g0) = d15/(γ−γ′)e.
We apply Lemma 6.4 with this h0 and Markov’s inequality to find that (6.23) continues to hold
for any m̂2 − N+ + 1 6 k 6 K0 − N+. Thus, repeating the same argument as above, yet again,
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we further observe that (6.25) also holds, except for the last step. Since γ′ > γ − 1 the last step
there can be replaced by 2N−

1
2

(γ−γ′). Therefore we have (6.27).
Combining the probability estimates (6.21), (6.26), and (6.27), and using a union bound we

deduce that

P

 sup
z∈T̂ d,(s)

γ′,ε0
\Bε̃02

∣∣∣∣∣∣
∑

k/∈{m̂2−N+,0}

d̂etk(z)

∣∣∣∣∣∣ > 1

2
N−(γ−γ′)/4

 6 3/N2,

for all large N . If d̂ = 0 then, by (6.44), m̂2−N+ = 0, and hence we have the desired probability
bound. If d̂ > 0 then upon using Lemma 6.7(a) the proof of (6.15) completes. The proof of (6.16),
being similar, is omitted. �

We now proceed to the proof of Lemma 6.6, which uses the bounds derived in Lemmas 6.1 and
6.2, and Cauchy’s integral formula for smooth functions. Cauchy’s integral formula allows us to
control the second moment of the supremum of a random analytic function (and its derivative) on
a nice domain by controlling the supremum of the second moment of the same analytic function
on a slightly enlarged domain. To carry out this scheme, we first show that the blow up of any
tube T d,(s), s = 1, 2, away from the bad set Bε̃02 , is again contained in a union of the tubes with
slightly modified parameters.

Lemma 6.9. Fix 0 < ε′0 < ε0, and ε̃0 > 0. We have the following geometric properties of the
tubes.

(i) There exists a constant C6.9 <∞ such that

T dε′0,ε0 ⊂ (p(S1))C6.9ε′0 . (6.28)

In particular, T dε′0,ε0 is a bounded set.
(ii) Fix ε′′0 > 0 such that ε′′0 6 ε

′
0. There exists some constant ε6.9, depending only on ε̃0, such

that, for any β ∈ (0, 1/2), and ε 6 ε′′0ε6.9, we have(
T d,(1)
ε′0,ε0

\ Bε̃02

)βε
⊂
(
T d,(1)

(1+β)ε′0,(1−β)ε0
∪ T d−g0,(2)

βε′′0 ,(1−β)ε0

)
\ Bε̃0/22 , (6.29)

for d > 1, while for d > 0 we have(
T d,(2)
ε′0,ε0

\ Bε̃02

)βε
⊂
(
T d,(2)

(1+β)ε′0,(1−β)ε0
∪ T d+g0,(1)

βε′′0 ,(1−β)ε0

)
\ Bε̃0/22 . (6.30)

Proof. We begin with the proof of part (i). We observe that z ∈ T dε′0,ε0 implies that there exists
a root η(z) of pz(·) = 0 such that ||η(z)| − 1| 6 ε′0. Set z0 := p(η(z)/|η(z)|) ∈ p(S1). By the
triangle inequality and uniform boundedness of p′(·) in a compact neighborhood of S1, one has
that |z − z0| 6 C6.9ε

′
0 for some C6.9 <∞ depending on p, yielding (6.28).

Turning to the proof of part (ii) we pick any z? belonging to the set on the lhs of (6.29). By
definition, there exists a z0 ∈ T d,(1)

ε′0,ε0
\ Bε̃02 such that |z? − z0| 6 βε. Thus, for ε 6 ε̃0/2, we have

that z? /∈ Bε̃0/22 . On the other hand, noting that for j ∈ [m̃], the maps z 7→ ηj(z) are analytic
outside Bε̃0/22 and using that T d is a bounded set, we deduce that

max
j∈[m̃]

|ηj(z0)− ηj(z?)| 6 Oε̃0(1) · |z? − z0| 6 βε′′0/4, (6.31)

where in the last inequality we chose ε 6 ε6.9ε
′′
0 with ε6.9 a sufficiently small constant, depending

only on ε̃0.
Since z0 ∈ T d,(1)

ε′0,ε0
, by (6.31) we deduce that

max
{
|ηm−+g0+1(z?)|, |ηm−(z?)|−1

}
6 1− ε0(1− β/2), (6.32)

and
1− ε′0(1 + β/2) 6 |ηm−+1(z?)| = |ηm−+g0(z?)| 6 1 + ε′′0β/2, (6.33)

where we also use that the roots can be partitioned into blocks, each of size g0, such that the
roots in each of those block have the same moduli.
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Now there are three possibilities: If |ηm−+1(z?)| < 1, in which case z? ∈ Sd, and therefore
by (6.32)-(6.33) we have that z? ∈ T d,(1)

(1+β)ε′0,(1−β)ε0
. If |ηm−+g0(z?)| > 1 then z? ∈ Sd−g0 , and

consequently z? ∈ T d−g0,(2)
βε′′0 ,(1−β)ε0

. Finally, if |ηm−+1(z?)| = 1, by the maximum modulus principle,
there exists a sequence {zn}n∈N such that |z − zn| 6 1/n and |ηm−+1(zn)| < 1 for all n ∈ N. It
is clear that zn ∈ Sd, and by the continuity of the roots the bound in (6.32) and the lower bound
in (6.33) holds for zn, for all large n, with β/2 replaced by β. This, in particular, shows that
zn ∈ T d,(1)

(1+β)ε′0,(1−β)ε0
for all large n. Therefore, T d,(1)

(1+β)ε′0,(1−β)ε0
being a closed set the limit z? must

also be in T d,(1)
(1+β)ε′0,(1−β)ε0

. This completes the proof of (6.29). The proof of (6.30) being similar,
details are omitted. �

The following lemma is proved by a standard volumetric estimate, that we omit.

Lemma 6.10. For any ε, β ∈ (0, 1] there exists a net of p(S1)ε of mesh size βε and of cardinality
at most O(β−2ε−1).

We are now ready to provide the proof of Lemma 6.6.

Proof of Lemma 6.6. Fix d > 0 and s ∈ {1, 2}. This fixes m̂1 and d̂ (see (5.12) and (5.33)). Fix
ε0, ε

′
0, ε
′′
0 > 0 such that ε′0 < ε0 is sufficiently small and ε′′0 6 ε′0. The precise choice of ε′′0 will be

specified later. Set ε = ε6.9ε
′′
0 and let β ∈ (0, 1/16). Pick any z ∈ Tβ := (T d,(s)

ε′0,ε0
\ Bε̃02 )βε. From

Lemmas 6.9(i)-(ii) and 6.10 we deduce that there exist a finite collection {z1, z2, . . . , zb} ⊂ Tβ
such that

∪bi=1 D(zi, βε) ⊃ Tβ (6.34)
with

b = O(ε′0 · ε′′−2
0 ). (6.35)

Hence, it suffices to derive bounds on the derivative of d̂etk(·) on each Dβi := D(zi, βε) for i ∈ [b].
Turning to do that we let D := D(0, R) \ Bε̃02 , where R := 2 maxη∈S1 |p(1/η)|, and consider a

smooth cutoff function χ : D 7→ C such that

χ ≡

{
1 on D2β

i ,

0 on D \D3β
i .

This implies that the derivative of χ(·) is non-zero only on D3β
i \D

2β
i . Since dist (D2β

i , ∂D
3β
i ) = βε

one can choose χ such that the absolute value of its anti-holomorphic derivative ∂w̄χ(w) is at
most O(β−1ε−1) in D. Further let Ξ : D 7→ C be some (possibly random) holomorphic function.
Then, applying Cauchy’s integral formula for the smooth function z 7→ Ξ(z) · χ(z) on the domain
D (e.g. see [38, Theorem 1.2.1]) we obtain that for any z ∈ Dβi ,

Ξ(z) = − 1

π

∫
D

3β
i \D

2β
i

Ξ(w) · ∂w̄χ(w)

w − z
dL(w),

where L(·) is the two-dimensional Lebesgue measure. By the bounded convergence theorem we
also have that

d

dz
Ξ(z) = − 1

π

∫
D

3β
i \D

2β
i

Ξ(w) · ∂w̄χ(w)

(w − z)2
dL(w).

Now, by the Cauchy-Schwarz inequality and Fubini’s Theorem we further deduce that

E

 sup
z∈Dβi

∣∣∣∣ ddzΞ(z)

∣∣∣∣2
 6 L(D3β

i )

π2 · dist (Dβi , ∂D
2β
i )4

·
∫
D

3β
i \D

2β
i

E
[
|Ξ(w)|2

]
· |∂w̄χ(w)|2 dL(w)

= O(β−2ε−2) · sup
w∈D3β

i

E
[
|Ξ(w)|2

]
. (6.36)

To complete the proof of the lemma we now proceed to apply (6.36) with appropriate choices of
Ξ(·) and ε′′0.
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We note that the roots of pz(·) = 0 are analytic in z for z ∈ D. Therefore, there exists a
reordering of the indices of the roots {ηj(z)}j∈[m̃], to be denoted by {η̂j(z)}j∈[m̃], such that the
maps z 7→ η̂j(z) are holomorphic on D. We set

Ξ(z) = Ξk(z) :=
detk(z)

aN−N−N
−γd̂∏m̂1+g0

j=1 η̂j(z)N
. (6.37)

We claim that the holomorphic functions {η̂j(z)}j∈[m̃] can be chosen in such a way so that

m̂1+g0∏
j=1

η̂j(z) =

m̂1+g0∏
j=1

ηj(z) for z ∈ D3β
i . (6.38)

Indeed, pick any ẑ ∈ D3β
i . By the Implicit function theorem it is immediate that {η̂j(z)}j∈[m̃] can

be chosen such that (6.38) holds for z = ẑ. Also, note that by Lemma 6.9(ii) we have that

D
3β
i ⊂ T

4β ⊂
(
T d,(s)

(1+4β)ε′0,(1−4β)ε0
∪ T d+(−1)sg0,(3−s)

ε′′0 ,(1−4β)ε0

)
\ Bε̃0/22 . (6.39)

The inclusion (6.39) and β < 1/16 imply that there are no roots of pz(·) = 0 in D3β
i with moduli

between 1 + 2ε′′0 and 1 + ε0/2 (choose ε0 and ε′0 such that ε′0/ε0 < 1/8). Hence, (6.38) must
continue to hold for all z in the connected domain D3β

i , for otherwise the image of the continuous
map |η̂j(z)| from D

3β
i to R+ would be disconnected for some j. It further follows from (6.39) that

d̂(·) ≡ d̂ and m̂1(·) ≡ m̂1 on D3β
i . This means that d̂etk(·) ≡ Ξk(·) on D3β

i (recall (5.32)-(5.35)).
Since this holds for every i ∈ [b] we use (6.34) and (6.39) to deduce from (6.36) that

E

[
sup
z∈Tβ

∣∣∣∣ ddz d̂etk(z)

∣∣∣∣2
]

= O(ε′0/(ε
′′
0)4) · sup

w∈T4β

E
[
|d̂etk(w)|2

]
. (6.40)

To complete the proofs of (6.17)-(6.18) it remains to find an upper bound on the rhs of (6.40).
We first consider the proof of (6.18). Set ε′′0 = (γ′ − 1) logN/N . With this choice of ε′′0, as

β 6 1/16, we obtain from (6.39) that T4β ⊂ T d,(2)
2ε′0,ε0/2

∪ T̂ d+g0,(1)
γ′,ε0/2

. Apply Lemmas 6.1, 6.2(i) and
6.2(iii) with ε′0 and ε0 replaced by 2ε′0 and ε0/2 to derive that

sup
w∈T4β

E
[
|d̂etk(z)|2

]
= O (1) . (6.41)

Plugging this bound in (6.40) we obtain (6.18).
The proof of (6.17) is similar. Set ε′0 = ε′′0 = (γ′ − 1) logN/N and choose β such that (1 +

3β)ε′0 = (γ′′ − 1) logN/N for some γ′′ < γ. Apply Lemmas 6.1, 6.2(i) and 6.2(iii) with γ′′, ε′′0,
and ε0/2 instead of γ′, ε′0, and ε0, respectively to deduce that (6.41) continues to hold for Tβ =

(T d,(1)
ε′0,ε0

\ Bε̃02 )βε. The desired bound now follows from (6.40). �

We end this section with the proof of Lemma 6.7.

Proof of Lemma 6.7. We first prove part (a). The proof is a direct consequence of Widom’s
formula for the determinant of a finitely banded Toeplitz matrix. Indeed, by [15, Theorem 2.8],
for s ∈ {1, 2}, we have, recalling that Ñ = N+ +N−, that

d̂et0(z) = Nγ(m̂2−N+) ·
m̂1+g0∏
j=1

ηj(z)
−N · (−1)NN− ·

 ∑
I∈( [Ñ ]

N−
)

CI(z) ·
∏
i∈I

ηi(z)
N

 ,
where for any I ⊂ [Ñ ]

CI(z) :=
∏
j1∈I

j2∈[Ñ ]\I

ηj1(z)

ηj1(z)− ηj2(z)
.
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Observe that that infz∈T d |ηm̂1+g0
(z)| > 1/2. Thus, now by the continuity of the maps z 7→ ηj(z),

for j ∈ [m̃], as T d is a bounded set and we work off Bε̃02 , it follows that

0 < inf
z∈T d\Bε̃02

|C[m̂1+g0](z)| 6 sup
z∈T d\Bε̃02

|C[m̂1+g0](z)| 6 max
I⊂[N++N−]

sup
z∈T d\Bε̃02

|CI(z)| <∞. (6.42)

On the other hand, recalling the definition of the tube T d, it is evident that

sup
z∈T d

{
max

j1∈[m̂1+g0], j2 /∈[m̂1+g0]

(∣∣∣∣ηj2(z)

ηj1(z)

∣∣∣∣ ∨ |ηj2(z)|
)}
6
(

1− ε0

3

)
. (6.43)

Notice that, for s ∈ {1, 2}

d̂ > 0 ⇐⇒ m̂2 −N+ > 0 ⇐⇒ m̂1 + g0 < N−. (6.44)

Therefore, as d̂ > 0, we have that I \ [m̂1 + g0] 6= ∅ for any set I ⊂ [Ñ ] of cardinality N−. Thus,
(6.43) now implies that

sup
z∈T d

∣∣∣∣∣∣
m̂1+g0∏
j=1

ηj(z)
−N ·

∏
i∈I

ηi(z)
N

∣∣∣∣∣∣ 6
(

1− ε0

3

)N
,

for all such subsets I. Using this together with (6.42) we now have part (a).
Turning to the proof of part (b), we recall (5.8) to observe that P

N̂+
(p, z; Ñ)[Xc

?;Y
c
? +N+] is a

(N̂+ − m̂2)-dimensional Toeplitz matrix with symbol

p?(τ) := τ m̂2−N+

 N+∑
j=−N−

ajτ
j − z

 .
Notice that the roots of p?(1/·) coincide with those of pz(·). Therefore, again by [15, Theorem
2.5], using that Ñ = m̂1 + m̂2 + g0, from (5.10) and (5.36) we deduce that

D̂(X?, Y?, z) = (−1)N̂(m̂1+g0)a
−(m̂2−N+)
−N− ·

m̂1+g0∏
j=1

ηj(z)
−(m̂2−N+)

∑
I∈( [Ñ ]

m̂1+g0
)

CI(z) ·
∏
i∈I ηi(z)

N̂∏m̂1+g0
j=1 ηj(z)N̂

,

(6.45)
where we use the shorthand N̂ := N̂+ − m̂2 = N +N+ − m̂2.

Upon using (6.42) one finds that the summand in the rhs of (6.45) for I = [m̂1+g0] is uniformly
bounded below by 3c? for some constant c? > 0. On the other hand, for I 6= [m̂1+g0], using (6.42)-
(6.43) we deduce that it is exponentially small (in N̂ and hence in N) compared to c?. Therefore,
the sum in (6.45) is uniformly bounded below by 2c?. Using now that supz∈T d maxj∈[m̃] |ηj(z)| <
∞, and shrinking c? if needed, complete the proof of the lower bound in (6.20) completes. The
proof of the upper bound is immediate from (6.45), the above discussion, and the fact that
infz∈T d |ηm̂1+g0

(z)| > 1/2. We omit further details. �

6.3. Step 3: uniform lower bound on the dominant term. In this section we prove a
uniform lower bound on the dominant term in the expansion of det(P δz ). The following is the
main result of this section.

Theorem 6.11. Fix ε0, ε̃0 > 0. Assume that d̂ > 0 and that the entries of Q satisfy Assumption
1.2. Then, there exists C6.11 = C6.11(p,η, ε0, ε̃0) <∞ so that for all ε′0 sufficiently small,

P

 inf
z∈T d,(s)

ε′0,ε0
\Bε̃02

|d̂et
(s)

m̂2−N+
(z)| 6 1

2
(ε′0)3η/4

 6 C6.11(ε′0)η/3, s ∈ {1, 2}.

The proof of Theorem 6.11 uses the following anti-concentration bound for certain polynomials
in independent random variables such that the degree of each of those random variables in those
polynomials is at most one. This is a generalization of [9, Proposition 4.1].
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Lemma 6.12. Fix k ∈ N and let {Ui}ki=1 be a sequence of independent complex-valued random
variables, whose Lévy concentration functions satisfy the bound (1.4) with η ∈ (0, 1]. Let {ZI ; I ∈([n]
k

)
} be another collection of random variables which is jointly independent of the collection

{Ui}ki=1. Define

Uk :=
∑
I⊂[k]

ZI
∏
i∈I

Ui.

Then, for any constant c? > 0 and ε ∈ (0, c?e
−1] we have that

P (|Uk| 6 ε) 6 C̄6.12 ·
(
ε

c?

)(1+η)

·
(

log
(c?
ε

))k−1
+ P

(
|Z[k]| 6 c?

)
,

where C̄6.12 <∞ is some large constant depending only on η and C1.2.

Proof of Lemma 6.12. We will show that

P
(
|Uk| 6 ε

∣∣Z[k]

)
· 1{|Z[k]|>c?}

6 P
(
|Ûk| 6 c−1

? ε
∣∣Z[k]

)
· 1{|Z[k]|>c?} 6 C̄6.12 ·

(
ε

c?

)(1+η) (
log
(c?
ε

))k−1
, (6.46)

where

Ûk :=
∑
I⊂[k]

ẐI
∏
i∈I

Ui and ẐI :=
ZI
Z[k]

, for I ⊂ [k].

(Notice that {ẐI ; I ⊂ [k]} are well defined on the event {|Z[k]| > c?}, and hence so is Ûk.) Taking
the expectation over Z[k] in (6.46) together with a union bound immediately yields Lemma 6.12.
The first inequality in (6.46) is straightforward from the definition of Ûk. So, we only need to
prove the second inequality in (6.46).

Turning to that task, for j ∈ [k], set Jj := {j, j + 1, . . . , k}. Define

Ûj :=
∑

I: I⊃Jj+1

ẐI
∏

i∈I\Jj+1

Ui and Ũj :=
∑

I: I⊃Jj+2

(j+1)/∈I

ẐI
∏

i∈I\Jj+2

Ui, for j ∈ [k − 1] ∪ {0},

where Jk+1 = ∅. We will prove inductively that, for any j ∈ [k], and all t ∈ (0, e−1],

P
(
|Ûj | 6 t

∣∣Z[k]

)
6 (6(C1.4 ∨ 1)e1+η)

j
t1+η

(
log

(
1

t

))j−2

. (6.47)

Plugging t = c−1
? ε and j = k in (6.47) yields (6.46).

Proceeding to the proof of (6.47), we start with j = 1. As Ẑ[k] = 1 we have that Û1 = U1 + Ũ0.
Thus, as U1 is independent of {ZI , I ⊂ [k]}, by (1.4) we have that

P
(
|Û1| 6 t

∣∣Z[k]

)
6 L(U1, t) 6 C1.2t

1+η.

To prove (6.47) for an arbitrary j ∈ [k], upon using induction we note that

Ûj = Uj · Ûj−1 + Ũj−1, for j ∈ [k]. (6.48)

Observe that by our assumption the random variables {Uj−1, Ũj−1} are independent of Uj for any
j ∈ [k]. This, in particular, allows us to use the anti-concentration property of Uj to derive the
same for Ûj .



48 ANIRBAN BASAK, MARTIN VOGEL, AND OFER ZEITOUNI

To complete the proof of (6.47) by induction, assume it holds for j = j∗, and set Cj =

(6(C1.4 ∨ 1)e1+η)
j . The induction hypothesis yields that

P
(∣∣∣Ûj∗+1

∣∣∣ 6 t∣∣Z[k]

)
6 P

(∣∣∣Ûj∗∣∣∣ 6 t∣∣Z[k]

)
+ E

[
P

(∣∣∣∣∣Uj∗ +
Ũj∗
Ûj∗

∣∣∣∣∣ 6 t

|Ûj∗ |

∣∣∣∣ Ûj∗ , Ũj∗ , Z[k]

)
· 1
(∣∣∣Ûj∗∣∣∣ > t) ∣∣∣∣Z[k]

]
(1.4)
6 Cj∗t

1+η

(
log

(
1

t

))j∗−2

+ C1.2t
1+η ·E

[
|Ûj∗ |−(1+η)1

(∣∣∣Ûj∗∣∣∣ > t) ∣∣Z[k]

]
, (6.49)

where we have used that the triplet {Ûj∗ , Ũj∗ , Z[k]} is independent of Uj∗ . Using integration by
parts, for any probability measure µ supported on [0,∞) we have that∫ e−1

t
x−(1+η)dµ(x) = e1+ηµ([t, 1]) + (1 + η) ·

∫ e−1

t

µ([t, s])

s2+η
ds.

Therefore, using the induction hypothesis and the fact that η ∈ (0, 1], we have that

E
[
|Ûj∗ |−(1+η)1

(∣∣∣Ûj∗∣∣∣ > t) ∣∣Z[k]

]
6 e1+η + E

[
|Ûj∗ |−(1+η)1

(∣∣∣Ûj∗∣∣∣ ∈ [t, e−1]
) ∣∣Z[k]

]
6 2e1+η + 2

∫ e−1

t

P
(
|Ûj∗ | 6 s|Z[k]

)
s2+η

ds 6 2e1+η + 2Cj∗

∫ e−1

t
s−1

(
log

(
1

s

))j∗−2

ds

6 2e1+η +
2Cj∗

(j∗ − 1) ∨ 1

(
log

(
1

t

))j∗−1

.

Combining the above with (6.49) and using that log(1/t) > 1 for t 6 e−1, we establish (6.47)
for j = j∗ + 1. This concludes the induction argument and hence the proof of the lemma is
complete. �

Lemmas 6.7(b) and 6.12 yield easily an anti-concentration bound for detm̂2−N+
(·) per fixed z,

as follows.

Corollary 6.13. Consider the same setup as in Theorem 6.11. Then for s ∈ {1, 2} and ε ∈
(0, c?e

−1] we have

sup
z∈T d,(s)

ε′0,ε0
\Bε̃02

P
(
|d̂etm̂2−N+

(z)| 6 ε
)
6 C̄6.12 ·

(
ε

c?

)(1+η)

·
(

log
(c?
ε

))m̂2−N+−1
,

where c? is as in Lemma 6.7(b).

Proof. Recall (5.9), and (5.32)-(5.36). Fix s ∈ {1, 2}. We note that

d̂etm̂2−N+
(z) = (−1)sgn(σX? ) sgn(σY? )D̂(X?, Y?, z) · det(Q[X?;Y?])

+
∑

(−1)sgn(σX) sgn(σY )D̂(X,Y, z) · det(Q[X;Y ]), (6.50)

where X? and Y? are as in Lemma 6.7(b), and the sum in the rhs of (6.50) is over subsets
X,Y ⊂ [N ] such that |X| = |Y | = m̂2 − N+ and (X,Y ) 6= (X?, Y?). It is easy to see to that
d̂etm̂2−N+

(z) is a homogeneous polynomial in the entries of Q, which are jointly independent,
such that the degree of each of its entry in that polynomial is at most one. Hence, Lemma 6.12
is applicable. By Lemma 6.7(b) we have uniform lower bound on D̂(X?, Y?, z). Therefore, upon
applying Lemma 6.12 with k = m̂2 − N+ and the roles of {Ui}ki=1 being played by the diagonal
entries of the sub matrix Q[X?, Y?], we derive the desired anti-concentration bound. �

Corollary 6.13 is not sufficient to yield Theorem 6.11. As discussed in Section 6.2, we also need
a bound on the supremum of the derivative of detm̂2−N+

(z). This is derived below.
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Lemma 6.14. Let Assumption 1.1 hold. Fix ε̃0. There exists some constant c6.14 > 0, depending
only on p, ε̃0, such that for all ε0, ε

′
0 > 0 such that ε′0/ε0 is small enough,

lim sup
N→∞

E

 sup

z∈
(
T d,(s)
ε′0,ε0

\Bε̃02

)c6.14ε
′
0

∣∣∣∣ ddz d̂etm̂2−N+
(z)

∣∣∣∣2
 = O(1), s ∈ {1, 2}. (6.51)

Proof. We borrow ingredients from the proof of Lemma 6.6. Let s = 2. The proof for s = 1 being
the same will be omitted.

Our starting point is (6.40). Fix k = m̂2−N+. As in the proof of Lemma 6.6 we set ε = ε6.9ε
′′
0

and fix β ∈ (0, 1/8). Set ε′′0 = ε′0. By (6.39) T4β is contained in the union of T d,(2)
2ε′0,ε0/2

and

T d+g0,(1)
2ε′0,ε0/2

. Apply Lemma 6.2(ii) for T d,(2) and T d+g0,(1) with ε′0 and ε0 being replaced by 2ε′0,
and ε0/2, respectively to deduce that (6.41) holds under the current setup. Therefore, the desired
bound follows from (6.40). This finishes the proof. �

Remark 6.15. From (6.40)-(6.41) we have that the rhs of (6.51) is O((ε′0)−3). On the other
hand Lemma 6.2(ii), and hence (6.41), hold as soon as ε′0/ε0 6 c where c > 0 is some constant
depending only on the degree of the Laurent polynomial. This allows us to use Theorem 6.14 for
ε′0 = cε0 and extend the result for ε′0 < cε0, by noting that the sets (T d,(s)

ε′0,ε0
\Bε̃02 )c6.14ε′0 are increasing

in ε′0. It in particular enables us to claim that the rhs of (6.51) is O(ε−3
0 ). This observation will

be used in the proof of Theorem 6.11 to claim that the constant C6.11 does not depend on ε′0.

We are now ready to prove Theorem 6.11.

Proof of Theorem 6.11. Fix s ∈ {1, 2}. Similar to the proof of Theorem 6.5 we will also use a
covering argument.

Write

F̃(z) :=
{
|d̂etm̂2−N+

(z)| 6 ε′0ε−1
?

}
and

F̃0 :=

 sup

z∈
(
T d,(s)
ε′0,ε0

\Bε̃02

)c6.14ε
′
0

∣∣∣∣ ddz d̂etm̂2−N+
(z)

∣∣∣∣ > ε−1
?

 ,

where ε? = (ε′0)η/4. By Lemmas 6.9(i) and 6.10 there exists a net N? of T d,(s)
ε′0,ε0

with mesh size

c6.14ε
′
0/2 such that |N?| = O(ε′−1

0 ). Therefore, applying Corollary 6.13 and Lemma 6.14 (see also
Remark 6.15) we have that

P
(
∪z∈N?F̃(z) ∪ F̃0

)
= O

(
(ε′0)η/3

)
, (6.52)

for any ε′0 > 0 sufficiently small. On the other hand, for any z ∈ N? we have that D(z, c6.14ε
′
0/2) ⊂

(T d,(s)
ε′0,ε0

\ Bε̃02 )c6.14ε′0/2. Therefore, by the first order Taylor series expansion and triangle inequality

it follows that on the event ∩z∈N F̃(z)c ∪ F̃c0 , for any z′ ∈ T̃
d,(s)
ε′0,ε0

\ Bε̃02

|d̂etm̂2−N+
(z′)| > inf

z∈N?
|d̂etm̂2−N+

(z)| − dist (z′,N?) · sup

z∈
(
T d,(s)
ε′0,ε0

\Bε̃02

)c6.14ε
′
0

∣∣∣∣ ddz d̂etm̂2−N+
(z)

∣∣∣∣
>

1

2
ε′0 · ε−1

? =
1

2
(ε′0)3η/4.

This together with (6.52) completes the proof of the theorem. �
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6.4. Step 4: combining bounds from Sections 6.1-6.3. In this short section we combine
the results obtained in the previous three sections and complete the proofs of Theorems 5.4 and
5.7. We start with the proof of Theorem 5.4. The estimates derived Sections 6.1-6.3 are for the
tubes which are defined through the roots pz(·) = 0, while Theorem 5.4 is to be proved for regions
that are defined via the spectral parameter z. Therefore, we will need to prove some additional
geometric features of the tubes which will allow us to relate those to regions defined through z.
These will also be used later in Section 7. Stating these results requires the following notation.

For any ε > 0 and set B ⊂ C we write B−ε := ((Bc)ε)c. For any collection of (g0 + 1) distinct
indices i := {i1, i2, . . . , ig0+1} ⊂ [m̃] and c > 0 we set

Wi(c) :=
{
z ∈ C : ||ηij (z)| − 1|+ ||ηi′j (z)| − 1| 6 c, for all j 6= j′ ∈ [g0 + 1]

}
.

and
W(c) := {z : ∃ η = η(z) such that pz(−η) = 0 and ||η| − 1| 6 c} .

Lemma 6.16. Fix ε̃0 > 0. We have the following geometric properties:
(i) There exists a constant C6.16 <∞ such that for any ε > 0,

(p(S1))ε \ Bε̃02 ⊂ W(C6.16ε) \ Bε̃02 .

(ii) There exists a constant c6.16 > 0 such that for any c 6 c6.16, ⋃
i⊂[m̃]:|i|=g0+1

Wi(cε̃0)

 ∩ (Bε̃01 ∪ B
ε̃0
2 )c = ∅. (6.53)

(iii) Fix 0 < ε0 < ε′0 such that ε′0 + ε0 6 c6.16ε̃0. Then, for any ε > 0 such that ε 6 C−1
6.16ε

′
0,

(p(S1))ε \ (Bε̃01 ∪ B
ε̃0
2 ) ⊂

(⋃
d

T dε′0,ε0

)
\ (Bε̃01 ∪ B

ε̃0
2 ).

(iv) Let ε0, ε
′
0, and ε be as in part (iii). Then,

(Sε0 \ S0) \ (Bε̃01 ∪ B
ε̃0
2 ) ⊂ (T g0,(1)

ε′0,ε0
∪ T −g0,(1)

ε′0,ε0
) \ (Bε̃01 ∪ B

ε̃0
2 ). (6.54)

(v) Let ε0, ε
′
0, and ε be as in part (iii). Then,

(S0 \ S−ε0 ) \ (Bε̃01 ∪ B
ε̃0
2 ) ⊂ T 0,(2)

ε′0,ε0
\ Bε̃02 .

Proof. The proof of part (i) is immediate. Fix z′ ∈ (p(S1))ε. Then there exists ẑ ∈ p(S1) such
that |z′ − ẑ| 6 ε. This, in particular implies that there exists i ∈ [m̃] such that ηi(ẑ) ∈ S1.
Therefore, by the triangle inequality,

||ηi(z′)| − 1| 6 |ηi(z′)− ηi(ẑ)| 6 max
i∈[m̃]

sup
z∈(p(S1))2ε\Bε̃02

∣∣∣∣ ddz ηi(z)
∣∣∣∣ · |z′ − ẑ|. (6.55)

Since p(S1) is a bounded set, and the roots are analytic outside a neighborhood of B2 we have
that the supremum of the derivative of the roots is bounded (p(S1))2ε \ Bε̃02 . This yields part (i).

Next we turn to prove (ii). Let us first prove (6.53) for Laurent polynomials p(·) such that
g(p) = g0 = 1. To this end, fix an arbitrary constant c > 0. Assume that (6.53) does not
hold for this chosen c. Then there exist a z /∈ Bε̃01 ∪ B

ε̃0
2 and a pair i 6= j ∈ [m̃] such that

||ηi(z)| − 1|+ |ηj(z)| − 1| 6 cε̃0. Therefore, if (6.53) does not hold for any c > 0 then we obtain a
pair i 6= j ∈ [m̃], a sequence {zn}, and a subsequence of integers {nk} such that

||ηi(znk)| − 1|+ ||ηj(znk)| − 1| 6 ε̃0/nk and znk ∈ C \ (Bε̃01 ∪ B
ε̃0
2 ), ∀ k. (6.56)

Since for each of these znk there exists a root of pznk (·) = 0 that is close to the unit circle, it follows
that {znk} is a bounded sequence (see also the proof of Lemma 6.9(i)), which thus possesses a
converging subsequence, and hence may be assumed to converge to some z? /∈ Bε̃02 . Now, by the
continuity of the maps z 7→ ηi(z) and z 7→ ηj(z) we derive from (6.56) that |ηi(z?)| = |ηj(z?)| = 1.
As z? /∈ Bε̃02 we further deduce that ηi(z?) 6= ηj(z?). This, in particular, implies that there exist
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η 6= η′ ∈ S1 such that p(−η) = p(−η′) = z?, and hence z? ∈ B1. This is a contradiction. Therefore,
we have (6.53) for g0 = 1.

To prove (6.53) for a Laurent polynomial p(·) with g(p) = g0 > 1 we note that for such p(·)
there exists a Laurent polynomial p̂(·), with g(p̂) = 1, such that p(η) = p̂(ηg0) for η ∈ C. This
means that the roots of pz(·) = 0 are obtained by taking the g0-th roots of those of p̂z(·) = 0.
Furthermore, the set of intersection points and branch points of p(·) and p̂(·) are identical. Since
(6.53) holds for p̂(·), upon shrinking c6.16 it continues to hold for p(·).

The proof of (iii) is also straightforward. Indeed, by parts (i) and (ii) we have

(p(S1))C
−1
6.16ε

′
0\(Bε̃01 ∪B

ε̃0
2 ) ⊂ W(ε′0)\(Bε̃01 ∪B

ε̃0
2 ) =W(ε′0)∩

 ⋃
i⊂[m̃]:|i|=g0+1

Wi(c6.16ε̃0)

c

\(Bε̃01 ∪B
ε̃0
2 )

(6.57)
Note that by the definition ofW(·) it follows that any z belonging to rightmost set in (6.57) must
have a root −η(z) of pz(·) = 0 such that ||η(z)| − 1| 6 ε′0. As g(p) = g0 there are g0 such roots.
Recalling the definition of Wi(·) we deduce that distance of all other roots from S1 must be at
least ε0. Hence, z ∈ T dε′0,ε0 for some d. This yields part (iii).

Turning to prove part (iv) we begin with the proof of the following intermediate result:

(Sε0 \ S0) \ (Bε̃01 ∪ B
ε̃0
2 ) ⊂ (p(S1))ε \ S0) \ (Bε̃01 ∪ B

ε̃0
2 ). (6.58)

for any ε < ε̃0/2. To see (6.58), we note that given any z belonging to the set on the lhs of (6.58)
there exists z? ∈ S0 such that |z− z?| 6 ε. Define z?(t) := z?(1− t) + tz, t ∈ [0, 1]. We claim that
there exists t? ∈ (0, 1] such that z?(t?) ∈ p(S1). This will indeed show that z ∈ (p(S1))ε.

To prove the existence of t?, as z? ∈ S0, we see that, |ηN−(z?)| > 1 > |ηN−+1(z?)|. As z /∈ S0,
we have either |ηN−(z)| 6 1 or |ηN−+1(z)| > 1. Assume |ηN−(z)| 6 1. If an equality holds then
we set t? = 1. So, assume further that |ηN−(z)| < 1. Since the map z0 7→ |ηN−(z0)| is well
defined and continuous for z0 /∈ Bε̃0/22 , the existence of t? ∈ (0, 1) such that |ηN−(z?(t?))| = 1, and
hence z?(t?) ∈ p(S1), is immediate from the intermediate value theorem. Similarly for the case
|ηN−+1(z)| > 1 one can repeat the above argument to find t? ∈ (0, 1] such that |ηN−+1(z?(t?))| = 1

implying again z?(t?) ∈ p(S1). This yields (6.58).
Returning to the proof of (6.54) we apply part (iii) to deduce that for any ε > 0 such that

ε 6 C−1
6.16ε

′
0 we have

(Sε0 \ S0) \ (Bε̃01 ∪ B
ε̃0
2 ) ⊂

(
∪dT dε′0,ε0

)
\ (Bε̃01 ∪ B

ε̃0
2 ).

Thus, upon noting that as g(p) = g0 the winding number should be a multiple of g0, it suffices to
show that

(Sε0 \ S0)
⋂(
∪d:|d|>2g0

T dε′0,ε0 ∪ T
±g0,(2)
ε′0,ε0

)
= ∅. (6.59)

Assume that there exists z ∈ (Sε0 \ S0) ∩ T dε′0,ε0 for some d such that |d| > 2g0. Again we need
to split to the cases |ηN−(z)| 6 1 and |ηN−+1(z)| > 1. We first consider the case |ηN−(z)| 6 1.
Recall that d = m+ −N+ = N− −m−. By the definition of the tube T dε′0,ε0 we note that d > 2g0

implies that |ηN−(z)| 6 1 − ε0. On the other hand, d 6 −2g0 implies that |ηN−(z)|−1 6 1 − ε0.
However, we also recall from above that |ηN−(z)| 6 1 implies that there exists z?(t?) ∈ p(S1) such
that |ηN−(z?(t?))| = 1 and |z − z?(t?)| 6 ε. As ε 6 C−1

6.16ε
′
0, and ε′0 6 ε0/2, this together with

(6.55) indeed yields a contradiction. A similar argument works for the case |ηN−+1(z)| > 1. One
can repeat the same argument again to further show that (Sε0 \ S0) ∩ T ±g0,(2)

ε′0,ε0
= ∅. We omit the

details.
Finally we proceed to prove part (v). Repeating an argument similar to the proof of (6.58) we

obtain that
(S0 \ S−ε0 ) \ (Bε̃01 ∪ B

ε̃0
2 ) ⊂ (p(S1))ε ∩ S0) \ (Bε̃01 ∪ B

ε̃0
2 ). (6.60)

Now by part (iii) the set on the rhs of (6.60) must be contained in the union of the tubes.
However, the only tube that has nonempty intersection with S0 is T 0,(2)

ε′0,ε0
. This yields part (v) and

hence the proof of the lemma is now complete. �
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We are ready to prove Theorem 5.4.

Proof of Theorem 5.4. Fix γ′ > 1 such that γ − 1 < γ′ < γ. Set ε′0 = (γ′ − 1) logN/N , ε0 =

c6.16ε̃0/2, some arbitrary constant ε′′0 > 0 such that ε′′0/ε0 sufficiently small, ε1 = C−1
6.16ε

′
0, and

ε2 = C−1
6.16ε

′′
0. By Lemma 6.16(iv)-(v) we note that

(Sε1
0 \ S0) \ (Bε̃01 ∪ B

ε̃0
2 ) ⊂ (T g0,(1)

ε′0,ε0
∪ T −g0,(1)

ε′0,ε0
) \ (Bε̃01 ∪ B

ε̃0
2 )

and
(S0 \ S−ε2

0 ) \ (Bε̃01 ∪ B
ε̃0
2 ) ⊂ T 0,(2)

ε′′0 ,ε0
\ Bε̃02 .

Therefore, by [9, Theorem 1.1] and a union bound we now derive that

lim sup
N→∞

P
(
∃z ∈ Sε1

0 \ (Bε̃01 ∪ B
ε̃0
2 ) : det(P δz ) = 0

)
6 lim sup

N→∞
P
(
∃z ∈ (Sε1

0 \ S
−ε2
0 ) \ (Bε̃01 ∪ B

ε̃0
2 ) : det(P δz ) = 0

)
6 lim sup

N→∞

[
P
(
∃z ∈ T̂ ±g0,(1)

γ′,ε0
\ Bε̃02 : det(P δz ) = 0

)
+ P

(
∃z ∈ T 0,(2)

ε′′0 ,ε0
\ Bε̃02 : det(P δz ) = 0

)]
.

(6.61)

It remains to show that each of the terms in the rhs of (6.61) equals zero in the limit. For
d ∈ {0, g0}, upon recalling (5.6), this follows from Theorem 6.5, Lemma 6.7(b) (see also Remark
6.8), and the triangle inequality. To see that the same holds for d = −g0, as PT

N is a Toeplitz
matrix with symbol p̃(·) = p(1/·) and hence indp(S1)(·) = −indp̃(S1)(·), we apply Theorem 6.5 and
Lemma 6.7(c) for (P δz )T. This completes the proof of the theorem. �

We end the section with the proof of Theorem 5.7.

Proof of Theorem 5.7. The case d = 0 is covered by Theorem 5.4. Consider the case d > 0. Fix
s ∈ {1, 2}. Since 0 < γ − γ′ < 1 we observe that, for ε′′0 = N−(γ−γ′)/8,

T̂ d,(s)γ′,ε0
\ Bε̃02 ⊂ T

d,(s)
ε′′0 ,ε0

\ Bε̃02 ,

for all large N . Therefore, applying Theorems 6.5 and 6.11 (with ε′0 replaced by ε′′0), and upon
using the triangle inequality it is immediate that

P
(
∃z ∈ T̂ d,(s)γ′,ε0

\ Bε̃02 : det(P δz ) = 0
)
6 2N−η(γ−γ′)/32,

for all large N , yielding the desired result for d > 0. To prove the same for d < 0, as det(P δz ) =
det((P δz )T) and PT

N is a Toeplitz matrix with symbol p(1/·), we work with (P δz )T and proceed
same as above. This finishes the proof. �

Remark 6.17. Theorem 5.7 and Lemma 6.16(ii) imply, upon recalling the definitions of the tube
T̂ dγ′,ε0 and g0, that with probability approaching one, for any eigenvalue z /∈ Bε̃01 ∪B

ε̃0
2 one has that

p−1(z) ∩ (S1 +D(0, CγN
−1 logN)) = ∅,

for some appropriately chosen Cγ such that limγ→1Cγ = 0 and limγ→∞Cγ =∞.

7. Location of the bulk of the eigenvalues

In this section we prove that away from the bad sets, the bulk of the spectrum of PQN,γ is
contained in tubes of width O(logN/N) around p(S1), with high probability, see Theorem 7.1.
We also prove in Theorem 7.4 an upper bound on the number of eigenvalues of PQN,γ residing in
the ball D(x,α logN/N), where the distance of x from the spectral curve is of the order logN/N
and α <∞ is some large constant. The latter estimate will we used in the proof of Corollary 1.7.

Before stating the results, recall the bad sets of Definition 1.3, and define for ε,α, ε̃0 > 0,

Ωε := {z ∈ C : dist(z, p(S1)) > ε}, Nα := {z : z ∈ Ωα logN/N\(Bε̃01 ∪B
ε̃0
2 ) an eigenvalue of PQN,γ}.

(7.1)
The first main result of this section is the following.
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Theorem 7.1. Fix γ > 1 and ε̃0 > 0. Let Assumptions 1.1 and 1.2 hold. Then there exists a
constant C7.1 <∞, depending only on p(·), γ, and ε̃0, so that for any α > 0, we have

lim
N→∞

P

(
|Nα| 6

C7.1N

α

)
= 1. (7.2)

To prove Theorem 7.1 we will use Jensen’s formula. For an analytic function f , let nf (x, r)
denote the number of roots in a ball of radius r around x. If f(x) 6= 0, then we have∫ r

0

nf (x, s)

s
ds =

1

2π

∫ 2π

0
log |f(x+ reiθ)|dθ − log |f(x)|. (7.3)

In particular, we obtain from (7.3) the bound

nf (x, ur) 6
1

2(1− u)π

∫ 2π

0
log |f(x+ reiθ)|dθ − 1

1− u
log |f(x)|, (7.4)

valid for u ∈ (0, 1). We will apply (7.4) with f(z) = det(PQN,γ − zIN ). Introduce the function

φ∞(z) :=
1

2π

∫ 2π

0
log |z − p(eiθ)|dθ. (7.5)

To prove Theorem 7.1 we will need the following two lemmas. Recall that P δz = PQN,γ − zIN .

Lemma 7.2 (Upper bound on determinant). Consider the setup as in Theorem 7.1. Then there
exist constants 0 < c7.2, C7.2 <∞, depending only on γ, ε̃0 and p(·), such that

P(A{UB) 6 N−3,

for all large N , where

AUB :=
⋂

z∈Ω1/N∩(p(S1))c7.2ε̃0\(Bε̃01 ∪B
ε̃0
2 )

{
log | det(P δz )| 6 Nφ∞(z) + C7.2 logN

}
.

We also need the following complementary lower bounds.

Lemma 7.3 (Lower bound on determinant). Consider the setup of Theorem 7.1. Then, there
exists a constant C7.3 <∞ depending only on γ, ε̃0, and p(·), such that

max
z∈(p(S1))c7.2ε̃0\(Bε̃01 ∪B

ε̃0
2 )

P(A{z,LB) 6 1/N3, (7.6)

where
Az,LB :=

{
log | det(P δz )| > Nφ∞(z)− C7.3 logN

}
.

Using these two lemmas, whose proofs are postponed, we now prove Theorem 7.1.

Proof of Theorem 7.1 (assuming Lemmas 7.2 and 7.3). Let R := 2 maxz∈S1 |p(z)|. For i ∈ N
such that i 6 i? := dlog(c7.2ε̃0N/(4α logN))/ log 2e, set

Ωα,i :=

{
z ∈ D(0, R) \ (Bε̃01 ∪ B

ε̃0
2 ) :(

3α

4
+ 2i−3α

)
· logN

N
6 dist (z, p(S1)) 6

(
3α

4
+ 2i−2α

)
· logN

N

}
,

and define Nα,i := Nα ∩ Ωα,i. From our choice of i? it is clear that(
D(0, R) \ (Bε̃01 ∪ B

ε̃0
2 )
)
\
(
∪i?i=1Ωα,i

)
⊂
(
D(0, R) \ (Bε̃01 ∪ B

ε̃0
2 )
)
∩ Ωc7.2ε̃0/32. (7.7)

By [9, Theorem 1.1] we have that

lim
N→∞

P
(
|Nα ∩D(0, R){| > 0

)
6 lim

N→∞
P
(
∃z /∈ D(0, R) : z is an eigenvalue of PQN,γ

)
= 0.
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On the other hand, we have from [65, Corollary 2.2] or [8, Theorem 1.2] that

lim
N→∞

P

(
|Nα ∩ Ωc7.2ε̃0/32| >

C ′0N

2α

)
6 lim
N→∞

P

(∣∣∣{z ∈ Ωc7.2ε̃0/32 : z is an eigenvalue of PQN,γ
}∣∣∣ > C ′0N

2α

)
= 0,

for any α > 0. Hence, in light of (7.7) it suffices to show that

lim inf
N→∞

P
(
|Nα,i| = O(2−iα−1N) for all i ∈ [i?]

)
= 1. (7.8)

Turning to prove (7.8), we cover Ωα,i by a collection of balls Di,j := D(zi,j , ri), j ∈ Ni, with
zi,j ∈ Ωα,i and ri = 2i−4α · (logN/N). As zi,j ∈ Ωα,i we have that dist (zi,j ,B1 ∪ B2) > ε̃0.
For i 6 i? we also have that ri 6 ri? 6 c̃7.2ε0/32. Therefore, there exists an absolute constant
u ∈ (0, 1), such that for any i 6 i? and j ∈ [Ni],

dist (D(zi,j , u
−1ri),B1 ∪ B2) > 3̃ε0/4.

On the other hand, we note that

(3α/4) · logN/N 6 dist (D(zi,j , u
−1ri), p(S

1)) 6 c7.2ε̃0/4.

The last two observations together imply that
i?⋃
i=1

Ni⋃
j=1

D(zi,j , u
−1ri) ⊂ Ω1/(2N) ∩ (p(S1))c7.2ε̃0/4 \ (Bε̃0/21 ∪ Bε̃0/22 ). (7.9)

This allows us to apply Lemmas 7.2 and 7.3. Now, using (7.4), we have with

ni,j := |{z ∈ Di,j : z is an eigenvalue of PQN,γ}|
that

ni,j 6
1

2(1− u)π

∫ 2π

0
log |det(P δ − (zi,j + u−1ri,je

iθ)IN |dθ −
1

1− u
log |det(PQN,γ − zi,jIN )|,

where u ∈ (0, 1) is as above. Let AUB be as in Lemma 7.2 with ε̃0 replaced by ε̃0/2. Then, on
the event AUB ∩ Azi,j ,LB, as φ∞(z) is harmonic off p(S1), by (7.9) we have that

ni,j 6 (1− u)−1(C7.2 + C7.3) logN.

By Lemma 6.10 it follows that Ni, the number of balls of radius ri needed to cover Ωα,i satisfies
the bound

Ni 6 C2−i · α−1 · (N/logN), (7.10)
for some universal constant C <∞. Thus, on A? := AUB ∩ ∩i,jAzi,j ,LB,

|Nα,i| 6
∑
j∈Ni

ni,j 6 (1− u)−1(C7.2 + C7.3)CN · 2−iα−1.

Therefore (7.8) and hence the theorem follows if we can prove P(A?) = 1 − o(1). Note however
that

P(A?) > 1−P(A{UB)−
i?∑
i=1

Ni∑
j=1

P(A{zi,j ,LB) > 1−N−3 −N−3

(∑
i6i?

Ni

)
= 1− o(1),

where we used (7.10) and Lemmas 7.2 and 7.3 with ε̃0 replaced by ε̃0/2. �

Using the same ideas, we next provide a local upper bound on the number of eigenvalues.

Theorem 7.4. Consider the setup as in Theorem 7.1. Fix 0 < α < α <∞. Then, there exists a
constant C7.4 <∞ depending only on γ, ε̃0, and p(·), such that for any z ∈ (p(S1))α logN/N ,

P
(∣∣Nα,α,z

∣∣ > C7.4α
−2α2 · logN

)
6 N−2,

for all large N , with

Nα,α,z :=
{
z′ ∈ D(z,α logN/N) ∩ Ωα logN/N \ (Bε̃01 ∪ B

ε̃0
2 ) : z′ is an eigenvalue of PQN,γ

}
.
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Proof. We follow the same strategy as in the proof of Theorem 7.1. Fix z ∈ (p(S1))α logN/N . For
i ∈ [i?], where i? := dlog(8α/α)/ log 2e, we set

Ωα,α,i :=

{
z′ ∈ D(z,α logN/N) ∩ Ωα logN/N \ (Bε̃01 ∪ B

ε̃0
2 ) :(

3α

4
+ 2i−3α

)
· logN

N
6 dist (z′, p(S1)) 6

(
3α

4
+ 2i−2α

)
· logN

N

}
.

Since dist (z, p(S1)) 6 α logN/N , we notice that
i?⋃
i=1

Ωα,α,i ⊃ D(z,α logN/N) ∩ Ωα logN/N \ (Bε̃01 ∪ B
ε̃0
2 ).

Thus, it suffices to bound the number of eigenvalues in ∪i?i=1Ωα,α,i.
As in the proof of Theorem 7.1 we cover Ωα,α,i by a collection of balls Di,j = D(zi,j , ri), j ∈ N i,

zi,j ∈ Ωα,α,i and ri = 2i−4α · (logN/N). By our choice of i? we procure a u ∈ (0, 1) such that

D(zi,j , u
−1ri) ⊂ (p(S1))3α logN/N ∩ Ω1/(2N) \ (Bε̃0/21 ∪ Bε̃02 ), for all j ∈ N i and i ∈ [i?].

Hence, arguing similarly as in the proof of Theorem 7.1 we deduce that the number of eigenvalues
of PQN,γ in Di,j is O(logN) for all j ∈ N i and i ∈ [i?], on a set with probability at least 1− 1/N2.

To complete the proof we use a volumetric argument, yet again, to find that

N i = O

(
2−2i ·

(
α

α

)2
)
.

This, together with the choice of i? indeed yields the desired bound on Nα,α,z. �

We now turn to the proof of Lemma 7.2. Recall φ∞(z), see (7.5), and define

d̃etk(z) :=
detk(z)

aN−N−
∏m−
i=1 ηi(z)

N
=

detk(z)

exp(Nφ∞(z))
,

where the last equality follows upon recalling that {−ηi(z)}m−i=1 are the roots of pz(·) = 0 that are
greater than or equal to one in modulus, and from the fact that

1

2π

∫ 2π

0
log |η − eiθ|dθ =

{
log |η| if |η| > 1,
0 otherwise.

In the lemma below we derive a bound on the supremum of the second moment d̃etk(·).

Lemma 7.5. Let Assumption 1.1 hold. Fix ε̃0, ε0, ε
′
0 > 0 such that ε′0/ε0 is sufficiently small. Fix

k ∈ [N ] ∪ {0} and d > 0. Then for any ε 6 ε6.9ε
′
0/2, we have

sup

z∈
(
T d,(s)
ε′0,ε0

\Bε̃02

)εE
[∣∣∣d̃etk(z)

∣∣∣2] = O(1), s ∈ {1, 2}.

Proof. By Lemma 6.9 it suffices to show that

sup
z∈T d,(s)

ε′0,ε0

E

[∣∣∣d̃etk(z)
∣∣∣2] = O(1). (7.11)

We begin with the proof of (7.11) for k ∈ [N ] and s = 1. Recall from (5.12) that for this choice
of s, we have that m̂1 = m−. Since Q satisfies Assumption 1.1, we then observe that

E

[∣∣∣d̃etk(z)
∣∣∣2] = N−2γk

∑
X,Y⊂[N ]
|X|=|Y |=k

|D̂(X,Y, z)|2 · |ηm̂1+1(z)|2g0N ·E
[
|det (Q [X;Y ])|2

]
. (7.12)

By Lemma 5.13(i)-(ii), for any k ∈ [N ], as |ηm̂1+1(·)| 6 1 on T d,(1), we have that

|D̂(X,Y, z)|2 · |ηm̂1+1(z)|2g0N 6 Cm̃(k+N+), (7.13)
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for some constant C <∞. Since the second moment of the determinant of any k× k matrix with
entries satisfying Assumption 1.1 is k! and the number of ways one can choose two subsets of [N ]

that are cardinality k is
(
N
k

)2
the claimed upper bound, for s = 1, now follows upon using that

γ > 1 and plugging the bound (7.13) in (7.12).
To prove (7.11) for s = 2 we observe that m̂1 + g0 = m−, and thus d̃etk(·) = N−γdd̂etk(·) on

T d,(2). Hence, the bound for any k ∈ [N ] is immediate from Lemmas 6.1 and 6.2(iii).
To prove (7.11) for k = 0 we recall (5.12) to notice that m̂1 + g0 = m− on T d,(2), while on

T d,(1) we have m̂1 = m−. Therefore, as |η̂m̂1+1(·)| 6 1 on T d,(1), we find that∣∣∣∣∣∣
m̂1+g0∏
j=1

ηj(·)

∣∣∣∣∣∣ 6
∣∣∣∣∣∣
m−∏
j=1

ηj(·)

∣∣∣∣∣∣
on T d,(s) for any s ∈ {1, 2}. This, in turn, implies that |d̃etk(·)| 6 |d̂etk(·)| on T d,(s) (recall (5.32)
and (5.35)). Thus, the bound for k = 0 is immediate from Lemma 6.7(i)-(ii). This completes the
proof of the lemma. �

Proof of Lemma 7.2. Set ε0 = c6.16ε̃0/2. Fix ε′0 > 0 so that ε′0/ε0 is small enough for Lemma 7.5
to hold. Now set c7.2 = C−1

6.16c6.16 · (ε′0/ε0)/2. Applying Lemma 6.16(iii) and Markov’s inequality
we find that it suffices to show that for all d ∈ Z

max
s∈{1,2}

E

 sup
z∈T d,(s)

ε′0,ε0
∩Ω1/N\B

ε̃0
2

|d̃etk(z)|2

 = O(N2). (7.14)

The case d < 0 can be dealt by consider the transpose of PN . Hence, we will prove (7.14) only for
d > 0. Toward this end, we use Lemma 7.5 and ideas from the proof of Lemma 6.6. Fix d > 0,
s ∈ {1, 2}, ε′′0 = 1/(4N), and β ∈ (0, 1/8). Let D, ε, b, and Dβi , for i ∈ [b] be as in the proof of
Lemma 6.6, where now the centers zi of the disks D

β
i are restricted to be inside T̃ := T d,(s)

ε′0,ε0
∩Ω1/N .

Notice that ∪bi=1D
β
i ⊃ T̃.

Applying Cauchy’s integral formula for smooth functions, and proceeding as in the proof of
(6.36) we obtain that

E

 sup
z∈Dβi

|Ξ(z)|2
 = O(1) · sup

w∈D3β
i

E
[
|Ξ(w)|2

]
, (7.15)

for any random holomorphic function Ξ : D 7→ C. To complete the proof it remains to argue that
the map z 7→ d̃etk(z) is analytic on D3β

i for each i ∈ [b].
To this end, observe that D3β

i ⊂ Ω1/(2N). Hence, the map z 7→ m−(z) is constant on D3β
i . From

the definition of the tubes, and Lemma 6.9(ii) it further follows that

|ηm−(·)| > |ηm−+1(·)|+ ε′0/4 on D3β
i ⊂ T̃

3β. (7.16)

Therefore, arguing as in the proof of Lemma 6.6 we deduce that the map z 7→ d̃etk(z) is indeed
analytic on D3β

i . Thus, using the bound on b (see (6.35)), Lemma 7.5, and (7.15) the proof of
(7.14) is completed. �

We now turn to the proof of Lemma 7.3. The key ingredient will be the anti-concentration bound
derived in Lemma 6.12. We need to argue that det(P δz ) admits certain specific representation so
that Lemma 6.12 is applicable. To carry out this step we need the following couple of notation.

Fix X0, Y0 ⊂ [N ] such that |X0| = |Y0| = k0 for some k0 6 N . For k > k0 define

detX0,Y0

k (z) := N−γk
∑

X,Y⊂[N ]
|X|=|Y |=k
X⊃X0,Y⊃Y0

(−1)sgn(σX) sgn(σY ) · (−1)ŝgn(σX)+ŝgn(σY )D(X,Y )

· det(Q[X \X0;Y \ Y0]), (7.17)
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where ŝgn(X) and ŝgn(Y ) are the signs of the permutations on X and Y that place all elements of
X0 and Y0 before those of X \X0 and Y \Y0, respectively, but preserves the order of the elements
in each of those individual sets. Also define

d̃et
X0,Y0

k (z) :=
detk(z)

exp(Nφ∞(z))
.

Lemma 7.6. Consider the setup as in Lemma 7.3. Fix d > 0 and s ∈ {1, 2}. Let X0, Y0 ⊂ [N ]

with |X0| = |Y0| = d. The following moment bounds hold for detX0,Y0

k (z):
(i) For any k such that d 6 k 6 N we have

sup
z∈T d,(s)

ε′0,ε0

E

[∣∣∣d̃et
X0,Y0

k (z)
∣∣∣2] 6 Cm̃(k+N+)

7.6 N−2γk+2(k−k0),

where C7.6 <∞ is some constant.
(ii) Fix h,K0 ∈ N. Then, for any k ∈ N such that d 6 k 6 K0 −N+ we have

sup
z∈T d,(s)

ε′0,ε0

E

[∣∣∣d̃et
X0,Y0

k (z)
∣∣∣2h] 6 Cm̃K0h

7.6 · (K0h)8K0h · C2K0h ·N−2γhk+2h(k−k0). (7.18)

Proof. The proof of part (i) is similar in nature to that of Lemma 7.5. Hence, details are omitted.
To prove part (ii) we employ the same combinatorial argument as in the proof Lemma 6.4.

Indeed, similarly to (6.11), one can obtain an analogous expression for the (2h)-th moment of the
absolute value of d̃et

X0,Y0

k (z).
Then, using that that entries of Q are independent and possess zero mean, one observes that

only partitions such that each block has size at least two need to be summed. This forces the
number of such partitions to be at most N2(k−d)h. Now, use the bound (7.13) for s = 1, while
for s = 2 use Lemma 5.13(i), and proceed as in the proof of Lemma 6.4. This yields the desired
bound. Further details are omitted. �

We now use Lemmas 6.12 and 7.6 to derive Lemma 7.3.

Proof of Lemma 7.3. Similar to the proof of Lemma 7.2 we notice that it suffices to prove the
probability bound in (7.6) for z ∈ T d,(s)

ε′0,ε0
for d > 0, s ∈ {1, 2}, and some appropriately chosen ε′0

and ε0.
Fix d > 0 and s ∈ {1, 2}. Set X̃? = [N ] \ [N − d] and Ỹ? = [d]. We claim that for any k > d

d̃etk(z) = d̃et
X̃?,Ỹ?
k (z) · det(Q[X̃?; Ỹ?]) + det

∧

k(z), (7.19)

where det

∧

k(z) is a homogeneous polynomial of degree k in the entries of Q such that the degree
of each individual entry is at most one, and the total degree of the entries of Q[X̃?; Ỹ?] is strictly
less than d. To see this claim we recall from (5.9) that

detk(z) =
∑

X,Y⊂[N ]
|X|=|Y |=k

(−1)sgn(σX) sgn(σY )D(X,Y ) ·N−γk · det(Q[X;Y ]). (7.20)

Now we split the sum into two parts depending on whether X ⊃ X̃? and Y ⊃ Ỹ?. If either
X 6⊃ X̃? or Y 6⊃ Ỹ? then the corresponding term in the rhs of (7.20) is indeed a polynomial in
the entries of Q such that the total degree of the entries of Q[X̃?; Ỹ?] is strictly less than d. Now
fix X,Y ⊂ [N ] such that X ⊃ X̃? and Y ⊃ Ỹ?. Expand det(Q[X;Y ]) by writing it as a sum
over permutations π : X 7→ Y . The sum over permutations π such that π(X̃?) = Ỹ? is indeed a
product of det(Q[X \ X̃?;Y \ Ỹ?]) and det(Q[X̃?; Ỹ?]) (upto some signs). The sum over the rest
of the permutations is again a polynomial such that the total degree of the entries of Q[X̃?; Ỹ?] is

strictly less than d. Combining these observations and upon recalling the definition of d̃et
X̃?,Ỹ?
k (z)

we arrive at (7.19).
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On the other hand, d̃etk(z) is a polynomial of total degree less than d, for any k < d. Since
det(P δz ) =

∑N
k=0 detk(z), this together with (7.19) imply that

det(P δz )

exp(Nφ∞(z))
=
∑
I⊂[d]

ZI
∏
i∈I

Ui,

where {Ui}di=1 are the diagonal entries of the sub matrix Q[X̃?; Ỹ?], {ZI , I ⊂ [d]} is a collection
of random variables that are independent of {Ui}di=1, and

Z[d] =
∑
k>d

d̃et
X̃?,Ỹ?
k (z).

We now apply Lemma 6.12, and obtain that

P

(
det(P δz )

exp(Nφ∞(z))
6 N−(4+γd)

)
6 N−4 + P

(
|Z[d]| 6

c?
2
·N−γd

)
, (7.21)

for all large N , and any c? > 0. It remains to bound the probability that Z[d] exceeds (c?/2) ·N−γd
in absolute value.

Turning to do that we set K0 = d 5
(γ−1)e+d+N+. Apply Lemma 7.6(i) and Markov’s inequality

to deduce that

P

(∣∣∣∣d̃et
X̃?,Ỹ?
k (z)

∣∣∣∣ > N−(2+γd)

)
6 N−5,

for any k > K0 −N+. Apply Lemma 7.6(ii) with h = d 6
(γ−1)e and Markov’s inequality to further

derive that

P

(∣∣∣∣d̃et
X̃?,Ỹ?
k (z)

∣∣∣∣ > N− (γ−1)
2
−γd
)
6 N−5,

for any k ∈ [N ] such that d < k < K0 −N+. Hence, by a union bound we obtain that

P

(
Nγd

∣∣∣∣∣∑
k>d

d̃et
X̃?,Ỹ?
k (z)

∣∣∣∣∣ > N−1 +N−
(γ−1)

4

)
6 N−4. (7.22)

Equipped with (7.21) and (7.22), and upon recalling the definition Z[d] we notice that to complete
the proof of this lemma it is now enough to show that

Nγd · inf
z∈T d,(s)

ε′0,ε0

∣∣∣∣d̃et
X̃?,Ỹ?
d (z)

∣∣∣∣ = inf
z∈T d,(s)

ε′0,ε0

|D(X̃?, Ỹ?, z)|
|a−N− |N

∏m−
j=1 |ηj(z)|N

> c? (7.23)

for some c? > 0. To prove (7.23) we argue as in the proof of Lemma 6.7(b). The only difference
is that one needs to use (7.16) instead of (6.43). The rest of the argument is the same. This
completes the proof of this lemma. �

We end this section with the proof of Theorem 1.5. It is immediate from Theorems 5.4, 5.7,
and 7.1.

Proof of Theorem 1.5. We use N̂
Ω̂
to denote the number of eigenvalues of PQN,γ in Ω̂. Fix ε̃0 > 0

such that the Lebesgue measure of the set p−1(Bε̃0p ∩ p(S1)) is less than µ/(16π) (recall Definition
1.3). Then, by [8, Theorem 1.2] (see also [65, Theorem 2.1]) it follows that P(N̂

Ω̂1
> µN/4)→ 0

as N →∞, where Ω̂1 := Bε̃0p . On the other hand, by Theorems 5.4, 5.7, and Lemma 6.16(iii)-(v)
it follows that there exists some 0 < ĉγ < ∞ such that P(N̂

Ω̂2
> 0) → 0 as N → ∞, where

Ω̂2 := (p(S1))ĉγ logN/N \ Ω̂1. Finally, upon choosing α = 4C7.1/µ, and applying Theorem 7.1 with
this α we deduce that P(N̂

Ω̂3
> Nµ/4)→ 0 as N →∞, where Ω̂3 := Ωα logN/N (recall (7.1)).

Setting ε1.5 = ε̃0 and C1.5 = α∨ ĉ−1
γ and taking a union bound over the events that N̂

Ω̂i
> Nµ/4

for i = 1, 2, 3, completes the proof. �
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8. Resolvent estimates close to the spectral curve

Given a symbol p(ζ) − z, with z ∈ C, as in (4.16), we will see that there is an important
distinction between the regime where the spectral parameter z is inside a loop of p(S1), i.e. where
the winding number indp(S1)(z) of the curve p(S1) around z is non-zero, and the regime where
indp(S1)(z) = 0. In the former case, we will provide in Section 9 a construction of quasimodes,
which are approximate singular vectors, for finite Toeplitz matrices PN − z. In regions where the
winding number is zero, we will be interested in obtaining resolvent estimates. The key difficulty
in both regimes will be in obtaining sufficiently good estimates when z is allowed to be at an
N -dependent distance from p(S1).

In this section will prove the following estimate on the resolvent of a parameter dependent
Toeplitz matrix which, while being also of independent interest, will be an essential ingredient in
proving a spectral gap for the small singular values, see Section 10.1.

Theorem 8.1. Let Ω′ b C be a non-empty relatively compact open set. Let N ∈ N, let ΩN b Ω′

be a family of non-empty relatively compact open sets. Let qz, z ∈ Ω′, be a family of Laurent
polynomials as in (4.21), with Nz,± = N± > 0 independent of z in ΩN and satisfying (4.22), and
with coefficients qz,n ∈ C for −N− 6 n 6 N+. Suppose that:

• There exists a constant 0 < C <∞ such that for all z ∈ Ω′;

qz,N+ 6= 0, |qz,−N− | > 1/C, |qz,n| 6 C, for −N− 6 n 6 N+. (8.1)

• All roots ζz of qz(ζ) are simple, for all z ∈ Ω′.
• There exists a constant 0 < C <∞ such that for all z ∈ Ω′ and for any two distinct roots
ζz 6= ωz we have

|ζz − ωz| > 1/C, (8.2)

and for any root ζz
0 < |ζz| 6 C. (8.3)

• 0 /∈ qz(S1) and there exists a constant C0 > 0 such that for N > 0 large enough

dist (|ζz|, 1) > C0
logN

N
, for all z ∈ ΩN , and all roots ζz. (8.4)

• There exists an m0 > 0 (unrelated to the constants m0 in (4.27) and (4.28)) and constants
C1 > 1, C2 > 0 such that for all N ∈ N large enough and all z ∈ ΩN we have that the
roots of qz(ζ) inside D(0, 1), of total number mz,+ > m0, satisfy

|ζ+
1 | 6 · · · 6 |ζ

+
mz,+−m0

| < 1/C1 < 1− C2
logN

N
6 |ζ+

mz,+−m0+1| 6 · · · 6 |ζ
+
mz,+ |. (8.5)

• Let m̂0 ∈ {0,m0} and suppose that for all N ∈ N and all z ∈ ΩN we have indqz(S1)(0) =
m̂0.

Then there exists a constant 0 < C̃ < +∞ such that for N > 0 large enough and all z ∈ ΩN ,

‖PN (qz)
−1‖ 6 C̃ N

1+C2Θ(m̂0)

logN
. (8.6)

Remark 8.2. It will be clear from the proof that (8.6) holds when indqz(S1)(0) = 0 even without
the structural assumption (8.5). Furthermore, notice that in Theorem 8.1 we only consider the
case of non-negative winding numbers. This is all that we need in the sequel, however one could
prove the same result in the case of negative winding numbers provided that one assume a similar
assumption as (8.5) for the roots in C\D(0, 1).

Proof of Theorem 8.1. Throughout the proof, we will assume that N > 0 is sufficiently large so
that the assumptions of the theorem hold. Moreover, all O(1) terms and constants are understood
to be uniform in N > 0 and z ∈ ΩN , without us mentioning it explicitly at each occurrence. In
fact the error terms will only depend on the constants in the hypothesis of the theorem and global
constants.
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1. Let z ∈ ΩN . Since qz satisfies the assumptions of Case 1 of Lemma 4.1, we may order the
roots of qz(ζ) as in (4.26), and using also (8.3) and (8.4),

0 < |ζ+
1 | 6 · · · 6 |ζ

+
mz,+ | < 1 < |ζ−1 | 6 · · · 6 |ζ

−
mz,− | 6 C. (8.7)

Since indqz(S1)(0) = m̂0 for all z ∈ ΩN , it follows from a similar computation as in (4.34) that
mz,± = N± ± m̂0 are independent of N and z. Keeping in mind that mz,± are independent of z,
but that the coefficients qz,n do depend on z, we suppress from now on the z subscript of qz, qz,n
and mz,±. Hence, we are interested in the symbol

q(ζ) =

m+−m̂0∑
−(m−+m̂0)

qjζ
−j , (8.8)

where by (8.1)
qm+−m̂0

6= 0, |q−(m−+m̂0)| > 1/C (8.9)

2. We turn to estimating ‖PN (q)−1‖. We begin by inverting Op(q) : `2(Z) → `2(Z), see (4.17),
which is a convolution operator. We first search for a fundamental solution E : Z→ C to

Op(q)E = δ0 on Z, (8.10)

where δ0(ν) = δ0,ν , see Section 1.6 for the Dirac notation. Putting

E(n) = F−1

(
1

q

)
(n) =

1

2π

∫ 2π

0

1

q(eiξ)
einξdξ. (8.11)

it follows from (4.5) that E solves (8.10). Thus,

Op(q)E ∗ v = v, v ∈ `2comp(Z)

E ∗Op(q)u = u, u ∈ `2comp(Z),
(8.12)

where ∗ denotes the convolution on Z and `2comp denotes compactly supported functions in `2.
Notice that we may factor (8.8) as

q(ζ) = q−(m−+m̂0)

m+−m̂0∏
j=1

(1− ζ+
j /ζ)

m+∏
j=m+−m̂0+1

(ζ − ζ+
j )

m−∏
k=1

(ζ − ζ−k ). (8.13)

Performing the change of variables eiξ = ζ ∈ S1 in (8.11), we get by shrinking S1 to 0, the residue
theorem and (8.13) that for n > 1

E(n) =
1

2πi

∫
S1

ζn−1

q(ζ)
dζ =

m+∑
r=1

(ζ+
r )n−1+m+−m̂0

q−(m−+m̂0)

∏
j 6=r(ζ

+
r − ζ+

j )
∏m−
k=1(ζ+

r − ζ−k )
, (8.14)

Similarly, we get that

E(0) =

m+∑
r=1

(ζ+
r )−1+m+−m̂0

q−(m−+m̂0)

∏
j 6=r(ζ

+
r − ζ+

j )
∏m−
k=1(ζ+

r − ζ−k )
+

δm+,m̂0

q−(m−+m̂0)

∏m+

j=1(−ζ+
j )
∏m−
k=1(−ζ−k )

.

(8.15)

By deforming S1 to |ζ| = R, R→∞, we obtain similarly that for n 6 −1,

E(n) = −
m−∑
r=1

(ζ−r )n−1+m+−m̂0

q−(m−+m̂0)

∏m+

j=1(ζ−r − ζ+
j )
∏
j 6=r(ζ

−
r − ζ−j )

. (8.16)

Combining (8.14)-(8.16), (8.2), (8.7), (8.1) and (8.9), we have that

|E(n)| = O(1)


|ζ+
m+
|n−1, n > 1,

1, n = 0,
|ζ−1 |n−1, n 6 −1.

(8.17)
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Here, we replace (ζ−1 )−1 resp. ζm+ with 0 when m− = 0 resp. m+ = 0. Thus, summing the
geometric series and using (8.4) we get that

‖E‖`1 = O(1)
N

logN
, (8.18)

and similarly that

‖E‖`2 = O(1)

√
N

logN
. (8.19)

Since E is in `1, see (8.18), the operator of convolution with E, denoted E∗, is a bounded operator
`2 → `2. Therefore, (8.12) can be extended to u, v ∈ `2(Z), and E∗ is the inverse of Op(q) on
`2(Z).

3. Next, for v ∈ `2(Z) with support in [0, N − 1], we solve

Op(q)ψ = 0 on Z (8.20)

with “boundary” conditions

ψ �[−(m+−m̂0),−1]∪[N,N+m−+m̂0−1]= (E ∗ v)�[−(m+−m̂0),−1]∪[N,N+m−+m̂0−1] . (8.21)

We suppose here, and in the sequel, that m± ∓ m̂0 > 0. The cases when m+ = m̂0 or m− =
m̂0 = 0 can be treated similarly, and we shall comment on these cases as we go along. In
(8.21) it is understood that when m+ = m̂0, then we only have the boundary condition on
[N,N +m− + m̂0 − 1], and similarly when m− = m̂0 = 0.

Since q(ζ) satisfies the assumptions of Case 1 of Lemma 4.1, it follows from Propositions 4.4
and 4.5, and the fact that all roots of q(ζ) are simple, that the general solution to (8.20) is of the
form

ψ(ν) =

m+∑
j=1

a+
j (ζ+

j )ν +

m−∑
j=1

a−j (ζ−j )ν , a±j ∈ C. (8.22)

By (8.21), the coefficients are determined by(
V+Λ

m̂0−m+
+ B+Λ

m̂0−m+
−

V−ΛN+ B−ΛN−

)
a =: Ma = c := (E ∗ v)�[m̂0−m+,−1]∪[N,N+m−+m̂0−1] . (8.23)

Here, the right hand side is seen as a vector in Cm++m− , a = (a+, a−)T, a± = (a±1 , . . . , a
±
m±) ∈

Cm± , Λ+ := diag(ζ+
1 , . . . , ζ

+
m+−m̂0

), Λ− := diag(ζ+
m+−m̂0+1, . . . , ζ

+
m+
, ζ−1 , . . . , ζ

−
m−),

V± :=


1 . . . 1
ζ+

1 . . . ζ+
m+−m̂0

...
...

...
(ζ+

1 )m±∓m̂0−1 . . . (ζ+
m+−m̂0

)m±∓m̂0−1

 , (8.24)

and

B± :=


1 . . . 1 1 . . . 1

ζ+
m+−m̂0+1 . . . ζ+

m+
ζ−1 . . . ζ−m−

...
...

...
...

...
...

(ζ+
m+−m̂0+1)m±∓m̂0−1 . . . (ζ+

m+
)m±∓m̂0−1 (ζ−1 )m±∓m̂0−1 . . . (ζ−m−)m±∓m̂0−1

 .

(8.25)
Here, we use the convention that when m̂0 = 0 and m+ > 0, then the first column of B± is the
one containing powers of ζ−1 .

Remark 8.3. When m+ = m̂0 then (8.23) is given by B−ΛN−a = Ma = (E ∗ v)�[N,N+m−−1], and
when m− = m̂0 = 0 then only the first sum in (8.22) remains and (8.23) is given by V+Λ

−m+
+ a+ =

Ma = (E ∗ v)�[−m+,−1].



62 ANIRBAN BASAK, MARTIN VOGEL, AND OFER ZEITOUNI

By the Cauchy-Schwarz inequality and (8.19), we have that for any k ∈ Z

|E ∗ v(k)| =

∣∣∣∣∣
N−1∑

0

E(k −m)v(m)

∣∣∣∣∣ 6 ‖E‖`2(Z)‖v‖`2(Z) 6 O(1)

√
N

logN
‖v‖`2(Z). (8.26)

We put L := L+ ⊕ L− with

L+ = diag(G(ζ+
1 ), . . . , G(ζ+

m+−m̂0
)),

L− = diag(G(ζ+
m+−m̂0+1), . . . , G(ζ+

m+
), G(ζ−1 ), . . . , G(ζ−m−)), G(x) =

(
1− |x|2N

1− |x|2

)1/2

,
(8.27)

where we work with the same notational convention for L− as in (8.25).
Suppose that there exists a constant 0 < C < ∞ such that for N > 0 sufficiently large M is

bijective and such that for all z ∈ ΩN

‖LM−1‖ 6 C

√
N

logN
NC2Θ(m̂0), (8.28)

with C2 as in (8.5). We will prove this fact in Step 4 below. It then follows from the bijectivity of
M that (8.20) with boundary conditions (8.21) has a unique solutions ψ of the form (8.22) with
coefficients determined by (8.23). Hence, putting

ũ = (E ∗ v − ψ)�[0,N−1],

we have that PN (q)ũ = v, so PN (q) is surjective, and thus, being a square matrix, bijective. We
get that for N > 0 sufficiently large,

‖ψ‖`2([0,N−1])

(8.22)
6

m+∑
j=1

|a+
j |G(ζ+

j ) +

m−∑
j=1

|a−j |G(ζ−j )

Hölder
6
√
m+ +m−‖La‖`2([1,m++m−])

(8.23)
6
√
m+ +m−‖LM−1c‖`2([1,m++m−])

(8.28)
6 O(1)

√
N

logN
NC2Θ(m̂0) ‖c‖`2([1,m++m−])

(8.26)
6 O(1)

N1+C2Θ(m̂0)

logN
‖v‖`2 .

(8.29)

Using Young’s convolution inequality and (8.18), we find that for N > 0 sufficiently large

‖ũ‖`2([0,N−1]) 6 ‖E ∗ v‖`2([0,N−1]) + ‖ψ‖`2([0,N−1])

6 ‖E‖`1‖v‖`2 + ‖ψ‖`2([0,N−1])

(8.18),(8.29)
6 O(1)

N1+C2Θ(m̂0)

logN
‖v‖`2 ,

uniformly for z ∈ ΩN . This proves (8.6), provided that (8.28) holds.

4. It remains to prove (8.28). By (8.7), we have that

‖V±‖, ‖B±‖ = O(1). (8.30)

Since V+, B− are Vandermonde matrices, we have that detV+ =
∏

16i<j6m+−m̂0
(ζ+
i − ζ

+
j ) and

similar expression for detB− given by a finite product of differences of the roots ζ+
m+−m̂0+1, . . . , ζ

+
m+

and ζ−1 , . . . , ζ
−
m− (resp. just ζ−1 , . . . , ζ

−
m− when m̂0 = 0). Therefore, (8.2) implies that both matrices

are bijective and that their determinants are uniformly bounded from below in modulus.
Together with (8.7), we deduce that

‖(V+)−1‖, ‖(B−)−1‖ = O(1). (8.31)

To construct the inverse of M , we proceed via the Schur complement formula and set

Γ = B−ΛN− − V−Λ
N+m+−m̂0
+ V −1

+ B+Λ
m̂0−m+
− .
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Using (8.31), (8.30), (8.4), (8.7) and (8.5), we have that

‖V−Λ
N+m+−m̂0
+ V −1

+ B+Λ
m̂0−m+−N
− B−1

− ‖

= O(1)

{
|ζm+ |N+m+ |ζ−1 |−(N+m+), m̂0 = 0,

|ζ+
m+−m0

|N+m+−m0 |ζ+
m+−m0+1|m0−(N+m+), m̂0 = m0,

= O(1)

{
N−2C0 , m̂0 = 0,
e−N logC1NC2 , m̂0 = m0

=: εN (m̂0).

(8.32)

Hence, for N > 0 large enough (depending only on the constants in the assumptions of the
theorem) we have that |εN (m̂0)| < 1, and we assume from now on that this is the case. By a
Neumann series argument we see that

Γ−1 = Λ−N− B−1
− (1 +O(1)εN (m̂0)). (8.33)

Here the O(1) term means an m− × m− matrix with operator norm bounded by a constant
uniformly in N and z ∈ ΩN .

A straightforward computation yields that

M−1 =

(
Λ
m+−m̂0
+ V −1

+ −Λ
m+−m̂0
+ V −1

+ B+Λ
m̂0−m+
−

0 1

)(
1 0

−Γ−1V−Λ
N++m+−m̂0
+ V −1

+ Γ−1

)
. (8.34)

Using (8.27) and (8.34), we obtain that

LM−1 = (8.35)(
L+Λ

m+−m̂0
+ V −1

+ (1 +B+Λ
m̂0−m+
− Γ−1V−Λ

N++m+−m̂0
+ V −1

+ ), −L+Λ
m+−m̂0
+ V −1

+ B+Λ
m̂0−m+
− Γ−1

−L−Γ−1V−Λ
N++m+−m̂0
+ V −1

+ , L−Γ−1

)
.

To prove (8.28) note that it is sufficient to estimate the norm of each block of the matrix (8.35)
separately. Since |ζ+

m+
| 6 1 6 |ζ−1 | and (8.5) holds, it follows that

‖Λ−n− ‖, ‖Λn+‖ 6 O(1), (8.36)

for any fixed n ∈ N. Using that |ζ+
m+
| 6 1 we find also that

‖ΛN+‖ 6 O(1). (8.37)

However, in view of (8.5) and since 1 6 |ζ−1 | we have that

‖Λ−N− ‖ 6 O(1)

{
|ζ−1 |−N , m̂0 = 0,
|ζ+
m+−m0+1|−N , m̂0 = m0

6 O(1)NC2Θ(m̂0) (8.38)

Continuing, we deduce from (8.31), (8.33) and (8.38) that

‖Γ−1‖ 6 O(1)‖Λ−N− B−1
− ‖ 6 O(1)NC2Θ(m̂0) (8.39)

Recall (8.27). Then, by (8.4),

‖L+‖ 6 max
16j6m+−m̂0

G(ζ+
j ) = O(1)

√
N

logN
.

Combining this with (8.31) and (8.36), we see that

‖L+Λ
m+
+ V −1

+ ‖ = O(1)

√
N

logN
. (8.40)

Hence, using (8.40), (8.31), (8.36), (8.30), (8.39) and (8.37), we get that

‖L+Λ
m+
+ V −1

+ V−Λ
−m+
− Γ−1B+Λ

N+m+
+ V −1

+ ‖ = O(1)

√
N

logN
NC2Θ(m̂0) (8.41)

and

‖L+Λ
m+
+ V −1

+ V−Λ
−m+
− Γ−1‖ = O(1)

√
N

logN
NC2Θ(m̂0). (8.42)
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Using (8.4) and (8.5), we find that

‖L−Λ−N− ‖ = max{max
j
|ζ−j |

−NG(ζ−j ), max
m+−m̂0+16j6m+

|ζ+
j |
−NG(ζ+

j )} = O(1)

√
N

logN
NC2Θ(m̂0).

(8.43)
Hence, similarly to (8.41), but using as well (8.43) and (8.33), we get that

‖L−Γ−1B+Λ
N+m+
+ V −1

+ ‖ = O(1)‖L−Λ−N− ‖ = O(1)

√
N

logN
NC2Θ(m̂0), (8.44)

and

‖L−Γ−1‖ = O(1)

√
N

logN
NC2Θ(m̂0). (8.45)

Hence, (8.35), (8.40)-(8.42), (8.44), and (8.45) yield (8.28) for N > 0 large enough.

Remark 8.4. Recall Remark 8.3. When m+ = m̂0 we have that M−1 = Λ−N− B−1
− and we obtain

(8.28) by a similar estimate as in (8.44). When m− = m̂0 = 0 then M−1 = Λ
m+
+ V −1

+ and we
obtain (8.28) by (8.40).

This completes the proof of Theorem 8.1. �

9. Quasimodes for banded Toeplitz matrices

In this section we will construct exponentially decaying quasimodes for the operator PN − z,
for z close to - however not on - the curve p(S1) while avoiding a small neighborhood of the set
of bad points, see Definition 1.3. We will see that the sign of the winding number d(z) will decide
whether these quasimodes decay to the left (d < 0) or to the right (d > 0). The construction will
be based on exponential states z±, see Proposition 9.3, determined by the roots of the Laurent
polynomial p(ζ) − z, with a particular focus on the decay rates of these exponential states. We
will separate between those states z± which decay at a fixed rate r > 0 and those which decay at
an N -dependent rate r � logN/N , where the former are determined by the roots of p(ζ)− z “far”
away from p(S1) and the latter are determined by the roots “close” to p(S1).

Throughout this section we fix z0 ∈ p(S1) such that

dp 6= 0 on p−1(z0). (9.1)

Let Ω b C be an open relatively compact simply connected neighbourhood of z0 such that

|dp| > 1/C on p−1(z) for all z ∈ Ω. (9.2)

Note that by the implicit function theorem all roots ζ = ζ(z) of p(ζ) − z are simple and depend
smoothly on z ∈ Ω. Hence, after possibly shrinking Ω, there exists 0 < C <∞ such that for any
two distinct roots ζ(z) 6= ω(z) we have that

|ζ − ω| > 1

C
, (9.3)

uniformly for z ∈ Ω. Recall the notation of the roots from Lemma 4.1.

Until further notice we will denote the winding number of the curve p(S1) around a point z ∈ C,
see also (4.34), by

d
def
= d(z)

def
= indp(S1)(z). (9.4)

Assumption 9.1. Let z0 ∈ p(S1) be as in (9.1), and let Ω be as in (9.2), so that (9.3) holds. Let
ΩN b Ω\p(S1) be an open relatively compact simply connected non-empty N -dependent set such
that the winding number d(z) 6= 0 is constant for all z ∈ ΩN , and such that there exist constants
Cα, Cβ, Cγ > 0 and m0

± > 0, independent of N , such that for N > 0 large enough (depending only
on these constants) and for all z ∈ ΩN the following holds:

• we have that
p−1(z) ∩ (S1 +D(0, CγN

−1 logN)) = ∅; (9.5)



LOCALIZATION OF EIGENVECTORS OF NON-HERMITIAN BANDED NOISY TOEPLITZ MATRICES 65

• when d > 0, then 0 6 m0
+ 6 d 6 m+ and

0 < |ζ+
1 | 6 · · · 6 |ζ

+
m+−m0

+
| < 1

Cβ
< 1− Cα

logN

N
6 |ζ+

m+−m0
++1
| 6 · · · 6 |ζ+

m+
| < 1; (9.6)

• when d < 0, then 0 6 m0
− 6 −d 6 m− and

1 < |ζ−1 | 6 · · · 6 |ζ
−
m0
−
| < 1 + Cα

logN

N
< Cβ 6 |ζ+

m0
−+1
| 6 · · · 6 |ζ−m− | < +∞. (9.7)

In (9.6) we work with the notation convention that when m+ = m0
+ then the inequalities before

1/Cβ are void, and when m0
+ = 0, then the inequalities on the right hand side of 1− Cα logN/N

are void. A similar convention is to be understood for (9.7).

Remark 9.2. 1. Unless otherwise stated, all future estimates will only depend on Ω and the con-
stants in Assumption 9.1, and therefore will be uniform in ΩN . This will be understood implicitly
when we state that an estimate is uniform in ΩN .

2. We recall that we will work with z ∈ Ω(ε1.5, C1.5, N), see (1.7) and the assumptions of
Theorem 1.6. In particular, dist(z, p(S1)) < C1.5 logN/N . Let z0 be the point on p(S1) closest
to z. Then, since dp(z0) 6= 0 (as we work in Gp,ε), as well as the existence of Cα as in (9.6)
or (9.7), e.g. that for d > 0, ζ+

m+
> 1 − Cα logN/N . To see the multiplicity count, i.e. that

e.g. m0
+ 6 d when d > 0, note that away from the set B2, if g(p) = 1 then there is precisely one

θ0 with p(eiθ0) = z0, and since dp|θ0 6= 0, there is exactly one root ζm+ near 1. When g(p) > 1,
there are g(p) such roots, while |d| > g(p) if d 6= 0, so again the same conclusion holds. On the
other hand, by Remark 6.17 we have that for any eigenvalue z in the good set, with probability
approaching one, the assumption (9.5) holds with Cγ as defined in Remark 6.17.

Our aim is to construct quasimodes for PN − z, z ∈ ΩN , these are approximate `2-normalized
eigenvectors ψ ∈ CN in the sense that

‖(PN − z)ψ‖ → 0

when N → ∞. Our focus will be on obtaining quantitative estimates for this decay. The eigen-
vectors of P[0,∞[ corresponding to the eigenvalue z, when d > 0, and shifted versions of the
eigenvectors of P]−∞,0] corresponding to the eigenvalue z, when d < 0, are excellent candidates
for quasimodes (after truncation).

We will construct these quasimodes as follows: Recall from Proposition 4.6 that these eigenvec-
tors are exponential states which are created from powers of the roots of p(ζ)−z. Using assumption
(9.6) and (9.7) we will take care (whenever possible) to distinguish between eigenvectors which
are built up only by roots strictly away from the unit circle, and those eigenvectors which contain
also a contribution from roots close to the unit circle. After truncation we orthonormalize the
states within the two respective groups. As we shall see below, we will need to slightly modify the
behaviour at the boundary of the second group to obtain a sufficiently fast decay. This way we
will obtain an almost orthogonal |d|-dimensional system of quasimodes, see Proposition 9.6 below.

Recall Proposition 4.6. To construct quasimodes out of (4.46) respectively (4.47), we begin
with constructing a suitable system of solutions to (4.44) when N+ > 0 and its analog when
N− > 0 with m+, N+, ζ

+
j replaced by m−, N−, ζ−j and the corresponding vectors A−j indexed over

1 6 ν 6 N−.

We begin with considering the case N+ > 0. Notice that this implies that 0 /∈ p−1(Ω). As
discussed after (9.2), the roots ζz of p(ζ) − z depend smoothly on z ∈ Ω, so, after potentially
slightly shrinking Ω, there exists a constant 0 < C <∞ such that any root ζz satisfies

1/C 6 |ζz|, for all z ∈ Ω. (9.8)

Let z ∈ ΩN , suppose that d > 0 and recall from (4.34) that d = m+ −N+. In view of (9.6), we
find that m+−m0

+ > N+ > 0. For the sake of the presentation we first suppose that d > m0
+ > 1.

Recall the matrix A from (4.44) and write

B+ = (A+
1 , . . . ,A

+
N+

) ∈ CN+×N+ , C+ = (A+
1 , . . . ,A

+
m+−m0

+
) ∈ CN+×(m+−m0

+)
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By (9.8) we have that for all j = 1, . . . ,m+

‖A+
j ‖ 6 C

N+
√
N+. (9.9)

Notice thatB+ is a Vandermonde type matrix, so | detB+| =
∏N+

k=1 |ζ
+
k |
−N+ ∏

16i<j6N+
|ζ+
i −ζ

+
j |.

Thus, by (9.8), (9.3), we see that B+ is invertible and, using (9.9), we find

‖B+‖, ‖B−1
+ ‖ = O(1), (9.10)

where the constant depends only on Ω. Hence, by (9.6), we see that C+ has rank N+ and has a
kernel of dimension dimN (C+) = m+ −m0

+ −N+ = d−m0
+ > 0. Let x1, . . . , xd−m0

+
∈ Cm+−m0

+

be an orthonormal system spanning N (C+). Clearly,

Cm+ 3 a+
j := xj ⊕ 0m0

+
∈ N (A) for j = 1, . . . , d−m0

+. (9.11)

For j = d−m0
+ + 1, . . . , d, we put

a+
j := (−B−1

+ A+
j+N+

, δj) ∈ Cm+ , (9.12)

where δk ∈ Cm+−N+ is so that δk(n) = δk,n for n ∈ [m+ − N+]. By construction we have that
the a+

j are linearly independent and that they span N (A). Writing X+ = (x1, . . . , xd−m0
+

) ∈
C(m+−m0

+)×(d−m0
+) and ∆+ = (δd−m0

++1, . . . , δd) ∈ Cd×m
0
+ , we put

A+
1 =

(
X+

0

)
, A+

2 =

(
−B−1

+ (A+
m+−m0

++1
, . . . ,A+

m+
)

∆+

)
,

where on the left hand side 0 ∈ Cm0
+×(d−m0

+). Then,

A+ = (a+
1 , . . . , a

+
d ) = (A+

1 , A
+
2 ). (9.13)

When m0
+ = 0, then we have no solutions (9.12) and A+ = A+

1 = X+. When d = m0
+, then we

have no solutions (9.11) and all vectors a+
j are of the form (9.12), so

A+ = A+
2 =

(
−B−1

+ (A+
N++1, . . . ,A

+
m+

)

1d

)
.

Keeping in mind these special cases, we shall keep writing (9.13) for all cases of d > m0
+ > 0, with

the convention that A+
1 is void when d = m0

+ and that A+
2 is void when m0

+ = 0.

When d < 0 (keeping in mind (4.34)) and N− > 0, we work under the assumption (9.7) and
we consider the analogue of A from (4.44) with m+, N+, ζ

+
j replaced by m−, N−, ζ

−
j and the

corresponding vectors A−j indexed over 1 6 ν 6 N−. Notice that since N− > 0, it follows that
∞ /∈ p−1(Ω), so, after potentially slightly shrinking Ω, we have that any root ζz of p(ζ) − z
satisfies |ζz| 6 C for all z ∈ Ω. Thus, the analogue of (9.9) holds for A−j . Putting B− =

(A−m−−N−+1, . . . ,A
−
m−), we find by a Van der Monde argument that the analogue of (9.10) holds

for B−. Then, by the exact same steps as above, with the obvious modifications, we can construct
|d| linearly independent solutions a−j , to Aa− = 0, such that

A− = (a−1 , . . . , a
−
d ) =

(
−B−1

− (A−1 , . . . ,A
−
m0
−

) X−

∆− 0

)
= (A−1 , A

−
2 ), (9.14)

where δk ∈ Cm−−N− is so that δk(n) = δk,n for n ∈ [m−−N−], ∆− = (δ1, . . . , δm0
−

) ∈ C|d|×m0
− , and

X− ∈ C(|d|−m0
−)×(|d|−m0

−) is a matrix with orthonormal columns spanning N ((A−
m0
−+1

, . . . ,A−m−)).

In what follows we identify `2([0, N − 1]) ' CN , so for the sake of consistency we index vectors
and the columns of matrices starting from 0.
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Proposition 9.3. Let N > N0 > 1 be integers, z0 ∈ p(S1) be as in (9.1), Ω b C be a sufficiently
small open simply connected relatively compact neighbourhood of z0, satisfying (9.2), and ΩN b
Ω\p(S1) be as in Assumption 9.1. Let N > 0 be sufficiently large, depending only on Ω and the
constants in Assumption 9.1 and the roots of p(ζ)− z be denoted as in Lemma 4.1. Write

z+j = (1, ζ+
j , . . . , (ζ

+
j )N−1)t ∈ CN , j = 1, . . . ,m+, (9.15)

and
z−j = ((ζ−j )1−N , (ζ−j )2−N , . . . , 1)t ∈ CN , j = 1, . . . ,m−, (9.16)

with the convention that 1/∞ = 0. Moreover, let Z± = (z±1 , . . . , z
±
m±).

• Suppose that d > 0. When N+ > 0, let A+ = (a+
1 , . . . , a

+
d ) be as in (9.13), and when

N+ 6 0 put A+ = Im+ ∈ Cm+×m+ . Define I+,1 := [d −m0
+] and I+,2 := [d]\[d −m0

+].
Define

(ũ+
1 , . . . , ũ

+
d ) = Z+A+(G

−1/2
+,1 ⊕ L−1

+ G
−1/2
+,2 ) (9.17)

with L+ = diag(‖z+
m+−m0

++1
‖, . . . , ‖z+m+

‖), G+,2 = (Z+A+
2 L
−1
+ )∗(Z+A+

2 L
−1
+ ), and G+,1 =

(Z+A+
1 )∗(Z+A+

1 ), using the convention that (ũ+
1 , . . . , ũ

+
d ) = Z+A+G

−1/2
+,1 when I+,2 = ∅,

and that (ũ+
1 , . . . , ũ

+
d ) = Z+A+L−1

+ G
−1/2
+,2 when I+,1 = ∅. Then, uniformly for z ∈ ΩN ,

〈ũ+
n |ũ+

m〉 =

{
δn,m, (n,m) ∈ I+,1 × I+,1 ∪ I+,2 × I+,2

δn,m +O((logN/N)1/2), (n,m) ∈ I+,1 × I+,2 ∪ I+,2 × I+,1,
(9.18)

and

‖1[N0,N−1]ũ
+
j ‖ 6 O(1)

{
e−N0 logCβ , j ∈ I+,1,

e−
N0
N

logNCγ
, j ∈ I+,2.

(9.19)

• Suppose that d < 0. When N− > 0, let A− = (a−1 , . . . , a
−
|d|) be as in (9.14), and when

N− 6 0 put A− = Im− ∈ Cm−×m− . Define I−,2 := [m0
−] and I−,1 := [−d]\[m0

−]. Define

(ũ−1 , . . . , ũ
−
|d|) = Z−A−(L−1

− G
−1/2
−,1 ⊕G

−1/2
−,2 ) (9.20)

with L− = diag(‖z+
m+−m0

++1
‖, . . . , ‖z+m+

‖), G−,1 = (Z−A−1 L
−1
− )∗(Z−A−1 L

−1
− ) and G−,2 =

(Z−A−2 )∗(Z−A−2 ), using a similar notation convention as above. Then, uniformly for z ∈
ΩN ,

〈ũ−n |ũ−m〉 =

{
δn,m, (n,m) ∈ I+,1 × I+,1 ∪ I+,2 × I+,2

δn,m +O((logN/N)1/2), (n,m) ∈ I−,1 × I−,2 ∪ I−,2 × I−,1,
(9.21)

and

‖1[0,N−N0−1]ũ
−
j ‖ 6 O(1)

{
e−

N0
N

logNCγ
, j ∈ I−,2,

e−N0 logCβ , j ∈ I−,1.
(9.22)

Remark 9.4. When d > 0, the normalized versions of the vectors defined in (9.15) will be termed
as the pure states associated with z. Similarly for d < 0 the normalized version vectors (9.16) will
be the pure states corresponding to z.

Thus, for z satisfying (9.6) we note that the pure states {z+j /‖z
+
j ‖}

m+−m0
+

j=1 are completely local-
ized and its entries decay exponentially in N , while the remaining pure states decay and localize
at a scale N/ logN . Similar conclusion holds for z’s satisfying (9.7).

Remark 9.5. For later use, let us record that for the Jordan block if z is inside the the unit disc
then it has one pure state z+1 , and ũ

+
1 = z+1 /‖z

+
1 ‖.

We postpone the proof of Proposition 9.3 to after that of Proposition 9.6. Continuing, we notice
that the ũ±j defined in (9.17) resp. (9.20), are the truncated kernel elements of P[0,+∞[ − z resp.
P]−∞,N−1]−z, separated into two groups according to their decay behaviour and orthonormalized
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within their respective groups. We could use them already as quasimodes for PN − z. In fact, it
follows from (9.19) with N0 = N − (N+ ∨ 0 +N− ∨ 0), that when d > 0

‖(PN − z)ũ+
j ‖ 6 O(1)‖1[N0,N−1]ũ

+
j ‖ 6 O(1)

{
e−N logCβ , j ∈ I+,1,
N−Cγ , j ∈ I+,2,

(9.23)

and similarly from (9.22) when d < 0. Ultimately we want to use these quasimodes to obtain
spectral gaps between the (|d|−m0

sign(d))-th and the (|d|−m0
sign(d) + 1)-th, and between the |d|-th

and (|d| + 1)-th singular value of PN − z. We will see, that these quasimodes will be sufficiently
good for our purposes when γ > 2. However, to obtain sufficiently fast decay when γ > 1 we need
to modify them.

Proposition 9.6. Under the assumptions of Proposition 9.3, we put N0 = (1− 1/ logN)(N − 1),
and we have the following:

1. If d > 0, let ũ+
j , j = 1, . . . , d, be as in (9.17) and define ψ+

j ∈ CN , by

ψ+
j (ν) =

 ũ+
j (ν), j ∈ I+,1,

1[0,N0](ν)ũ+
j (ν) + 1[N0+1,N−1](ν)

cos(π
2

ν
N−1

)

cos(π
2
N0
N−1

)
ũ+
j (ν), j ∈ I+,2.

(9.24)

2. If d < 0, let ũ−j , j = 1, . . . ,−d, be as in (9.20) and define ψ−j ∈ CN , by

ψ−j (ν) =

 1[0,N−N0](ν)
cos(π

2
N−1−ν
N−1

)

cos(π
2
N0
N−1

)
ũ−j (ν) + 1[N−N0+1,N−1](ν)ũ−j (ν), j ∈ I−,2,

ũ−j (ν), j ∈ I−,1.
(9.25)

Then, for i, j = 1, . . . , |d|, uniformly in z ∈ ΩN ,

〈ψsign(d)
i |ψsign(d)

j 〉 = δi,j +


0, when i, j ∈ Isign(d),1

O(logN)N−Cγ , when i, j ∈ Isign(d),2

O(logN)N−Cγ +O((logN/N)1/2), else,
(9.26)

and

‖(PN − z)ψsign(d)
i ‖ = O(1)

{
e−N logCβ , when i ∈ Isign(d),1
logN
N N−Cγ , when i ∈ Isign(d),2.

(9.27)

We refer to the vectors ψ̃±j as quasimodes.

Proof. We will consider only the case when d > 0, the case when d < 0 is similar. Let N > 0 be
large enough so that the conclusions of Proposition 9.3 hold.

1. First notice that

cos

(
π

2

N0

N − 1

)
= sin

π

2 logN
=

π

2 logN
(1 +O((logN)−2). (9.28)

Let j = d−m0
+ + 1, . . . , d, then

‖ũ+
j − ψ

+
j ‖

2 =

N−1∑
ν=N0+1

∣∣∣∣∣1− cos(π2
ν

N−1)

cos(π2
N0
N−1)

∣∣∣∣∣
2

|ũ+
j (ν)|2 6 O((logN)2)‖1[N0+1,N−1]ũ

+
j ‖

2.

Applying (9.19), we get that
‖ũ+

j − ψ
+
j ‖ 6 O(logN)N−Cγ . (9.29)

Remark 9.7. For later use we note here that the analogue of (9.29) in the case when d < 0 holds,
i.e.

‖ũ−j − ψ
−
j ‖ 6 O(logN)N−Cγ , j ∈ I−,2.

This, together with the ũ+
j , j = 1, . . . , d, being normalized, see (9.18), yields that

‖ψ+
j ‖ = 1 +

{
0, when j ∈ I+,1

O(logN)N−Cγ , when j ∈ I+,2.
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Using furthermore the fact that the ũ+
j are almost orthogonal, see (9.18), we find that

〈ψ+
i |ψ

+
j 〉 = 〈ψ+

i − ũ
+
i |ψj〉+ 〈ũ+

i |ψ
+
j − ũ

+
j 〉+ 〈ũ+

i |ũ
+
j 〉

= δi,j +


0, when i, j ∈ I+,1,
O(logN)N−Cγ , when i, j ∈ I+,2

O(logN)N−Cγ +O((logN/N)1/2), else.

2. It remains to prove (9.27). Recall from (9.17) and Proposition 4.6 that the ũ+
j = (Z+A+(G

−1/2
+,1 ⊕

L−1
+ G

−1/2
+,2 ))−,j are the truncated and normalized (in fact almost orthonormalized) kernel elements

of P[0,+∞[ − z. Here, and in the sequel we denote by A−,j ∈ Cn the j-th column of some n ×m
matrix A as a vector in Cn. Let uk ∈ `2([0,+∞[), k = 1, . . . , d, be given by

uk(ν) =

{
(Z+A+)ν,k, 0 6 ν 6 N − 1,
0, ν > N.

(9.30)

Then,
((P[0,+∞[ − z)uk)(ν) = 0, 0 6 ν 6 N − 1−N− ∨ 0.

By (4.34) we see that N− > 0 since we work here with d > 0. To ease the notation we write
Ñ± = N± ∨ 0, and ãk = ak − zδk,0 when ak exists, otherwise ãk = −zδk,0, so that

N+∑
k=−N−

akτ
k − z =

Ñ+∑
k=−Ñ−

ãkτ
k.

Thus, for 0 6 ν 6 N − 1− Ñ−,

(PN − z)ũ+
j (ν) =

Ñ+∑
k=−Ñ−

ãk1[0,N−1](ν − k)ũ+
j (ν − k)

(9.17)
=

Ñ+∑
k=−Ñ−

ãk1[0,N−1](ν − k)(Z+A+(G
−1/2
+,1 ⊕ L−1

+ G
−1/2
+,2 ))(ν−k),j

=

d∑
n=1

Ñ+∑
k=−Ñ−

ãk1[0,N−1](ν − k)(Z+A+)(ν−k),n(G
−1/2
+,1 ⊕ L−1

+ G
−1/2
+,2 )n,j

(9.30)
=

d∑
n=1

(G
−1/2
+,1 ⊕ L−1

+ G
−1/2
+,2 )n,j((P[0,+∞[ − z)un)(ν) = 0.

(9.31)

Thus, for 0 6 ν 6 N − 1− Ñ− and j ∈ I+,1

(PN − z)ψ+
j (ν) = (PN − z)ũj(ν) = 0.

Recall that z ∈ Ω b C is relatively compact. Hence, applying (9.19) with N0 = N −1− Ñ−− Ñ+,
we see that, uniformly in z ∈ ΩN ,

‖(PN − z)ψ+
j ‖ = O(1)‖1

[N−1−Ñ−−Ñ+,N−1]
ψ+
i ‖ = O(1)e−N logCβ , j ∈ I+,1, (9.32)

Until further notice let j ∈ I+,2. Equation (9.31) implies that for 0 6 ν 6 N0 − Ñ−

(PN − z)ψ+
j (ν) = (PN − z)ũ+

j (ν) = 0.

Next, by (9.28), we have for N0 − (Ñ+ + Ñ−) < ν 6 N0 + (Ñ+ + Ñ−) that∣∣∣∣∣1− cos(π2
ν

N−1)

cos(π2
N0
N−1)

∣∣∣∣∣ 6 O(N−1 logN)|N0 − ν| = O(N−1 logN). (9.33)
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Hence, for N0 − Ñ− < ν 6 N0 + Ñ+, we get by (9.31), (9.33) that

(PN − z)ψ+
j (ν) =

Ñ+∑
k=−Ñ−

ãkψ
+
j (ν − k)

=

Ñ+∑
k=−Ñ−

ãkũ
+
j (ν − k)−

Ñ+∑
k=−Ñ−

ãk

(
1−

cos(π2
ν−k
N−1)

cos(π2
N0
N−1)

)
ũ+
j (ν − k)1[N0+1,N−1](ν − k)

= O(N−1 logN)‖1I(ν)ũ
+
j ‖,

(9.34)

where I(ν) := [ν − Ñ+, ν + Ñ−]. For N0 + Ñ+ < ν 6 N − 1− Ñ− we get by (9.31) and a similar
estimate as in (9.33), (9.34), that

(PN − z)ψ+
j (ν) =

cos(π2
ν

N−1)

cos(π2
N0
N−1)

Ñ+∑
k=−Ñ−

ãkũ
+
j (ν − k)−

Ñ+∑
k=−Ñ−

ãk
cos(π2

ν
N−1)− cos(π2

ν−k
N−1)

cos(π2
N0
N−1)

ũ+
j (ν − k)

= O(N−1 logN)‖1I(ν)ũ
+
j ‖.

(9.35)

Now let N − 1 − Ñ− < ν 6 N − 1. For −Ñ− 6 k 6 Ñ+ we have that cos(π2
ν−k
N−1) � N−1, so by

(9.28) we get that

(PN − z)ψ+
j (ν) =

Ñ+∑
k=−Ñ−

ãk
cos(π2

ν−k
N−1)

cos(π2
N0
N−1)

ũ+
j (ν − k)1[N0+1,N−1](ν − k)

= O(N−1 logN)‖1I(ν)1[N0+1,N−1]ũ
+
j ‖.

(9.36)

Combining (9.31), (9.34), (9.35) and (9.36) we obtain that

‖(PN − z)ψ+
j ‖

2 6 O((N−1 logN)2)
N−1∑

ν=N0−Ñ−

‖1I(ν)1[N0−(Ñ++Ñ−),N−1]
ũ+
j ‖

2

6 O((N−1 logN)2)‖1
[N0−(Ñ++Ñ−),N−1]

ũ+
j ‖

2.

(9.37)

Applying now (9.19) with N0 = (1− 1/ logN)N − (Ñ+ + Ñ−), we get that

‖(PN − z)ψ+
j ‖ = O(N−1 logN)N−Cγ (9.38)

which concludes the proof of the proposition. �

Proof of Proposition 9.3. We will only consider the case when d > 0. The case d < 0 can be proven
similarly with the obvious modifications. In what follows, we will assume that N > 0 is sufficiently
large, depending only on Ω and the constants in Assumption 9.1, without us mentioning this at
every occurrence. Similarly, we note that all constants C > 0 and error estimates will be uniform
in z ∈ ΩN , and in fact they depend only on the above mentioned parameters, so we shall only
mention this at a few important points.

1. Since the roots of p(ζ) − z depend smoothly on z ∈ Ω, see the discussion above (9.3), we
have that either 0 ∈ p−1(z0) or we may take Ω sufficiently small so that 0 /∈ p−1(Ω). In both cases
0 /∈ p−1(ΩN ). Hence, we have that the symbol p(ζ) − z satisfies for all z ∈ ΩN the assumptions
of Case 1 of Lemma 4.1, see also (4.40). We then know that m+ > 0 since d > 0, see (4.34).

2. Recall from (8.24) the m+ ×m+ matrices V = V+ and Λ = Λ+ (with m̂0 = 0). Then, for
r = 1, 2 and ψ1 ∈ Cd−m

0
+ , ψ2 ∈ Cm

0
+ ,

‖Z+A+
r ψr‖2 >

b(N−2)/m+c−1∑
j=0

‖V Λjm+A+
r ψr‖2. (9.39)
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Let s1(V ) > · · · > sm+(V ) > 0 denote the singular values of V . Since | detV | =
∏m+

1 sj(V ), and
s1(V ) = ‖V ‖ 6 m+, it follows that

sm+(V ) >
|detV |
m
m+
+

=

∏
16i<j6m+

|ζ+
i − ζ

+
j |

m
m+
+

>
1

C
. (9.40)

Here, in the equality we used the formula for the determinant of the Van der Monde matrix V .
Moreover, the constant in the last inequality is uniform N and in z ∈ ΩN by (9.3). Since Λ is a
diagonal matrix, we get from (9.39) that

‖Z+A+
r ψr‖2 > s2

m+
(V )

m+∑
k=1

|(A+
r ψr)(k)|2

b(N−2)/m+c−1∑
j=0

|ζ+
k |

2jm+ . (9.41)

Putting

d2
k

def
=

b(N−2)/m+c−1∑
j=0

|ζ+
k |

2jm+ =
1− |ζ+

k |
2b(N−2)/m+cm+

1− |ζ+
k |2m+

, (9.42)

and D = diag(d1, . . . , dm+), we get from (9.41) that

‖Z+A+
r ψr‖ > sm+(V )‖DA+

r ψr‖. (9.43)

Observe that the smallest singular value of D is mink dk > 1. Recall (9.13). Provided that
d > m0

+, we notice that A+
1 is an isometry since the columns of X+ are orthonormal. Thus, it

follows from (9.43), (9.40) that

‖Z+A+
1 ψ1‖ >

1

C
‖ψ1‖, (9.44)

so the smallest singular value of G+,1 is at least 1/C, which, G+,1 being self-adjoint, implies that
it is bijective with inverse bounded in norm by C. In particular, we have that

‖A+
1 G
−1/2
+,1 ‖ =

√
C. (9.45)

3. Working with m0
+ > 1, we turn to G+,2 and we will show first that for n > d−m0

+ + 1 the u+
n

are, up to a small error, given by zn/‖zn‖. First, we compute

Fn,m
def
= |〈z+n | z+m〉| =

∣∣∣∣∣
N−1∑

0

(ζ+
n ζ

+
m)ν

∣∣∣∣∣ =

(
(1− |ζ+

n |2N )(1− |ζ+
n |2N ) + |(ζ+

n )N − (ζ+
m)N |2

(1− |ζ+
n |2)(1− |ζ+

m|2) + |ζ+
n − ζ+

m|2

)1/2

.

(9.46)
By (9.6), (9.5) and (9.3) we find that

Fn,m =


� 1, when 1 6 n,m 6 m+ −m0

+,
� 1, when n 6= m,
� N

logN , when m+ −m0
+ + 1 6 n = m 6 m+.

(9.47)

Second, notice that by (9.9), (9.10), we have that T := −B−1
+ (A+

m+−m0
++1

, . . . ,A+
m+

) has norm
‖T‖ = O(1), depending only on Ω. Recalling the definition of ∆+ from the discussion before
(9.13), we see that

Z+A+
2 L
−1
+ = Z̃+TL−1

+ + Ẑ+L−1
+ , (9.48)

where Z̃+ = (z+1 , . . . , z
+
N+

) and Ẑ+ = (z+
m+−m0

++1
, . . . , z+m+

). Using (9.47), we get that

G+,2 = L−1
+ (Ẑ+)∗Ẑ+L−1

+ + L−1
+

(
(Ẑ+)∗Z̃+T + (Z̃+T )∗Ẑ+ + (Z̃+T )∗Z̃+T

)
L−1

+

= 1 +O(1)
logN

N
,

(9.49)

where the O(1) term denotes an m0
+ ×m0

+ matrix with norm bounded by O(1), depending only
on Ω and the constants in Assumption 9.1. Hence, for N > 0 sufficiently large (depending only
on Ω and the constants in Assumption 9.1), we have that G+,2 is invertible and

G
−1/2
+,2 = 1 +O(1)

logN

N
. (9.50)
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Hence, using again (9.47) and denoting by M−,n the n-th column of a matrix, we get that for
n ∈ I+,2

ũ+
n =

(
Z+A+

2 L
−1
+ G

−1/2
+,2

)
−,n

=
(
Z̃+TL−1

+ G
−1/2
+,2

)
−,n

+
(
Ẑ+L−1

+ G
−1/2
+,2

)
−,n

=
z+n
‖z+n ‖

+O(1)

√
logN

N
,

(9.51)

where the O(1) term denotes a vector in CN whose `2 norm is bounded by O(1). In particular,
(9.44) and (9.50) imply that (9.17) is well-defined.

Remark 9.8. For a later use we note that the analogue of (9.51) in the case when d < 0 holds,
i.e.

ũ−n =
z−n
‖z−n ‖

+O(1)

√
logN

N
, n ∈ I−,2.

4. Since (Z+A+
1 G
−1/2
+,1 )∗(Z+A+

1 G
−1/2
+,1 ) = 1, and (Z+A+

2 L+G
−1/2
+,2 )∗(Z+A+

2 L+G
−1/2
+,2 ) = 1, we

confirm the first line of (9.18). To prove the second line, let (n,m) ∈ I+,1× I+,2. Equations (9.51)
and (9.17) then yield that

〈ũ+
n |ũ+

m〉 =

〈
Z+(A+

1 G
−1/2
+,1 )−,n

∣∣∣ z+m
‖z+m‖

〉
+O(1)

√
logN

N

=

m+−m0
+∑

k=1

〈z+k |z
+
m〉‖z+m‖−1(A+

1 G
−1/2
+,1 )k,n +O(1)

√
logN

N

(9.45),(9.47)
6 O(1)

√
logN

N
.

(9.52)

The other case of the second line of (9.18) follows from symmetry.

5. At last, we turn to proving (9.19). Let j ∈ I+,1. Using Hölder’s inequality, we compute

‖1[N0,N−1]ũ
+
j ‖

2 =

N−1∑
ν=N0

|(Z+A+G
−1/2
+,1 )ν,j |2 6

N−1∑
ν=N0

∣∣∣∣∣∣
m+−m+

0∑
µ=1

(Z+)ν,µ(A+G
−1/2
+,1 )µ,j

∣∣∣∣∣∣
2

6
N−1∑
ν=N0

m+−m+
0∑

µ=1

|(Z+)ν,µ|2
m+−m+

0∑
µ=1

|(A+G
−1/2
+,1 )µ,j |2

 .

(9.53)

Since the right most term in the last line is controlled by the Hillbert-Schmidt norm of the
corresponding matrices, we get by using (9.45) and summing the geometric series that

‖1[N0,N−1]ũ
+
j ‖

2 6 ‖A+G
−1/2
+,1 ‖

2
HS

N−1∑
ν=N0

m+−m+
0∑

µ=1

|(Z+)ν,µ|2


(9.45)
6 O(1)

N−1∑
ν=N0

m+−m+
0∑

µ=1

|ζ+
µ |2ν

 = O(1)

m+−m+
0∑

µ=1

|ζ+
µ |2N0

1− |ζ+
µ |2(N−N0)

1− |ζ+
µ |2

.

(9.54)

Since |ζm+−m0
+
| 6 1/Cβ < 1, we have that for µ = 1, . . . ,m+ −m0

+,

1− |ζ+
µ |2(N−N0)

1− |ζ+
µ |2

6
Cβ

Cβ − 1
. (9.55)

Similarly we see that
|ζ+
µ |2N0 6 e−2N0 logCβ . (9.56)

Combining this with (9.54) and (9.55) yields that

‖1[N0,N−1]ũ
+
j ‖ 6 O(1)e−N0 logCβ ,

uniformly in z ∈ ΩN , and we conclude the first line in (9.19).
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It remains to prove the second line of (9.19). Recall the definition of A+
2 (9.13), and notice that

A+
2 L
−1
+ =

(
−B−1(A+

m+−m0
++1

, . . . ,A+
m+

)L−1
+

∆+L
−1
+

)

= L̃−1
+

(
−B−1(A+

m+−m0
++1

, . . . ,A+
m+

)L−1
+

∆+

)
def
= L̃−1

+ Ã+
2

(9.57)

where L̃+ := 1N+ ⊕ diag(‖z+N++1‖, . . . , ‖z+m+
‖). Furthermore, it follows from (9.9), (9.10) and

(9.47) that

‖B−1(A+
m+−m0

++1
, . . . ,A+

m+
)L−1

+ ‖ = O(1)

√
logN

N
, (9.58)

which implies that
‖Ã+

2 ‖ = O(1). (9.59)
Using the commutation relation (9.57), we compute for j ∈ I+,2 that

‖1[N0,N−1]ũ
+
j ‖

2 =
N−1∑
ν=N0

|(Z+A+
2 L
−1
+ G

−1/2
+,2 )ν,j |2 6

N−1∑
ν=N0

∣∣∣∣∣∣
m+∑
µ=1

(Z+L̃−1
+ )ν,µ(Ã+

2 G
−1/2
+,2 )µ,j

∣∣∣∣∣∣
2

6
N−1∑
ν=N0

m+∑
µ=1

|(Z+L̃−1
+ )ν,µ|2

m+∑
µ=1

|(Ã+G
−1/2
+ )µ,j |2

 .

(9.60)

Thus, by (9.59), (9.50)

‖1[N0,N−1]ũ
+
j ‖

2 6 ‖Ã+G
−1/2
+ ‖2HS

N−1∑
ν=N0

m+∑
µ=1

|(Z+L̃−1
+ )ν,µ|2


6 O(1)

N−1∑
ν=N0

N+∑
µ=1

|ζ+
µ |2ν +

m+∑
µ=N++1

|ζ+
µ |2ν

‖z+µ ‖2

 .

(9.61)

Using (9.47), we get by a computation similar to (9.55) and (9.56) that

N−1∑
ν=N0

N+∑
µ=1

|ζ+
µ |2ν +

m+−m0
+∑

µ=N++1

|ζ+
µ |2ν

‖z+µ ‖2

 = O(1)e−N0 logCβ . (9.62)

On the other hand, using (9.46) and the fact that |ζm+ | < 1, we find µ = m+ −m0
+ + 1, . . . ,m+

that
N−1∑
ν=N0

|ζ+
µ |2ν

‖z+µ ‖2
= |ζ+

µ |2N0
1− |ζ+

µ |2(N−N0)

1− |ζ+
µ |2N

6 |ζ+
µ |2N0 . (9.63)

By (9.5), we see that

|ζ+
µ |2N0 6 exp

(
2N0 log

(
1− Cγ

logN

N

))
6 exp

(
−2N0Cγ

logN

N

)
6 e−

2N0
N

logNCγ
, (9.64)

which, together with (9.63), (9.62) and (9.61) yields that for N > 0 sufficiently large

‖1[N0,N−1]ũ
+
j ‖

2 6 O(1)e−
2N0
N

logNCγ
, (9.65)

uniformly in z ∈ ΩN , and we conclude the first second line in (9.19). �

10. Singular values and vectors

We provide in this section various estimates on singular values and vectors of PN − z. The
section is divided to subsections, dealing respectively with small singular values, singular vectors,
large singular values, and the smallest singular value and Hilbert-Schmidt norm of the matrices
appearing in the resolvent expansion of the matrices discussed in Section 3.
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10.1. Small singular values. We will work under the same assumptions as discussed in the
beginning of Section 9. We will use the quasimodes constructed in Proposition 9.6 to obtain an
upper bound on the |d|-th smallest singular values of PN − z corresponding to the decay speed
of the quasimodes. We will also show with the help of Theorem 8.1 that the (|d|+ 1)-th singular
value of PN − z is significantly larger than the |d|-th one, which leads to a spectral gap. This is
known as splitting phenomenon, see for instance [15, Section 9.2]. This phenomenon has typically
been investigated for z being at a fixed distance from p(S1) or for fixed symbols. In that case
it is known that the smallest |d| singular values are of order O(e−N/C) whereas the (|d| + 1)-th
singular value is bounded from below by some small N independent constant. What is new here
is that we allow the spectral parameter z to be at an N -dependent distance from p(S1), which
leads to a significantly smaller spectral gap.

Moreover, we will show that due to the assumptions (9.6), (9.7), there exists a second spectral
gap between the first (|d| −m0

sign(d)) singular values, which are exponentially small in N , and the
(|d| −m0

sign(d) + 1)-th singular value, which is at most polynomially small in N .
Both spectral gaps will be crucial in describing the localization of the eigenvectors of P δN .

Proposition 10.1. Let z0 ∈ p(S1) be as in (9.1) and let Ω b C be a sufficiently small open simply
connected relatively compact neighborhood of a point z0 satisfying (9.2). Let ΩN b Ω\p(S1) be as
in Assumption 9.1. For z ∈ ΩN let t1 6 · · · 6 tN denote the eigenvalues of

√
(PN − z)∗(PN − z).

Then there exists a constant 0 < C <∞ such that, for all N large enough (depending only on Ω
and the constants in Assumption 9.1) and for all z ∈ ΩN

0 6 t1 6 · · · 6 t|d| 6 C
logN

N
N−Cγ , (10.1)

and
t|d|+1 >

1

C

logN

N
. (10.2)

Additionally, if |d| −m0
sign(d) > 0, then

0 6 t1 6 · · · 6 t|d|−m0
sign(d)

6 Ce−N logCβ , (10.3)

and if m0
sign(d) > 0

1

C

logN

N
N−Cα 6 t|d|−m0

sign(d)
+1 6 · · · 6 t|d| 6 C

logN

N
N−Cγ . (10.4)

Remark 10.2. If in Assumption 9.1 we have that |ζ+
m+−m0

++1
| = |ζ+

m+
| (in case d > 0) or

|ζ−
m0
−+1
| = |ζ−m− | (in case d < 0) then clearly one can take Cα = Cγ + ε for any ε > 0, improving

upon (10.4). By (5.85), this will always be the case for us.

Proof. Recall that for a square N ×N matrix A, tj(A) denote the eigenvalues of
√
A∗A (ordered

non-decreasingly) and sj(A) denote the singular values (ordered non-increasingly), see (1.13).
By the singular value decomposition of the square matrix A, we have that tj(A) = tj(A

∗) and
sj(A) = sj(A

∗). Recall the Ky Fan inequalities, see for instance [32]: for two square matrices
A,B we have

sn+m−1(A+B) 6 sn(A) + sm(B),

sn+m−1(AB) 6 sn(A)sm(B).
(10.5)

Further, if A is an invertible N ×N matrix, then

sn(A−1) =
1

sN−n+1(A)
, n = 1, . . . , N.

From (4.6) we know that the symbol of the adjoint Op(p)∗ is given by p̃(ω) = p(1/ω). So in
view of Lemma 4.1, the roots of p(1/ω)− z, or equivalently the roots of p(1/ω)− z are given by
ω∓j = 1/ζ

±
j , where ζ±j are the roots of p(ζ) − z. Hence, the discussion and results of Section 4

valid for p(ζ)− z remain valid for p(1/ω)− z with the roles of m+, N+, and m−, N− exchanged.
Furthermore, the roles of the assumption (9.6) and (9.7) are then interchanged. This argument
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will allow us to reduce the number cases of symbols p − z we need to consider, since we may
always pass to studying the singular values of the adjoint (PN − z)∗. In particular, in the rest of
the proof we may and will assume that d > 0 for z ∈ ΩN .

In what follows, we will work with N > 0 sufficiently large, depending only on Ω and the con-
stants in Assumption 9.1, without us mentioning this dependence at every occurrence. Similar,
we note that all error estimates will be uniform in z ∈ ΩN , and in fact they depend only on the
above mentioned parameters, so we shall only mention this at a few important points.

1. Let z ∈ ΩN . We begin with the upper bound on td. Let ψ+
j , j = 1, . . . , d be as in (9.24),

and note that for N > 0 sufficiently large, they are linearly independent. Indeed if they were not,
then there would exist an 0 6= a = (a1, . . . , ad) ∈ Cd| such that a1ψ

+
1 + · · ·+ adψ

+
d = 0. Let j0 be

such that |aj0 | > |aj | for j 6= j0, with |aj0 | > 0. Since the ψ+
j are almost-orthonormal by (9.26),

we find that

1 +O(logN)N−Cγ = −
∑

j∈[d],j 6=j0

aj
aj0
〈ψ+

j |ψ
+
j0
〉 = O(logN)N−Cγ +O((logN/N)1/2), (10.6)

a contradiction.

Let Kd ⊂ CN denote the linear subspace of CN spanned by the ψ+
j and notice that it has

dimension d, for N > 0 sufficiently large. For any ψ ∈ Kd, we write ψ =
∑d

j=1 ajψ
+
j . If ‖ψ‖ = 1,

then we get by (9.26) and the Cauchy-Schwarz inequality that for N > 0 sufficiently large,

1 =

d∑
j=1

|aj |2‖ψ+
j ‖

2 +
∑
i 6=j

aiaj〈ψ+
i |ψ

+
j 〉 = ‖a‖2(1 + ε̂N ),

where ε̂N = O(1)(N−Cγ logN + (logN/N)1/2) and the constant is uniform in z ∈ ΩN and inde-
pendent of ψ. Thus, for N > 0 large enough, ‖a‖2 = (1 + ε̂N ), uniformly in the choice of z ∈ ΩN

and ψ. The min-max principle and (9.27) yield that

t2d = min
L:dimL=d

max
ψ∈L
‖ψ‖=1

‖(PN − z)ψ‖2 6 max
ψ∈Kd
‖ψ‖=1

‖(PN − z)ψ‖2

6 max
ψ∈Kd
‖ψ‖=1

(
d∑
1

|aj | · ‖(PN − z)ψ+
j ‖

)2
(9.27)
6 O(1)

(
logN

N
N−Cγ

)2

,

and we conclude the upper bound in (10.1) and (10.4).
Suppose that d > m0

+ and recall (9.6) and (9.7). Letting Kd−m0
+
denote the linear subspace of

CN spanned by ψ+
1 , . . . , ψ

+
d−m0

+
, and recalling from (9.26) that these vectors are orthonormal, we

deduce similarly as above from the min-max principle and (9.27), that

t2d−m0
+
6 max

ψ∈K
d−m0

+

‖ψ‖=1

‖(PN − z)ψ‖2 6
d−m0

+∑
1

‖(PN − z)ψ+
j ‖

2
(9.27)
6 O(e−2N logCβ ),

and we conclude (10.3).

2. We may write Ω as the disjoint union

Ω = Ω′ ∪̇ (p(S1) ∩ Ω) ∪̇Ω′′

so that ΩN ⊂ Ω′. In particular indp(S1)(z) = d for all z ∈ Ω′.
The rest of the proof will be concerned with the lower bounds on td+1 and td−m0

++1 for z ∈ ΩN ,
and we will have to consider the two cases of N± > 0 or N+ 6 0. Note that by (4.15), these are
the only cases we need to consider, since d > 0 while by Remark 4.2 and (4.34), we have that
d 6 0 if N− < 0. We note here that in both cases ∞ /∈ p−1(Ω), see (4.15) and Lemma 4.1.
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Recall from the discussion after (9.2) that all roots ζz of p(ζ)−z depend smoothly on z ∈ Ω. So,
when either N± > 0, or N+ 6 0 and 0 /∈ p−1(z0), we see that {0,∞} /∈ p−1(Ω) for Ω sufficiently
small. On the other hand, when N+ 6 0 and 0 ∈ p−1(z0), then by the smooth dependence of
the roots on z that 0 /∈ p−1(Ω′), after possibly shrinking Ω. Hence, for Ω sufficiently small, there
exists a constant C > 0 such that any root ζz satisfies

0 < |ζz| 6 C, for all z ∈ Ω′. (10.7)

Since the symbol p(ζ) − z for z ∈ Ω′ satisfies the assumptions of Case 1 of Lemma 4.1, we may
order its roots as in (4.26). So, in combination with (10.7) we get that

0 < |ζ+
1 | 6 · · · 6 |ζ

+
m+
| < 1 < |ζ−1 | 6 · · · 6 |ζ

−
m− | 6 C, for all z ∈ Ω′. (10.8)

By (4.34) we know that m+ > d > 0, so we work in (10.8) with the convention that when m− = 0
then only the estimates on the existing roots in (10.8) apply.

Recall Assumption 9.1, and as in Theorem 8.1, let Θ denote the Heaviside function, and let

m̂0 ∈
{
{0,m0

+}, m0
+ > 0

{0}, m0
+ = 0.

(10.9)

To shorten the notation we will write Θ := Θ(m̂0) whenever convenient. The case m̂0 = 0 will
be used to prove the lower bound in (10.2), and the case m̂0 = m0

+ for the lower bound in (10.4).
Write Ñ+ = N+ ∨ 0. For ζ ∈ S1 and z ∈ Ω′, we can write the symbol as

p(ζ)− z = ζ−Ñ+

Ñ++N−∑
0

aN+−j ζ
j − zζÑ+

 = ζm+−Ñ+−m0
+Θq(ζ)

(4.34)
= ζd−m

0
+Θq(ζ), (10.10)

where

q(ζ) =

m+−m0
+Θ∑

−m−−m0
+Θ

qj ζ
−j := a−N−

m+−m0
+Θ∏

1

(1− ζ+
j /ζ)

m+∏
m+−m0

+Θ+1

(ζ − ζ+
j )

m−∏
1

(ζ − ζ−j ) (10.11)

Here qm+−m0
+Θ = a−N−

∏m+

1 (−ζ+
j )
∏m−

1 (−ζ−j ), and q−m−−m0
+Θ = a−N− . So, by (10.8) and

(4.15), we conclude that there exists some constant C > 0 such that for all z ∈ Ω′

qm+−m0
+Θ 6= 0, |q−m−−m0

+Θ| > 1/C, |qj | 6 C.

Equation (10.11) shows that there are no roots of q on S1 and, by performing a computation as
in (4.34), that indq(S1)(0) = m̂0 for all z ∈ ΩN . This, together with (10.7), (9.3), (9.5) and (9.6)
shows that q, ΩN and Ω′ satisfy the assumptions of Theorem 8.1 with m̂0 as in (10.9), C0 = Cα,
C1 = Cβ , C2 = Cγ , and therefore there exists a constant C > 0 such that for N > 0 sufficiently
large and all z ∈ ΩN ,

sN (PN (q)) >
1

C

logN

N
N−CαΘ(m̂0). (10.12)

When d = m0
+ > 0 then sN−j+1 = tj , and we immediately conclude the lower bound in (10.4)

using that m̂0 = m0
+. Hence, from now on we may and will assume that d > m0

+Θ(m̂0), see also
Assumption 9.1.

Recall the definition of χn from (4.10). As noted after (4.12) we have that H(χn) = 0 when
n 6 0 and that H(χn) has rank n, when n > 0. So by (4.14) and (10.10) we get that

PN (p− z)PN (χm0
+Θ−d) = PN (q)−ΠNH(p− z)H(χd−m0

+Θ)ΠN , (10.13)

where the second term on the right hand side has rank d − m0
+Θ. Since s1(PN (χm0

+Θ−d)) =

‖PN (χm0
+Θ−d)‖ = 1, we get by (10.13) and the second Ky Fan inequality in (10.5) that for any

n = 1, . . . , N ,

sn(PN (p− z)) = sn(PN (p− z)) s1(PN (χm0
+Θ−d)) > sn(PN (q)−ΠNH(p− z)H(χd−m0

+Θ)ΠN ).

(10.14)
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By interleaving inequalities for singular values, see e.g. [12, Problem III.6.4], for any matrices
A,K ∈ CN×N with K of rank m ∈ {0, . . . , N − 1},

sN−m(A) > sN (A+K). (10.15)

Applying this estimate with

A = PN (q)−ΠNH(p− z)H(χd−m0
+Θ)ΠN , K = ΠNH(p− z)H(χd−m0

+Θ)ΠN ,

and m = d−m0
+Θ, yields together with (10.14) and (10.12) that for N > 0 large enough (so that

(10.12) holds)

sN−d+m0
+Θ(PN (p− z)) > sN (PN (q)) >

1

C

logN

N
N−CαΘ(m̂0),

for all z ∈ ΩN . Since sN−j+1 = tj , we get (10.2) by taking m̂0 = 0, and we obtain the lower bound
in (10.4), when d > m0

+ > 0, by taking m̂0 = m0
+. This ends the proof of Proposition 10.1. �

10.2. Singular vectors. Throughout this section we will continue to work with z ∈ ΩN sat-
isfying Assumption 9.1 and we will denote the orthonormal eigenvectors of (PN − z)∗(PN − z)
corresponding to the eigenvalues 0 6 t21 6 · · · 6 t2N by e1, . . . , eN . Using the spectral gap
from Proposition 10.1 we will show that the quasimodes from Proposition 9.6 span, up to a
small error, the same space as the eigenvectors e1, . . . , e|d|. More precisely we will show that the
eigenvectors e1, . . . , e|d|−m0

sign(d)
are well approximated by a linear combination of the quasimodes

ψ1, . . . , ψ|d|−m0
sign(d)

, whereas the eigenvectors e|d|−m0
sign(d)

+1, . . . , e|d| are well approximated by a
linear combination of ψ|d|−m0

sign(d)
+1, . . . , ψ|d|.

Proposition 10.3. Consider the setup as in Proposition 10.1. Let Πκ = 1[0,κ2]((PN−z)∗(PN−z)),
κ > 0, z ∈ ΩN , be the spectral projector onto the eigenspace of (PN −z)∗(PN −z) corresponding to
the eigenvalues 0 6 t21 6 . . . 6 t2j 6 κ2. Let ψ±j and I±,1, I±,2 be as in Proposition 9.6, let N > 0

be sufficiently large (depending only on the Ω and the constants in Assumption 9.1), and put

ẽj :=

Πt|d|−m0
sign(d)

ψ
sign(d)
j

‖Πt|d|−m0
sign(d)

ψ
sign(d)
j ‖

, j ∈ Isign(d),1,

and

ẽj :=
Πt|d|ψ

sign(d)
j

‖Πt|d|ψ
sign(d)
j ‖

, j ∈ Isign(d),2.

Then, uniformly in z ∈ ΩN ,

‖ẽj − ψ sign(d)
j ‖ = O(1)

{
N(1+Cα)

logN e−N logCβ , j ∈ Isign(d),1,

N−Cγ logN, j ∈ Isign(d),2,

and

〈ẽi|ẽj〉 = δi,j +


N(1+Cα)

logN e−N logCβ , when i, j ∈ Isign(d),1,

O(logN)N−Cγ , when i, j ∈ Isign(d),2,

O(logN)N−Cγ +O((logN/N)1/2), else.
(10.16)

Proof. To ease the notation we drop the ± superscripts and let ψj be either ψ+
j or ψ−j depending

on sign(d). Furthermore, we write Bz := (PN − z)∗(PN − z) and we let N � 1. In what follows
all constants will be uniform in N � 1 and z ∈ ΩN even when we do not state this fact explicitly.

By (9.27), we have that

〈Bzψj |ψj〉 = ‖(PN − z)ψj‖2 = O(1)

{
e−2N logCβ , j ∈ Isign(d),1(

logN
N N−Cγ

)2
, j ∈ Isign(d),2.

(10.17)
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Let κ = t|d|−m0
sign(d)

for j ∈ Isign(d),1, and κ = t|d| for j ∈ Isign(d),2. Let Π = Πκ and Π⊥ =

1]κ2,∞[(Bz), and notice that both are selfadjoint projectors onto disjoint eigenspaces and that
Π + Π⊥ = 1. By the spectral theorem and the fact that Bz > 0,

〈Bzψj |ψj〉 = 〈BzΠψj |Πψj〉+ 〈BzΠ⊥ψj |Π⊥ψj〉 > ‖Π⊥ψj‖2
{
t2|d|−m0

sign(d)
+1
, j ∈ Isign(d),1,

t2|d|+1, j ∈ Isign(d),2.

(10.18)
Combining (10.17), (10.18) and (10.2), (10.4) we get that

‖Π⊥ψj‖
(10.17)
6


O(1)

(
e−N logCβ t−1

|d|−m0
sign(d)

+1

)
(10.4)
6 O(1)N

(1+Cα)

logN e−N logCβ , j ∈ Isign(d),1,

O(1)
(
t−1
|d|+1

logN
N N−Cγ

) (10.2)
6 O(1)N−Cγ , j ∈ Isign(d),2.

Hence, by (9.26),

|1− ‖Πψj‖| 6

{
‖ψj −Πψj‖ = ‖Π⊥ψj‖ = O(1)N

(1+Cα)

logN e−N logCβ , j ∈ Isign(d),1

‖ψj −Πψj‖+O(1)N−Cγ logN = O(1)N−Cγ logN, j ∈ Isign(d),2

=: εj .

Thus, for N > 0 sufficiently large, so that εj � 1,

‖ẽj − ψj‖ =

∥∥∥∥ Πψj
1 +O(εj)

− ψj
∥∥∥∥ 6 O(εj),

which, together with (9.26) and

〈ẽi|ẽj〉 = 〈ψi|ψj〉+ 〈ẽi − ψi|ψj〉+ 〈ψi|ẽj − ψj〉+ 〈ẽi − ψi|ẽj − ψj〉,
lets us conclude the proofs of the proposition. �

Notice that (10.16) implies by a similar argument as before (10.6), that for N > 0 large enough,
the vectors ẽ1, . . . , ẽ|d| are linearly independent. Hence, we conclude the following.

Corollary 10.4. Under the assumptions of Proposition 10.3, we have that the ẽ1, . . . , ẽ|d|−m0
sign(d)

span the range R(Πt|d|−m0
sign(d)

) and that ẽ1, . . . , ẽ|d| span R(Πt|d|).

Remark 10.5. By Remark 9.5, (9.29), and Proposition 10.3 it follows that for the Jordan block
with z inside the unit disc such that (9.5) holds we have that∥∥∥∥ z+1

‖z+1 ‖
− e1

∥∥∥∥ = O(N−Cγ logN).

In what follows we suppose that N > 0 is sufficiently large, so that the conclusion of Proposition
10.3 holds. Furthermore, all error terms will be uniform in z ∈ ΩN even if we don’t state this
explicitly.

In view of Proposition 10.3 and Corollary 10.4, we know that there exist a1, . . . , a|d|−m0
sign(d)

∈
`2(Isign(d),1) and b|d|−m0

sign(d)
+1, . . . , b|d| ∈ `2([|d|]) such that

ej =
∑

ν∈Isign(d),1

aj(ν)ẽν , j ∈ Isign(d),1, and ej =

|d|∑
1

bj(ν)ẽν , j ∈ Isign(d),2.

Let n,m ∈ Isign(d),1. Using (10.16) and the fact that the ej are orthonormal, we get that

δn,m = 〈en|em〉 =
∑
ν,µ

an(ν)am(µ)〈ẽν |ẽµ〉 = 〈an|am〉+O
(
‖a‖2N (1+Cα)e−N logCβ/ logN

)
,

where the constant in the error estimate is independent of a. We deduce that ‖an‖ = 1 +

O(N (1+Cα)e−N/C/ logN), and

〈an|am〉 = δn,m +O
(
N (1+Cα)e−N logCβ/ logN

)
. (10.19)
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Similarly, we deduce from (10.16) that for n,m ∈ Isign(d),2

〈bn|bm〉 = δn,m +O(N−Cγ logN) +O((logN/N)1/2), (10.20)

where the constants in the error estimate are independent of b. Decompose

bj =

{
b̃j ⊕ b̂j ∈ `2(I+,1)⊕ `2(I+,2), sign(d) > 0,

b̂j ⊕ b̃j ∈ `2(I−,2)⊕ `2(I−,1), sign(d) < 0.

Exploiting the orthogonality of the ej and using (10.19), (10.20), we deduce similarly as above
that for n ∈ Isign(d),1 and m ∈ Isign(d),2,

〈an |̃bm〉 = O(N−Cγ logN) +O((logN/N)1/2). (10.21)

By a similar argument as before (10.6), we deduce from (10.19) that for N > 0 sufficiently large
(depending only on the Ω and the constants in Assumption 9.1), the aj are linearly independent
and span `2(I±,1). Thus, for each b̃j there exists a dj ∈ C|d|−m

0
sign(d) such that b̃j =

∑
ν dj(ν)aν .

Hence, by (10.21), (10.19),

‖b̃m‖2 =
∑
ν,µ

dm(ν)dm(µ)〈aν |aµ〉 = ‖dm‖2
(

1 +O
(
N (1+Cα)e−N logCβ/ logN

))
. (10.22)

Combining this with (10.21), (10.22), (10.19), we deduce that

‖dk‖ = O(N−Cγ logN) +O((logN/N)1/2) +O
(
N (1+Cα)e−N logCβ/ logN

)
,

where the error terms are independent of a, b, and d. Notice that the error term which is
exponentially small in N may be absorbed into the other two terms. Hence,

‖b̃m‖ = O(N−Cγ logN) +O((logN/N)1/2).

Thus, for j ∈ Isign(d),2,

ej =
∑

ν∈Isign(d),2

b̂j(ν)ψ sign(d)
ν +O(N−Cγ logN) +O((logN/N)1/2).

In view of (9.29), (9.51) and Remarks 9.8 and 9.7, we may replace ψ sign(d)
ν in the above expression

by z
sign(d)
ν /‖zsign(d)

ν ‖, see also Proposition 9.3.

Summing up what we have proven so far, we obtain in view of Propositions 10.3 and 9.6
the following. Recall that for z ∈ ΩN , e1, . . . , eN are an orthonormal set of eigenvectors of
(PN − z)∗(PN − z) corresponding to the eigenvalues 0 6 t21 6 · · · 6 t2N .

Proposition 10.6. Under the assumptions of Proposition 10.3, we have that for j ∈ Isign(d),1,

ej =
∑

ν∈Isign(d),1

aj(ν)ψ sign(d)
ν +O(1)N (1+Cα)e−N logCβ/ logN,

where aj ∈ `2(Isign(d),1) satisfy (10.19), uniformly in z ∈ ΩN . Further, for j ∈ Isign(d),2,

ej =
∑

ν∈Isign(d),2

bj(ν)
z
sign(d)
ν

‖zsign(d)
ν ‖

+O(N−Cγ logN) +O((logN/N)1/2). (10.23)

where bj ∈ `2(Isign(d),2) satisfy

〈bn|bm〉 = δn,m +O(logNN−Cγ ) +O((logN/N)1/2), (10.24)

uniformly in z ∈ ΩN .

Remark 10.7. We recall, see points (i), (ii) of Lemma 6.16 and (5.85), that for ν 6= ν ′ ∈ Isign(d),2

we have that |ζsign(d)
ν · ζsign(d)

ν′ − 1| is bounded away from 0 by a constant c > 0 independent of N ,
while for ν = ν ′ ∈ Isign(d),2 it is of order logN/N by (9.5)-(9.7).

Next, we turn to proving localization estimates of the singular vectors.
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Theorem 10.8. Consider the setup and notation as in Proposition 10.1. Then, there exist con-
stants 0 < C,C ′ <∞ such that for N > 0 sufficiently large (depending only on Ω and the constants
in Assumption 9.1) we have that for any z ∈ ΩN , for any discrete interval I = [`0, `1] ⊂ [0, N−1],
with |I| > 2(1 +m0

+), and for j ∈ Isign(d),2

‖ej‖2`2(I) 6 C min

{
|I| logN

N
,

1

C ′

}
e−2Cγd

logN
N + CN−2Cγ (logN)2 + C

logN

N
, (10.25)

and

‖ej‖2`2(I) >
1

C
min

{
|I| logN

N
,

1

C ′

}
e−2Cαd

logN
N − CN−2Cγ (logN)2 − C logN

N
, (10.26)

and for j ∈ Isign(d),1,

‖ej‖2`2(I) 6 Ce−2d logCβ + CN2(1+Cα)e−2N logCβ (logN)−2. (10.27)

Here,

d :=

{
`0 when d > 0,
N − `1 when d < 0.

We remark that we do not use (10.26) in the rest of the paper (instead, we use (10.23)). Its
inclusion here is to contrast with (10.25).

Proof. We shall only consider the case when the winding number d > 0, since the case when d < 0
is similar. Throughout we will assume that N > 0 is sufficiently large (depending only on Ω and
the constants in Assumption 9.1) so that the conclusions of Propositions 10.6, 10.3, 9.6, and 9.3
hold, and we have that all error terms are uniform in z ∈ ΩN without us mentioning this explicitly.

1. We begin by considering the case where d−m0
+ > 0 and j ∈ I+,1. By Propositions 10.6 and

9.6, we find that

‖ej‖2`2(I) 6 2

∥∥∥∥∥∥
∑
ν∈I+,1

aj(ν)ψ+
ν

∥∥∥∥∥∥
2

`2(I)

+O(1)
N2(1+Cα)

(logN)2
e−2N logCβ . (10.28)

Recall from Proposition 9.3 that ψ+
ν is given by the ν-th column of Z+A+

1 G
−1/2
+,1 . Using the

Cauchy-Schwarz inequality we get that∥∥∥∥∥∥
∑
ν∈I+,1

aj(ν)ψν

∥∥∥∥∥∥
2

`2(I)

=
∑
µ∈I

∣∣∣∣∣∣
∑
ν∈I+,1

m+−m0
+∑

η=1

Z+
µ,η(A

+
1 G
−1/2
+,1 )η,νaj(ν)

∣∣∣∣∣∣
2

=
∑
µ∈I

∣∣∣∣∣∣
m+−m0

+∑
η=1

Z±µ,η(A
+
1 G
−1/2
+,1 aj)(η)

∣∣∣∣∣∣
2

6 ‖A+
1 G
−1/2
+,1 aj‖2

m+−m0
+∑

η=1

‖z+η ‖2`2(I).

(10.29)

where z+η is defined as in Proposition 9.3. For η = 1, . . . ,m+, we have that

‖z+η ‖2`2(I) =

`1∑
ν=`0

|ζ+
η |2ν = |ζ+

η |2`0
1− |ζ+

η |2|I|

1− |ζ+
η |2

. (10.30)

By (9.6) we have that |ζ+
η | 6 1/Cβ for η = 1, . . . ,m+ −m0

+. Thus,

|ζ+
η |2`0 6 ‖z+η ‖2`2(I) 6

C2
β

C2
β − 1

|ζ+
η |2`0 . (10.31)

Combining (9.45), (10.19), with (10.28) and (10.29), we conclude (10.27).
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2. Next, we let j ∈ I+,2, so we may assume that m0
+ > 0. By Propositions 10.6 and 9.6, we

find that

‖ej‖2`2(I) 6 2

∥∥∥∥∥∥
∑
ν∈I+,2

bj(ν)
z+ν
‖z+ν ‖

∥∥∥∥∥∥
2

`2(I)

+ εN , (10.32)

where, to ease the notation, we put εN = O((logN)2)N−2Cγ + O(logN/N). For the sake of the
presentation we will keep this notation for the error term and we allow for the constant in the
estimate to change while remaining uniform in z ∈ ΩN .
From Proposition 10.6, we see that the coefficients bj are uniformly bounded in `2 by O(1). Thus
by a similar computation as in (10.29), (10.31), we get together with (9.50), (9.59) that

‖ej‖2`2(I) 6 O(1)
∑
ν∈I+,2

‖z+ν ‖2`2(I)

‖z+ν ‖2
+ εN . (10.33)

Recall (9.6) and (9.5). Let ν ∈ I+,2, and suppose first that |I| � N/ logN , we find by Taylor
expansion that

2|I|Cα
logN

N
+O

(
|I| logN

N

)2

6 1− |ζ+
ν |2|I| 6 2|I|Cγ

logN

N
+O

(
|I| logN

N

)2

. (10.34)

Thus,

Cα
Cγ
|I|
(

1 +O

(
|I| logN

N

))
6

1− |ζ+
ν |2|I|

1− |ζ+
ν |2

6
Cγ
Cα
|I|
(

1 +O

(
|I| logN

N

))
. (10.35)

Plugging the estimates (10.34), (10.35) into (10.30), and using (9.47) as well, we get that there
exists a constant C > 0 such that, for N > 0 large enough,

1

C
|I| logN

N
e−2Cα`0(1+O( logN

N
)) logN

N 6
‖z+ν ‖2`2(I)

‖z+ν ‖2
� |I| logN

N
|ζν |2`0 6 C|I|

logN

N
e−2Cγ`0

logN
N .

(10.36)
When N/(C logN) 6 |I| 6 N for some C � 1, then we see by Taylor expansion that

1− |ζ+
ν |2|I|

1− |ζ+
ν |2

� N

logN
.

Hence, by (9.47) and (10.30), we get that there exists a constant C > 0 such that, for N > 0 large
enough,

1

C
e−2Cα`0(1+O( logN

N
)) logN

N 6
‖z+ν ‖2`2(I)

‖z+ν ‖2
� |ζν |2`0 6 Ce−2Cγ`0

logN
N . (10.37)

By (10.33), (10.36) and (10.37) we conclude (10.25).

3. Next we prove the lower bound (10.26), so we work still with j ∈ I+,2 and m0
+ > 0. Similar

to (10.32), we find by Propositions 10.6 and 9.6 that

‖ej‖2`2(I) >
1

2

∥∥∥∥∥∥
∑
ν∈I+,2

bj(ν)
z+ν
‖z+ν ‖

∥∥∥∥∥∥
2

`2(I)

− εN .

Let

V =


1 . . . 1

ζ+
m+−m0

++1
. . . ζ+

m+

...
...

...
(ζ+
m+−m0

++1
)m+−m0

+−1 . . . (ζ+
m+

)m+−m0
+−1,


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Λ = diag(ζ+
m+−m0

++1
, . . . , ζ+

m+
) and let L+ be as in Proposition 9.3. By a similar argument as for

(9.40), we see that sm+−m0
+

(V ) > 1/C for some C > 0, depending only on Ω. Let |I| > 2(1+m0
+).

Then,∥∥∥∥∥∥
∑
ν∈I+,2

bj(ν)
z+ν
‖z+ν ‖

∥∥∥∥∥∥
2

`2(I)

>

b(|I|−1)/m0
+c−1∑

k=0

‖V Λ`0+km0
+L−1

+ b‖2 > 1

C2

b(|I|−1)/m0
+c−1∑

k=0

‖Λ`0+km0
+L−1

+ b‖2

>
1

C2

∑
ν∈I+,2

|bj(ν)|2
b(|I|−1)/m0

+c−1∑
k=0

|ζ+
ν |2(`0+km0

+)

‖z+ν ‖2

(10.38)

Let ν ∈ I+,2. A direct computation yields that

b(|I|−1)/m0
+c−1∑

k=0

|ζ+
ν |2(`0+km0

+) = |ζ+
ν |2`0

1− |ζ+
ν |2m

0
+(b(|I|−1)/m0

+c−1)

1− |ζ+
ν |2m

0
+

> |ζ+
ν |2`0

1− |ζ+
ν |2(|I|−1−m0

+)

1− |ζ+
ν |2m

0
+

(10.39)
Recall (9.5) and (9.6). Suppose first that 2(1+m0

+) 6 |I| � N/ logN , then |I|/2 6 |I|−1−m0
+ 6

|I|, and by Taylor expansion we find that

1− |ζ+
ν |2(|I|−1−m0

+) > |I|Cα
logN

N
+O

(
|I| logN

N

)2

.

and similarly

1− |ζ+
ν |2m

0
+ 6 2m0

+Cγ
logN

N
+O

(
logN

N

)2

.

Thus,
1− |ζ+

ν |2(|I|−1−m0
+)

1− |ζ+
ν |2m

0
+

>
Cα

2m0
+Cγ
|I|
(

1 +O

(
|I| logN

N

))
. (10.40)

Combining (10.40), (10.39) and (10.38) with (9.47), yields that there exists a constant C > 0 such
that for N > 0 large enough and all z ∈ ΩN ,

b(|I|−1)/m0
+c−1∑

k=0

|ζ+
ν |2(`0+km0

+)

‖z+ν ‖2
>

1

C
|I| logN

N
|ζν |2`0 >

1

C
|I| logN

N
e−2Cα`0(1+O( logN

N
)) logN

N . (10.41)

When N/(C logN) 6 |I| 6 N for some C � 1, then we see by Taylor expansion that

1− |ζ+
ν |2(|I|−1−m0

+)

1− |ζ+
ν |2m

0
+

� 1

C

N

logN
.

We then deduce similarly to (10.41) that there exists a constant C > 0 such that for N > 0 large
enough and all z ∈ ΩN ,

b(|I|−1)/m0
+c−1∑

j=0

|ζ+
ν |2(`0+jm0

+)

‖z+ν ‖2
>

1

C
e−2Cα`0(1+O( logN

N
)) logN

N . (10.42)

From (10.24) we know that for N > 0 sufficiently large ‖bj‖ > 1/2. Hence, (10.41), (10.42)
together with (10.38) imply (10.26), which concludes the proof of the theorem. �

10.3. Large singular values. The next result gives estimates on the Hilbert-Schmidt and trace
norm of E from (2.9).

Proposition 10.9. Let z0 ∈ p(S1) be as in (9.1) and let Ω b C be a sufficiently small open
relatively compact convex neighbourhood of z0 satisfying (9.2). Let N > 1 be sufficiently large, and



LOCALIZATION OF EIGENVECTORS OF NON-HERMITIAN BANDED NOISY TOEPLITZ MATRICES 83

let ΩN b Ω\p(S1) satisfy (9.5). Let d be as in (9.4) and let tj be as in Proposition 10.1, then,
uniformly in N and z ∈ ΩN ,

N∑
j=|d|+1

t−2
j = O

(
N2

logN

)
, (10.43)

and
N∑

j=|d|+1

t−1
j = O(N logN). (10.44)

Proof. 1. Let z0 and Ω as in the assumptions of the proposition and let z ∈ ΩN . Let Ñ =

N+∨0+N−∨0 and notice that Ñ > |d|, see Lemma 4.1 and (4.34). By (4.20), (10.15) and (1.13),
we see that

tj(PN − z) > tj−Ñ (PZ/NZ − z), j = 1 + Ñ , . . . , N. (10.45)

From (4.20) we deduce that the set of eigenvalues of (PZ/NZ − z)∗(PZ/NZ − z) is given by

{t2j (PZ/NZ − z); j = 1, . . . , N} = {|p(ζ̂)− z|2; ζ̂ ∈ SN}, (10.46)

where SN
def
= {e2πij/N ; j = 0, . . . , N − 1}. Note that t1(PZ/NZ − z) > dist (z, p(S1)) > 0, since

z ∈ ΩN . Hence, combining (10.45) and (10.2), we get for ν = 1, 2,
N∑

j=|d|+1

1

tνj (PN − z)
6

N∑
j=1+Ñ

1

tνj (PN − z)
+ Ñ

(
CN

logN

)ν
6

N∑
j=1

1

tνj (PZ/NZ − z)
+ Ñ

(
CN

logN

)ν
.

(10.47)
It remains to deal with the traces tr ((PZ/NZ − z)∗(PZ/NZ − z))−ν/2 for ν = 1, 2.

2. We know by (4.16) that there are finitely many, say N0 < +∞, points in p−1(z0). We will
enumerate them in the following way: for j = 1, . . . , N ′0, with N ′0 > 1, let ζj ∈ p−1(z0) be so that
ζj ∈ S1, and for j = N ′0 + 1, . . . , N0, let ζj ∈ p−1(z0) be so that ζj /∈ S1. If N ′0 = N0 then the
latter set of points is empty.

By (9.2) and the Implicit function theorem, it follows that, after potentially shrinking Ω (while
keeping it convex), there exist complex open neighbourhoods Zj of ζj , such that p : Zj → Ω is a
diffeomorphism and such that Zj ∩ S1 = ∅ for j = N ′0 + 1, . . . , N0. Furthermore, after potentially
further shrinking Ω and the sets Zj , we can arrange so that p(S1 ∩ Zj) = Ω ∩ p(S1) = Γ for all
j = 1, . . . , N ′0. Let Ω′ ⊂ Ω be a smaller open convex neighbourhood of z0 such that Ω′ ⊂ Ω, and
put Z ′j := (p�Zj→Ω)−1(Ω′) ⊂ Zj . A convenient choice is

Ω′ = {z ∈ C; dist (z,Γ′) 6 1/CΩ′ , π(z) ∈ Γ′},

where 0 < CΩ′ < ∞ is some sufficiently large constant, Γ′ ⊂ Γ is a connected non-empty sub-
segment, containing z0, so that the endpoints of the segments Γ and Γ′ are separated by some
fixed positive distance, i.e. for some large constant C ′ > 0 we have that dist (∂Γ, ∂Γ′) > 1/C ′.
Furthermore, π(z) denotes the point in p(S1) with |Π(z) − z| = dist (z, p(S1)). Notice that this
point is unique if CΩ′ is large enough.

We note that there exists a constant C > 0 (depending only on Ω and Ω′) such that for all
z ∈ Ω′ and all ζ ∈ S1\

⋃N ′0
j=1(Zj ∩ S1)

|p(ζ)− z| > dist (∂Ω, ∂Ω′) > 1/C. (10.48)

Furthermore, observe that since two consecutive points in SN differ by an angle of 2π/N , we have
that

#{SN ∩ Zj} = N

∫
(p�Zj→Ω)−1(Ω)

LS1(dθ) +O(1), j = 1, . . . , N ′0, (10.49)

where LS1 denotes the normalized Lebesgue measure on S1.
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Let j ∈ {1, . . . , N ′0}, z ∈ Ω′N := ΩN ∩ Ω′, and ζj0 ∈ Z ′j be the unique point in Z ′j such that
p(ζj0) = Π(z). For N > 1 sufficiently large (depending only on Ω and Ω′) there exists a point
ζ̂j∗ ∈ Zj ∩SN which is the closest point in Zj ∩SN to ζj0 . There may be two such points, in which
case we pick one of them. Then,

|ζj0 − ζ̂
j
∗ | 6 |1− e2πi/N | 6 O(N−1). (10.50)

By Taylor expansion around ζj0 , we find that

|p(ζ̂j∗)− z| 6 |p(ζ
j
0)− z|+O(N−1),

where the constant is independent of z. In view of (10.46), we have that

t1(PZ/NZ − z) = min
ζ̂∈SN

|p(ζ̂)− z|.

Setting t̃ := |p(ζj0)− z|, as p(ζj0) = Π(z) and hence |p(ζj0)− z| = dist(z, p(S1)), we see that

t̃ 6 t1(PZ/NZ − z) 6 min
j=1,...,N ′0

|p(ζ̂j∗)− z| 6 max
j=1,...,N ′0

|p(ζ̂j∗)− z| 6 t̃+O(N−1), (10.51)

where the constant is independent of z. By Taylor expansion and (9.2) we get that for ζ̂j ∈ Zj
|p(ζ̂j)− z| = |p(ζj0) + (∂ζp)(ζ

j
0)(ζ̂j − ζj0) +O(|ζ̂j − ζj0 |

2)− z|

>
1

C
|ζ̂j − ζj0 |(1− C1|ζ̂j − ζj0 |)− t̃.

(10.52)

Here the constant 0 < C <∞ only depends on Ω, see (9.2), and the constant 0 < C1 <∞ depends
only on C and the second derivative of p in the Zj ’s, which is uniformly bounded. Suppose that

|ζ̂j − ζj0 | 6
1

2C1
, |ζ̂j − ζj0 | > 8Ct̃, (10.53)

where C,C1 are as in (10.52). Hence, we find by (10.52), (10.53) that

|p(ζ̂j)− z| > 1

4C
|ζ̂j − ζj0 |. (10.54)

3. We turn to proving the two estimates claimed in the proposition. We let Ω and Ω′ be as in
Step 2. Recall (10.51) and note that if t̃ > 1/C for some arbitrarily large but fixed constant C,
then

N∑
j=1

1

tj(PZ/NZ − z)
,

N∑
j=1

1

t2j (PZ/NZ − z)
= O(N),

and we conclude (10.43) and (10.44) in view of (10.47).

Continuing, we may assume from now on that t̃ 6 1/C0, for some arbitrarily large but fixed
constant C0. Since the roots of p(ζ)− z depend smoothly on z ∈ Ω, see the discussion after (9.2),
it follows from (9.5) that there exists a constant C > 0 such that for all N > 0,

dist (ΩN , p(S
1)) >

1

C

logN

N
,

Hence, we may from now on assume that
1

C

logN

N
6 t̃ 6

1

C0
. (10.55)

for some large C > 0, independent of N > 0 and z ∈ ΩN . Let ν ∈ {1, 2}. Then, in view of
(10.46), (10.48) we get

N∑
j=1

1

tνj (PZ/nZ − z)
=

N ′0∑
j=1

∑
ζ̂∈Zj∩SN

1

|p(ζ̂)− z|ν
+O(N), (10.56)

where the constant in the error term depends only on Ω and Ω′. Using (10.49), we see that by
potentially shrinking Ω, and the sets Zj and Ω′ accordingly, we may suppose that the first estimate
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in (10.53) holds for all ζ̂ ∈ Zj ∩ SN , j = 1, . . . , N ′0. Next, pick a j ∈ {1, . . . , N ′0}, while keeping in
mind that N ′0 <∞, and split the corresponding inner sum on the right hand side of (10.56) into
two parts: one where the second inequality in (10.53) holds and one where it does not, so∑

ζ̂∈Zj∩SN

1

|p(ζ̂)− z|ν
=

∑
ζ̂∈Zj∩SN ,
|ζ̂−ζj0 |>8Ct̃

1

|p(ζ̂)− z|ν
+

∑
ζ̂∈Zj∩SN ,
|ζ̂−ζj0 |<8Ct̃

1

|p(ζ̂)− z|ν
. (10.57)

We begin with treating the second sum on the right hand side. Since the points in SN differ by
an angle of 2π/N , we see that for N > 1

#{ζ̂ ∈ Zj ∩ SN ; |ζ̂ − ζj0 | < 8Ct̃} = O(Nt̃ ),

where the constant depends only on the symbol p, Ω and the constant C from (10.52). Hence, by
(10.46) and (10.51), ∑

ζ̂∈Zj∩SN ,
|ζ̂−ζj0 |<8Ct̃

1

|p(ζ̂)− z|ν
= O(Nt̃ 1−ν). (10.58)

Next, we deal with the first sum on the right hand side of (10.57). Since for this term (10.53)
holds, we get by (10.54) that ∑

ζ̂∈Zj∩SN ,
|ζ̂−ζj0 |>8Ct̃

1

|p(ζ̂)− z|ν
6

∑
ζ̂∈Zj∩SN ,
|ζ̂−ζj0 |>8Ct̃

(4C)ν

|ζ̂ − ζj0 |ν
(10.59)

By (10.50) and (10.55) we find that there exist constants 0 < C2, C
′
2 < ∞ such that for N > 0

large enough (depending only on the constants in the referenced inequalities) we have that for all
ζ̂ ∈ Zj ∩ SN with |ζ̂ − ζj0 | > 8Ct̃ and for all z ∈ ΩN , such that (10.55) holds,

|ζ̂ − ζj0 | >
1

C2
|ζ̂ − ζ̂j∗ | >

1

C ′2
t̃. (10.60)

By rotational invariance, we may assume that ζ̂j∗ = 1. Then, we have that ζ̂k = e2πik/N , k =

1, . . . ,M1 are the points in Zk to the left of 1 and ζ̂k = e2πik/N , k = −1, . . . ,−M2 are the points
in Zk to the right of 1. By (10.49) it is clear that after potentially further shrinking Ω and taking
N > 0 large enough, we have that M1,M2 6 N/C3, for C3 � 1. Hence, we find that there exists
a constant 0 < C4 <∞ such that

|ζ̂k − ζj∗ | = |e±2πik/N − 1| > 1

C4N
|k|, −M2 6 k 6M1, k 6= 0. (10.61)

On the other hand, we see by (10.55) that if |k| 6 B−1 logN , B � 1, then

|ζ̂k − ζ̂j∗ | = |e±2πik/N − 1| � t̃, (10.62)

for N > 1. Combining (10.61), (10.62) with (10.59) and (10.60), we conclude that

∑
ζ̂∈Zj∩SN ,
|ζ̂−ζj0 |>8Ct̃

1

|p(ζ̂)− z|ν
6

M1∑
k=−M2

|k|>B−1 logN

(4CC2C4N)ν

|k|ν
6

{
O(N logN), ν = 1
O(N2(logN)−1), ν = 2.

Together with (10.47), (10.55), (10.56), (10.57) and (10.58), we conclude (10.43) and (10.44). �

10.4. Smallest singular value and Hilbert-Schmidt norms. In this short section we pro-
vide bounds on minimal singular values and Hilbert-Schmidt norms of matrices appearing in the
Grushin problem. Recall the definition of E(·) from (2.9).
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Lemma 10.10. Consider the setup and notation as in Proposition 10.1. Fix M ∈ N and γ > 1.
Assume that the entries of Q are i.i.d. with zero mean, unit variance, and finite fourth moment.
If γ > 3/2 then

P

(
inf
z∈ΩN

smin(IN +N−γQE(z)) 6 1/2

)
6 N−(γ−3/2)/2,

for all large N . Otherwise, if γ ∈ (1, 3/2] then given any α0 > 0 there exists β = β(α0, γ) < ∞,
such that

P
(
smin(IN +N−γQE(z)) 6 N−β

)
6 N−α0 ,

uniformly for all z ∈ ΩN and all large N .

Proof. 1. We first consider the easier case γ > 3/2. By Proposition 10.1, applied with M = |d|,
we have that ‖E(z)‖ = O(N) uniformly for z ∈ ΩN . As the entries of Q have zero mean and
finite fourth moments, applying [42, Theorem 2] and Markov’s inequality we obtain that

P

(
N−γ sup

z∈ΩN

‖QE(z)‖ > 1/2

)
6 P

(
‖Q‖ > cNγ−1

)
6 c−1N−(γ−1) · E‖Q‖ 6 N−(γ−3/2)/2,

for all large N , and some c > 0. Thus, by the triangle inequality we derive that

P

(
inf
z∈ΩN

smin(IN +N−γQE(z)) 6 1/2

)
6 P

(
N−γ sup

z∈ΩN

‖QE(z)‖ > 1/2

)
6 N−(γ−3/2)/2.

This yields the result for γ > 3/2.
2. We turn to the case of γ ∈ (1, 3/2]. The proof uses a change of basis, a lower bound on

the smallest singular value of matrices with i.i.d. entries shifted by a deterministic matrix, and an
upper bound on the maximal singular value of a matrix with i.i.d. entries.

To carry out these steps we introduce additional notation. Let E(z) and F(z) be the two unitary
matrices whose columns are {e1(z), e2(z), . . . , eN (z)} and {f1(z), f2(z), . . . , fN (z)}, respectively
(Recall the definitions of ei’s and fj ’s from Section 2.1 applied to P = PN ). Further define E1(z)
and E2(z) to be the N ×M and N × (N −M) matrices consisting of the first M columns and the
remaining (N −M) columns of E(z), respectively. Similarly define F1(z) and F2(z). Finally, let
T(z) be the diagonal matrices with entries {tM+1(z)−1, tM+2(z)−1, . . . , tN (z)−1}, where tj(z) = tj ,
j ∈ [N ] are as in Proposition 10.1.

Equipped with this notation, upon recalling the definition of E(z), we see that

IN +N−γQE(z) = IN +N−γQE2(z)T(z)F2(z)∗.

Fix x ∈ SN−1. As the columns of F(z) form a basis of CN , there exist c1 ∈ CM and c2 ∈ CN−M
such that

x = F1(z)c1 + F2(z)c2 and ‖c1‖2 + ‖c2‖2 = 1.

Therefore, using the orthonormality property of the columns of F(z) we derive that

‖(IN +N−γQE(z))x‖2 = ‖F1(z)c1 + F2(z)c2 +N−γQE2(z)T(z)c2‖2

=
∥∥F1(z)(c1 +N−γF1(z)∗QE2(z)T(z)c2) + F2(z)(IN−M +N−γF2(z)∗QE2(z)T(z))c2

∥∥2

=
∥∥c1 +N−γF1(z)∗QE2(z)T(z)c2

∥∥2
+
∥∥(IN−M +N−γF2(z)∗QE2(z)T(z))c2

∥∥2

=

∥∥∥∥[IM N−γF1(z)∗QE2(z)T(z)
0 IN−M +N−γF2(z)∗QE2(z)T(z)

]
·
(
c1

c2

)∥∥∥∥2

, (10.63)

where in the second step we have used that F1(z)F1(z)∗ + F2(z)F2(z)∗ = IN and in the third step
we have again used the fact that the columns of F(z) =

[
F1(z) F2(z)

]
form an orthonormal basis

of CN . So (10.63) shows that it is enough to find a lower bound on the smallest singular value of
the 2× 2 block matrix appearing in its rhs.

To this end, we note that any block matrix A of the form A =

[
I A1

0 A2

]
is invertible iff A2 is,

and in that case

A−1 =

[
I −A1A

−1
2

0 A−1
2

]
.
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Hence, using the triangle inequality we obtain that

‖A−1‖ 6 1 + (‖A1‖+ 1) · ‖A−1
2 ‖.

Recalling the fact that ‖c1‖2 + ‖c2‖2 = 1, using the above and (10.63) we therefore deduce that

(smin(IN +N−γQE(z)))−1 = ‖(IN +N−γQE(z))−1‖ (10.64)

6 1 + (N−γ‖A1(z)‖+ 1) · ‖(IN−M +N−γA2(z))−1‖,
where for brevity we write

A1(z) := F1(z)∗QE2(z)T(z) and A2(z) := F2(z)∗QE2(z)T(z).

Using [42], Proposition 10.1, and Markov’s inequality again we further have that

P
(
N−γ‖A1(z)‖+ 1 > 2N2α0+1/2

)
6 tM+1(z)−1 ·N−(γ+2α0+1/2) · E‖Q‖ = O(N−2α0), (10.65)

where we have also used the facts that tM+1(z)−1 = O(N) and γ > 1. Hence, by (10.64), we
observe that in order to find a lower bound on the smallest singular value of IN + N−γQE(z) it
remains to find the same for IN−M +N−γA2(z). Upon using Weyl’s inequality for singular values
it is straightforward to notice that

smin(IN−M +N−γA2(z)) > smin(IN +N−γA(z)), (10.66)

where
A(z) := F(z)∗QE(z)T̂(z) and T̂(z) :=

[
IM 0
0 T(z)

]
.

On the other hand

smin(IN +N−γA(z)) > smin(T̂(z)) · smin(T̂(z)−1 +N−γF(z)∗QE(z))

= tN (z)−1 ·N−γ · smin(NγF(z)T̂(z)−1E(z)∗ +Q) (10.67)

Since PN has a bounded norm and ΩN is a bounded set we have that ‖T̂(z)−1‖ = tN (z) = O(1).
As E(z) and F(z) are unitary matrices, an application of [69, Theorem 2.1] together with (10.67)
now yield that

P
(
smin(IN +N−γA(z)) 6 N−β0

)
6 N−2α0 , (10.68)

for all large N , where β0 <∞ is some constant depending only on α0 and γ. Finally, using (10.64)
and (10.66), the probability bounds (10.65) and (10.68), and a union bound we deduce that

P

(
smin(IN +N−γQE(z)) 6

1

3
N−(2α0+β0+1/2)

)
= O(N−2α0),

for all large N . This completes the proof of the lemma. �

Next we derive bounds on the Hilbert-Schmidt norms of some matrices. This will allow us
to control the error terms in the resolvent expansion of various terms appearing in the Grushin
problem.

Proposition 10.11. Consider the setup and notation as in Proposition 10.1. Additionally assume
that Ω is convex. Fix γ > 1, κ ∈ N and d ∈ [−m̃, m̃] ∩ Z \ {0}. Let Assumption 1.1 holds. Then
for any α0 > 0, we have, uniformly in z ∈ ΩN and all N large, that

P
(
N−γκ‖(E(z)Q)κE+(z)‖HS > N

− (γ−1)κ
2

)
6 N−α0 , (10.69)

P
(
N−γκ‖(E(z)Q)κE(z)‖HS > N

1− (γ−1)κ
2

)
6 N−α0 , (10.70)

P
(
N−γκ‖E−(z)(QE(z))κ‖HS > N

− (γ−1)κ
2

)
6 N−α0 , (10.71)

and
P
(
N−γ(κ+1)‖E−(z)(QE(z))κQE+(z)‖HS > N

−γ− (γ−1)κ
2

)
6 N−α0 . (10.72)

To prove Proposition 10.11 we will rely on bounds on moments of Hilbert-Schmidt norm of
matrices appearing in (10.69)-(10.72), as well as bounds on ‖E±(·)‖HS and on the sum of the
inverse of the non-zero singular values of E(·).
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Proposition 10.12. Fix κ ∈ N. Let {E(`)}κ`=1 and {F(`)}κ`=1 be two collections of N ×N deter-
ministic matrices, possibly with complex-valued entries, such that

max

{
κ

max
`=1
‖E(`)‖HS,

κ
max
`=1
‖F(`)‖HS

}
6 1. (10.73)

Define the product
Ê(κ) := E(1)QF(1) · E(2)QF(2) · · ·E(κ)QF(κ). (10.74)

If the entries of Q satisfies Assumption 1.1 then for any h0 ∈ N

E‖Ê(κ)‖2h0
HS 6 C10.12 · Cκh0 ,

where C10.12 <∞ is some constant depending only on κ and h0.

The proof of Proposition 10.12 is straightforward. It relies on bounds on moments of quadratic
forms of independent random variables, derived in [75].

Proof of Proposition 10.12. We begin with an auxiliary computation. Let A,B be deterministic
matrices. Then

W := ‖AQB‖2HS =
∑

i,j,k,k′,`,`′

Ai,kAi,k′Qk,`Qk′,`′B`,jB`′,j =
∑

k,`,k′,`′

QklQk′,`′Ck,`,k′,`′ ,

where
Ck,`,k′,`′ :=

∑
i,j

AikAik′B`,jB`′,j .

This, in particular, shows that W is a quadratic form in the entries of Q. Hence, using [75,
Theorem 2]1 and Assumption 1.1, for any s > 2, we find that

E|W −EW |s 6 C(s)

 ∑
k,k′,`,`′

|Ck,`,k′,`′ |2
s/2

· Cs 6 C(s)‖A‖2sHS‖B‖2sHS · Cs,

for some absolute constant C(s) <∞, depending only on s, where in the last step we used that

|Ck,`,k′,`′ | 6 ‖ak‖ · ‖ak′‖ · ‖b`‖ · ‖b`′‖,

and ak and bk are the k-th column and row of A and B, respectively.
On the other hand we note that

|EW | 6 C1

∑
k,`

‖ak‖2‖b`‖2 = ‖A‖2HS‖B‖2HS · C1.

Thus
E|W |s 6 2s−1(E|W −EW |s + |EW |s) 6 2sC(s)Cs · ‖A‖2sHS‖B‖2sHS, (10.75)

where we also used that by Jensen’s inequality it follows Cs1 6 Cs. Next by Hölder’s inequality we
obtain that

E‖Ê(κ)‖2h0
HS 6 E

 κ∏
j=1

‖E(j)QF(j)‖2h0
HS

 6
 κ∏
j=1

E‖E(j)QF(j)‖2κh0
HS

1/κ

6
κ

max
j=1

E‖E(j)QF(j)‖2κh0
HS .

Now the desired bound follows from (10.75), upon setting s = κh0, A = E(j), and B = F(j), for
j ∈ [κ]. This concludes the proof. �

Equipped with Proposition 10.12, we now prove Proposition 10.11.

1Whittle in [75] works with real linear and quadratic forms of real valued random variables. Upon splitting the
sums into real and imaginary parts, analogous bounds can be derived in the complex case. Hence, without loss of
generality we continue to use [75] for complex quadratic forms of complex valued random variables.
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Proof of Proposition 10.11. Recall that by Proposition 10.9, there exists a constant C10.9 so that
N∑

j=|d|+1

tj(z)
−2 6 C10.9

N2

logN
and

N∑
j=|d|+1

tj(z)
−1 6 C10.9N logN. (10.76)

For j ∈ [κ] we let

F(j) :=
1√

C10.9N logN

N∑
i=|d|+1

1√
ti(z)

ei(z) ◦ e∗i (z)

and

E(j+1) :=
1√

C10.9N logN

N∑
i=|d|+1

1√
ti(z)

ei(z) ◦ f∗i (z).

Further let
E(1) := |d|−1/2E−(z) and F(κ+1) := |d|−1/2E+(z).

By Proposition 10.9 and (2.9)-(2.10) it follows that (10.73) holds with these choices of {E(j)}κ+1
j=1

and {F(j)}κ+1
j=1 . On the other hand note that E(z) = C10.9N logN ·F(j)E(j+1) for j ∈ [κ]. Therefore,

applying Proposition 10.12 we now derive that

E
[
‖Ẽ‖2h0

HS

]
6 d2h0 · (C10.9N logN)2h0κ · C10.12 · Cκh0 .

where Ẽ := E−(z)(QE(z))κQE+(z). Hence applying Markov’s inequality with h0 = d 2α0
κ(γ−1)e we

obtain that

P
(
N−γ(κ+1)‖E−(z)(QE(z))κQE+(z)‖HS > N

−γ− (γ−1)κ
2

)
6 N−(γ+1)κh0E

[
‖Ẽ‖2h0

HS

]
6 N−α0 ,

for all large N . This concludes the proof of (10.72). To obtain (10.71) we let

E? := E(1)QF(1) · E(2)QF(2) · · ·E(κ−1)QF(κ−1) · E(κ)QF
(κ)
? ,

where {E(i)}κi=1 and {F(i)}κ−1
i=1 are as above, and F(κ) := C

−1/2
10.9 N−1(logN)1/2 · E(z). Notice that,

by (10.76), we have ‖F(κ)
? ‖HS 6 1. Therefore, applying applying Proposition 10.12 again we obtain

that
E
[
‖E?‖2h0

HS

]
6 dh0 · (C10.9N logN)2h0κ · C10.12 · Cκh0 .

Now (10.71) follows by choosing h0 as above and applying Markov’s inequality. The proofs
of (10.69)-(10.70) are similar. For (10.69) we take E(1) = E(z)/(C10.9N logN) and F(κ+1) =

E+(z)/
√
|d|, while for (10.70) we take F(κ+1) = E(z)/(C10.9N logN). Further details are omitted.

�

The next corollary will come handy in the proof of Theorem 1.6.

Corollary 10.13. In the setup of Proposition 10.11, we have that for any α0 > 0, for all N large,

P
(
N−γ‖E(z)(I +N−γQE(z))−1QE+(z)‖HS > N

−(γ−1)/4
)
6 N−α0 , (10.77)

P
(
N−2γ‖E−(z)(I +N−γQE(z))−1QE(z)QE+(z)‖HS > N

−γ−(γ−1)/4
)
6 N−α0 , (10.78)

P
(
‖E−(z)(I +N−γQE(z))−1‖HS > 2

√
M
)
6 N−α0 , (10.79)

and
P
(
‖E(z)(I +N−γQE(z))−1‖HS > 2C10.9N/

√
logN

)
6 N−α0 . (10.80)

Proof. The proof uses the resolvent expansion and Proposition 10.11. First let us prove (10.77).
Using the resolvent expansion, we write, with Q̂ = N−γQ and k positive integer and omitting

throughout the argument z,

(I + Q̂E)−1 =

k−1∑
i=0

(−Q̂E)i + (−Q̂E)k(I + Q̂E)−1. (10.81)
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Considering the first term in the right hand side of (10.81), we have by (10.69) that, for i > 0,

‖E(−Q̂E)iQ̂E+‖HS 6 N
−(γ−1)(i+1)/2, (10.82)

with probability 1−N−2α0 , for all N large. On the other hand, by (10.70) and the fact that for
any two matrices A,B one has ‖BA‖HS 6 ‖A‖ · ‖B‖HS, we obtain that

‖E(−Q̂E)k(I + Q̂E)−1QE+‖HS 6 N
1− (γ−1)k

2 · ‖(I + Q̂E)−1‖ · ‖Q‖ · ‖E+‖, (10.83)

on a set of event with probability at least 1−N−2α0 . Now by the second part of Lemma 10.10, [42]
(which gives E‖Q‖ = O(N1/2)), and (2.10), we further obtain that ‖(I+Q̂E)−1‖·‖Q‖·‖E+‖ 6 Nβ

for some finite β, with probability at least 1 −N−2α0 . By choosing k large enough, we conclude
that on these events, the right hand side of (10.83) can be made arbitrarily small. Combining this
with (10.81) and (10.82), we obtain (10.77). The proof of (10.78), being similar, is omitted.

To see (10.79), we use the resolvent expansion (10.81) and write

E−(I +N−γQE)−1 = E− +

k−1∑
i=1

E−(Q̂E)i + E−(Q̂E)k(I + Q̂E)−1.

Recall that ‖E−‖HS =
√
M . As above, the other terms are controlled by (10.71) and Lemma

10.10. This completes the proof of (10.79). To prove (10.80) we observe that by (10.76) one has
that ‖E‖HS 6 C10.9N/

√
logN (without loss of generality assume C10.9 > 1). Therefore, arguing

similarly as above one derives (10.80). Further details are omitted. �

Remark 10.14. The reader may inspect the proofs of Proposition 10.11 and Corollary 10.13 to
observe that (10.77) continues to hold even if we can replace the term N−(γ−1)/4 by N−(1−ε)·(γ−1)

for any ε > 0. This improvement will be necessary later in Section 11 to argue that the eigenvectors
of a randomly perturbed Jordan block is completely delocalized in sup-norm.

Remark 10.15. In Sections 9 and 10.1-10.4 we worked with Assumption 9.1. Since p(S1) is
compact, it follows that Assumption 9.1 holds uniformly in z ∈ Ωε1.5,C1.5,N (recall (1.7)). This
observation will be used in Section 11, in the proofs of Theorem 1.6 and Corollary 1.7.

11. Proofs of Theorem 1.6 and Corollary 1.7

We start with the proof of Theorem 1.6.

11.1. Proof of Theorem 1.6. We begin by creating a net Nγ in Ω(ε1.5, C1.5, N), of spacing N−θ

and cardinality at most O(N2θ−1 logN), with θ > γ ∨ 4. Note that for any ẑ ∈ Ω(ε1.5, C1.5, N),
there exists a z∗ = z∗(ẑ) ∈ Nγ with |z∗ − ẑ| 6 N−θ.

1. We begin with the proof of the first point in Theorem 1.6, and proceed as in the sketch
of Section 3. Let ẑ ∈ Ω(ε1.5, C1.5, N) be an eigenvalue of PQN,γ , with associated right eigenvector
v = v(ẑ). Recall that δ = N−γ . For any z ∈ Nγ , define P δz := PQN,γ − z, and note that since
P δz − P δẑ = (ẑ − z)IN , we have that

P δz v = (ẑ − z)v. (11.1)
Set M = |indp(S1)(z)| = |d(z)| (this yields tM+1 & logN/N and α bounded below by a constant
multiple of logN/N , see Proposition 10.1).

Consider the Grushin problem associated with P δz , see Section 2, and recall (3.1). We then
obtain, similarly to (3.2) and using (11.1), that∑N

i=M+1
(ei(z)

∗v) · ei(z) = (I − E+(z)R+(z))v

= (I − Eδ+(z)R+(z))v − E(z)(I + δQE(z)−1δQE+(z)R+(z)v

= Eδ(z)(ẑ − z)v + E(z)(I + δQE(z))−1δQE+(z)R+(z)v. (11.2)

We next control the right hand side of (11.2), for z = z∗. As discussed in Section 3, the control is
simpler when γ > 3/2. Indeed, in that case, by (2.10) and Proposition 10.1 we have that ‖E(z)‖ =
O(N/ logN) uniformly in Nγ (see also Remark 10.15). Now by the first part of Lemma 10.10,
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we have, with probability approaching 1 as N →∞, that for all z ∈ Nγ , ‖(I + δQE(z))−1‖ 6 2.
Therefore, by (2.17), ‖Eδ(z)‖ = O(N/ logN) uniformly in Nγ with the same probability. Hence,
for z = z∗,

‖Eδ(z∗)(ẑ − z∗)v‖ 6 O(N/ logN) ·N−θ = o(1). (11.3)
It remains to control the second term in (11.2).

By construction, ‖E+‖, ‖R+‖ 6 1, and ‖Q‖ = O(N1/2+ε), for any ε > 0, with probability
approaching 1 as N →∞. Applying Lemma 10.10 again we obtain that with z = z∗,

‖E(z∗)(I + δQE(z∗))−1δQE+(z∗)R+(z∗)v‖ 6 N−γO(N1/2 ·N/ logN) = o(1). (11.4)

Together with (11.3), we conclude from (11.2) that if γ > 3/2 then for z∗ with |z∗− ẑ| = O(N−θ),∥∥∥∥∥
N∑

i=M+1

(ei(z
∗)∗v) · ei(z∗)

∥∥∥∥∥ = o(1). (11.5)

We turn next to the case γ ∈ (1, 3/2]. In that case, we apply Corollary 10.13 and obtain that
for all z ∈ Nγ , with probability larger than 1−N−α0 , we have that

‖Eδ(z)‖ = O(N/
√

logN) and ‖E(z)(I + δQE(z))−1δQE+(z)R+(z)v‖ = o(1). (11.6)

Together with (11.3), this yields (11.5) also for γ ∈ (1, 3/2].
For z ∈ C we define

wz := E+(z)R+(z)v. (11.7)
We will show below that ‖v−wz∗‖ = o(1) and ‖wz∗−wẑ‖ = o(1). This will yield (1.9) with w = wẑ.
The localization estimate (1.10) then will follow from (10.25) and (10.27) in Theorem 10.8. The
assertion that w is a random linear combination of {ej(ẑ)}j∈[M ] follows from its definition in
(11.7).

Turning to proving that ‖v−wz∗‖ = o(1), we note that, by (11.2), v−wz∗ equals the left hand
side of (11.2), whose norm is o(1) by (11.5).

It remains to show that ‖wz∗−wẑ‖ = o(1). This follows from a standard perturbative argument.
Indeed, let Bz = (PN−zI)∗(PN−zI). Using Proposition 10.1, theM -th singular value of both Bẑ
and Bz∗ are O(N−Cγ logN/N) while the (M + 1)-th is at least C logN/N , for appropriate C,Cγ
independent of N . Let Πz = Πz,M be the spectral projector of Bz on the first M eigenvalues.
Then, choosing Γ = ∂D(0, C logN/2N), we can write

Πz =
1

2πi

∫
Γ
(Bz − λ)−1dλ,

and an easy computation (using the Ky-Fan inequalities and the spectral gap) gives that ‖Πẑ −
Πz∗‖ = O(N−θN2/ logN) = o(N−2) since θ > 4. By (11.7) we notice that wz = Πzv. We
therefore obtain that ‖wẑ − wz∗‖ = o(N−2) = o(1), as claimed. This completes the proof of the
first point of Theorem 1.6, for all γ > 1.

2. We next turn to the proof of the second part of Theorem 1.6. Fix z0 ∈ Ω(ε1.5, C1.5, N) and
let ẑ be an eigenvalue of PQN,γ as in the second part of the theorem. Recall that z∗ ∈ Nγ is such
that is such that |ẑ − z∗| 6 N−θ.

The starting point of the proof is the observation that by (3.1), (11.1), the definition of Eδ−+(z),
and the resolvent expansion, we have that for any z ∈ C,

Eδ−(z)(ẑ − z)v = −Eδ−+(z)R+(z)v (11.8)

= −E−+(z)R+(z)v + δE−(z)QE+(z)R+(z)v − δ2E−(z)(I + δQE(z))−1QE(z)QE+(z)R+(z)v.

(Compare with (3.3).) Using the definition of E−+(z) and of R+(z), we rewrite the first two terms
in the right hand side of (11.8) as

−E−+(z)R+(z)v + δE−(z)QE+(z)R+(z)v (11.9)

=

M∑
i=1

ti · (ei(z)∗v) · δi + δ

M∑
i=1

 M∑
j=1

(ej(z)
∗v) · (fi(z)∗Qej(z))

 δi.
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Next, recall that Eδ− = E−(I + δQE)−1. Thus, using (10.79), we obtain that

‖Eδ−(z)(ẑ − z)v‖ 6 2
√
M |ẑ − z|, (11.10)

with probability 1 − N−2α0 , for any α0 > 0, when N is large enough. By (10.78), we also have
with the same probability that

‖δ2E−(z)(I + δQE(z))−1QE(z)QE+(z)R+(z)v‖ 6 N−γ−(γ−1)/4. (11.11)

Upon choosing α0 sufficiently large, by a union bound, (11.10) and (11.11) hold simultaneously
for all z ∈ Nγ . Thus, we have that with probability 1−N−3α0/2,∥∥∥∥∥∥

M∑
i=1

ti · (ei(z)∗v) · δi + δ
M∑
i=1

 M∑
j=1

(ej(z)
∗v) · (fi(z)∗Qej(z))

 δi
∥∥∥∥∥∥ 6 2

√
M |ẑ − z|+N−γ−(γ−1)/4.

(11.12)

3. Recall next Proposition 10.1, and that |d(z)| = M if z ∈ Nγ ∩D(z0, C0 logN/N). In what
follows, we assume that |z∗ − ẑ| < N−θ, so that the above conditions hold for z = z∗ and ẑ. Let
M0 = |d(z)| −m0

sign(d(z))
. Assume, for the time being, that M0 > 0. Recall from (10.3) that if

M0 > 0 then for j ∈ [M0], |tj(z)| 6 Ce−cN for some c > 0.
Let A = A(z) denote the M0 × M matrix with entries (in the δi basis) Aij := Aij(z) :=

fi(z)
∗Qej(z) and, for j ∈ [M ], set αj := ej(z

∗)∗v. Write Â for the M0 ×M0 submatrix of A
consisting of its first M0 columns. We obtain from (11.12) and (10.3) that∥∥∥∥∥∥

M0∑
i=1

δi

M∑
j=1

Aij(z
∗)αj

∥∥∥∥∥∥ 6 Nγ
(
e−cN + 2

√
M |z∗ − ẑ|+N−γ−(γ−1)/4

)
= o(1), (11.13)

since θ > γ. We have the following lemma, whose proof is postponed.

Lemma 11.1. For every η > 0, there exist 0 < cη, Cη <∞ depending on η and C0 only, so that,
with probability at least 1 − η, for all z ∈ Nγ ∩D(z0, C0 logN/N), we have that smin(Â(z)) > cη
and that smax(A(z)) < Cη.

Continuing with the proof of Theorem 1.6, we obtain from (11.13) that with a =
√∑M0

j=1 |αj |2,∥∥∥∥∥∥
M0∑
i=1

δj

M∑
j=M0+1

Aijαj

∥∥∥∥∥∥ > acη − o(1). (11.14)

Recall now that the norm of the projection of v on span(ej , j ∈ [M ]) is 1 − o(1) by the first
part of the theorem. The orthogonality of the ej ’s then gives that ‖α‖ = 1 + o(1), where α =

(α1, α2, . . . , αM ), and together with Lemma 11.1, (11.14), also that, with b =
√∑M

j=M0+1 |αj |2,

Cηb > cηa− o(1) = cη
√

1− b2 − o(1).

It follows that, with M0 > 0, for some c0 > 0 independent of N ,

b2 =
M∑

j=M0+1

|αj |2 > c0. (11.15)

For M0 = 0, the lower bound (11.15) also holds, by the first part of Theorem 1.6.
We are now ready to complete the proof of (1.11). To this end, we assume in the sequel that

d > 0, the case d < 0 requiring only notation changes. Set

w′ :=

M∑
j=M0+1

αjej and w′′ :=

M∑
j=M0+1

αj êj , (11.16)



LOCALIZATION OF EIGENVECTORS OF NON-HERMITIAN BANDED NOISY TOEPLITZ MATRICES 93

with αj = ej(z
∗)∗v as before and

êj :=
M∑

ν=M0+1

bj(ν)
z+ν
‖z+ν ‖

, (11.17)

with bj(ν)’s as in (10.23).
Since ‖α‖ = 1+o(1), using the triangle inequality, the Cauchy-Schwarz inequality, and (10.23),

we observe that
‖w′‖2`2([`,`′]) >

1

2
‖w′′‖2`2([`,`′]) − εN , (11.18)

where εN = O(logN/N) +O(N−2Cγ (logN)2).
We next derive a lower bound on ‖w′‖2`2([`,`′]). Set ζνν′ := ζ+

ν ζ
+
ν′ . Recall Proposition 9.3 and

note that

〈z+ν | z+ν′〉`2([`,`′]) = ζ`νν′
1− ζ`′−`+1

νν′

1− ζνν′
, ν, ν ′ ∈ [M ] \ [M0]. (11.19)

Note that
1

(1− |ζ+
ν |2)‖z+ν ‖2

= 1 + o(1) and ‖z+ν ‖2 � N/ logN.

Thus, by Remark 10.7, from (11.19) we obtain that

〈z+ν | z+ν′〉`2([`,`′])

‖z+ν ‖‖z+ν ‖
=

{
O(logN/N) if ν 6= ν ′,

(1 + o(1))(|ζ+
ν |2` − |ζ+

ν |2(`′+1)) if ν = ν ′.
(11.20)

On the other hand, since ν, ν ′ > M0, for q ∈ [N ], |ζ+
ν |2q = |ζ+

ν′ |
2q = e−cq logN/N(1+o(1)) for some

constant c > 0 independent of ν, and therefore, for `, `′ = O(N/ logN),

(|ζ+
ν |2` − |ζ+

ν |2(`′+1)) > c′(`′ − `) · logN

N
, (11.21)

for some c′ > 0. Hence, recalling (11.16)-(11.17), from (10.23), (11.20) and (11.21), we deduce
that for any `, `′ ∈ [1, N ],

‖w′′‖2`2([`,`′]) =
M∑

j,j′=M0+1

αjαj′
M∑

ν,ν′=M0+1

bj(ν)bj′(ν
′) ·
〈z+ν | z+ν′〉`2([`,`′])

‖z+ν ‖ · ‖z+ν′‖

>
M∑

j,j′=M0+1

αjαj′
M∑

ν=M0+1

bj(ν)bj′(ν
′) · c′(`′ − `) · logN

N
+O(logN/N)

= c′(`′ − `) · logN

N

M∑
j,j′=M0+1

αjαj′〈bj |bj′〉+O(logN/N)

(10.24)
= c′(`′−`)· logN

N

o(1) +

M∑
j=M0+1

|αj |2
+O(logN/N)

(11.15)
>

c0c
′(`′ − `)

2
· logN

N
+O(logN/N).

(11.22)

In the range of `, `′ of the statement of Theorem 1.6, the first term in the right hand side of (11.22)
is of order larger that εN +O(logN/N), and therefore, for such `, `′, by (11.18)

‖w′‖`2([`,`′]) > c1(`′ − `) logN/N, (11.23)

for some c1 > 0. It remains to show that (11.23) continues to hold with w′ replaced by w = wẑ.
To see this, note that by (10.27), we have that ‖wz∗ − w′‖`2([C logN,N ]) = O(N−2), for some

C <∞. Recall from above that ‖wẑ−wz∗‖ = o(N−2). Thus, by the triangle inequality we indeed
have that (11.23) holds for w with ` > C logN and `′ as in the statement of Theorem 1.6. On the
other hand, if 1 6 ` 6 C logN we observe that `′ − ` 6 2(`′ − C logN) for any `′ > N c0 . Thus,
upon shrinking c1 in (11.23), that lower bound continues to hold for w and such values of `. The
proof of (1.12) is now immediate from (1.9). The assertion about the constant c0 follows from
Remark 6.17 and the definition of εN . This finally completes the proof. �
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11.2. Proof of Lemma 11.1. Throughout the proof, we assume for notational simplicity that
d > 0, the general case posing no new difficulties. We begin by rewriting Â(z), see (11.13). Fix
M1 = m+ −m0

+ and note that M1 >M0 with equality if N+ = 0. Let E0(z) denote the N ×M0

matrix with columns ej(z), and F0(z) the N ×M0 matrix with columns fj(z). It follows from
Lemma 9.3 and Proposition 10.3 that the columns of E0(z) are almost orthonormal (with inner
product o(1) between different columns) and with |ej(z)(k)| 6 e−ck, k = 1, . . . , N for some c > 0.
Similarly, the columns of F0(z) are almost orthonormal, with |fj(z)(k)| 6 e−c(N−k), k = 1, . . . , N .
Recall that Â(z) = F0(z)∗QE0(z).

We begin by fixing a particular z as in the statement of the lemma, and write Ā = Â(z),
Ē0 = E0(z), F̄0 = F0(z). Note that

E‖Ā‖2HS =

M0∑
i,j=1

E|Āij |2 6 C2

 M0∑
i,j=1

‖ei(z)‖2 · ‖fj(z)‖2
 6 2C2M

2
0 ,

for all large N . Therefore, one can find a constant C(η) so that

P(smax(Ā) > C(η)/2) 6 η/4. (11.24)

We next control smin(Ā). We use the inequality

smin(Ā) >
|det(Ā)|

(smax(Ā))M0−1
. (11.25)

To control the determinant in (11.25), we begin by considering the matrix Ē0. Because the
columns of E0 decay exponentially and the columns of E0 are almost orthogonal, there exists a
K > 0 so that the K×M0 sub-matrix Ē0,K consisting of the first K rows of Ē0 has columns with
inner product smaller than 1/M2

0 , and therefore singular values all larger than 1/2. It follows
from [49, Lemma 4.3] (see also [34]) that there exists an M0 ×M0 sub-matrix of Ē0,K , denoted
Ē0,K,M0 , with singular values all larger than 1/2

√
1 + (K −M0)M0. In particular, there exists a

(nonrandom) constant c0 so that det(Ē0,K,M0) > c0. Similarly, with F̄0,K denoting the sub-matrix
of F0 consisting from its lastK rows, there exists anM0×M0 sub-matrix of F̄0,K , denoted F̄0,K,M0 ,
with det(F̄0,K,M0) > c0.

Returning to the control of the determinant in (11.25), we note that the latter is a homogeneous
polynomial in the entries of Q, and apply Lemma 6.12, as follows. Let I = {i1 < i2 < · · · <
iM0} ⊂ [K] denote the list of rows of Ē0 participating in Ē0,K,M0 . Similarly, let J = {j1 < j2 <
· · · < jM0} ⊂ [N ]\ [N −K] denote the list of rows of F̄0 participating in F̄0,K,M0 . Let U` = Qi`,j` ,
` = 1, . . .M0, then by the Cauchy-Binet formula,

det(Ā) =
∑
I⊂[M0]

ZI
∏
`∈I

U` (11.26)

for some random variables ZI (which depend only on Qa,b with (a, b) 6∈ ∪M0
`=1(i`, j`)). Crucially,

|Z[M0]| = |det(Ē0,K,M0) · det(F0,K,M0)| > c2M0
0 =: c?.

By Lemma 6.12, we obtain that for any ε ∈ (0, c?e
−1),

P
(
det(Ā) 6 ε

)
6 C̄6.12 ·

(
ε

c?

)(1+η)

·
(

log
(c?
ε

))M0−1
. (11.27)

Combining (11.27) with (11.25) and (11.24), we obtain that there exists a cη > 0 so that

P(smin(Ā) > 2cη) > 1− η/4. (11.28)

Next, let z′ 6= z ∈ Nγ ∩D(z0, C0 logN/N). Since |dp(z)| is bounded below uniformly in a fixed
small (N -independent) neighborhood of z0, we have that the roots of p− z and p− z′ satisfy, for
all j 6 N− +N+, that |ζ+

j (z)− ζ+
j (z′)| 6 C1 logN/N . Using Propositions 9.3, 9.6, and 10.3, this

implies in turn that there exists a constant C so that, for j = 1, . . . ,M0,

‖ej(z)− ej(z′)‖ 6 C|z − z′|+ Ce−N/C 6 2C|z − z′|. (11.29)

Indeed, Proposition 9.3 yields the first inequality for the ũ+
` , ` = 1, . . . ,M1, Proposition 9.6 allows

one to transfer this to the quasimodes ψ+
j , and finally Proposition 10.3 transfers it to the ej ’s.
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The right most inequality in (11.29) follows from the fact that Nγ is a net of mesh size N−θ. By
the same argument the same bound continues to hold when ej ’s are replaced by fj ’s.

Denote Nγ,z0 := Nγ ∩D(z0, C0 logN/N). Since Âi,j(·), i, j ∈ [M0], are linear in the entries of
Q, applying [75, Theorem 2] together with (11.29) we obtain that, for any h ∈ N,

max
i,j∈[M0]

max
z′∈Nγ,z0

E|Âi,j(z)− Âi,j(z′)|2h 6 Ch ·
(

logN

N

)2h

,

for some constant Ch < ∞, independent of N , where we also used that |z − z′| = O(logN/N)
for all z, z′ ∈ Nγ.z0 . Therefore, choosing h sufficiently large so that |Nγ,z0 |N−h = o(1), applying
Markov’s inequality, taking a union bound over i, j ∈ [M0] and z′ ∈ Nγ,z0 and recalling Assumption
1.1, we deduce that, on an event of probability approaching one,

smax(Â(z)− Â(z′)) 6 ‖Â(z)− Â(z′)‖HS 6 cη, (11.30)

uniformly for all z, z′ ∈ Nγ,z0 . By the Ky Fan inequalities, smin(Â(z′)) > smin(Â(z))−smax(Â(z)−
Â(z′)). So we obtain the claim for smin(Â(z′)).

Finally, we turn to the control of smax(A(z)), for all z ∈ Nγ,z0 . Let Ẽ(z) and Ẽ0(z) be N ×
(M −M0) matrix whose columns are z+j+M0

(z)/‖z+j+M0
(z)‖ (as in Proposition 9.3) and ej+M0(z),

respectively, for j = 1, . . . ,M −M0. As in Proposition 9.6, let F̃ (z) be the N ×M0 matrix with
columns ψ−i (z), i = 1, . . . ,M0. Set Ã(z) := F̃ (z)∗QẼ(z). Recalling the definition of A from the
discussion above (11.13), we find that in the new notation, A(z) = F0(z)∗QẼ0(z). Further let
B̃(z) and C̃(z) be the matrices whose columns are {bj+M0} and {aj}, as defined in Proposition
10.6. By Proposition 10.6 we have that

‖Ẽ(z)B̃(z)− Ẽ0(z)‖HS, ‖F̃ (z)C(z)− F0(z)‖HS = O(N−c) and ‖Ẽ0(z)‖HS, ‖F0(z)‖HS 6 2M,

for all z ∈ Nγ,z0 and all large N , where c > 0 is some constant. Therefore, applying Proposition
10.12, the triangle inequality, and proceeding as in the proof of (11.30), we deduce that

max
z∈Nγ,z0

‖A(z)− B̃(z)∗Ã(z)C̃(z)‖ 6 max
z∈Nγ,z0

‖A(z)− B̃(z)∗Ã(z)C̃(z)‖HS = o(1),

on an event with probability approaching one, as N → +∞. Moreover, by (10.19) and (10.24)
we have that ‖B̃(z)‖ and ‖C̃(z)‖ are uniformly bounded for all z ∈ Nγ,z0 . Therefore, it suffices
to bound supz∈Nγ,z0 ‖Ã(z)‖, and hence in fact it is enough to prove that for fixed i ∈ [M0], j ∈
[M ] \ [M0],

lim
x→∞

lim sup
N→∞

P

(
sup

z∈Nγ,z0
|Ãij(z)| > x

)
= 0. (11.31)

Toward this goal, we note that for z, z′ ∈ Nγ,z0 , one has that for some constant C0 < ∞,
independent of N ,∥∥∥∥∥ z+j (z)

‖z+j (z)‖
−

z+j (z′)

‖z+j (z′)‖

∥∥∥∥∥ 6 C0|z − z′| ·
N

logN
, j ∈ [M ] \ [M0],

and by Proposition 10.6 the bound (11.29) continues to hold with ej(·) replaced by ψ−j (·) for
j ∈ [M0]. Therefore, upon using Assumption 1.1 and applying [75, Theorem 2], we find that for
some constant Ch independent of N ,

E|Ãi,j(z)− Ãi,j(z′)|h 6 Ch
( |z − z′|N

logN

)h
. (11.32)

We now apply a Komogorov-type argument. Namely, for k = 0, 1, . . ., let Nγ,z0,k denote a
minimal subset of Nγ,z0 so that for any z ∈ Nγ,z0 there exists z′ ∈ Nγ,z0,k so that |z − z′| 6
2−k logN/N . Note that |Nγ,z0,k| = O(22k). Now, fix a constant x and introduce the event

Ak = {∃ z, z′ ∈ Nγ,z0,k : |z − z′| 6 2−k+1 logN/N, |Ãi,j(z)− Ãi,j(z′)| > x/j2},
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and set B = ∩k0
k=1A

{
k, where 2k0−1 6 C0N/ logN 6 2k0 . On the event B we have that

max
z∈Nγ,z0

|Ãi,j(z)| 6 10x.

On the other hand, by Markov’s inequality and (11.32), for some constant C ′h independent of N ,

P(B{) 6 C ′hx−h
k0∑
k=1

22k2−hk. (11.33)

Choosing h = 4, this implies (11.31) and completes the proof of the lemma. �

11.3. Proof of Corollary 1.7. We begin by applying Theorem 1.5 with µ replaced by µ/8. This
yields the existence of constants ε1.5, C1.5 such that

P
(
NΩ(ε1.5,C1.5,N),N,γ < (1− µ/8)N

)
→N→∞ 0. (11.34)

We now claim the following. Fix C̄ < ∞, z0 ∈ Ω(ε1.5, C1.5, N), and µ > 0. Then there exist
0 < µ1, µ2 <∞ such that, for all large N ,

P
(
∃i ∈ [N ] such that supp µ1

(v(λNi )) < µ2N/ logN and λNi ∈ Dz0
)
6 µ/(4C̄), (11.35)

where Dz0 := D(z0, C1.5 logN/(2N))∩Ω(ε1.5, C1.5, N). To prove (11.35) we borrow some notation
from the proof of Theorem 1.6. Let ẑ ∈ Dz0 and z∗ = z∗(ẑ) ∈ Nγ,z0 := Nγ∩Dz0 such that |ẑ−z∗| 6
N−θ. Recall from the proof of Theorem 1.6 that wz =

∑M
j=1 αjej(z), for z ∈ C, w′ = w′(z∗) =∑M

j=M0+1 αjej(z
∗), and w = wẑ. Also recall that ‖w − wz∗‖ = o(1). Applying Lemma 11.1, with

η = µ/(4C̄), and upon choosing µ1 sufficiently small, we obtain that, simultaneously for all z∗ in
Nγ,z0 , and hence simultaneously for all ẑ ∈ Dz0 , and any I ⊂ [N ] such that ‖v‖`2(I) > 1− µ1,

M∑
j=M0+1

|αj |‖ej‖`2(I) > ‖w′‖`2(I)

(1.9)
> ‖v‖`2(I)−‖wz∗−w′‖−o(1) > 1−µ1/2−

√√√√M0∑
j=1

|αj |2
(11.15)
> µ1,

with probability at least 1− µ/(4C̄), where v = v(ẑ) is the right eigenvector corresponding to ẑ.
On the other hand by (10.25) it follows that for any such I we must have that |I| > µ2N/ logN ,
for some µ2 > 0. This, indeed proves (11.35).

We continue with the proof of the corollary. Introduce the following notation. For z0 ∈ C set

Jz0 :=
{

#{i ∈ [N ] : λNi ∈ Dz0} 6 C7.4C
4
1.5 logN

}
,

Cz0 :=
{
∃i ∈ [N ] such that supp µ1

(v(λNi )) < µ2N/ logN and λNi ∈ Dz0
}
,

and for i ∈ [N ]

Ii := I(supp µ1
(v(λNi )) < µ2N/ logN).

LetR be a net of Ω(ε1.5, C1.5, N) of mesh size C1.5 logN/(2N). It is clear that |R| 6 CC−1
1.5N/ logN ,

for some C <∞. Note also that by Theorem 7.4, for any z0 ∈ R,
P(J cz0) 6 N−2. (11.36)

We can now complete the proof. Indeed, for all large N ,

N∑
i=1

E[Ii]
(11.34)
6

∑
i

E[Ii · I(λNi ∈ Ω(ε1.5, C1.5, N)] +Nµ/4

6
∑
z0∈R

E

 ∑
i:λNi ∈Dz0

Ii

+Nµ/4 6 N
∑
z0∈R

P(J cz0) +
∑
z0∈R

E

 ∑
i:λNi ∈Dz0

Ii · I(Jz0)

+Nµ/4

(11.36)
6 C7.4C

4
1.5 logN

∑
z0∈R

P(Cz0) +Nµ/2
(11.35)
6 Nµ,

where in the penultimate step we used hat |R| = o(N), and in last step we chose C = CC7.4C
3
1.5,

and used the bound on |R|. This completes the proof. �
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Remark 11.2 (Sup-norm delocalization). We borrow notation from the proof of Theorem 1.6.
Let PN be the Jordan block. By Remark 5.5, for any fixed γ′ < γ, all eigenvalues of PQN,γ are
inside the disc D(0, 1 − (γ′ − 1) logN/N) with probability approaching one. Therefore, for any
eigenvalue ẑ and its approximating net point z∗ we can take Cγ = γ′− 1 (see (9.5)). On the other
hand, by Remark 10.14 we observe that the o(1) term in (11.6) can be replaced by O(N−(γ′−1))
and hence the same can be done for (11.5). Furthermore, in this case we have only one pure state,
recall Remarks 9.4 and 9.5. Thus M = 1. Therefore, by Remark 10.5 we next derive that∥∥∥∥ z+1
‖z+1 ‖

− v
∥∥∥∥
∞
6

∥∥∥∥ z+1
‖z+1 ‖

− v
∥∥∥∥ 6 ‖v − α1e1‖+ |1− |α1||+

∥∥∥∥ z+1
‖z+1 ‖

− e1

∥∥∥∥ = O(N−(γ′−1) logN).

Since, γ > 3/2, upon choosing γ′ appropriately, it is now immediate that√
logN

N
� 1

2
· ‖z

+
1 ‖∞
‖z+1 ‖

6 ‖v‖∞ 6 2
‖z+1 ‖∞
‖z+1 ‖

�
√

logN

N
.
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