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Materials

Deep learning methods have shown a
high performance potential for medical
image analysis. However, explaining
their decisions is not trivial and could be
helpful to achieve better results and
know how far they can be trusted.

Many methods have been developed in
order to explain the decisions of
classifiers, but their outputs are not
always robust or meaningful [1] and
they remain difficult to interpret.

In this study, we adapted to 3D medical
images the method of [2] which relies
on two visualization methods
extensively used: occlusion and saliency
maps.

Databases:

&

Modality:

Grey Matter Maps derived from T1-MRI with
clinica [3].
• Bias field correction
• Non-linear registration
• Tissue segmentation

Architecture:

...

Found with Random Search [4] on training + validation.

Performance (balanced accuracy)
• Training / Validation (ADNI): 0.89
• Test (ADNI): 0.88
• Test (AIBL): 0.90

CNN robustnessMask robustness

à No overfitting detected

Objective:
During training, the weights 𝑤 were optimized to maximize the score function 𝑓#
on a set of images 𝑋 as follows 𝑤∗ = argmax

#
𝑓#(𝑋).

A mask of input size is applied to increase values voxel-wise. The image 𝑋./
masked by 𝑚 at voxel 𝑢 is defined as:

𝑋./ u = m u X u + (1 −m u )

The optimal mask covers a minimal amount of voxels in connected parts of the 
image and transform a set of patients in controls for the CNN.

𝑚∗ = argmin
.

𝑓#∗ 𝑋./ + 𝜆: 1 −𝑚 ;<
;< + 𝜆= 𝛻𝑚 ;?

;?	

Metrics of evaluation:
• probCNN: output probability of the CNN for the true class for an input masked 

by two masks optimized in two different contexts.
0=similar / 1=dissimilar

• ROI-based: cosine similarity between the vector of the densities of the masks 
in each ROI of AAL2.

0=dissimilar / 1=similar

Table 1. ROI-based similarity across different values of 𝜆:

Figure 1. Grid search on 𝜆: and 𝜆= hyperparameters

Figure 2. Masks obtained for the five folds of the CV on the first run (first line) and five runs of 
the first fold (second line)

Evaluation of dissimilarity:
Metric inter-runs (mean) inter-folds (mean)
probCNN 0.82 0.78
ROI-based 0.69 0.65

We demonstrated the robustness of our visualization method by showing the
small impact of hyperparameters choice on the resulting mask.

Then we could apply this visualization method to assess the robustness of CNN
training and found out that the patterns identified are not robust, though the set
of most highlighted ROIs is coherent with previous knowledge on AD.

Top 5 of more masked ROIs across the 5 folds
hippocampus, parahippocampal gyri, fusiform gyri, amygdalae, 
putamen, pallidum, temporal gyri, thalamus
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à CNN training is not robust
towards the regions identified

à Coherent with prior 
knowledge on AD

à Stability across different sets of hyperparameters

3D Convolution + BatchNorm + LeakyReLU

Max pooling Dropout (0.79) Fully-connected


