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Abstract

Following the recent proof I co-authored in Mathematics, I finally give here a pure
Peano-arithmetical demonstration that all Collatz orbits converge to 1. The point is to
establish that the respective attractors of any pair of odd numbers, if we assumed they were
separate, could always be finitely proven to collide upward, which is done by demonstrating
they branch faster than the binary tree over odd numbers. This had me introduce two
novel frameworks: Romanesco algebra and Dreamcatcher theory, which I discuss, along
with Tao’s fine-tuned "epsilon management" or what could then be called Poincaré-Denjoy-
Tao theory, could crack other Collatz-like problems (e.g. the Juggler sequence). Here I
just discuss how it could be used to independently prove there are no non-trivial cycles in
Collatz, using only what Tao already had, and provide a new perspective on the Furstenberg
×2 ×3 conjecture.

1 Introduction

Sacralizing problems is a terrible disservice to render Humanity, in any field. Yet pusillanimous
scholars and inventors tend to peer-pressure each other into doing just that: "let us, dear
colleague, bask in the consensual impossibility of this and that". It is after all, a natural tendency
of people to disguise a shortcoming under the formal declaration that a problem they could not
solve is simply impossible. Allow a few generations to ferment on this social phenomenon
and you have the absolute sacrality of some scientific problem, with the superstition, fostering
both further learned helplessness on behalf of the new generations and unhealthy skepticism
on behalf of editors, that most should not even dare tackle them. Flying was impossible, let
alone at an industrial scale, until it rather suddenly wasn’t, among others when some obscure
Midwestern dealers in spare bicycle parts cracked it open while top academics they fortunately
did not waste time reading (including Lord freaking Kelvin) had it repeatedly peer-reviewed
that it was physical nonsense. It is no surprise that both John Nash and Paul Cohen despised
thorough bibliographies on top open problems: they make you think like, they make your
mind rhythmically walk the trail of those who failed, and whose ego tried to preserve itself by
sacralizing the problem post hoc.

So the Syracuse problem1 is impossible until it isn’t. But if you thoroughly endeavor to fox-trot
deep into the quicksand bibliography of those who failed, I don’t expect you to succeed at, first,

1a.k.a. Collatz, but I have always found the Syracuse name to be immensely more inspiring, and as Pasteur
beautifully wrote: "The Greeks bequeathed to us one of the most beautiful words in our language–the word
’enthusiasm’–en theos–a god within. The grandeur of human actions is measured by the inspiration from which
they spring. Happy is he who bears a god within, and who obeys it"
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kicking the problem off its ridiculous psychological pedestal, second, solving it as it is the basic
work and intention of science. This is why, while I recently co-published a proof of the Collatz
conjecture in Mathematics along with a beautiful team of German and one Indian scientist
(who, thankfully, was, among other things, in charge of handling the thorough and homeworkey
bibliography), this article will keep the references to the absolute minimum.

2 The basics

You want to define the attractor of any point in Syracuse, that is, the set of all odd numbers
leading to it, with, for all intents and purpose, defining Syr(x) as "the next odd number in
the forward orbit of x". The whole point is to use the intersection of the binary, ternary and
quaternary trees over odd numbers as a coordinate system, that is, 2N∗ + 1 endowed with
operations {·2 + 1; ·2 − 1; ·3; ·3 + 2; ·3 − 2; ·4 + 1; ·4 + 3; ·4 − 1; ·4 − 3}. In practice though, you
can mostly rely on the following actions:

Definition 2.1. Actions G, V and S: For any natural number a,

1. G(a) := 2a− 1

2. S(a) := 2a+ 1.

3. V (a) := 4a+ 1 = G ◦ S(a)

Number theorists will be already familiar with these simple actions: that S(p) be prime if p
is will define Sophie Germain primes, for example the famous {5;11;23;47} line-up which is
the initial segment of the no less famous A083329 integer sequence which I show later is quite
important in the Furstenberg ×2 × 3 conjecture2. The Euler result on Mersenne primes also
involves action S2(x) = 4x + 3, namely that if p and 2p + 1 are Sophie Germain and p can be
written 4x+ 3, then 2p+ 1 divides 2p− 1. Finally action V is a famous protagonist in Fermat’s
theorem on sums of squares: a prime p can be expressed as a sum of two squares if and only if
p = V (x).

To easily represent the base-3 world, you then define odd numbers depending on their final digit
in this base:

Definition 2.2. Types A, B, and C :

1. A number a is of type A if its base 3 representation ends with the digit 2.

2. A number b is of type B if its base 3 representation ends with the digit 0.

3. A number c is of type C if its base 3 representation ends with the digit 1.

In homeworkey words, a number of type A belongs to residue class [2]3, a number of type B
belongs to [0]3, and a number of type C belongs to [1]3 in the ring Z/3Z. There is however a very
practical reason to say "type A" rather than [2]3, which is that you can now combine several

2I am in fact quite surprised Furstenberg be not even mentioned in the OEIS page of A083329
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properties from the two worlds (bot binary and ternary) with less characters, and character
parcimony is in turn the fundamental purpose of mathematical notation across history. For
example:

Definition 2.3. An Ag is a type A number that can be written 4x + 1 with x even. Their set
is defined as 24N∗ + 17

This Ag name is significantly more mind-ergonomic - namely, it needs less mind span to hold
and use, than just [17]24. The definition itself better reminds where they are exactly in the
binary tree over odd numbers. For example, their most important property is that they are
strictly decreasing under both Syr (3Ag + 1 is always dividable by 4) and Syr−1 (being of type
A, they always have a whole (A+ 1) · 2/3− 1 but they also are the only possible numbers ending
in 1 in base 4 verifying Ag ≡ S(Ag) under Rule 2 (see next paragraph).

If you further define a ≡ b as just meaning "a and b have a common number in their orbit" then
you get the following fundamental rules defining the attractor of any odd number in Syracuse.
Although I formulated them in more detail in the Mathematics publication, this barebone for-
mulation is in fact equivalent and sufficient to finish the proof because, in fact, all the rules can
be inferred from Rule 3.

• Rule 1
∀x odd, V (x) ≡ (x)

• Rule 2
∀x ∈ N if x is odd, then, SkV (x) ≡ Sk+1V (x) with k odd. If x is even SkV (x) ≡
Sk+1V (x) with k even.

• Rule 3
∀n ∈ N, ∀y ∈ N, ∀x odd non dividable by 3, if a ≡ y and a = G(3nx)
⇒

n∧
i=0

(Si(G(3n−ix)) ∧ Si+1(G(3n−ix))) ≡ y

3 A Collatz proof from The Book

Theorem 3.1. The Collatz dynamical system finitely maps any odd number it does not directly
map to 1, 3 or 5 to an Ag or a S(Ag) that it is equivalent to under Rule 2.

This theorem is a consequence of the proof of Rule 2 in the Mathematics paper but one can
quickly outline its proof, along with other important behaviors of the Collatz map that will
underline its relation to base changes and to the Furstenberg ×2× 3 conjecture:

1. If a number is written x 1 . . . 1︸ ︷︷ ︸
n

in base 2, then it is finitely mapped to the result of operation

G on the number written y 0 . . . 0︸ ︷︷ ︸
n

in base 3 with y = (x+ 1)/2. This number is always of

type A and precisely is always either an Ag or S(Ag). Also note that this is the one and
only way an orbit can rise in the Collatz dynamics.
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2. If a number is written z 2 . . . 2︸ ︷︷ ︸
n

1 in base 4, then it is immediately mapped to a number

written x 1 . . . 1︸ ︷︷ ︸
2n+1

in base 2.

3. If a number is written z 2 . . . 2︸ ︷︷ ︸
n

3 in base 4, then it is immediately mapped to a number

written x 0 . . . 0︸ ︷︷ ︸
2n+1

1 in base 2.

4. If a number is written s 0 . . . 0︸ ︷︷ ︸
2n+1

1 in base 2, then it is finitely mapped to S(r 0 . . . 0︸ ︷︷ ︸
n

) in base

3 with r as the base 3 representation of s.

5. If a number is written v 0 . . . 0︸ ︷︷ ︸
2n

1 in base 2, then it is finitely mapped to V (w 0 . . . 0︸ ︷︷ ︸
n

) in base

3 with w as the base 3 representation of v.

So solving the Ag solves Collatz, the first one being 17, which is the Ag of 7 ≡ 15, and thus also
of 9 ≡ 19 and of 11 ≡ 23. The second Ag is 41, which is the one of 27 ≡ 55. One can single out
the binary tree over the Ag numbers within the binary tree over 2N∗ + 1 as 24N∗ + 17 endowed
with {·2− 17; ·2 + 7}. Let us now call this binary tree Ag.

The whole point of the proof is to demonstrate that the growth factor of the attractor of any
point within the binary tree over odd numbers, for a finite n, is always strictly greater than 2,
and in fact great enough that there can only be one attractor in Collatz. From there indeed,
once it is proven that any attractor branches faster than the binary tree itself, the pigeon-hole
principle makes it easily demonstrable that any two pair of points on the same row of the tree
(that is, any two points {a:b} such that 2n < a < b < 2n+1) would always have a common point
in their attractor if they were separate, which in turn solves Syracuse.

Definition 3.1. The growth factor ρ of the attractor of an odd number a is the solution ρ to
ρn = N where N is the number of elements in the attractor of a that are strictly below 2n ·(a+2)

Theorem 3.2. Let a be any odd number greater than 1024. There is always n < 1000 such that
the growth factor of the attractor of a to 2n · a is greater than 2.1 .

Proof. Without any loss of generality thanks to Theorem 3.1, let us take a ∈ Ag. By Rule 2 we
have a ≡ S(a) and thus two infinite series of equivalence by Rule 1:

{a;V (a); ...;V n(a)} (1)
{S(a);V (S(a)); ...;V n(S(a))} (2)

Let us simply call the first series Va and the second one VS(a). When counting elements to a
finite n we will specifically call this finite segment Vna

For any type A number a, V(a) is of type B, V 2(a) of type C and V 3(a) of type A so one point
out of 3 in Va is of type A, which mean 1 point out of every 6 powers of 2. Applying Rule 3 on
these points generates another infinite series of points in the attractor of a, with x1 defined as
the result of 2(a+1)/3− 1 and x2 as that of 2(S(a)+1)/3− 1. We may also define D(x):=64x+49
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{x1;S(x1);D(x1);S(D(x1))...;Dn(x1);S(Dn(x1))} (3)
{x2;S(x2);D(x2);S(D(x2))...;Dn(x2);S(Dn(x2))} (4)

Let us call each of these infinite series Dx1 and Dx2

As with the impact of action V on types, action D also preserves the order "ABC", namely with
a ∈ Ag, D(a) is of type B, D2(a) of type C and D3(a) of type A, more precisely, it is always an
Ag, so for the sake of simplicity we will retain a ∈ Ag ⇒ D3(a) ∈ Ag. So in any Dx there is one
Ag every 18 powers of 2.

At this point one may also note an important aspect on the distributions of Ag numbers and
of D and V series among the binary tree over odd numbers, which is also very relevant to the
Furstenberg ×2 × 3 conjecture. Namely, if you wrapped the binary tree over the unit circle
(which we do in the next section), pushing each branch to infinity and thus with each possible
branch defining a unique real angle, any iteration of actions V or D on any number would
converge to only one limit angle, while action 24x+ 17 would not, because such action contains
a multiplication by 3.

So, starting with a single Ag number and its S(Ag) under Rule 2, we so far generated two V
series, each generating two D series, each containing an infinity of new Ag numbers, namely one
out of 18 powers of 2 in the binary tree.

Obviously this is not yet enough to prove a growth factor strictly above, say, 2.1, because all
we have for now are at best 2n/18 new Ag numbers in the attractor of our starting point, while
up to n there are about 2n/24 new Ag in the binary tree starting from the same point, which is
our standard of comparison, so one would need to multiply our initial finding by 3·2n−3

/n to just
even the score. Challenge accepted.

The good thing with action Syr−1 on the types A of a V series is that each element of the D
series it generates now also has a unique V series of its own, allowing to repeat the process again
and again. The repetition of course remains finite with n, because Syr−1 of a type A outputs
either a type A, B or C in equal proportions thus even with a Vn starting with a type A, one
may obtain a Dn or Dn+1 (because Syr−1 is decreasing) beginning with a type B number, which
is the worst possible case, in which the first new D series will be of length n-3 or n-2 over the
binary tree. However, in determining exactly, for a given Vn, what is the length m of the Dm
obtained from it by Rule 3, we may define a precise "splicing factor" of Rule 3

Definition 3.2. Splicing factor

Let Vnx be any V series, the splicing factor λ of Rule 3 on it is the height of the first type A
number in Vnx starting from x included. If x is of type A λ = 0, if it is of type B λ = 4 and if
it is of type C λ = 2

One may note that within any D series types A, B and C are equifrequent, thus averaging λ to
2.

To summarize, from a single Ag number we obtained by Rule 1 and Rule 2 a pair of series Vn
and Vn−1, each turned by Rule 3 into a Dn series having again, by Rules 1 and 2, the following
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series of V series:

{Vnx ;Vn−1
S(x);V

n−6
D(x);V

n−7
S(D(x))...V

n−6k
Dk(x);V

n−(6k+1)
S(Dk(x)) } (5)

If we take n-1 to be dividable by 6, it is equivalent to having at least (n−1)/6 series Vn, which
yet again, by Rule 3, will give us the same number of Dn−λ series, each again exhibiting one Ag
every 18 powers of 2.

We are now in a position to demonstrate that any Ag number, up to a certain n, will always
have strictly more other Ag numbers in its attractor than 2n/24

Indeed, beginning with one Ag and thus obtaining two Dn, we obtain for each of them the
following multiplication pattern

Dn →
n

6Dn−λ →
n

6
n− λ

6 Dn−2λ →
n

6
n− λ

6
n− 2λ

6 Dn−3λ → ... (6)

Where each Dx so obtained has b x18c Ag numbers, giving us the following formula to establish
the (minimal) amount of Ag in the attractor of any such number, up to n:

b23

bnλ c∑
k=0

k∏
i=0
bn− λk6 cc (7)

...which we now have to compare to ρn/24. For example, with λ = 2 and n = 100 we obtain
ρ ≈ 2.7. With n = 129 and λ = 3 we get ρ ≈ 2.113, and even with the worst possible value of
λ = 4 we get ρ ≈ 2.2675 for n = 400, which again comes as no surprise since the multiplication
process of Dn series under Rule 3 is a sum of λ-uple factorials normalized by a very manageable
6k.

We therefore have that assuming any other independent attractor than that of 1 exists under
the Collatz map over the binary tree over odd numbers, a contradiction arises that any two
numbers pertaining to the same row must finitely have a common number in their respective
attractor, which is impossible if they were separate in the first place .

This demonstration is of course consistent with Figure 15 of our article in Mathematics which
showed the proportion of numbers remaining to prove immediately when row n of the binary
tree over odd numbers had been proven to converge to 1 under the three rules3 implemented
from V1 onward was decreasing exponentially. As for the limit growth factor of the three rules,
we also obtained empirically that, started from V1 onward, whenever any full row n of the binary

3again, in the paper, we detailed the consequences of their combinations into two more rules, so there were
actually five of them.
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tree was completed (that is, fully proven to converge to 1), there were close to 3n+1 additional
odd numbers proven above it.

Figure 1: From the Mathematics paper: when
the three rules are applied on odd numbers in
their natural order starting from 1 ≡ 5 ≡ 3,
whenever they have proved the convergence of
full row n of the binary tree, which they do
one by one in their natural order, they have
also proved the convergence of about 3n+1 ad-
ditional numbers above.

Figure 2: Consistent with Theorem 3.2: when
row n has just been proven, the proportion of
numbers remaining to prove in row n + 1 de-
creases exponentially with an empirical upper
bound of about 1.72−n, which first afforded me
the then bold claim that almost all orbits at-
tain bounded values. Both figures courtesy of
Pierre Collet and Baptiste Rostalski.

This proof being both short and elementary, although its genesis fully relied on the systematic
introduction of the multi-unary algebras I called "Romanescos" (see next part), I am ready to
wager it is the most straightforward possible demonstration of the unity and totality of the
attractor of 1 in Syracuse; the metamathematical question "what is the most ad hoc way of
posing a problem" has always fascinated me, and I really believe multi-unary algebras are the
most natural structures to arise in the study of discrete chaos à la Syracuse, but also beyond.
Hence the next section.

4 Romanesco algebra and Dreamcatcher theory

A Romanesco {m;n; p} is the intersection of the m-ary, n-ary and p-ary trees over some number
set (typically, N). Each tree in turn is a collection of branches which are series of unary actions.
For example, the Romanesco {2; 3} on 2N∗ + 1 which is the most fundamental algebraic object
I designed and used to solve Syracuse is the set of odd numbers endowed with unary operations
{·2− 1; ·2 + 1; ·3− 2; ·3; ·3 + 2}. It looks like this:
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Figure 3: A representation of Romanesco {2; 3} over odd numbers up to 218. Type B numbers
are the result of action ·3 (yellow branches), type A numbers are the result of action ·3 + 2 (teal
branches) and type C numbers are the result of action ·3−2 (purple branches). Figure courtesy
of Max Henkel.
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Figure 4: When Romanesco {2;3} is mapped on the unit circle by embedding the binary tree
on it, the envelope of the ternary operations forms the 3-dreamcatcher in base 2. Figure
courtesy of Max Henkel.

It might look and feel just elementary to consider some unary operations on N, but just as the
very formulation of the Collatz map looks elementary yet displays complex emerging behaviors,
the emerging properties of romanescos and dreamcatchers are not trivial at all, and they can shed
new light on discrete chaos but also on p-adic arithmetic, ergodic theory and number theory
at large. For example, Pablo Shmerkin has very well explained the fundamental intellectual
motivation of such conjectures as Furstenberg’s ×2× 3 in this way:

Principle 4.1. (Furstenberg 1960)
Expansions in bases 2 and 3 have no common structure.
More generally, this holds for bases p and q which are not powers of a common integer or,
equivalently, log(p)/log(q) is irrational.

And indeed, the complexity of changes from bases 2, 3 and 4 does capture all (and I mean ab-
solutely all) of the chaoticity of the Syracuse dynamical system, which is in itself so high that
Fabian Bocart demonstrated it could form a reliable proof of work in the cryptocurrency indus-
try. Yet, the otherwise mysterious geometry of ternary operations over binary structures does
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appear in a much clearer way when represented say, in Romanesco {2;3} or in the 3-dreamcatcher
in base 2. In particular, the extent of operation ×3’s mixingness and its monotonous segments
and singularities is very well captured by the shape of the 3-dreamcatcher, which can now also
be further described, either as a parametric curve or as a concatenation of two bits of algebraic
curves.

Figure 5: The 3-dreamcatcher in base 2 appears to be the concatenation of two bits of alge-
braic curves, further truncated by the x-axis (hence the flat top of figure 4). The two curves
correspond to the parts of the unit circle where multiplication by 3 acts by scaling the angle by
0.75 + constant (blue curve), and the other by 1.5 (red curve). Eldar Sultanow obtained the
explicit formula (before the x-axis truncation) by computing the proper Sylvester matrix, which
(theorem) is always possible for any p-dreamcatcher in base q as long as p and q are integers
and may (conjecture) be so for any pair of reals too. The blue part appears to be an 8-degree
algebraic curve: −64y8 − 256x2y6 + 112y6 − 384x4y4 + 336x2y4 − 56y4 − 256x6y2 + 336x4y2 −
112x2y2 + 7y2− 64x8 + 112x6− 56x4 + 7x2 + x = 0. The singularity at the bottom of the heart
shape is limited by the mirror image of series Vn1 (which perfectly cuts the set of all branches
of the binary tree over odd numbers into its first third) under the 5-7 axis, and is therefore at
angle 2τ/3 on the unit circle

Embedding some p-ary tree over odd numbers on the unit circle will generate either a Prüfer
p-group or, if the branches are pushed to infinity, the circle group itself. When performing
such an embedding, one associates a single angle to a single branch, which is in itself a single
decomposition in base p. Therefore, the shape of the q-dreamcatcher in base p gives the precise
mapping of one angle to another under operation ·q, which is equivalent to obtaining either the
prefix of qp in base p (a p-ary prefix corresponds to a unique angle range or subtree or open)
or its full decomposition (a single angle), as we will show later, this system easily suggests a
certain class of infinitesimals because it formally separates an endless tail of trailing digits 1
in base 2 from one of trailing 0, from one of trailing 0 with some last digit 1 appended, thus
implying each of the base representations are now unique, and indeed, they are now associated
with a unique angle.
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Figure 6: Up: 2-dreamcatcher in base 3, and (down) 3-dreamcatcher in base 2 (rotated). De-
pending on how pn advances qn the tangents of the envelope will be turning either clockwise or
counterclockwise. More generally, dreamcatchers can be very useful in musical theory and tran-
scendental number theory, especially in studying the approximations of powers of q by powers
of p in finer details, but also in epsilon management and non-standard analysis (studying bases
1 + ε). Figure courtesy of Max Henkel.

It turns out studying dreamcatchers has other potential applications. As they are envelopes
generated by an unary application on the sets of pth roots of unity, it is rather easy to relate them
to Fourier transforms or to other number theoretical endeavors like p-adic arithmetic or complex
multiplication4. For example, one can use them to great effect to map the known solutions to
some difficult diophantine problems like the sums of three cubes and cubic quadruples, which
then suddenly appear to have radically different behaviors:

4that their study could ultimately contribute to the liebster Jugendtraum is the firsts reason to call these
objects dreamcatchers, the other one being their particular construction
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Figure 7: When mapped on the binary tree embedded on the unit circle, whole solutions {a;b;c}
to equations of the form a3 + b3 + c3 = d3 (cubic quadruples) seem to behave ergodically, even
when they are classified by the surface range of the triangle they generate (compared to the
surface of the circle). One may excuse the presence of the impossible "42-45%" range which was
initially left to check for errors. Figure courtesy of Max Henkel.

Figure 8: Such is however not at all the case of the known solutions to equations of the form
a3 + b3 + c3 = d which then seem to have obvious "forbidden zones" which could further instruct
more ambitious conjectures and research programs, for example: "there are no solutions forming
an x-almost equilateral triangle in any base" or "there is a precise density distribution of solutions
per surface range". Figure courtesy of Max Henkel.
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Figure 9: The previous figure, now in base 3 (ternary tree embedded in the unit circle, forming
a Prüfer 3-group as we remain in the discrete case). One interesting extension of ergodic theory
could consist in studying not measures but bases that are ergodic for a certain distribution
or even, in applied mathematics, a certain dataset, which could be searched through artificial
intelligence. One possible conjecture is that there is no real base (so even including, say, the
phinary, pi-ary, e-ary or log(2)-ary bases) that could morph the distribution of the solutions to
the sums of three cubes into that of the cubic quadruples in base 2. Morphisms (their existence
or not, their properties and algebraic behaviors) of envelopes obtained in certain bases are
typical questions of dreamcatcher theory. For data science, studying and classifying or even
predicting data patterns that would produce such and such envelope or envelope spectrum (a
superposition of envelopes) would be a fun and, I wager, fertile endeavour (a multidimensional
data point could also be represented as an n-gon). Figure courtesy of Max Henkel.

So initially dreamcatcher theory may be developed to shed new light on diophantine arithmetic
and to endeavor a finer theory of base conversions, leading to new insight on the Furstenberg
×2 × 3 conjecture. What I want to focus on here however is how dreamcatchers could be
used to inform more advanced solutions to the Syracuse problem, and in particular, a separate
proof that no non-trivial cycle can exist in the dynamical system. This approach owes a lot
to Poincaré-Denjoy theory, but it specifically requires a new tool coming, among others, from
Baker and Tao, which is epsilon management.

5 Poincaré-Denjoy-Tao Theory: Tao almost had it

Terence Tao is one of the bests proponents of epsilon management, all the while, with the
Green-Tao theorem, also being a proponent and master of what Matheus called the "remarkable
effectiveness of ergodic theory in number theory". Undergraduate mathematics will often stop,
and condition most to stop, at demonstrating such orbit is dense or that such set is perfect.
And indeed, 3p approximations of powers of 2 are dense. But this is not enough at all. With
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Baker, and in fact, the very foundation of transcendental number theory, the point is to first ask
"how dense?" and then to establish a solid theory of comparative density. I argue this is what
is most needed to obtain an independent proof that no non-trivial cycle can exist in Collatz,
and that this proof itself could actually lead to a different solution of the Syracuse problem,
less elementary but much richer theoretically with possible applications in many other hard
dynamical maps (eg. The Juggler sequence).

One of the reasons epsilon management immediately becomes interesting in dreamcatcher theory
is that, when you wrap a p-ary tree over the unit circle, you immediately define a very precise
smallest possible epsilon, which is action +1. For example, if you wrap the binary tree over odd
numbers action +1 will turn 2n − 1 into 1, and any 2nx − 1 into x. There is no difference in
the field of real numbers between the angle occupied by Sn(x) and that of x+1 when n goes to
infinity, because there is no real number to distinguish 0.9999... from 1 even though it is the
smallest natural epsilon to distinguish a minimal distance between two consecutive reals. With
the binary tree over odd numbers, it naturally becomes (exactly half) the distance between
two consecutive branches, that is, for any x, there are exactly two smallest epsilons between
Sn(G(x)) and Gn(S(x)) namely between G(x) 1 . . . 1︸ ︷︷ ︸

n

and x 0 . . . 0︸ ︷︷ ︸
n

1 in base 2 when n goes to

infinity, with Sn(G(x)) + ε = x = Gn(S(x))− ε

Now we obviously know that iterated multiplications by 3 are dense and loopless in the binary
tree over odd numbers, but from this trivial piece of knowledge, one can achieve more elaborate
considerations by summoning non-archimedean fields, namely: how ε-far from their own path
will these iterations ever go, which is a typical point of transcendental number theory, as we
know from Baker that log2/log3 is transcendental. Also, one fundamental purpose of embedding
the binary tree over odd numbers on the unit circle is that divisions by 2 from an even number
will always leave angles invariant. Thus, what action +1 does to any x > 1 in the coordinate
system of the base 2 dreamcatcher of odd numbers is "send the number to the first smaller value
clockwise", for example any Mersenne goes to 1, and any "anti-Mersenne" 2n+1 goes to 2n−1 +1
e.g. 17 goes to 9. Can this drift be enough to open iterations of ×3 to possible loops? Section 3
of this paper already says no of course, but what would really be interesting methodologically,
is to demonstrate it through some ad hoc epsilon management, which would form a definite case
study for the field. This endeavour I call Poincaré-Denjoy-Tao theory, "theory" because it goes
way beyond just cracking Collatz.

Even though Collatz is chaotic the 3-dreamcatcher in base 2 well-behaves5 the +1 action for you
as its impact on the angle is perfectly predictable, even after iterations. It always corresponds to
a rotation of τ/l where l is the length of the base 2 representation of the starting number. If there
are no non-trivial cycles in Collatz, it means that even though operation ×3 is dense in the circle,
it is never "+1-dense" (except for the trivial cycle 1 → 4 → 2 → 1, which becomes the identity
1 → 1 in the 3-dreamcatcher in base 2 as then Syr(1) does not even reach another element of
V1 than 1 itself) because it is everywhere out of reach of this rotation, of this particular ε angle.
One way of demonstrating that there are no possible non-trivial cycles in Collatz, would be to
demonstrate that no x can come any close - much less intersect - to its Vx which is equivalent
to saying it can’t reach 4n(3x+1)−1

3 for any n, because the only way you could possibly loop in
Collatz is true Rule 1.

To sum it all up, what happens when you start properly blending Baker-Tao and
5"best-behaves" maybe? So far I can’t see a better way of well-behaving the consequences of action +1 in the

Collatz map, but as Tao reminds in spending symmetry ignorance is not an argument
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Poincaré-Denjoy is that you can rigorously establish definitive interdiction zones
around each step of a given orbit which needless to say is an extremely powerful tool in
chaos theory at large. Wherever a certain point flies within the circle, it will come to interdict
some infinitesimal angle (which exact span entirely relies on transcendental number theory and
careful epsilon management) around every point it touches, hopefully depleting enough angles
to achieve a proof of convergence: any orbit Orb(x) won’t be able to step into such and such
collection of opens until reaching y < x is the only option left. Note that while the fundamental
theorem of arithmetic guarantees the trivial |3p − 2q| > 0, we also already have:

3p − 2q = 3p(1− 3q( log2
log3−

p
q ) (8)

And if the Tao-Collatz conjecture is true (a.k.a the "weak Collatz conjecture") then

2p > 3q ⇒ 2p − 3q Ï (1 + ε)q (9)

...meaning the base infinitesimal to fit many times between 2p and 3q is some q-compounded
non-archimedean interest (I believe a simple theory of non-armichedean compound interests
could form a very accessible introduction to epsilon-management and transcendental number
theory).

The added value of Denjoy is that now that actions ·p in base q can be defined as diffeomorphisms
of the unit circle with an irrational rotation number, one can further open their study to diagram-
chasing through their topological conjugacy. Think of dreamcatchers as a class of adapters from
number theory and arithmetic topology to ergodic theory. It is not a coincidence that René Thom
(of Zeeman-Catastrophe Theory fame6) wrote the theory of envelopes should be mandatory in
undergraduate mathematics.

6 Some thoughts on the Furstenberg ×2× 3 conjecture

They both are open problems about chaotic dynamical systems involving multiplications by 2
and 3, yet the Syracuse problem and the Furstenberg ×2 ×3 conjecture - even though the latter
has always been related to problems of diophantine aproximation - never show up together in
the literature. To me, this is just plain peer-pressured nonsense (a.k.a "guildshit"). Furstenberg
proved in 1960 that the unit circle under iterated ×2 mod 1 and ×3 mod 1 has no (infinite)
non-trivial closed invariant set, which is a consequence of the relative "mixingness" of operation
×3 over a binary representation, which in itself forms the core of the inflation propensity of
Collatz orbits, itself, finally, so pseudorandom it can form a proof of work (Bocart 2017), so I
mean of course the two problems are deeply related and should be studied together and it is my
opinion that Figure 6 of this paper, if properly theorized, will offer very valuable insight into
both the Furstenberg "principle" in general and the ×2 ×3 conjecture in particular.

Now, without resorting to the Prüfer p-groups or roots of unity, one can still represent iterations
of the dyadic transformation (the ×2 mod 1 map) and the triadic transformation (the ×3 mod

6also, that one mathematician who blew Salvador Dali’s mind so much the mad painter ended up believing
Perpignan station was the freaking center of the Universe and also painted a few pieces for him
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1 map) as some sorts of billiards within the unit circle. These modular multiplications will
generate beautiful caustics that are most often - and I deplore it - thought of as just inspiring
pieces of recreational mathematics. They really are not.

Figure 10: Left: the caustic generated by map ×2 mod 1 on the unit circle; value 0 is now on
top (because it is the only decent way to represent the Alliance Starbird you uncultured hog
you). Right: the caustic generated by ×3 mod 1, equivalent to a light source placed at infinity.
Both figures courtesy of Max Henkel.

Geometrically, the single most fundamental property that operation ×2 will contribute will be
to force the presence of a caustic on point 0.5 (angle π), which just cannot happen with any 3n.

Figure 11: Ccustic generated by ×6 mod 1 (Left) and ×9 mod 1. Operation ×2 is heavily
symmetry-breaking on operation ×3. The caustic of ×3n mod 1 will have exactly 2 · (3n − 1)
axis of symmetry, because each of its 3n− 1 caustics is facing another of the same size, whereas
in any form 2n · 3m one can now only have 2n · 3m − 1 axis of symmetry, which is decisive in
such dynamical systems having no infinite non-trivial closed invariant set. A system ×p mod 1
where p is of the form 3n will have 2(p− 1) axis of symmetry while if p is of any form 2n · 3m it
will have p− 1 axis of symmetry.

16



So we know what ×2 does to a 3n system: it forces it to always have a caustic at position 0.5
(or π/2) and breaks the symmetry that the caustics of any 3n system must always face each
other. If the symmetry group of the 3n system is C2·(3n−1) that of 2 · 3n is C(2·3n)−1. Now what
does action ×3 interdict in any 2n system? Essentially, it forbids the number of caustics to be
dividable by 3, and in fact, forces it to belong to [2]3 ("type A"), but even more, precisely forces
it to belong to the image of the Mersenne branch (M) under iterated (up to monotony) Collatz
transforms, namely the order of their rotation group always belongs to:

Syr∞(M) = S5;S17;S53;S161; ...;SG(3∞). (10)

... with S5 being OEIS A083329. Unlike with Ag there is no xN+y with x, y ∈ N to identify this
sequence. Also, let us whack out some recreational conjecture of advanced Poincaré-Denjoy-Tao
theory :

Conjecture 6.1. Of all the k-gons distributing the caustics of any system 2n3m on the unit
circle, the only straightedge and compass constructible ones are k=5 and k=17.

So back to the Furstenberg conjecture: any modular multiplication ax mod 1 in the unit circle
will leave an envelope that is a finite equidistribution of caustics which centers are the vertices of
the regular (a-1)-gon with a vertex at 0.5

a−1 which for any prime a, generates a particular family
of envelopes for anx mod 1 that will allow a large diversity of ergodic measures. However, the
Furstenberg conjecture implies that when you are only allowed certain specific series to pick
from, you collapse the set of ergodic Borel probability measures to the translation-invariant
one or to atomic ones. The case of 2 is marking because it is the only possible case in which
the mirrors (the caustics) will never be facing each other, which obviously has many important
implications in terms of cyclic trajectories and thus the ×2×3 mod 1 case belongs to this specific
family of rotation groups with odd orders. In general, crossing two multiplicatively independent
integers a and b will always ensure that ab − 1 is never dividable by any of them. Is this the
only property we should be relying on? If yes, this would give the following loose conjecture:

Conjecture 6.2. Some divisibility constraint on the order of the rotation group of the envelope
forces any ergodic probability measure to be atomic or translation-invariant

In any case, we already have from Furstenberg that...

Theorem 6.3. If a and b are multiplicatively independent whole numbers, then for any irrational
x, then {anbmx, n,m ∈ N} is dense in R\Z

...so obviously e2iπanbmx is dense in T (how dense by the way?).

A still loose argument I want to share here regarding the possibility that certain families of
regular polygons, in distributing the caustics on the unit circle, be forcing any non-atomic
invariant Borel measure to be translation invariant is based on the possibly simplest proof of
the translation invariance of the Lebesgue measure (as shared on Omar Antolín Camarena’s
webpage).

Lemma 6.4. The Lebesgue measure is the only measure on Rn defined on all Borel subsets,
invariant under translations and such that the measure of [0; 1) is 1.
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Proof. Let µ be a measure satisfying those conditions. Using translation invariance and addi-
tivity we get successively that

1. µ(Π[0;mi)) = Πmi for positive integers mi

2. (Πni) · µ(Π[0; mini )) = Πmi for positive integers mi and ni

3. µ is the Lebesgue measure for any product of half-open intervals with rational endpoints

Rational endpoints are important in our case because it is easy to prove that the beginning and
end of any caustic in any pn envelope are rational. When T = 2x mod 1 the invariance of the
Lebesgue measure is ensured by that any interval S of measure µs < 1

2 will have 2 other non-
overlapping intervals T−1

1 (S) and T−1
2 (S) mapping to it, symmetrically distributed, and each of

measure 1
2 . So here are the take-home constraints that I believe should be banded together to

solve the Furstenberg ×2× 3 conjecture

1. the envelope of any "ditryadic" transformation d = 2n3m mod 1 in S1 is made of 2n3m− 1
caustics equally distributed on the circle, with one centered on 0.5.

2. so any interval [kd ; k+1
d ) is mapped to by d segments [ kd2 ; k+1

d2 ) of caustics and no caustic
is facing the center of another

3. in base 3, the number of caustics is an element of S123 2 . . . 2︸ ︷︷ ︸
k

with k ∈ N∗ which is never

dividable by neither 2 nor 3.

The third point is not trivial at all, for this kind of pegging in the base 2 and 3 representations of
the numbers of caustics in the envelope of the dynamical system is the essential reason behind
it not having any invariant Cantor set. For example, one may remember that the regular
Cantor set can be seen as that of all real number in [0;1] which ternary representation does
not contain digit 1 (which also shows why it is continuous). 1 is in the Cantor set because it
is indistinguishable from 0.222... unless you would go non-archimedean and epsilon-manage a
non-standard Cantor set. So the mixingness of pegging the number of caustics of the envelope
to 2n3m − 1, numbers that can never be divided by either 2 or 3 leads us to a consideration
that is extremely close to that of the Collatz map, where Mersenne numbers are so important
because they always define the longest possible monotonous increase under the map at a given
row of the binary tree, and they do so because at any such row, they have the longest "trailing
digits 1" by definition, and finally those trailing digits define how many consecutive times you
can apply action 3x+1 without the result being dividable by 4.

So the third point above means that you take 5 (1012) and allow an indefinite number of trailing
digits 1 to it in base 2, then allow an indefinite number of digits 2 in base 3 to any of those
numbers, and the envelope of the dynamical system in S1 can only have so many caustics, which
is a very precise subset out of all the possible distributions of a whole number of equally spaced
caustics on the unit circle.
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Also note that even though base 2 to 3 conversions are wildly chaotic (hence the Collatz and
Furstenberg conjectures in the first place), you can always define some perfectly precise suffix
periodicity for them. For example,

• As the Mersenne numbers, in their natural order, are Type C → Type B (eg. 1→ 3) the
periodic 1-digit suffix of their base 3 representation is 1→ 0 so it has period 2

• the 2-digits suffix is 01→ 10→ 21→ 20→ 11→ 00 so it has period 6

• the 3-digits suffix has period 18

• the n-digits suffix has period 2 · 3n−1

So we can already predict arbitrary long suffixes, while the 2-dreamcatcher in base 3 will also
give us arbitrary long prefixes. This goes way beyond the Furstenberg conjecture by the way,
I am convinced it could expose some critical vulnerabilities in the otherwise massive difficulty
(but let’s not start sacralizing another problem just yet) of proving there are infinitely many
Mersenne primes, based on which conspiracies you obtain from prime powers of 2 and the
suffix they reach. The whole point of Romanesco Algebra is to give a geometric meaning
to diophantine conspiracies in the first place, by studying how multiplicatively independent
iterated linear sequences wrap around each other, which is of interest in studying distributions
of prime numbers among certain sequences and in giving a geometric meaning to base changes.
The point of Dreamcatcher theory and of a Poincaré-Denjoy-Tao theory is then to provide
a precise dynamical system and ergodic theoretic framework to study the chaoticity of base
changes, define interdiction zones and possibly, through - more precisely - ergodic Ramsey
theory (which is what Furstenberg used to prove his 1977 theorem, and could be argued, is
also the spirit of the Green-Tao theorem), define sufficient conditions for the existence or non-
existence of progressions, loops and properties. Ultimately, there is a great interest in bringing
the ×2 × 3 conjecture back to its original motivation of studying the chaoticity of conversions
between multiplicatively independent bases (the 2;3 case being the most fundamental) and their
arithmetic "avalanches" in particular, that is, their self-organized criticality under some iterated
operations which Romanesco and Dreamcatcher theory begins by limiting to the case of unary
algebras. One way of seeing my "Collatz Proof from The Book" is that it essentially demonstrates
the 3x+1 dynamical system is self-organizedly critical by studying the branching factor of the
attractor of any of its points, which in turn is a result of the mixingness of operation ·3, itself
the fundamental property behind the ditryadic map having no non-trivial closed invariant set.
Simply put: base 3 transforms self-organize into base 2 avalanches all the time.

We may also extend the Furstenberg conjecture by attempting to be more systematic in studying
how the geometric and arithmetic properties of the envelopes of certain iterated systems in the
unit circle will be forcing a certain measure rigidity.

• Any ×2 system generates a Mersenne number of caustics

• Any ×3 system generates a "Base 3 Mersenne" of caustics, namely a number that can be
written 2...2 in base 3

• Any ×2 × 3 system generates Syr∞(M) = S5;S17;S53;S161; ...;SG(3∞) caustics which we
may call a "Collatz-Mersenne" number.
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But then what rigidity would be implied when the number of caustics is picked, say, from any
G7;G19;S55;S163; ...;GS(3∞), meaning you would be starting with the AntiMersennes and then
branch them with trailing digits 1 in base 3. Would the Lebesgue measure also be the only
invariant one? Would this claim be equivalent to the Furstenberg conjecture? In a way, I find
this intellectual process quite similar to asking, say, whether the infinity of Mersenne primes
would be equivalent to the infinity of AntiMersenne primes.

To summarize, base-change dynamical systems could use their ad hoc algebraic structures, which
I intended with Romanesco algebra. Transformations iterating trailing digits in different bases
generalize Bernoulli shifts or Baker maps (would the trailing digit appending be bidirectional),
where the Cantor function, fractals with a transcendental Hausdorff dimension (e.g Log(2)/Log(3)
for the Cantor set) and p-adic arithmetic already offer much insight. I introduced Dreamcatcher
theory with the intended program of endowing it with non-archimedean extensions (Poincaré-
Denjoy-Tao theory) to be able to better grasp and pose otherwise difficult problems regarding
certain transformations of number series. For example, defining Romanesco {2; 3; 4} in the
minimalistic way of calling it any (finite or not) word from operations {S;G;A;B;C;V } starting
from number 1, where operations A (resp. B and C) are defined as "adding an end digit 2 (resp
0, 1) in base 3 and V as "adding an end digit 1 in base 4", one may ask "how often does an A
series starting from x return to inside the binary tree rooted in x?" or even more precise ones: in
which smallest trees rooted in elements of Vx? From there we can study the sturmian sequence,
say, starting from 5 (to stay with the Furstenberg conjecture) and note "1" whenever a point of
this series falls between 2n + 1 and 3 · 2n − 1 both included, and "0" when it doesn’t

5(1)− 17(1)− 53(0)− 161(1)− 485(0)− 1457(1)− 4373(1)... (11)

And note for example that 4373 is just far enough from V17 as well as 161 is far enough from V5,
and it is a founding purpose of Poincaré-Denjoy-Tao theory to demonstrate there is a mathe-
matical restraining order forbidding any A, B, C series (either pure, or even possibly combined)
starting from x to get closer than a certain limit to Vx (which again is the basis to demonstrate
there are no non-trivial cycles in Collatz). As a Romanesco is endowed with a natural metric
(composed of words from the unary operations of the tree, eg. A,B,C) one could call this par-
ticular problem one of "dendricab geometry", namely, the equivalent of taxicab geometry but
in a tree. Adding PDT theory to it, one could tick off entire "dendriboxes", namely, finite trees
rooted in some y that would be interdicted after iterations of some ternary operations, and this
could probably generate a "Collatz sponge", reminiscent to a Menger Sponge or a Sierpinski
triangle, composed of the binary tree over odd numbers of which infinite series of dendriboxes
have been removed. The rigorous definition of the size of the interdicted Vy and the dendri-
boxes rooted in their elements would require the most careful epsilon management, but once
done, I would be very curious to see representations of those Collatz sponges. Epistemologically,
bringing some methods of non-standard analysis (epsilon management) to discrete dynamical
systems by embedding them in an object which is itself bridging N and R (the binary tree over
odd numbers has a continuous amount of branches to infinity) and then defining traversal series
of some comparatively infinitesimal sub-volumes of the tree (the dendriboxes) with the stated
purpose of obtaining measures and fractal dimensions for their complementary sets I suspect
could lead to important new tools in the ergodic theory of numbers.

Another point of interest lies in the geometry of Dreamcatchers and how they bridge consider-
ations involving p-adic arithmetic and algebraic curves. For example, the 3-dreamcatcher has a

20



non-trivial singularity (the trivial one being in {0; 0}) corresponding to the equality of the two
algebraic curves composing it (the red and the blue one, one of degree eight and one of degree
six), and which precise position is the infinite iteration of S ◦ G starting from number 5 ; for
example 75 itself is cutting interval [65; 85] in two equal parts. Since on the dreamcatcher S ◦G
is equivalent to "remove a quarter of the angle from itself" if we start with number 1 on the left
and set it to angle 0, we have number 5 which is angle (τ/4) then number 19 so angle (τ/4− τ/42)
then 75 (τ/4− τ/42 − τ/43) etc. thus giving us 1/4− 1/4 ·

∑∞
k=1

1/4k = 1/4− 1/4 · 1/3 = 1/6

Similarly, V1 and V3 are cutting the binary tree embedded in the unit circle into perfect thirds
because V = G◦S is equivalent to : "add a quarter of the angle to itself" thus again

∑∞
k=1

1/4k =
1/3. Here too, bringing together difficult polynomials, envelopes, p-adic arithmetics, base p
representations and simple Dirichlet series would seem at best recreational to the obtuse scholar,
but it really isn’t. I am convinced a theory of Dreamcatcher multiplications could expose
vulnerabilities in open problems such as the infinity of Mersenne primes, namely, the properties
of divisors of prime numbers of digits 1 in base 2. For example, V1 corresponds to the image of
the Mersenne numbers dividable by 3 in their natural orders, converging to a single angle on the
3-dreamcatcher in base 2, which symmetry against the 5-7 axis also solves one crossing point of
the two algebraic curves (the non-trivial singularity of the dreamcatcher), and this process we
can now iterate for all Mersenne numbers.

We may begin with the simple task of cutting the binary tree into perfect Mersenneth domains,
just as V1 already cuts it into its first third, which is easy because

∑∞
k=1

1/(2n)k = 1/(2n−1).
From there Romanesco algebra finishes the task by defining any first Mersenneth of the tree
as the iteration of the appending of a certain base 2 suffix which is strictly equal to the n-th
AntiMersenne. Namely: 9 is 1001 in base 2 so the first 7th of the binary tree is found by
just iterating concatenations of 1001 in this base. 17 is 10001 so the first 15th of the tree is
found by iterating 10001... Studying the caudal singularity of Mersenne Dreamcatchers in base
2 is one way of attempting to study the distribution of Mersenne primes (or Sophie Germain
primes) from an epistemological angle similar to that of the euclidian constructibility of regular
polygons. Also, by symmetry, this simple endeavour will always point to the one singularity
of the Mersenne dreamcatcher in base 2, solving infinitely many (very) hard equations on the
way. Since any p-dreamcatcher is "sylvesterizable" (has a Sylvester matrix for each of the two
algebraic curves composing it) does it mean this could also be used to break the ground for a
general theory of polynomial resolution, not with radicals obviously, but with the more advanced
envelopes instead, or to put it provocatively: could envelopes be the new radicals? Is it not,
beyond mathematically recreational, mathematically interesting per se? Would it not deserve
to be called a theory?

Let me conclude this part with some other crazy question to set the tone for the last section,
namely since p-dreamcatchers in base q can be seen as twisted, "degenerate" forms of the regular
cardioid, could there be a fractal curve, obtained from some iterative dynamical system obvi-
ously, that would behave like the Mandelbrot set but with dreamcatchers instead of cardioids?
And if it turns out to be possible with the same dreamcatcher in all the curve, could it be so
with any possible series of them?
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7 Some mad ideas to wrap it up

Science is about being absolutely systematic, because that Truth be Singular implies that Truth
be Total, as only absolute totality may be singular. I have never really been a fan of the
Popper criterion and I understand why some scholars have railed its most radical users as
"popperazzi", because Popper’s refutability has been unjustly sacralized. The Popper criterion
is good for politics, it is essentially fiduciary but as it blatantly fails for all of metamathematics,
beginning as early as with second order logic where defining undisputable falsification is simply
impossible, it is a very limited one indeed. I prefer to guide science with the criterion of
systematicity instead: is real science what is truly systematic, especially more so when it comes
to mathematics. One should explore the neighbourhood of existing paradigms, their mirror
images, their contradictions, etc. Cohen has justly brought the concepts of field extension to
logic in inventing forcing, and I think it should be further expanded to noetics (or "conceptics"),
namely the discipline of studying the universe closed under all possible mental operations.

Once refutability is replaced with systematicity or totality, one may still adjoin the criterion
of aesthetics, which generalizes Occam’s razor in an antifragile way (the razor is very easy to
fool locally because it is very predictable and it is thus fragile in the sense of Taleb) with some
aesthetical intuition remaining "grasping the most with the least". So totality is the ocean,
aesthetics is the meta-scientific lighthouse, because art is long and life is short. Aesthetics can
remain baudelairian for any mathematician: you may and should find beauty in pathologies and
mathematics’ flowers of evil have spawned many marvels already (eg. Monstrous Moonshine).
There is already enough in each one’s particular interpretation of the aesthetical criterion to
define mortal schools and guilds with their limitations (eg. Pythagora’s hatred of irrationals,
Berkeley’s skepticism towards infinitesimals or Kronecker and later Poincaré’s disdain for Can-
tor’s genius) so why go beyond? I have a lot of respect for those baudelairian mathematicians
who fascinates themselves with pathologies, they find beauty in the beasts and sometimes they
end up well-behaving them in grand ways so we should encourage and cultivate their attitude
which is one of the creams of sciences. Beauty elicits attention and devotion, and this is what
one needs for epic success. Sacralizing problems in the bad way though, conditions young schol-
ars into never being able to see the beauty, and only being able to see the beast: a waste of
human mental life and the castration of enthusiasm, which scholarly fools yet adore practicing.

I have studied multi-unary algebras with the desire of being systematic (my impression was
that they had not been developed with the same thoroughness as the binary ones) and have
let my personal sense of aesthetic guide me through an attempt at theorizing them towards
the well-behaving of some beastly beauty: the Syracuse problem. Those names: Romanescoes,
Dreamcatchers, are way too cute not to entice outright rape by the scholarly perverse confined in
their mental prison, those fools who cherish the belief that cuteness, enthusiam and élan should
be banned from the serious science - after all, won’t we call the opposite of a professional a literal
amateur, namely, "the one who likes"? Now as blasé as they are, reviewers want to cowardly
believe being a pro is being a bore, in a psychological phenomenon akin to hazing: once hazed,
one either courageously accepts it was fundamentally for nothing and decides they will be the
last, or one hazes the next generation, turns hazing into a glorious tradition, so they can give
meaning to their otherwise meaningless, but passed, suffering. Thus a majority of scholarly
fools feel the burning, subconscious compulsion to castrate enthusiasm wherever they see it, and
they hate that someone would make their theory cute, by giving it the names that would inspire
them the most. Making an invention or a theory cute is just practical neuroscience though:
what is cute effortlessly attracts your time and attention; if babies were not cute, Humanity,
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with its epitome of the K-strategy, would have gone plain extinct. Now inventors and scientists
must breed their theory and work into acceptance, even tough some, like Wegener, will have to
fend child-eating fools their entire life (and indeed plate tectonic had to wait till the nineteen-
sixties to be widely accepted when Wegener died in 1930); this requires constant nursing, the
protracted, spontaneous offering of attention and time, and for this you better make your theory
cute, above all, to yourself, because you are the one nursing it. Just as no bored fool would
ever peer-review the Mouse at Xerox (yes they invented it, just as much as they spoiled it), or
"fractals" as Mandelbrot would admit himself (which is why he worked at IBM in the first place:
have fun finding what hardcore bourbakist would discreetly say of him in the nineteen-fifties),
no blasé lobotomee would validate such enthusiastic names as Romanescoes and Dreamcatchers,
so I thankfully publish them in this ArXiv piece. Once you define totality as the only absolute
scientific criterion, unencumbered mental freedom is not an option anymore.

In the epistemological scheme of things though, the Totality criterion also forces us to ask those
dreadful questions of alternative history and study their application to contemporary situations.
This I call the "Toltech effect", with a -tech for technology, that is, epistemological vicariance.
Though it was impressive for its area, Toltec metallurgy was nowhere close to the contemporary
European one, but this of course can only be relative. How do we know however, that our
"mentallurgy", the depth and heat and focus of our mental life has reached the full potential
of any of its eras? A lazy answer is that we cannot, but I believe the Totality criterion to be
the best way to avoid a Toltech effect in the noosphere: how can mental vicariance split you
from great ideas if you abolish mountain ranges in the realm of ideas in the first place? Oceans,
depths, cordilleras, are mental-made in the noosphere, while in the geosphere, they are not, and
explain why in geopolitics, "geography is destiny"; as the human mind also has congenital blind
spots and limitations, there is some sort of congenital topography in its noosphere as well, but
the Totality criterion calls for a systematic exploration of it. how do you really know you haven’t
missed something elementary in your civilisational epistemology? The Romans could have had
the industrial revolution if they had searched for it: it was within the radius of their current
technology, just vetoed by their rigid socio-political structure, so they just did not collectively
search for it.

Case in point: Romanescoes and Dreamcatchers are elementary constructions in nature, they
could have easily been thought by Archimedes himself, he could have studied and obtained
fundamental theorems on them7, and so could have Al Khwarizmi, Omar Khayyam, Marin
Mersenne, Pascal and Fermat. There is no Romanesco theorem I could find in my entire life
that would not have been found by Euler or Gauss had they had been offered a practical
picture of them, and the very thought that Galois and Wantzel, whose early passing was a
mathematical catastrophe, could have had as many large colored printed maps of Romaneso
{2; 3; 4} at their disposal as they’d needed gives me ASMR chills. Of course, for the working
Romanesco algebraist, a zoomable picture is a must, and modern tablets are best fit for it,
though I am sure some would be very prompt to argue against what they would see as some
pathetic mental crutch - intellectual-yet-idiots often despise mental ergonomics in the first place,
but there is something much deeper to this possible debate.

It is funny indeed that Sir Michael Atiyah would make such a claim while being fluent in Arabic
and well-knowing that Al-Jabr, which could be poetically translated as "He who mends", is a
divine name in Islam, but after having seen myself what happens when one attempts giving up

7I pick him because he was the best of his time. Bonus points for being born and passing in Syracuse and
having his modernized profile on the freaking Fields Medal; the man is basically the Chairman of the Fielderal
Reserve in perpetuity, with his face forever minted on that mathematical prestige money that never goes "brrr".

23



geometry in studying the Furstenberg and Syracuse conjectures, I cannot agree more with it:

"Algebra is the offer made by the devil to the mathematician. The devil says:
‘I will give you this powerful machine, it will answer any question you like.
All you need to do is give me your soul: give up geometry and you will have
this marvellous machine." –Sir Michael Atiyah

...because it is naturally much more mind-ergonomic geometry allows our brain to handle wider
abstract objects; it enlarges our mental span, and as such, it can be illuminating indeed. So, in
a way, "let none but geometers enter here", and now that we are sincerely committed to bringing
geometry back, we may, among so many things ...

• tropicalize dreamcatchers : unsurprisingly, the (Min, +) algebra makes them much simpler

• characterize moduli spaces of dreamcatchers

• establish a complete theory of dreamcatcher multiplication solving the angle of any mul-
tiplication (say the famous 23× 89 = 2047, with the clear intent of dragging the question
of the infinity of the Mersenne primes into a realm epistemologically similar to that of the
euclidian constructibility of regular polygons) and beyond, any polynomial.

• obtain an epistemological equivalent to Fourier theory to decompose infinite superpositions
of envelopes with applications in diophantine algebra, for example in the study of Figures
8 and 9.

• characterize the rotation number of any p-dreamcatcher in base q, and under which con-
ditions it would be algebraic. Also which geometric properties do all the dreamcatchers
with the same rotation number share?

• extend dreamcatchers to complex numbers with tangents now representing automorphisms
of the unit sphere.

...and beyond, obtain - through geometry still - an abstract generalization (which in the context
of this section, really means "systematisation" or "totalisation") of unary algebras and Prüfer
group automorphisms by forcing some envelopes onto p-groups and defining the resulting alge-
braic operation. For example: what is the operation obtained by rotations and symmetries of
the 3-dreamcatcher in base 2? Could the properties of these exotic " ×3∗ " operations shed new
light on some diophantine problems? Ultimately of course, the point is to achieve a (geometric)
form of Diophantine Galois theory...
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35th birthday to share the essence of this "Proof from The Book" with the German team
https://youtu.be/YZ_5wpw2eTU
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