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Ahmed Zaoui∗

LAMA, UMR-CNRS 8050,
Université Gustave Eiffel

Abstract
In the regression problem, we consider the problem of estimating the variance function by the

means of aggregation methods. We focus on two particular aggregation setting: Model Selection
aggregation (MS) and Convex aggregation (C) where the goal is to select the best candidate and
to build the best convex combination of candidates respectively among a collection of candidates.
In both cases, the construction of the estimator relies on a two-step procedure and requires two
independent samples. The first step exploits the first sample to build the candidate estimators for
the variance function by the residual-based method and then the second dataset is used to perform
the aggregation step. We show the consistency of the proposed method with respect to the L2-
error both for MS and C aggregations. We evaluate the performance of these two methods in the
heteroscedastic model and illustrate their interest in both the regression problem with reject option
and the quantile regression.
Keywords: Regression, Conditional variance function, Aggregation

1 Introduction
Building efficient estimation of the level of noise is highly important for real applications and statistical
analysis. In the heteroscedastic regression, which corresponds to the case where the variance of the
errors depends on input variables, the heteroscedasticity must be detected and estimated. Indeed, not
taking it into account in the estimation invalidates the conclusions of many statistical inference problems
such as statistical tests which assume that the errors of the model all have the same variance. In
addition, when using an approach that estimates the error variance as a function of input variables,
the prediction intervals we obtain are likely to be more realistic than those obtained by assuming that
the error variance is constant since the predictive uncertainty estimate depends on the estimate of the
variance of the response variable. In general, testing and confidence intervals are two historical statistical
problems where a bad calibration of the noise may lead to bad conclusions. Another important aspect
of estimating the heteroskedasticity of the model is that the point estimate of the regression function is
directly related to the variance function. The range of use of the variance structure in the data is even
wider such as in selection the optimal kernel bandwidth (Fan, 1992), estimation correlation structure of
the heteroscedastic spatial data (Opsomer et al., 1999), estimation of the quantile regression (Koenker,
2005, Shan and Yang, 2009), estimation of the signal-to-noise ratio (Verzelen and Gassiat, 2018), or
choosing optimal design (Müller and Stadtmüller, 1987) and finding important applications for instance,
in finance with the problems of measuring volatility or risk (Anderson and Lund, 1997, Xia et al., 2002)
or long-term stock returns (Mammen et al., 2019) or time series context (Xu and Phillips, 2008). Many
nonparametric economic models can be cast within the heteroscedastic regression model, for instance for
application in stochastic frontier analysis (Martins-Filho and Yao, 2007) and for the analysis of causal
treatment effects (Imbens and Lemieux, 2008). In our case, we highlight the interest in providing an
efficient estimation of the variance function in the problem of regression with regret option where the
good calibration of the rejection rule is highly dictated by the efficiency of the estimator of the noise
level (Denis et al., 2020). We focus on the regression problem: we denote by (X,Y ) ∈ Rd×R the couple
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of random variables where X is the feature vector and Y is the response variable such that

Y = f∗(X) +W .

Here W is the noise and is such that E[W |X] = 0 and E[W 2] < ∞. In particular for any x ∈ Rd
we write f∗(x) = E [Y |X = x] to denote the regression function and σ2(x) = Var(Y |X = x) =
E
[
(Y − f∗(X))2|X = x

]
to denote the conditional variance function.

Despite the popularity of the problem of estimating the noise level, there remains much to do. In
particular, we study in the present paper this problem from the aggregation perspective and build esti-
mators of the conditional variance function based on Model Selection (MS) and Convex (C) aggregations.
We study their consistency properties as well as their numerical performances. Our work is motivated
by recent research in regression with reject option (Denis et al., 2020). There it has been observed that
the rejection rule is fully determined by the variance structure. We hope that aggregation will improve
the accuracy of the method.

1.1 Related work
Our literature review consists of three related fields:

Conditional variance estimation: The problem of estimating the regression function is classical
and widely studied, see for example (Biau and Devroye, 2015, Gyorfi et al., 2002, Scornet et al., 2015,
Stone, 1977, Tsybakov, 2008) and references therein.

Even though the problem of estimation of the conditional variance function is less studied, it has
been considered in several works that can be cast into two groups according to the nature of the design
(fixed or random).

When the design is fixed, the estimation of σ2 has been studied mainly via residual-based meth-
ods (Hall and Carroll, 1989, Härdle and Tsybakov, 1997, Ruppert et al., 1997) and difference-based
methods (Brown and Levine, 2007, Müller and Stadtmüller, 1987, Wang et al., 2008). Difference-based
estimators do not require the estimation of the regression function f∗. The first difference-based es-
timators have been developed by Müller and Stadtmüller (1987). They considered an initial variance
estimates which are squared weighted sums of m observations neighbouring the fixed point where the
variance function is to be estimated. The authors showed that the proposed initial variance estimates
are not consistent. To solve this problem, they smoothed them with a kernel estimate. Brown and Levine
(2007) presented a class of non-parametric variance estimators based on different sequences and local
polynomial estimation and established asymptotic normality. Wang et al. (2008) were interested in the
effect of the unknown mean on the estimation of the variance function and proved numerically that the
residual-based method performs better than the first-order-difference-based estimator when the unknown
regression function f∗ is very smooth.

In this work, we rather focus on random design. Less methods have been proposed to estimate the
conditional variance function in this case. Most classical methods are the direct and the residual-based:

1. The direct method: a simple decomposition the conditional variance function σ2 is rewritten as
the difference of the first two conditional moments, σ2(x) = E[Y 2|X = x] − (E[Y |X = x])2. The
direct method consists in estimating the two terms in the right side separately, see for example (De-
vroye et al. (2018), Fan and Yao (1998), Härdle and Tsybakov (1997)). To be more specific, the
direct estimator of σ2 has the following form

σ̂2
d(x) = ĝ(x)− (f̂(x))2 ,

where ĝ and f̂ are estimators of E[Y 2|X = x] and f∗, respectively. The main drawback of this
approach is that it is not always nonnegative for example, if different smoothing parameters are
used in estimating those terms and adaptation to the unknown regression function f∗ is still not
available. Härdle and Tsybakov (1997) proposed a local polynomial regression estimates of those
terms using the same bandwidth and the same kernel function. They established the asymptotic
normality of local polynomial estimators of the regression function and the variance function.

2. The residual-based method: this approach consists of two steps. First, one estimates the
regression function and computes the squared residuals r̂ = (Y − f̂(X))2 where f̂ is the estimator
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of f∗. Second, we estimate the variance function by solving the regression problem when the
input is the feature X and the output variable is the residuals r̂ . For more details, see Fan and
Yao (1998), Neumann (1994), Ruppert et al. (1997). It exists many ways to study this method.
For instance, Fan and Yao (1998) applied a local linear regression in both steps and showed that
their estimator is fully regression-adaptive to the unknown regression function. Using the local
polynomial regression can be negative when the bandwidths are not selected appropriately. As a
solution to this, Yu and Jones (2004) proposed estimators based on a localised normal likelihood,
using a standard local linear form for estimating the mean and a local log-linear form for estimating
the variance. Ziegelmann (2002) introduced an exponential estimator of the conditional variance
in the second step to ensure the nonnegativity of the estimator of σ2. Xu and Phillips (2011)
used a reweighted local constant estimator (kernel estimator) based on maximising the empirical
likelihood subject to a bias-reducing moment restriction. Moreover, such estimators have the form
σ̂2(X) =

∑
i ωi(X)(Yi − f̂(Xi))2 where ωi(X) are weight functions (Denis et al. (2020), Kulik

and Wichelhaus (2011)). Recently, Denis et al. (2020) used the previous estimator and focused
on estimating the regression function and the variance function respectively, by kNN. Under mild
assumptions, they provided the rate of convergence of the kNN estimator of the conditional variance
function in supremum norm. The residual-based method can be regarded as a generalised difference-
based estimator. For more details, see Fan and Yao (1998). Another line of work (see Evans and
Jones (2008), Ferrario and Walk (2012), Liitiäinen et al. (2010, 2009)) have focused on nearest-
neighbour-based estimators of E[σ2(X)] and have analysed the properties of such an estimator both
theoretically and numerically for various machine learning problems.

In this paper, we focus on the residual-based method to estimate the variance function since they
appear more tractable. In particular, we develop an aggregation procedures for this task.

Aggregation methods: Aggregation is a popular approach in statistics and machine learning. This
technique is well known to estimate the regression function in the homoscedastic or heteroscedastic
model. We refer the reader to the baseline articles Audibert (2009), Bunea et al. (2007), Juditsky
and Nemirovski (2000), Tsybakov (2003, 2014), Yuhong (2004). Given a set of estimators of regression
function f∗, the aggregation constructs a new estimator, called the aggregate, which mimics, in a certain
sense the behaviour of the best estimator in a class of estimates. There are several popular types of
aggregation and we focus on two: the model selection aggregation (MS) which allows to select the best
estimator from the set; the convex aggregation (C) where the goal is to select the best convex combination
of functions in the set. In general, the aggregation procedures are based on sample splitting, that is,
the original data set DN is split into two independent data sequences Dk and Dl with N = l + k ≥ 1.
The first subsample Dk is exploited to build M > 1 competing estimators of the regression function f∗
and Dl is used to aggregate them. Most of the work has focused on fixing the first sample, resulting in
fixed estimators (the estimators are then seen as fixed functions). Under mild assumptions, the authors
in Tsybakov (2003) showed that the optimal rates for MS and C aggregation w.r.t. L2-error in gaussian

regression model are of order log(M)
N , and M

N if M ≤
√
N , respectively,

√
1
N log

(
M√
N

+ 1
)
if M ≥

√
N

in both cases.
In this paper, we consider aggregation methods for the conditional variance estimation. Up to our

knowledge, such approaches have not been considered yet for this problem.

Reject option: Reject option is important in nonparametric statistic since it helps avoid uncertain
prediction. It has been initially introduced in the classification setting (Chow, 1957, 1970, Denis and
Hebiri, 2020, Herbei and Wegkamp, 2006, Lei, 2014, Nadeem et al., 2009, Vovk et al., 2005) where it
has shown important improvements in the quality of prediction. It has been recently developed in the
case of the regression model in the case where the rejection rate is controlled by the practitioner (see
Denis et al. (2020)). There the authors provided a characterisation of the optimal rule (knowing the
true distribution of the data) and demonstrated that it relies on thresholding the conditional variance
function. More formally, it is defined as follows: given a rejection rate ε ∈ (0, 1)

Γ∗ε(x) :=
{
{f∗(x)} if σ2(x) ≤ F−1

σ2 (1− ε)
∅ otherwise ,
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where F−1
σ2 is the generalised inverse of the cumulative distribution function (CDF) Fσ2 of σ2(X). As

can be observed, this optimal solution depends on several parameters: the rejection rate ε that is known
in advance, the CDF Fσ2 that is efficiently estimated the empirical CDF, the regression function f∗(x)
for which efficient estimators exist in the literature, and the conditional variance σ2. This last quantity
is less considered in the literature and our goal is to build accurate estimators of the conditional variance
that rely on aggregation. The ultimate purpose is then to make a sharper estimation of the optimal rule
in the case of the rejection option in the regression setting.

1.2 Main contribution
We develop the notions of model selection aggregation and convex aggregation to estimate the conditional
variance function. To our knowledge, this work is the first to deal with this setting. We consider two
independent datasets: the first will be used to build the initial estimators of the variance function and
the second to aggregate them. We call these estimators the MS-estimator and C-estimator. We consider
the residual-based method to build the initial estimators which is based on estimating the regression
function in the first step. We focus on estimating the regression function by model selection aggregation
and convex aggregation. In this paper, the major part is then devoted to show the upper-bounds of L2-
error of the MS-estimator and C-estimator when the initial estimators can be arbitrary or verify very weak
conditions such that boundeness. We establish that the rate of convergence for MS and C procedures is of
order O((log(M1)/N)1/8) when Y is unbounded and is of order O((log(M1)/N)1/4) when Y is bounded.
Finally, we obtain numerical results which show the performance of our procedures.

1.3 Outline
The paper is organised as follows. In the next section, the aggregation problems, the model selection
and convex aggregations, are described in detail. Section 3 is focused on investigating the upper-bounds
for the L2-error of our procedures. Finally, Section 4 presents a numerical comparison of the proposed
method w.r.t. the heteroscedastic model as well as a direct application to both the regression framework
with reject option and the quantile regression.

Notations. We introduce some notation that is used throughout this paper. Let p ≥ 2 be an inte-
ger, the set of integers {1, . . . , p} is denoted [p]. Let N be integer. For any function f : Rd → R, we
define the empirical norm ‖f‖2N = 1

N

∑N
i=1 |f(Xi)|2 and the supremum norm ‖f‖∞ = supx∈Rd |f(x)|.

Moreover, we denote by Λp := {λ ∈ Rp : λj ≥ 0,
∑p
j=1 λj = 1} the simplex. Let ‖ · ‖1,p denote the `1

norm on Rp, that is, ‖λ‖1,p :=
∑p
j=1 |λj |. For the sake of simplicity, let Z = (Y − f∗(X))2.

2 Aggregation estimators
In this section, we describe an estimation algorithm of the variance function σ2 by aggregation. In
particular, we focus on two types of aggregations: the model selection aggregation (MS), and the convex
aggregation (C). These aggregation problems, (MS) and (C), have been considered to estimate the unknow
regression function in the regression model. The objective is to estimate f∗ by a combination of elements
of a known set called dictionary made up of deterministic functions or preliminary estimators. The
collection of estimators or algorithms is given and can be parametric, nonparametric or semi-parametric
nature. Given a set of estimators, the MS-aggregation consists in constructing a new estimator which
is approximately as good as the best estimator in the set, while the objective of C-aggregation is to
construct a new estimator which is approximately as good as the best convex combination of the elements
in the set, for more details see Audibert (2009), Bunea et al. (2007), Juditsky and Nemirovski (2000),
Tsybakov (2003, 2014), Yuhong (2004). Besides, to construct an aggregate of σ2, we first introduce two
independent learning samples: Dn = {(X ′i , Y

′

i ), i = 1, . . . , n} and DN = {(Xi, Yi), i = 1, . . . , N} which
consist of respectively, n and N i.i.d. copies of (X,Y ).
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2.1 Model selection aggregation
In this first paragraph, we detail how we perform MS-aggregation in order to estimate of the conditional
variance function σ2 by MS. It consists of two steps: one step for the estimation of the regression function
f∗ and a second one devoted to the estimation of σ2. More precisely, in the first one we build M1
estimators of the regression function f̂1, . . . , f̂M1 based on Dn with 2 ≤ M1 < ∞. Then, we use the
second dataset DN to estimate f∗ by MS: we select the optimal index, denoted ŝ as follows

ŝ ∈ argmin
s∈[M1]

R̂N (f̂s), where R̂N (f̂s) = 1
N

N∑
i=1
|Yi − f̂s(Xi)|2 , (1)

and the aggregate of the regression function, denoted by f̂MS, is then given by

f̂MS := f̂ŝ. (2)

In the second step, given the estimator f̂MS built on DN , we construct using back the sample Dn M2
estimators of the variance function σ2, denoted σ̂2

ŝ,1, . . . , σ̂
2
ŝ,M2

, by residual-based method with 2 ≤M2 <
∞. Finally, based on DN again, we select the optimal single, denoted m̂, as follows

m̂ ∈ argmin
m∈[M2]

R̂N (σ̂2
ŝ,m) where R̂N (σ̂2

ŝ,m) = 1
N

N∑
i=1
|Ẑi − σ̂2

ŝ,m(Xi)|2

with Ẑi =
(
Yi − f̂MS(Xi)

)2
. Therefore, the aggregate of the variance function, called MS-estimator and

denoted σ̂2
MS, is defined as

σ̂2
MS := σ̂2

ŝ,m̂. (3)

2.2 Convex aggregation
Convex aggregation procedures for nonparametric regression are discussed in Audibert (2004), Bunea
et al. (2007), Tsybakov (2003). We describe here an algorithm for aggregating estimates of the conditional
variance function σ2 by C-aggregation. As for MS-aggregation, the construction of the aggregate of σ2

needs two independent datasets Dn and DN . The aggregation still proceeds in two steps: one for
estimating f∗ and the second for the estimation of σ2. Each step is again decomposed in two parts.
Firstly, we consider M1 estimators of the regression function f∗, {f̂1, . . . , f̂M1}, based on Dn, and for
any λ ∈ ΛM1 we define the linear combinations f̂λ

f̂λ =
M1∑
j=1

λj f̂j .

Then, aggregates of the regression function based on the sample DN have the form

f̂C := f̂λ̂ =
M1∑
j=1

λ̂j f̂j , (4)

where the estimator λ̂ is defined by
λ̂ ∈ argmin

λ∈ΛM1
R̂N (f̂λ).

Once f̂C is obtained, we focus on the estimation of σ2. Based on the sample Dn, we build M2 estimators
for the conditional variance function by the residual-based method, denoted σ̂2

λ̂,1, . . . , σ̂
2
λ̂,M2

, and for any
β ∈ ΛM2 we define σ̂2

λ̂,β
as follows

σ̂2
λ̂,β

=
M2∑
j=1

βj σ̂
2
λ̂,j

.

5



Finally, based on DN , the aggregate estimate for σ2 is given by

σ̂2
C := σ̂2

λ̂,β̂
, (5)

where the estimator β̂ is defined by

β̂ ∈ argmin
β∈ΛM2

R̂N (σ̂2
λ̂,β

), where R̂N (σ̂2
λ̂,β

) = 1
N

N∑
i=1
|Ẑi − σ̂2

λ̂,β
(Xi)|2

with Ẑi = (Yi − f̂C(Xi))2. We called σ̂2
C the C-estimator.

3 Main results
This section is devoted to studying the L2-error of MS-estimator and C-estimator. Firstly, we introduce
general conditions required on the model in Section 3.1. Secondly, we show the consistency of our
methods in Sections 3.2 and 3.3.

3.1 Assumptions
The following assumptions are the bedrock of our theoretical analysis:

Assumption 1. The functions f∗ and σ2 are bounded.

Assumption 2. Y is bounded or Y satisfies the gaussian model

Y = f∗(X) + σ(X)ξ, (6)

where ξ is independent of X and distributed according to a standard normal distribution.

These assumptions are relatively weak and play a key role in our approach. They allow to use the
Hoeffding’s inequality in the case of boundness of Y or ξ. In particular, it is important to emphasise
that Assumptions 1 and 2 guarantee that the variable Y − f∗(X) is sub-Gaussian (see Lemma 9 in the
case where Y is bounded).

3.2 Upper bound for σ̂2
MS

We study the L2-error of the MS-estimator σ̂2
MS. Let R(f̂s) = E

[
|Y − f̂s(X)|2

]
for all s ∈ [M1]. We define

s∗ as follows
s∗ ∈ argmin

s∈[M1]
R(f̂s) . (7)

Besides, we need the following assumptions in the case of MS-aggregation:

Assumption 3. For all s ∈ [M1] and all m ∈ [M2] , f̂s and σ̂2
s,m are bounded a.s Dn. More precisely,

there exist two positive constants K1 and K2 such that for all n ∈ N∗

max
s∈[M1]

‖f̂s‖∞ ≤ K1, and max
(s,m)∈[M1]×[M2]

‖σ̂2
s,m‖∞ ≤ K2.

Assumption 4 (Separability hypothesis). There exists δ0 > 0 such that

δ∗ (Dn) = min
s 6=s∗
{|R(f̂s)−R(f̂s∗)|} > δ0 .

Both assumptions are used to control the L2-error of the MS-estimator σ̂2
MS. Assumption 3 describes

the boundedness of the estimators. It is in particular satisfied if the functions in the dictionaries are
bounded. In our construction, the constants K1 and K2 do not need to be known. In practice, the
response variable Y in the sample is finite and then it ensures that the candidates in the dictionaries are
bounded. Assumption 4 is used for MS and helps us to ensure that the minimum of the risk R is well
defined. It cannot be verified in practice since it depends on the distribution P. Let E be the expectation
which is taken with respect to both X and the samples Dn and DN . We establish the following result
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Theorem 1. Let f̂MS and σ̂2
MS be two MS-estimators of f∗ and σ2 defined in Eq. (2) and (3) respectively.

Then, under Assumptions 1- 4, there exist two absolute constants C1 > 0 and C2 > 0 such that

E
[
|σ̂2

MS(X)− σ2(X)|2
]
≤ E

[
min

m∈[M2]
EX

[
|σ̂2
s∗,m(X)− σ2(X)|2

]]
+ C1

{
min
s∈[M1]

E
[
‖f̂s − f∗‖2N

]}1/2p
+

C2

(
log(M1)
N

)1/4p
,

with p = 1 if Y is bounded and p = 2 otherwise.

The proof of this result is postponed to the Appendix. Let’s give a sketch of the proof. The L2-error is
the exces risk of σ̂2

MS where E
[
|σ̂2

MS(X)− σ2(X)|2
]

:= E
[
R(σ̂2

MS)−R(σ2)
]
with R(σ2) = E

[
|Z − σ2(X)|2

]
.

We introduce the minimiser σ̄2
MS := σ̂2

ŝ,m̄ where m̄ ∈ argminm∈[M2]R(σ̂2
ŝ,m). We consider the decompo-

sition E
[
|σ̂2

MS(X)− σ2(X)|2
]

= E
[
R(σ̂2

MS)−R(σ̄2
MS)
]

+ E
[
R(σ̄2

MS)−R(σ2)
]
. We control the two terms in

the right side separately. The first one is the estimation error (variance term). To control it, we need to
introduce σ̃2

MS := σ̂2
ŝ,m̃ where m̃ ∈ argminm∈[M2]RN (σ̂2

ŝ,m), with RN (σ̂2
ŝ,m) = 1

N

∑N
i=1 |Zi − σ̂2

ŝ,m(Xi)|2.
The upper bound of the variance depends on the L2-error of the aggregate f̂MS with respect to the
empirical norm. The second one is the approximation error. Its upper-bound is linked to P(ŝ 6= s∗).

Theorem 1 gives the upper-bound for L2-error of σ̂2
MS. This bound consists of two parts: the first part

is the bias of MS-estimator σ̂2
MS and depends on the deterministic selector s∗; the second part is composed

of the two remaining terms and corresponds to the estimation error (variance). The first term is the
bias term of f̂MS expressed in terms of the empirical norm ‖ · ‖2N , and the second one characterises the
price to pay for MS-aggregation and is of order (log(M1)/N)1/4p where p = 1 if Y is bounded and p = 2
otherwise. Note that this rate is slower than in the case of the estimation of the regression function
f∗. This slow rate is due to the double aggregation that we need to perform for the estimation of the
conditional variance function.

3.3 Upper bound for σ̂2
C

In this part, we focus in studying the L2-error of σ̂2
C . The construction of σ̂2

C needs the following estimators
{f̂i}M1

i=1 and {σ̂λ̂,i}
M2
i=1. We require the following conditions

Assumption 5. For all i ∈ [M1], all λ ∈ ΛM1 and all j ∈ [M2] , f̂i and σ̂2
λ,j are bounded a.s. Dn.

Assumption 6. Suppose that there exists a constant K ≥ 0 such that for every j ∈ [M2]

E
[
|σ̂2
λ1,j(X)− σ̂2

λ2,j(X)|
]
≤ K‖λ1 − λ2‖1,M1 , ∀λ1, λ2 ∈ ΛM1 a.s Dn.

Assumption 5 describes the boundedness of the candidates as Assumption 3. Assumption 6 is a strong
condition. However, it holds, for instance, for estimators of the form σ̂2

λ,j(X) =
∑
i ωi(X)(Yi − f̂λ(Xi))2

where ωi(X) are weight functions, that are nonnegative and sum to one. The next theorem is the main
result of this section, it displays the upper-bound of L2-error for σ̂2

C .

Theorem 2. Let f̂C and σ̂2
C be two C-estimators of f∗ and σ2 defined in Eq. (4) and (5) respectively.

Then, under Assumptions 1, 2, 5, and 6, there exist two absolute constants C1 > 0 and C2 > 0 such that

E
[
|σ̂2

C (X)− σ2(X)|2
]
≤ E

[
inf

β∈ΛM2
EX

[
|σ̂2
λ̂,β

(X)− σ2(X)|2
]]

+ C1

{
inf

λ∈ΛM1
E
[
‖f̂λ − f∗‖2N

]}1/2p
+

C2

(
log(M1)
N

)1/4p
,

with p = 1 if Y is bounded and p = 2 otherwise.

As for Theorem 1, the upper-bound for the L2-error of C-estimator σ̂2
C is composed of three terms.

The first one is the bias term of σ̂2
C which depends on the random selector λ̂, the second and third ones

is a bound of the variance term that rely on the bias term of f̂C with respect to the empirical norm ‖ · ‖2N
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and on the price to pay for convex aggregation which is of order (log(M1)/N)1/4p where p = 1 if Y is
bounded and p = 2 otherwise.

We notice that both procedures MS and C have the same rate. Indeed, the variance term of σ̂2
MS and

σ̂2
C is based on the upper bound for f̂MS and f̂C. Moreover, the aggregates f̂MS and f̂C have the same

rate which is of order (log(M1)/N)1/2 with respect to the empirical norm ‖ · ‖2N , see Proposition 1 and
Proposition 2 in the Appendix. Let us now compare with the rates of f̂MS and f̂C with respect to L2-error
and L2-risk. For the Gaussian and bounded regression model, the rate of the variance term of f̂MS and f̂C

is of order log(M1)
N and M1

N if M1 ≤
√
N , respectively,

√
1
N log

(
M1√
N

+ 1
)
if M1 ≥

√
N in both cases (see

Bunea et al., 2007, Lecué, 2013, Lecué and Mendelson, 2009, Tsybakov, 2003). We can deduce that our
rates are very slow because our procedures need to estimate at the same time the unknown regression
function f∗ and the variance function σ2 by aggregation procedures.

4 Numerical results
This section is devoted to the numerical analysis of our procedures. In Section 4.1, we describe four
heteroscedastic models in the gaussian case and two models when Y is bounded. Second, we evaluate
the performances of MS-estimator and C-estimator for different examples in Section 4.2. Once we have
calibrated our estimate of the variance function σ2, we exploit it to consider the problem of regression
with reject option and the quantile regression in Section 4.4.

4.1 Data
Our numerical study relies on synthetic data:
Heteroscedastic models: we propose four examples of heteroscedastic models (6):

• Model 1: let a ∈ {1/4, 1} and X = (X1, X2, X3) have a uniform distribution on [0, 1]3. Let

1. f∗(X) = 0.1 cos(X1) + exp(−X2
3 );

2. σ2(X) = a
(
0.1 + exp(−7(X1 − 0.2)2) + exp(−10(X2 − 0.5)2 + exp(−50(X3 − 0.9)2) .

• Model 2: let X = (X1, . . . , X10) have a uniform distribution on [0, 1]10. We define

1. f∗(X) = 0.1 + exp(−X2
1 ) + 0.2 sin(X2 +X3 +X4 + 0.1X2

5 );
2. σ2(X) = 1

2 (0.5+
√
X1(1−X2)+0.8X3X4 +X5X6X

2
7 +0.9 exp(−500(X8 +X9 +X10−0.5)2))2.

• Model 3: sparse model

1. f∗(X) = Xβ, β ∈ Rp;

2. σ2(X) = 1
2

(
0.3 +

√
X1(1−X1) sin

(
2.1π

X2+0.05

)
+ 0.5X3 +X4

)2
.

Bounded Y : we consider the following regression model when Y is bounded

Y = f∗(X) + σ(X)%

where % have a uniform distribution on [−
√

3,
√

3]. We give the following examples of models :

• Model 4: let X have a uniform distribution on [0, 1]2 and

1. f∗(X) = X1 + exp(−X2
2 );

2. σ2(X) = 0.01 +X1 exp
(
−(X2 − 0.9)2).

• Model 5: let X = (X1, X2, X3) have a uniform distribution on [0, 1]3 and

1. f∗(X) = X1 +X2 + 0.5 cos(X3);

2. σ2(X) =
(

0.3 +
√
X1(1−X1) sin

(
(2.1)π
X2+0.05

)
+X3

)2
.
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Figure 1: Histogram of values of σ2 in Gaussian models.

Figure 2: Histogram of values of σ2 in regression models for bounded responses.

We describe the previous models. We display in Figures 1 and 2 the histograms of the variance function
for every model. Model 1 is a multivariate model in which the regression and variance functions are
regular functions. In the case a = 1/4, the problem of estimation of σ2 is hard since it takes a large
proportion of values smaller than 1, while the case a = 1 is simpler because about 76.3% of the values
of σ2 are larger than 1 and 0.04% larger than 3. Moreover, Model 2 is also a multivariate model where
we introduce higher order terms in the variance function. In this sense, the estimation of the variance
function is hard since in addition, there are only 28% of values of σ2 greater than 1. In Model 3 we
consider a sparse model for the regression function where X is an N × p matrix (p is the number of
predictors) with independent uniform entries, β ∈ Rp is a vector of weights, and ξ ∈ RN is a standard
Gaussian noise vector and is independent of the feature X. We fix p = 50. The vector β is chosen to
be s-sparse where s < p, that means β has only first s coordinates different from 0; βi = 1{i≤s}. Here,
we choose s = 14. In addition, the variance function in this model is less difficult. Indeed, σ2 takes only
24.8% values greater than 1. Finally, the last two examples are two models when Y is bounded. Model
4 is bivariate regression model where the estimation of σ2 is difficult (about 99.8% of the values are less
than 1). Lastly, considering Model 5, the values of σ2 are between 0 and 3.12. There are 36.6% of values
that are larger than 1. From this perspective, the estimation of the variance function is less complicated.
However, the presence of higher order terms makes the problem harder.

4.2 Benefit of aggregation
In this section, we improve the classical methods based on residual-based approach by considering ag-
gregation. In the same time we compare MS and C aggregation.

4.2.1 Machines and simulation scheme

The construction of the aggregates σ̂2
MS and σ̂2

C is described in Sections 2.1 and 2.2. We recall that
we focus on the residual-based method to compute the candidates of the variance function σ2. One
of the advantages of using the aggregation approach is that the collection of candidates is chosen by
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the practitioner and can be arbitrary. We build three dictionaries F = {f̂s}12
s=1, G1 =

{
σ̂2
ŝ,12
}12
m=1

and G2 = {σ̂2
λ̂,j
}12
j=1 that contain 12 machines each: the random forest with different number of trees

(ntree=50, 150, 500), the kNN with different values of k (k = 7, 13, 22), the Lasso with different values
of tuning parameter (λ = 0.5, 2), the Ridge with different values of tuning parameter (λ = 0.9, 3),
regression tree and the Elastic Net regression with a penalty term λ = 1 and a parameter α = 0.6 that
compromises between the `1 and the `2 terms in the penalty. The first dictionary is exploited to compute
the aggregates f̂MS and f̂C while the last two are used to calculate respectively, σ̂2

MS and σ̂2
C with those 12

machines. For the 12 algorithms, we use the following R packages:

• Regression tree (R package tree, Ripley (2019));

• k-nearest neighbours regression (R package FNN, Li (2019));

• RandomForest regression (R package randomForest, Liaw and Wiener (2002));

• Lasso regression (R package glmnet, Friedman et al. (2010));

• Ridge regression (R package glmnet);

• Elastic Net regression (R package glmnet).

Other parameters are set by default. In addition to that, we use Optim function in R which is based on
method BFGS to compute λ̂ and β̂. Now, we evaluate the performances of σ̂2

MS and σ̂2
C on previous models.

Besides, we provide estimation of the L2-error for σ̂2
MS and σ̂2

C and repeat independently L = 100 times
the following steps:

1. simulate three datasets Dn, DN and DT with n ∈ {100, 1000}, N ∈ {100, 1000} and T = 1000;

2. based on Dn, we compute the dictionary F , and then based on DN , we compute the aggregates
f̂MS (that is ŝ) and f̂C (that is λ̂) of the regression function f∗ provided in Eqs (2) and (4);

3. based on Dn and f̂MS (resp. f̂C), we compute the collection G1 (resp. G2) and we calculate σ̂2
MS and

σ̂2
C on DN ;

4. based on Dn ∪DN : firstly, we compute the collection F1; secondly, for each estimate f̂s in F we
calculate the estimators {σ̂2

s,m}1≤m≤12 of σ2 corresponding to the 12 procedures in F ;

5. finally, over DT , we compute the empirical L2-error of the aggregates σ̂2
MS and σ̂2

C . On the other
hand, we compute the collection of estimators of the variance function {σ2

s,m}1≤s,m≤12 and we
choose the best among them in terms of empirical L2-error (always on the datatest DT ). That
means, we take the smallest of empirical L2-error as follow: for all (s,m) ∈ [12]× [12]

min 1
T

T∑
i=1

(
σ̂2
s,m(Xi)− σ2(Xi)

)2
, (8)

and denote the best method. Finally, we compare it with our aggregation methods.

From these experiments, we compute the means and standard deviations of both empirical L2-errors
Êrr for σ̂2

MS, σ̂2
C and the best method and we display the boxplot of the empirical L2-error.

4.2.2 Results

We present our results in Figures 3-8 and Tables 1 and 2. We make several observations. First, the
convex aggregation method is better than the model selection aggregation method in all models. The
best can only serve as a benchmark to see the performance of a real estimator. For this reason, it
is perfectly natural that "best" has better performances than our aggregation procedures on the test
sample DT because the selection of the best couple (s,m) (see Eq. (8)) depends precisely on DT . Second,
we notice that when n and N are enough, the MS-estimator σ̂2

MS and the C-estimator σ̂2
C have a similar

1Note that this set of estimators differ from the dictionary computed in step 2. since it is computed in the whole data
Dn ∪DN . We abuse in the notation to avoid extra notation that are irrelevant for the understanding.
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performance, that is close to the performance of the best method. These results reflect our theory: the
consistency of MS-estimator and the C-estimator. Third, we observe that the empirical L2-error of σ̂2

MS and
σ̂2

C decreases faster in the simpler models (with respect to the estimation of the variance function) when
n and N increase (see the evolution of the boxplots in Figures 4 and 8 as compared to Figures 3 and 6.
In addition, our numerical results highlight an interesting fact: when we split data, it is advantageous
to put more data in the second dataset DN used in the aggregation step. Indeed, it seems as illustrated
in Table 2 that the methods have better performance for large samples DN is all cases. As an example,
the mean error in Model 1 with a = 1 for C-aggregation is 0.33 when n = 1000 and N = 100 and 0.26
when n = 100 and N = 1000.

n = N = 100 n = N = 1000
C MS Best C MS Best

Model Êrr Êrr Êrr Êrr Êrr Êrr
Model 1 (a = 0.25) 0.028 (0.018) 0.031 (0.023) 0.013 (0.003) 0.011 (0.004) 0.014 (0.003) 0.011 (0.001)
Model 1 (a = 1) 0.407 (0.214) 0.428 (0.279) 0.200 (0.44) 0.155 (0.044) 0.200 (0.040) 0.164 (0.013)
Model 2 0.247 (0.133) 0.272 (0.180) 0.110 (0.025) 0.106 (0.046) 0.100 (0.093) 0.070 (0.010)
Model 3 0.287 (0.092) 0.302(0.125) 0.218 (0.019) 0.194 (0.021) 0.198 (0.044) 0.164 (0.011)
Model 4 0.032 (0.027) 0.034 (0.036) 0.010 (0.005) 0.010 (0.005) 0.011 (0.003) 0.009 (0.001)
Model 5 0.382 (0.116) 0.405 (0.168) 0.264 (0.032) 0.209 (0.040) 0.223 (0.024) 0.178 (0.016)

Table 1: Average and standard deviation of the empirical L2-error of the three estimators with n = N .

n = 1000 N = 100 n = 100, N = 1000
C MS Best C MS Best

Model Êrr Êrr Êrr Êrr Êrr Êrr
Model 1 (a = 0.25) 0.023 (0.015) 0.028 (0.023) 0.012 (0.002) 0.018 (0.008) 0.019 (0.006) 0.012 (0.002)
Model 1 (a = 1) 0.335 (0.265) 0.381 (0.343) 0.170 (0.014) 0.262 (0.090) 0.278 (0.081) 0.169 (0.018)
Model 2 0.193 (0.132) 0.227 (0.189) 0.074 (0.013) 0.159 (0.055) 0.148 (0.054) 0.073 (0.010)
Model 3 0.252 (0.082) 0.278 (0.149) 0.180 (0.015) 0.259 (0.029) 0.270 (0.035) 0.179 (0.015)
Model 4 0.021 (0.014) 0.026 (0.027) 0.009 (0.002) 0.019 (0.012) 0.017 (0.015) 0.009 (0.002)
Model 5 0.295 (0.144) 0.336 (0.209) 0.195 (0.019) 0.313 (0.079) 0.317 (0.095) 0.194 (0.015)

Table 2: Average and standard deviation of the empirical L2-error of the three estimators with n 6= N .

(a) n = N = 100 (b) n = 1000, N = 100 (c) n = 100, N = 1000 (d) n = N = 1000

Figure 3: Boxplot of the empirical L2-error of the estimators in Model 1 (a = 0.25)

4.3 Real datasets
In this part, we consider two real datasets which are available on the UCI database. The first dataset is
Concrete Compressive Strength. The concrete compressive strength is a highly nonlinear function of age
and ingredients (Cement, Water, Blast Furnace Slag, . . .). It contains 1030 observations of 8 numerical
features. The output takes its values in [2.330, 82.598]. The second dataset is Airfoil Self-Noise. It
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(a) n = N = 100 (b) n = 1000, N = 100 (c) n = 100, N = 1000 (d) n = N = 1000

Figure 4: Boxplot of the empirical L2-error of the estimators in Model 1 (a = 1)

(a) n = N = 100 (b) n = 1000, N = 100 (c) n = 100, N = 1000 (d) n = N = 1000

Figure 5: Boxplot of the empirical L2-error of the estimators in Model 2

is obtained from a series of aerodynamic and acoustic tests of two and three-dimensional airfoil blade
sections conducted in an anechoic wind tunnel. It contains 1503 observations of 5 numerical features.
The output takes its values in [103, 140]. We display the histogram of an estimate of the variance function
σ2 produced by the random forest algorithm for both datasets in Figure 9. The estimated values of σ̂2

are large in two real datasets: 30% and 41% of the values are larger than 10 in Concrete Compressive
Strength and Airfoil Self-Noise, respectively. Now, we use the same steps in Section 4.2.1 to illustrate the
performance of our methods with the following modifications: we reduce the dictionaries F , G1 and G2 into
4 candidates: Lasso, kNN, random forest and support vector machines2 methods where the parameters
of the first two algorithms are chosen by cross-validation and the last two are chosen by default from
glmnet, FNN, randomForest and e1071 packages. We set k ∈ {5, 10, 13, 15, 17, 22, 35, 50, 75, 85, 100, 125}
for kNN. In Step 4, based on Dn ∪DN , we firstly compute the collection F ; secondly, for each estimate
f̂s in F we compute all possible true estimators {σ̂2

s,m}1≤m≤4 of σ2 corresponding to the 4 procedures
in F . In the last step, we compute the empirical L2-risk of

• MS-method: 1
T

∑T
i=1

(
(Yi − f̂MS(Xi))2 − σ̂2

MS(Xi)
)2

;

• C-method: 1
T

∑T
i=1

(
(Yi − f̂C(Xi))2 − σ̂2

C(Xi)
)2

;

• best-method (best empirical L2-risk): based on Step 4, we take the minimum of

1
T

T∑
i=1

(
(Yi − f̂s(Xi))2 − σ̂2

s,m(Xi)
)2

for all (s,m) ∈ [4]× [4].

From this estimates, we compute the mean and the standard deviation of the empirical L2-risk. The
associated boxplots are given in Figure 10. Here, we fix T = 200. We take n ∈ {150, 415, 680},

2 We simplify it by svm and use the R package with default parameters: e1071.
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(a) n = N = 100 (b) n = 1000, N = 100 (c) n = 100, N = 1000 (d) n = N = 1000

Figure 6: Boxplot of the L2-error of the estimators in sparse model when p = 50, and s = 14.

(a) n = N = 100 (b) n = 1000, N = 100 (c) n = 100, N = 1000 (d) n = N = 1000

Figure 7: Boxplot of the L2-error of the estimators in Model 4.

N ∈ {680, 415, 150} for the first real dataset and n ∈ {150, 652, 1153}, N ∈ {1153, 651, 150} for the
second dataset. We observe that both of our aggregation methods achieve the same performance. Note
that the aggregation methods are outperformed by the best method when n is large. This is mainly due
to the fact that the method called " best" is computed without splitting the data (as explained before).
Finally, we notice that it is advantageous to put a lot of data in the first dataset.

4.4 Applications of variance function
This section presents two applications of our aggregation methods: regression with reject option and
quantile regression.

4.4.1 Regression with reject option

We illustrate our aggregation methods in the regression with reject option with two real datasets: we
begin with a a brief description of regression with reject option.
In regression, many proposed estimation procedures aim to reduce prediction errors. However, even the
most efficient methods make mistakes that can in some cases have serious consequences. Regression
with reject option is a way to address the problem of estimating the uncertainty of a predictor. That
means, we refuse to predict when the doubt in the predicted value is too great. Denis et al. (2020)
formulate a general framework in regression with reject option and derive the optimal rule which relies
on thresholding the conditional variance function where the rejection rate is fixed. Given a rejection rate
ε ∈ (0, 1), the ε-predictor is given by

Γ∗ε(x) :=
{
{f∗(x)} if Fσ2(σ2(x)) ≤ 1− ε
∅ otherwise ,
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(a) n = N = 100 (b) n = 1000, N = 100 (c) n = 100, N = 1000 (d) n = N = 1000

Figure 8: Boxplot of the L2-error of the estimators in Model 5.

Figure 9: Histogram of the values of the estimates of the variance function.

where Fσ2 is the cumulative distribution function of σ2(X). Here, the quantity |Γ∗ε(X)| represents the
cardinality of Γ∗ε. If |Γ∗ε(X)| = 0, that means no prediction is produced for X and |Γ∗ε(X)| = 1 otherwise.
The ε-predictor has rejection rate r (Γ∗ε) exactly ε

r (Γ∗ε) := P (|Γ∗ε(X)| = 0) = P
(
Fσ2(σ2(X)) ≥ 1− ε

)
= ε.

Moreover, the performance of Γ∗ε is measured by the L2-error when prediction is performed

Err (Γ∗ε) := E
[
(Y − f∗(X))2 | |Γ∗ε(X)| = 1

]
.

The L2 error and the rejection rate of Γ∗ε are working in two opposite directions w.r.t. ε, more precisely
∀ ε1 ≤ ε2

Err
(
Γ∗ε2

)
≤ Err

(
Γ∗ε1

)
, and r

(
Γ∗ε1

)
≤ r

(
Γ∗ε2

)
.

The estimate of Γ∗ε needs two independent samplesDN1 andDM whereDM is composed ofM independent
copies of the feature X. The sample DN1 will be used to construct estimators f̂ and σ̂2 of f∗ and σ2.
Besides, we consider the randomised prediction ˆ̂σ2(X) = σ̂2(X) + ζ where ζ ∼ U([0, u]) is independent
of every other random variable with u > 0 is a small fixed real number. Thus, we use DM to estimate
Fσ2 which is given by the empirical distribution function of ˆ̂σ2

F̂ˆ̂σ2(·) = 1
M

M∑
i=1

1{σ̂2(XN1+i)+ζi≤·} .

Finally, the plug-in ε-predictor is the predictor with reject option defined for each x ∈ Rd as

Γ̂ε(x) =
{{

f̂(x)
}

if F̂ˆ̂σ2(ˆ̂σ2(x)) ≤ 1− ε
∅ otherwise .
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(a) n = 150, N = 680 (b) n = 680, N = 150 (c) n = N = 415

(d) n = 150, N = 1153 (e) n = 1153, N = 150 (f) n = N = 652

Figure 10: Boxplots of the L2-risk of our aggregation methods and the best method.

This plug-in approach is shown to be consistent, see Denis et al. (2020). In particular, the plug-in ε-
predictor asymptotically behaves as well as the the best predictor Γ∗ε both in terms of risk and rejection
rate. We may have some doubts in the associated prediction on two real datasets since the estimated
variance is large. We evaluate the performance of the procedure on two real datasets considering the same
algorithm for both estimation tasks (same approach to estimate the regression and variance functions)
and build four plug-in ε-predictors based respectively, on support vector machines (svm), random forests
(rf), and Lasso (Lasso) and kNN (knn) algorithms. We take ζ ∼ U([0, 10−7]). In particular, we run
100 times the procedure where we split the data each time in three: DN1 with N1 = 780 for Concrete
Compressive Strength and N1 = 1253 for Airfoil Self-Noise, DM with M = 150 and DT with T = 100.
The dataset DT is exploited to calculate the empirical rejection rate r̂ and the empirical error Êrr
for each ε ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. From these estimations, we compute the average
and standard deviation (between parentheses) of r̂ and Êrr. The results are reported in Table 3 with
ε ∈ {0, 0.2, 0.5, 0.8} and in Figure 11.

First of all, we recall that for ε = 0, the measure of risk of ε-predictor match with the error of the
approach we use to estimate the regression function f∗. We remark that the best plug-in ε-predictor
with ε = 0 is the rf method for concrete compressive strength and the svm method for airfoil self-noise.
Their errors are 31.33 and 10.36, respectively. Notice that all the corresponding errors diminishes with
ε and rejection rate is close to ε.
We recall that our aim is not to build a regression rule that reduces the error rate. The motivation for
introducing the plug-in ε-predictor is only to improve the confidence on prediction. Since the construction
of the optimal rule depends on the estimators of f∗ and σ2, poor estimators would lead to bad plug-in
ε-predictor. Now, we hope that our aggregation methods improve the accuracy of the procedure.
For a comparative study, we evaluate the performance of the plug-in ε-predictor considering the same
algorithm for both estimation tasks of estimating the regression and the variance functions: we build
four plug-in ε-predictors based respectively, on support vector machines (svm), random forests (rf), and
Lasso (Lasso), kNN (knn) algorithms. We compare these methods to our aggregation procedures C
and MS. For each ε ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and each plug-in ε-predictor, we compute
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Table 3: Performances of the four plug-in ε-predictors on the real datasets
Concrete compressive strength, and airfoil self-Noise.

Concrete compressive strength
rf svm knn Lasso

ε Êrr r̂ Êrr r̂ Êrr r̂ Êrr r̂

0 31.33 (7.82) 0.00 (0.00) 46.83 (8.65) 0.00 (0.00) 87.32 (15.74) 0.00 (0.00) 111.72 (16.13) 0.00 (0.00)
0.2 20.99 (5.72) 0.21 (0.06) 33.98 (7.54) 0.20 (0.06) 65.61 (16.12) 0.20 (0.06) 89.91 (14.63) 0.19 (0.05)
0.5 13.47 (6.08) 0.48 (0.06) 21.73 (7.38) 0.50 (0.06) 46.71 (19.89) 0.50 (0.06) 66.86 (16.13) 0.50 (0.07)
0.8 7.26 (8.29) 0.81 (0.05) 18.25 (11.70) 0.81 (0.05) 28.58 (28.66) 0.79 (0.11) 52.32 (16.99) 0.81 (0.05)

Airfoil Self-Noise
rf svm knn Lasso

ε Êrr r̂ Êrr r̂ Êrr r̂ Êrr r̂

0 12.57 (1.99) 0.00 (0.00) 10.36 (2.68) 0.00 (0.00) 33.97 (4.45) 0.00 (0.00) 22.51 (3.62) 0.00 (0.00)
0.2 8.53 (1.48) 0.20 (0.05) 7.42 (2.09) 0.19 (0.05) 29.25 (4.03) 0.20 (0.06) 20.52 (3.17) 0.19 (0.06)
0.5 6.25 (1.41) 0.52 (0.07) 3.89 (1.45) 0.50 (0.06) 22.42 (4.10) 0.49 (0.06) 15.51 (3.37) 0.50 (0.06)
0.8 2.82 (1.00) 0.80 (0.05) 1.93 (0.93) 0.80 (0.05) 14.95 (7.12) 0.80 (0.07) 9.07 (3.19) 0.80 (0.05)

Figure 11: Visual description of the performance of four plug-in ε-predictors.

the empirical rejection rate r̂ and the empirical error Êrr. We take ζ ∼ U([0, 10−7]). So, we repeat
independently 100 times the following steps:

1. simulate four datasets Dn, DN , DM and DT with M = 150, N = 150 and T = 100;

2. based on Dn, we compute the estimators in F , and then based on DN , we compute the aggregates
f̂MS and f̂CM. Then, we compute the knn, Lasso, rf and svm estimators of the regression function
on Dn ∪ DN ;

3. based on Dn and f̂MS (resp. f̂CM), we compute the estimators in G1 (resp. G2). Then, based on DN
we calculate σ̂2

MS and σ̂2
CM. From Dn ∪ DN , we compute the knn, Lasso, rf and svm estimators of

σ2;

4. based on DM , we compute the empirical cumulative distribution function of the randomised esti-
mators ˆ̂σ2(X);

5. finally, over DT , we compute the empirical rejection rate r̂ and the empirical error Êrr for the
considered Γ̂ε.

From these estimations, we compute the average and standard deviation (between brackets) of r̂ and Êrr.
The results are reported in Table 4 with ε ∈ {0, 0.2, 0.5, 0.8} and in Figure 12. Our main observation
is that the C plug-in ε-predictor has the same performance as MS plug-in ε-predictor. According to the
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rejection rate, we recall that our theory related to this point is distribution free and this is also observed
in Table 4 since all rejection rate have the approximately prescribed level ε. Importantly, note that both
aggregation-based methods require splitting the data (part for estimation and a part for aggregation)
while the other plug-in ε-predictors (such as rf) do not. However, our plug-in ε-predictors based on
aggregation have a similar performance as the best. This result validates the relevance of our strategy.

Table 4: Performances of the six plug-in ε-predictors on the real datasets
Concrete compressive strength, and Airfoil Self-Noise.

Concrete compressive strength
rf svm knn Lasso C MS

ε Êrr r̂ Êrr r̂ Êrr r̂ Êrr r̂ Êrr r̂ Êrr r̂

0 30.27 (7.16) 0.00 (0.00) 45.03 (9.03) 0.00 (0.00) 85.59 (16.11) 0.00 (0.00) 110.09 (16.01) 0.00 (0.00) 34.59 (7.74) 0.00 (0.00) 35.08 (7.44) 0.00 (0.00)
0.2 20.07 (5.65) 0.20 (0.05) 32.97 (7.03) 0.20 (0.05) 62.40 (13.93) 0.20 (0.06) 86.51 (11.72) 0.20 (0.05) 23.07 (6.70) 0.20 (0.05) 24.76 (6.91) 0.20 (0.05)
0.5 13.25 (5.38) 0.48 (0.07) 22.45 (7.16) 0.49 (0.07) 44.98 (15.11) 0.49 (0.07) 64.95 (11.08) 0.49 (0.07) 13.24 (3.87) 0.49 (0.06) 15.14 (4.18) 0.49 (0.07)
0.8 7.91 (8.26) 0.80 (0.05) 17.92 (13.69) 0.80 (0.04) 30.02 (23.85) 0.78 (0.09) 55.91 (20.09) 0.80 (0.06) 8.50 (5.33) 0.80 (0.05) 10.19 (9.77) 0.80 (0.05)

Airfoil Self-Noise
rf svm knn Lasso C MS

ε Êrr r̂ Êrr r̂ Êrr r̂ Êrr r̂ Êrr r̂ Êrr r̂

0 12.80 (1.84) 0.00 (0.00) 10.49 (2.18) 0.00 (0.00) 33.78 (4.33) 0.00 (0.00) 23.23 (3.71) 0.00 (0.00) 10.30 (1.98) 0.00 (0.00) 10.77 (2.22) 0.00 (0.00)
0.2 8.67 (1.29) 0.20 (0.05) 7.02 (1.86) 0.21 (0.05) 29.15 (4.60) 0.20 (0.05) 21.16 (3.49) 0.20 (0.06) 6.19 (1.17) 0.21 (0.05) 5.82 (1.41) 0.21 (0.05)
0.5 6.08 (1.13) 0.49 (0.07) 3.84 (0.98) 0.48 (0.07) 21.95 (4.42) 0.49 (0.07) 14.83 (3.39) 0.49 (0.08) 4.09 (0.99) 0.49 (0.07) 3.73 (1.15) 0.49 (0.06)
0.8 2.92 (1.02) 0.80 (0.04) 1.97 (1.06) 0.80 (0.05) 14.25 (6.94) 0.81 (0.08) 8.76 (2.64) 0.80 (0.05) 1.68 (0.64) 0.80 (0.04) 1.67 (0.73) 0.80 (0.05)

Figure 12: Visual description of the performance of six plug-in ε-predictors.

4.4.2 Quantile regression

In this section, we illustrate the performance of our aggregation methods for quantile regression.
Quantile regression allows a comprehensive analysis of the relationships between a response Y and input
variables X. It is interesting in the entire conditional distribution of the dependent variable, and not
only on its mean. For more details see for instance (Koenker, 2005, Shan and Yang, 2009, Takeuchi et al.,
2006). We recall that in our work we observe (X,Y ) ∈ Rd × R such that

Y = f∗(X) + σ(X)ξ,

where ξ is the known noise with mean zero and unit variance. Let τ ∈ (0, 1). The conditional τ -quantile
of Y given X = x, denoted by qτ , is given by

qτ (Y |X) = inf{y : FY |X(y) ≥ τ},

where FY |X is the cumulative distribution function of Y |X. In particular, the quantity qτ (Y |X) has the
following form

qτ (Y |X) = f∗(X) + σ(X)F−1
ξ (τ),

where Fξ is the cumulative distribution function of ξ and is known. The plug-in approach is a possible
procedure to estimate qτ . Given an estimator f̂ of f∗ and an estimator σ̂2 of σ2, the plug-in estimator
of qτ is

q̂τ (Y |X) = f̂(X) + σ̂(X)F−1
ξ (τ).
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It is clear that a good estimate of the conditional τ -quantile is related to a good estimate of the regres-
sion function f∗ and the variance function σ2. We evaluate the performance of q̂τ (Y |X) according to
four different estimations of the regression function and the variance function: random forests, kNN,
tree regression, svm and our two aggregation approaches, in the following gaussian model which was
introduced in Takeuchi et al. (2006)

Y = sinc(X) + 0.1 exp(1−X)ξ,

where X is drawn uniformly from [−1, 1], sinc is the normalised sinc function, and ξ ∼ N (0, 1). We fix
maxnodes = 25 for the rf algorithm, and n = N = T = 1000. The performance of q̂τ (Y |X) is measured
by the empirical quadratic error. The performances obtained from 100 independent runs, computed using
the same methods mentioned in the previous section, are provided in Table 5, Figure 13 and Figure 14
for three different quantiles τ ∈ {0.1, 0.5, 0.9}. For τ ∈ {0.1, 0.9} this is an estimate of the first and last
deciles and for τ = 0.5 an estimate of the median.

Table 5: Performances of the six plug-in regression quantiles. We compute the means and standard
deviations (between parentheses) of the L2-error of q̂τ (Y |X).

C MS knn rf svm Tree

τ Êrr Êrr Êrr Êrr Êrr Êrr
0.1 0.0037 (0.0028) 0.0043 (0.0050) 0.0027 (0.0019) 0.0091 (0.0033) 0.0217 (0.0056) 0.0071 (0.0024)
0.5 0.0013 (0.0011) 0.0013 (0.0013) 0.0013 (0.0008) 0.0042 (0.0018) 0.0006 (0.0005) 0.0027 (0.0012)
0.9 0.0039 (0.0028) 0.0043 (0.0047) 0.0026 (0.0016) 0.0089 (0.0029) 0.0216 (0.0051) 0.0123 (0.0033)

(a) τ = 0.1 (b) τ = 0.5 (c) τ = 0.9

Figure 13: Boxplots of the L2-error of six methods with τ ∈ {0.1, 0.5, 0.9}.

Firstly, we can see here again that our both aggregation based approaches have the same performances.
Secondly, the svm method which is built on the union of two samples Dn and DN is the best method for
the median problem estimation (τ = 0.5) and knn method is the best procedure for the decile function.
Finally, we can deduce that a good estimation of the regression and variance functions ensures a good
estimation of the conditional τ -quantile.

5 Conclusion
In the regression setting, we estimated the variance function by the model selection and convex ag-
gregation when the set of initial estimators are constructed by the residual based-method. We called
the estimators of the two procedures the MS-estimator and C-estimator respectively. We established
the consistency of our estimators under mild assumptions and provided rate of convergence for these
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(a) Estimators of the regression function (b) Estimators of the variance function

Figure 14: Curves of six estimators of the regression function and the variance function.

methods in L2-norm that are of order O((log(M1)/N)1/8) when Y is satisfied the gaussian model; and
O((log(M1)/N)1/4) when Y is bounded.

Our theoretical bounds do not degrade with the dimension d of the inputs. The terms that depend
on the dimension are the bias terms for which special treatment is required in the high-dimensional
framework. Then, it would be reasonable to use methods that are able to exploit a (necessary) structure
of sparsity in the model. An interesting source of inspiration may be the papers Dalalyan et al. (2013),
Kolar and Sharpnack (2012) that nicely took advantage of the sparsity structure of the data in this
case. Our convergence rates are slow compared to the classical framework of aggregation (see Tsybakov
(2003)). A natural question might be to study the optimality of our aggregation procedures. In the same
vein, it would be interesting to extend our aggregation method to the case of functional data (see Hu
(2013), Ling and Vieu (2018)).

Acknowledgements. The author thanks the Editor in Chief, the Associate Editor, the reviewers, and
his advisors Christophe Denis and Mohamed Hebiri for their valuable comments which have improved
the former version of the paper.
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Appendix
This section gathers the proof of our results.

A Proof of Theorem 1
Note that the quantity E

[
|σ̂2

MS(X)− σ2(X)|2
]
is the excess risk of the estimator σ̂2

MS and defines as follows:

E
[
|σ̂2

MS(X)− σ2(X)|2
]

:= E
[
R(σ̂2

MS)−R(σ2)
]
,

where R(σ2) = E
[
|Z − σ2(X)|2

]
is the true risk of the variance function. Besides, we introduce a

minimiser of the risk R, denoted by σ̄2
MS and given

σ̄2
MS := σ̂2

ŝ,m̄ , where m̄ ∈ argmin
m∈[M2]

R(σ̂2
ŝ,m). (9)

We consider the following decomposition

R(σ̂2
MS)−R(σ2) = R(σ̂2

MS)−R(σ̄2
MS)︸ ︷︷ ︸

estimation error

+ R(σ̄2
MS)−R(σ2)︸ ︷︷ ︸

approximation error

. (10)

Each of these errors is obviously positive. The random term R(σ̂2
MS) − R(σ̄2

MS) is called the estimation
error (or the variance). It measures how close σ̂2

MS is to the best possible rule in [M2] in terms of the risk
R. The deterministic term R(σ̄2

MS)−R(σ2) is called the approximation error (or the bias). We start with
the following lemma

Lemma 1. Let σ̄2
MS be an aggregate defined in Equation (9). Then,

E
[
R(σ̄2

MS)−R(σ2)
]

= E
[

min
m∈[M2]

EX
[
|σ̂2
ŝ,m(X)− σ2(X)|2

]]
.

This result explicitly determines the approximation error.
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Proof of Lemma 1. For all m ∈ [M2], the excess risk of σ̂2
ŝ,m is given as follows

E
[
|Z − σ̂2

ŝ,m(X)|2
]
− E

[
|Z − σ2(X)|2

]
= EX

[
|σ̂2
ŝ,m(X)− σ2(X)|2

]
. (11)

We apply min in Equation (11) and we get

E
[
R(σ̄2

MS)−R(σ2)
]

= E
[

min
m∈[M2]

EX
[
|σ̂2
ŝ,m(X)− σ2(X)|2

]]
.

Proof of Theorem 1. We thank the decomposition in Eq. (10), we have

E
[
|σ̂2

MS(X)− σ2(X)|2
]

= E
[
R(σ̂2

MS)−R(σ̄2
MS)
]

+ E
[
R(σ̄2

MS)−R(σ2)
]
. (12)

Step 1. Study of the term E
[
R(σ̄2

MS)−R(σ2)
]
. We begin with the following Lemma

Lemma 2. Let ŝ and s∗ be two estimators defined in (1) and (7), respectively. Then, under Assump-
tions 1, 2, 3 and 4, there exists an absolute constant C such that

P (ŝ 6= s∗) ≤ C
(

log(M1)
N

)1/2
.

Proof. Under Assumption 4, we have firstly δ∗ (Dn) = mins6=s∗
{
|R(f̂s∗)−R(f̂s)|

}
> δ0 > 0. Recall

that R(f̂s∗) ≤ R(f̂ŝ). On the event {ŝ 6= s∗}, we have two cases

• R̂N (f̂ŝ) < R(f̂s∗), and then

δ∗ (Dn) ≤ |R(f̂ŝ)−R(f̂s∗)| ≤ |R̂N (f̂s∗)−R(f̂s∗)| ≤ max
s∈[M1]

|R̂N (f̂s)−R(f̂s)|.

• R̂N (f̂ŝ) ≥ R(f̂s∗), and then

δ∗ (Dn) ≤ |R̂N (f̂ŝ)−R(f̂ŝ)|+ |R̂N (f̂s∗)−R(f̂s∗)| ≤ 2 max
s∈[M1]

|R̂N (f̂s)−R(f̂s)|.

Therefore,

P (ŝ 6= s∗) ≤ P
(

max
s∈[M1]

|R̂N (f̂s)−R(f̂s)| ≥ δ0/2
)

We control this term using Bernstein’s inequality. We check that the conditions for Bernstein’s inequality
are satisfied. For all s ∈ [M1], set Vi(s) = |Yi − f̂s(Xi)|2 = |f∗(Xi) − f̂s(Xi) + σ(Xi)ξi|2 for all
i = 1, . . . , N . First, Assumptions 1 and 3 ensure that there exist a positive constants L1 and L2 such
that |f∗(X)− f̂s(X)| ≤ L1 and |σ2(X)| ≤ L2. Second, note that since the variables Vi(s) are i.i.d. and
by the elementary inequality (x+ y)4 ≤ 23(x4 + y4) for all x, y ∈ R, by Lemma 4, and by the elementary
inequality x4 + y4 ≤ (x+ y)4 for all x, y ≥ 0 we have

N∑
i=1

E
[
V 2
i (s)

]
≤ 23

N∑
i=1

E
[
|f∗(X)− f̂s(X)|4 + σ4(Xi)ξ4

i

]
≤ 27N(L1 +

√
L2)4 := vN ,

and for k ≥ 3 we follow the elementary inequality (x+y)2k ≤ 22k−1(x2k+y2k) for all x, y ∈ R, Lemma 4,
and the following elementary inequality x2k + y2k ≤ (x+ y)2k for all x, y ≥ 0

N∑
i=1

E
[
(V ki (s) ∨ 0)

]
=

N∑
i=1

E
[
|f∗(Xi)− f̂s(Xi) + σ(Xi)ξi|2k

]
≤ 22k−1

N∑
i=1

E
[
|f∗(Xi)− f̂s(Xi)|2k + |σ2(Xi)|k|ξi|2k

]
≤ 1

222kN
(
L2k

1 + 2k+1(
√
L2)2k(k)!

)
≤ 1

223k+1N
(
L1 +

√
L2

)2k
k!

≤ 1
2vNc

k−2k! .
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where c := 8
(
L1 +

√
L2
)2. Using the Bernstein’s inequality (Lemma 7), we get for all s ∈ [M1]

P
(
|R̂N (f̂s)−R(f̂s)| ≥

δ0
2

)
≤ 2 exp

(
− Nδ2

0
210(L1 +

√
L2)4 + 4cδ0

)
By union bound on s ∈ [M1], we obtain

P (ŝ 6= s∗) ≤ 2 exp
(

log(M1)− Nδ2
0

210(L1 +
√
L2)4 + 4cδ0

)
≤ C

(
log(M1)
N

)1/2
,

where C is a positive constant which depends on L1, L2 and δ0.

By Lemmas 1 and 2, and under Assumptions 1 and 3 we get

E
[
R(σ̄2

MS)−R(σ2)
]

= E
[

min
m∈[M2]

EX
[
|σ̂2
ŝ,m(X)− σ2(X)|2

{
1{ŝ=s∗} + 1{ŝ6=s∗}

}]]
≤ E

[
min

m∈[M2]
EX

[
|σ̂2
s∗,m(X)− σ2(X)|2

]]
+ C

(
log(M1)
N

)1/2

where C is a constant which depends on K2 , σ2 and the constant in Lemma 2.
Step 2. Study of the term E

[
R(σ̂2

MS)−R(σ̄2
MS)
]
. To treat the estimation error, we introduce an aggregate

σ̃2
MS which is based on minimisation of the empirical risk of R

σ̃2
MS := σ̂2

ŝ,m̃ , where m̃ ∈ argmin
m∈[M2]

RN (σ̂2
ŝ,m) ,

with RN (σ̂2
ŝ,m) = 1

N

∑N
i=1 |Zi − σ̂2

ŝ,m(Xi)|2. Moreover, we consider the decomposition

E
[
R(σ̂2

MS)−R(σ̄2
MS)
]

= E
[
R(σ̂2

MS)−R(σ̃2
MS)
]

+ E
[
R(σ̃2

MS)−R(σ̄2
MS)
]
.

Step 2.1. Study of the term E
[
R(σ̃2

MS)−R(σ̄2
MS)
]
. We decompose the term E

[
R(σ̃2

MS)−R(σ̄2
MS)
]
into

two positive terms

E
[
R(σ̃2

MS)−R(σ̄2
MS)
]

= E
[
R(σ̃2

MS)−RN (σ̃2
MS)
]

+ E
[
RN (σ̃2

MS)−R(σ̄2
MS)
]
. (13)

We use the fact that RN (σ̃2
MS) ≤ RN (σ̄2

MS) in Eq. (13), and we get the uniform bound

E
[
R(σ̃2

MS)−R(σ̄2
MS)
]
≤ 2E

[
max

(s,m)∈[M1]×[M2]
|RN (σ̂2

s,m)−R(σ̂2
s,m)|

]
.

Then using Assumption 2, for some (s,m) ∈ [M1]× [M2], set Ti(s,m) = |Zi − σ̂2
s,m(Xi)|2 = |σ2(Xi)ξ2

i −
σ̂2
s,m(Xi)|2 for all i = 1, . . . , N . First, note that since the variables Ti(s,m) are i.i.d. , conditionally on
Dn we have

|RN (σ̂2
s,m)−R(σ̂2

s,m)| =
∣∣∣∣ 1
N

N∑
i=1

(Ti(s,m)− E[Ti(s,m)])
∣∣∣∣

≤
∣∣∣∣ 1
N

N∑
i=1

(Ti(s,m)− E[Ti(s,m)])1{|ξi|≤L}
∣∣∣∣

+
∣∣∣∣ 1
N

N∑
i=1

(Ti(s,m)− E[Ti(s,m)])1{|ξi|>L}
∣∣∣∣

for any L > 0. Therefore, conditionally on Dn

E
[

max
(s,m)∈[M1]×[M2]

|RN (σ̂2
s,m)−R(σ̂2

s,m)|
]
≤ E

[
max

(s,m)∈[M1]×[M2]

∣∣∣∣ 1
N

N∑
i=1

(Ti(s,m)− E[Ti(s,m)])1{|ξi|≤L}
∣∣∣∣
]

+ E

[
max

(s,m)∈[M1]×[M2]

∣∣∣∣ 1
N

N∑
i=1

(Ti(s,m)− E[Ti(s,m)])1{|ξi|>L}
∣∣∣∣
]
.

(14)
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Step 2.1.1. We control the first term on the r.h.s. of Eq. (14). On the event {|ξ| ≤ L} and under
Assumptions 1 and 3, we get |Ti(s,m)| ≤ c1L

4 + 2K2
2 for all i = 1, . . . , N for some c1 > 0 that depends

on σ2. Conditionally on Dn, we apply Hoeffding’s inequality, for all (s,m) ∈ [M1]× [M2], and all t ≥ 0

P

(∣∣∣∣ 1
N

N∑
i=1

(Ti(s,m)− E[Ti(s,m)])1{|ξi|≤L}
∣∣∣∣ ≥ t

)
≤ 2 exp

(
− Nt2

2(c1L4 + 2K2
2 )2

)
,

Conditionally on Dn, by a union bound on (s,m) ∈ [M1]× [M2], we deduce that for all t ≥ 0

P

(
max

(s,m)∈[M1]×[M2]

∣∣∣∣ 1
N

N∑
i=1

(Ti(s,m)− E[Ti(s,m)])1{|ξi|≤L}
∣∣∣∣ ≥ t

)
≤ 2 exp

(
log(M1M2)− Nt2

2(c1L4 + 2K2
2 )2

)
.

We apply Lemma 6. Then, there exists a positive constant c such that

E

[
max

(s,m)∈[M1]×[M2]

∣∣∣∣ 1
N

N∑
i=1

(Ti(s,m)− E[Ti(s,m)])1{|ξi|≤L}
∣∣∣∣
]
≤ c

(
c2L

4 + c3
)( log(M1M2)

N

)1/2
,

where c2 is a positive constant that depends on c1 and c3 depends on K2.
Step 2.1.2. We control the second term on the r.h.s. of Eq. (14). By union bound on (s,m) ∈
[M1]× [M2], by Cauchy–Schwarz inequality, under Assumptions 1, 2 and 3, and Lemma 3 we obtain

E

[
max

(s,m)∈[M1]×[M2]

∣∣∣∣ 1
N

N∑
i=1

(Ti(s,m)− E[Ti(s,m)])1{|ξi|>L}
∣∣∣∣
]

≤
M1∑
s=1

M2∑
m=1

1
N

N∑
i=1

E[|Ti(s,m)− E[Ti(s,m)]|1{ξi>L}]

≤
M1∑
s=1

M2∑
m=1

1
N

N∑
i=1

√
E[|Ti(s,m)− E[Ti(s,m)]|2]P(|ξi| > L)]

≤ cM1M2
√

P(|ξ1| > L)

≤ cM1M2
exp(−L2/4)

L1/2 ,

where c is a positive constant which depends on ξ, σ2 and K2.
Combining the results of the Step 2.1.1 and Step 2.1.2 in Eq. (14)

E
[

max
(s,m)∈[M1]×[M2]

|RN (σ̂2
s,m)−R(σ̂2

s,m)|
]
≤ c(c2L4 + c3)

(
log(M1M2)

N

)1/2
+ cM1M2

exp(−L2/4)
L1/2 .

Choosing L = 2
√

log(N) and we get

E
[

max
(s,m)∈[M1]×[M2]

|RN (σ̂2
s,m)−R(σ̂2

s,m)|
]
≤ C

(
log(N)4 log(M1M2)

N

)1/2

,

where C is a positive constant that depends on c2 and c, and Step 2.1.2 is finished.
We combine the results of the Step 2.1.1 and Step 2.1.2 and we get the following bound

E
[
R(σ̃2

MS)−R(σ̄2
MS)
]
≤ 2C

(
log(N)4 log(M1M2)

N

)1/2

.

Remark 1. It is clear that when Y is bounded, there exists an absolute constant C > 0 such that

E
[
R(σ̃2

MS)−R(σ̄2
MS)
]
≤ C

(
log(M1M2)

N

)1/2
.
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Step 2.2. Study of the term E
[
R(σ̂2

MS)−R(σ̃2
MS)
]
. We start with the following decomposition

E
[
R(σ̂2

MS)−R(σ̃2
MS)
]

= E
[
R(σ̂2

MS)−RN (σ̂2
MS)
]

+ E
[
RN (σ̂2

MS)−RN (σ̃2
MS)
]

+ E
[
RN (σ̃2

MS)−R(σ̃2
MS)
]
. (15)

We use the same arguments in Step 2.1. to control the first term and the last term on the r.h.s. of
Eq. (15), and we get the following bound

E
[
R(σ̂2

MS)−RN (σ̂2
MS)
]

+ E
[
RN (σ̃2

MS)−R(σ̃2
MS)
]
≤ 2E

[
max

(s,m)∈[M1]×[M2]
|RN (σ̂2

s,m)−R(σ̂2
s,m)|

]
≤ C

(
log(N)4 log(M1M2)

N

)1/2

.

Remark 2. If Y is bounded, there exists an absolute constant C > 0 such that

E
[
R(σ̂2

MS)−RN (σ̂2
MS)
]

+ E
[
RN (σ̃2

MS)−R(σ̃2
MS)
]
≤ C

(
log(M1M2)

N

)1/2
.

We now study the second term on the r.h.s. of Eq. (15). For that, we need the following decomposition

E
[
RN (σ̂2

MS)−RN (σ̃2
MS)
]

= E
[
RN (σ̂2

MS)− R̂N (σ̂2
MS)
]

+ E
[
R̂N (σ̂2

MS)−RN (σ̃2
MS)
]
. (16)

Using R̂N (σ̂2
MS) ≤ R̂N (σ̃2

MS) in Eq. (16), we obtain the following inequality

E
[
RN (σ̂2

MS)−RN (σ̃2
MS)
]
≤ 2E

[
max
m∈[M2]

|R̂N (σ̂2
ŝ,m)−RN (σ̂2

ŝ,m)|
]
.

We control the term E
[
maxm∈[M2] |R̂N (σ̂2

ŝ,m)−RN (σ̂2
ŝ,m)|

]
. By definition of R̂N and RN , and under

Assumption 3, we get for all m ∈ [M2]

|R̂N (σ̂2
ŝ,m)−RN (σ̂2

ŝ,m)| ≤ 1
N

N∑
i=1
|Ẑi − Zi|2 + 2

N

N∑
i=1
|Ẑi − Zi|(|Zi|+K2) ,

where K2 is the bound of σ̂2
ŝ,m. The upper-bound of |R̂N (σ̂2

ŝ,m) − RN (σ̂2
ŝ,m)| does not depend on m,

therefore

E
[

max
m∈[M2]

|R̂N (σ̂2
ŝ,m)−RN (σ̂2

ŝ,m)|
]
≤ E

[
1
N

N∑
i=1
|Ẑi − Zi|2

]
+ 2E

[
1
N

N∑
i=1
|Ẑi − Zi|(|Zi|+K2)

]
. (17)

Note that, by Assumptions 1 and 3 we obtain for all i = 1, . . . , N

|f∗(Xi)− f̂MS(Xi)| ≤ ‖f∗‖∞ + max
s∈[M1]

‖f̂s‖∞ ≤ ‖f∗‖∞ +K1 ≤ L1 <∞.

Since x2−y2 = (x−y)(x+y), (x+y)2 ≤ 2(x2 +y2), we obtain the following inequality for all i = 1, . . . , N

|Ẑi − Zi|2 = |(Yi − f̂MS(Xi))2 − (Yi − f∗(Xi))2|2

= |(f∗(Xi)− f̂MS(Xi))(2(Yi − f∗(Xi)) + (f∗(Xi)− f̂MS(Xi))|2

≤ |f∗(Xi)− f̂MS(Xi)|2|(8|Yi − f∗(Xi)|2 + 2L2
1| , (18)

Control of E
[

1
N

∑N
i=1 |Ẑi − Zi|2

]
. First, since Assumptions 1-2 are satisfied, we have that for all

i = 1, . . . , N , E
[
|Yi − f∗(Xi)|4

]
≤ k1 < ∞. Second, by inequality (18), Cauchy-Schwarz inequality,
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Jensen’s inequality, and under Assumptions 1, and 2, one gets

E

[
1
N

N∑
i=1
|Ẑi − Zi|2

]
≤ 2L2

1E
[
‖f̂MS − f∗‖2N

]
+ 8
N

N∑
i=1

E
[
|Yi − f∗(Xi)|2|f∗(Xi)− f̂MS(Xi)|2

]
≤ 2L2

1E
[
‖f̂MS − f∗‖2N

]
+ 8
N

N∑
i=1

√
E [|Yi − f∗(Xi)|4]

√
E
[
|f∗(Xi)− f̂MS(Xi)|4

]
≤ 2L2

1E
[
‖f̂MS − f∗‖2N

]
+ 8
√
k1L1

N

N∑
i=1

√
E
[
|f∗(Xi)− f̂MS(Xi)|2

]

≤ 2L2
1E
[
‖f̂MS − f∗‖2N

]
+ 8
√
k1L1

√√√√E

[
1
N

N∑
i=1
|f∗(Xi)− f̂MS(Xi)|2

]

≤ C1

√
E
[
‖f̂MS − f∗‖2N

]
,

where C1 is a positive constant that depends on k1 and L1.
Control of E

[
1
N

∑N
i=1 |Ẑi − Zi|(|Zi|+K2)

]
. First, since Assumptions 1-2 are satisfied, we have that

for all i = 1, . . . , N , E
[
(|Yi − f∗(Xi)|2 +K2)2] ≤ k2 < ∞. Second, by Cauchy-Schwarz inequality and

Jensen’s inequality, one gets

1
N

N∑
i=1

E
[
|Ẑi − Zi|(|Zi|+K2)

]
≤ 1

N

N∑
i=1

√
E
[
|Ẑi − Zi|2

]√
E [(|Yi − f∗(Xi)|2 +K1)2]

≤
√
k2

N

N∑
i=1

√
E
[
|Ẑi − Zi|2

]

≤
√
k2

√√√√E

[
1
N

N∑
i=1
|Ẑi − Zi|2

]

≤ C2E
[
‖f̂MS − f∗‖2N

]1/4
,

where C2 is a positive constant that depends on C1 and k2. Thus, there exists an absolute constant C
such that

E
[

max
m∈[M2]

|R̂N (σ̂2
ŝ,m)−RN (σ̂2

ŝ,m)|
]
≤ CE

[
‖f̂MS − f∗‖2N

]1/4
.

We need the following proposition:

Proposition 1. Let f̂MS the aggregate defined in Eq. (2). Then, under Assumptions 2 and 3 there exists
an absolute constant C such that

E
[
‖f̂MS − f∗‖2N

]
≤ min
s∈[M1]

E
[
‖f̂s − f∗‖2N

]
+ C

(
log(M1)
N

)1/2
.

This result studies the upper-bound of empirical norm risk of the aggregate f̂MS and the proof of
it exists in Tsybakov (2014). Besides, the Proposition 1 and the elementary inequality (x + y)1/4 ≤
x1/4 + y1/4 for all x, y ≥ 0 give us the following inequality

E
[
R(σ̂2

MS)−R(σ̃2
MS)
]
≤ C

′
{

min
s∈[M1]

E
[
‖f̂s − f∗‖2N

]}1/4
+ C”

(
log(M1)
N

)1/8
,

where C ′ is a constant which depends on C2 and C” is a constant which depends on C2 and the constant
in Proposition 1.

Merging the results of the Step 1 and Step 2 in Eq. (12) and we get the result.
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Remark 3. In the case where Y is bounded and from Eq. (18), we observe that there exists a constant
C3 such that

|Ẑi − Zi|2 ≤ C3|f∗(Xi)− f̂MS(Xi)|2 . (19)

By Jensen’s inequality twice an inequality (17) and from Eq.(19), one gets there exists an absolute con-
stant C4 such that

E
[

max
m∈[M2]

|R̂N (σ̂2
ŝ,m)−RN (σ̂2

ŝ,m)|
]
≤ C4E

[
‖f̂MS − f∗‖2N

]1/2
. (20)

Finally, we apply Proposition 1 in Eq.(20) to get the result.

B Proof of Proposition 1
From the definition of MS-estimator f̂MS, we get by a simple algebra that, for any s ∈ [M1]

‖f̂MS − f∗‖2N ≤ ‖f̂s − f∗‖2N + 2 < f̂MS − f̂s, Y − f∗ >,

where < f̂MS − f̂s, Y − f∗ >:= 1
N

∑N
i=1

(
(f̂MS(Xi)− f̂s(Xi))(Yi − f∗(Xi))

)
. Therefore, one gets for any

s ∈ [M1]

E
[
‖f̂MS − f∗‖2N

]
≤ E

[
‖f̂s − f∗‖2N

]
+ 2E

[
< f̂MS − f̂s, Y − f∗ >

]
. (21)

We control the second term in the r.h.s. of Eq (21). Firstly, we notice that

E
[
< f̂MS − f̂s, Y − f∗ >

]
≤ E

[
max

1≤j≤M1
< f̂j − f̂s, Y − f∗ >

]
.

Secondly, since Y − f∗ is ρ-subgaussian where ρ is a positive constant that depends on Y − f∗, then the
variables < f̂j − f̂s, Y − f∗ > is ρ̄-subgaussian where ρ̄2 = ρ2‖f̂j−f̂s‖2

N

N . Moreover, under Assumption 3,
it is clear that max1≤j≤M1 ‖f̂j − f̂s‖2N ≤ B where B is a constant which depends on K1. Therefore, we
use Lemma 5 and we get

E
[

max
1≤j≤M1

< f̂j − f̂s, Y − f∗ >
]
≤ ρ
√
B

√
2 log(M1)

N
.

Thus,

E
[
‖f̂MS − f∗‖2N

]
≤ min
s∈[M1]

E
[
‖f̂s − f∗‖2N

]
+ 2ρ

√
B

√
2 log(M1)

N
.

C Proof of Theorem 2
We introduce the following aggregates

σ̃2
C := σ̂2

λ̂,β̃
, where β̃ ∈ argmin

β∈ΛM2
RN (σ̂2

λ̂,β
) ,

and
σ̄2

C := σ̂2
λ̂,β̄

, where β̄ ∈ argmin
β∈ΛM2

R(σ̂2
λ̂,β

).

Consider the following decomposition

E
[
|σ̂2

C(X)− σ2(X)|2
]

= E
[
R(σ̂2

C)−R(σ̃2
C)
]

+ E
[
R(σ̃2

C)−R(σ̄2
C)
]

+ E
[
R(σ̄2

C)−R(σ2)
]
. (22)
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Step 1. Study of the term E
[
R(σ̄2

C)−R(σ2)
]
. We use the same proof of Lemma 1, and we get

E
[
R(σ̄2

C)−R(σ2)
]
≤ E

[
inf

β∈ΛM2
EX

[
|σ̂2
λ̂,β

(X)− σ2(X)
]]
.

Step 2. Study of the term E
[
R(σ̃2

C)−R(σ̄2
C)
]
. We use the fact that RN (σ̃2

C) ≤ RN (σ̄2
C) , and we get the

uniform bound

E
[
R(σ̃2

C)−R(σ̄2
C)
]
≤ 2E

[
sup

(λ,β)∈ΛM1×ΛM2
|RN (σ̂2

λ,β)−R(σ̂2
λ,β)|

]
.

Since ΛM2 (resp. ΛM1) is compact, we have ΛM2 ⊂ B̄(0, 1) (the closed unit ball) (resp. ΛM1 ⊂ B̄(0, 1)),
and there exists an ε2-net ΛM2

ε2
of ΛM2 (resp. an ε1-net ΛM1

ε1
of ΛM1) w.r.t. ‖ · ‖1,M2 (resp. ‖ · ‖1,M1) such

that |ΛM2
ε2
| ≤ (3/ε2)M2 (resp. |ΛM1

ε1
| ≤ (3/ε1)M1). In particular, for all β ∈ ΛM2 (resp. λ ∈ ΛM1) there

exists βε2 ∈ ΛM2
ε2

(resp. λε1 ∈ ΛM1
ε1

) such that ‖β − βε2‖1,M2 ≤ ε2 (resp. ‖λ − λε1‖1,M1 ≤ ε1). From
triangle inequality, one gets

|RN (σ̂2
λ,β)−R(σ̂2

λ,β)| ≤ |RN (σ̂2
λ,β)−RN (σ̂2

λ,βε2 )|+|RN (σ̂2
λ,βε2 )−RN (σ̂2

λε1 ,βε2 )|+|RN (σ̂2
λε1 ,βε2 )−R(σ̂2

λε1 ,βε2 )|
+ |R(σ̂2

λε1 ,βε2 )−R(σ̂2
λ,βε2 )|+ |R(σ̂2

λ,βε2 )−R(σ̂2
λ,β)|.

1. Control of |R(σ̂2
λ,βε2 )−R(σ̂2

λ,β)|. By Jensen’s inequality, under assumptions 1- 2- 5 and E[ξ2] = 1
we obtain

|R(σ̂2
λ,βε2 )−R(σ̂2

λ,β)| ≤ E
[∣∣|Z − σ̂2

λ,βε2 (X)|2 − |Z − σ̂2
λ,β(X)|2

∣∣]
= E

∣∣M2∑
j=1

(
βj − βε2

j

)
σ̂2
λ,j(X)

(2Z − σ̂2
λ,β(X)− σ̂2

λ,βε2 (X)
) ∣∣

≤ C1ε2 ,

where C1 is a constant which depends on the upper bounds of σ2 and σ̂2
λ,j .

2. Control of |RN (σ̂2
λ,β)−RN (σ̂2

λ,βε2 )|. Since Assumptions 1, 2, and 3 are satisfied, we obtain

|RN (σ̂2
λ,β)−RN (σ̂2

λ,βε2 )| ≤ 1
N

N∑
i=1

M2∑
j=1
|βj − βε2

j ||σ̂
2
λ,j(Xi)|

 |2σ2(Xi)ξ2
i − σ̂2

λ,β(Xi)− σ̂2
λ,βε2 (Xi)|

≤ kε2

(
C2

N

N∑
i=1

ξ2
i + C3

)
,

where k is the bound of σ̂2
λ,j , C2 is the constant which depends on σ2 and C3 is the constant which

depends on the upper bounds σ̂2
λ,β and σ̂2

λ,βε2 .

3. Control of |R(σ̂2
λε1 ,βε2 )−R(σ̂2

λ,βε2 )|. Under Assumptions 1, 2, 5, and 6, we get

|R(σ̂2
λε1 ,βε2 )−R(σ̂2

λ,βε2 )| ≤ E

M2∑
j=1

βε2
j |σ̂

2
λ,j(X)− σ̂2

λε1 ,j(X)||2σ2(X)ξ2 − σ̂2
λε1 ,βε2 (X)− σ̂2

λ,βε2 (X)|


≤

M2∑
j=1

βε2
j

(
2E
[
E
[
|σ̂2
λ,j(X)− σ̂2

λε1 ,j(X)|σ2(X)ξ2|Dn, X
]]

+ E
[
|σ̂2
λ,j(X)− σ̂2

λε1 ,j(X)||σ̂2
λε1 ,βε2 (X)− σ̂2

λ,βε2 (X)|
])

≤
M2∑
j=1

βε2
j

(
2E
[
|σ̂2
λ,j(X)− σ̂2

λε1 ,j(X)|σ2(X)E
[
ξ2]]

+ E
[
|σ̂2
λ,j(X)− σ̂2

λε1 ,j(X)||σ̂2
λε1 ,βε2 (X)− σ̂2

λ,βε2 (X)|
])

≤ C4ε1,
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where C4 is constant which depends on K and the upper bounds of σ2, σ̂2
λε1 ,βε2 and σ̂2

λ,βε2 .

4. Control of |RN (σ̂2
λε1 ,βε2 )−RN (σ̂2

λ,βε2 )|. We use the same way as 3. and we obtain

|RN (σ̂2
λε1 ,βε2 )−RN (σ̂2

λ,βε2 )| ≤ ε1

(
C2

N

N∑
i=1

ξ2
i + C5

)
,

where C5 is constant which depends on the upper bounds of σ̂2
λε1 ,βε2 and σ̂2

λ,βε2 .

Therefore, we deduce that

E

[
sup

(λ,β)∈ΛM1×ΛM2
|RN (σ̂2

λ,β)−R(σ̂2
λ,β)|

]
≤ Ck,C2,C3,C4,C5(ε1+ε2)+E

 sup
(λ,β)∈ΛM1

ε1 ×ΛM2
ε2

|RN (σ̂2
λ,β)−R(σ̂2

λ,β)|

 .
For some (λ, β) ∈ ΛM1

ε1
×ΛM2

ε2
, set Ti(λ, β) = |Zi−σ̂2

λ,β(Xi)|2 = |σ2(Xi)ξ2
i −σ̂2

λ,β(Xi)|2 for all i = 1, . . . , N .
Let L > 0. Since the variables Ti(λ, β) are i.i.d. , we have

E

 sup
(λ,β)∈ΛM1

ε1 ×ΛM2
ε2

|RN (σ̂2
λ,β)−R(σ̂2

λ,β)|

 ≤ E

 sup
(λ,β)∈ΛM1

ε1 ×ΛM2
ε2

∣∣∣∣ 1
N

N∑
i=1

(Ti(λ, β)− E[Ti(λ, β)])1{|ξi|≤L}
∣∣∣∣


+ E

 sup
(λ,β)∈ΛM1

ε1 ×ΛM2
ε2

∣∣∣∣ 1
N

N∑
i=1

(Ti(λ, β)− E[Ti(λ, β)])1{|ξi|>L}
∣∣∣∣
 .

(23)

Step 2.1. We control the first term on the r.h.s. of Eq. (23). On the event {|ξ| ≤ L} and under
assumptions 1, 2 and 5, we get |Ti(λ, β)| ≤ c1L4 + c̄1 for all i = 1, . . . , N where c1 is a positive constant
which depends on the upper bound of σ2 and c̄1 depends on the upper bound of σ̂2

λ,β . Conditionally on
Dn, we apply Hoeffding’s inequality, for all (λ, β) ∈ ΛM1

ε1
× ΛM2

ε2
, and all t ≥ 0

P

(∣∣∣∣ 1
N

N∑
i=1

(Ti(λ, β)− E[Ti(λ, β)])1{|ξi|≤L}
∣∣∣∣ ≥ t

)
≤ 2 exp

(
− −Nt2

2(c1L4 + c̄1)2

)
,

By a union bound on (λ, β) ∈ ΛM1
ε1
× ΛM2

ε2
and choosing ε1 = ε2 = 3

N , we deduce that for all t ≥ 0

P

 sup
(λ,β)∈ΛM1

ε1 ×ΛM2
ε2

∣∣∣∣ 1
N

N∑
i=1

(Ti(λ, β)− E[Ti(λ, β)])1{|ξi|≤L}
∣∣∣∣ ≥ t

 ≤ 2 exp
(

(M1 +M2) log(N)− −Nt2

2(c1L4 + c̄1)2

)
.

We apply Lemma 6. Then, there exists a positive constant c such that

E

 sup
(λ,β)∈ΛM1

ε1 ×ΛM2
ε2

∣∣∣∣ 1
N

N∑
i=1

(Ti(λ, β)− E[Ti(λ, β)])1{|ξi|≤L}
∣∣∣∣
 ≤ c(c2L4 + c̄2)

(
(M1 +M2) log(N)

N

)1/2
,

where c2 is constant which depends on c1 and c̄2 on c̄1.
Step 2.2. We control the second term on the r.h.s. of Eq. (23). Thanks to the boundness of σ2 and
σ̂2
λ,β and E[ξ4] = 3, we get E[Ti(λ, β)] ≤ c3 and Ti(λ, β) ≤ c4ξ

4
i + c5 for all i = 1, . . . , N where c4 and

c5 are constants which depend on the upper bounds of σ2 and σ̂2
λ,β , respectively. By Cauchy–Schwarz

inequality and Lemma 3, we obtain

E

 sup
(λ,β)∈ΛM1

ε1 ×ΛM2
ε2

∣∣∣∣ 1
N

N∑
i=1

(Ti(s,m)− E[Ti(s,m)])1{|ξi|>L}
∣∣∣∣
 ≤ c4

N

N∑
i=1

E[ξ4
i 1{|ξi|>L}] + (c3 + c5)P(|ξ1| > L)

≤ c̄4
√

P(|ξ1| > L) + (c3 + c5)P(|ξ1| > L)

≤ c̄4 exp(−L2/4)√
L

+ (c3 + c5) exp(−L2/2)
L

,
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where c̄4 is a positive constant that depends on c4 and ξ.
Merging the results of the Step 2.1 and Step 2.2 in Eq.(23), and we obtain

E

 sup
(λ,β)∈ΛM1

ε1 ×ΛM2
ε2

|RN (σ̂2
λ,β)−R(σ̂2

λ,β)|

 ≤ c(c2L4 + c̄2)
(

(M1 +M2) log(N)
N

)1/2
+ c̄4 exp(−L2/4)√

L

+ (c3 + c5) exp(−L2/2)
L

.

Puting L =
√

2 log(N), and we get

E

 sup
(λ,β)∈ΛM1

ε1 ×ΛM2
ε2

|RN (σ̂2
λ,β)−R(σ̂2

λ,β)|

 ≤ c6( (M1 +M2) log5(N)
N

)1/2

,

where c6 is constant which depends on c2. Thus,

E
[
R(σ̃2

C)−R(σ̄2
C)
]
≤ C

(
(M1 +M2) log5(N)

N

)1/2

,

where C is constant which depends on c6 and c.

Remark 4. When Y is bounded, it is clear that there exists an absolute constant C > 0

E
[
R(σ̃2

C )−R(σ̄2
C )
]
≤ C

(
(M1 +M2) log(N)

N

)1/2
.

Step 3. Study of the term E
[
R(σ̂2

C)−R(σ̃2
C)
]
. We use the same arguments of proof of Theorem 1

(Step 2.2), and we get that there exists two positive constants C1 and C2 such that

E
[
R(σ̂2

C)−R(σ̃2
C)
]
≤ C1

{
E
[
‖f̂C − f∗‖2N

]}1/p
+ C2αN , (24)

where p = 2 if Y is bounded, p = 4 otherwise, and

αN =


(

(M1+M2) log(N)
N

)1/2
if Y is bounded;(

(M1+M2) log5(N)
N

)1/2
otherwise.

In the sequel, we give the following proposition

Proposition 2. Let f̂C be the aggregate defined in Eq. (4). Then, under Assumptions 2 and 5 there
exists an absolute constant C > 0

E
[
‖f̂C − f∗‖2N

]
≤ min
λ∈ΛM1

E
[
‖f̂λ − f∗‖2N

]
+ C

√
log(M1)
N

.

The proof of this proposition is similar of the proof of Proposition 1. Thus, we apply Proposition 2
in inequality (24) and we get

E
[
R(σ̂2

C)−R(σ̃2
C)
]
≤ C1

{
min
λ∈ΛM2

E
[
‖f̂λ − f∗‖2N

]}1/p
+ C̄1φ

C
N (M1) ,

where C̄1 is a constant that depends on C1 and the constant in Proposition 2, where p = 2 if Y is
bounded, p = 4 otherwise, and

φC
N (M1) =


(

log(M1)
N

)1/4
if Y is bounded;(

log(M1)
N

)1/8
otherwise.

Combining Step 1, Step 2 and Step 3 in Eq (22) yields the result.
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D Technical lemmas
In this section, we gather several technical results which are used to derive the proof of results of this
paper.

Lemma 3. Let X be the standard gaussian distribution, then for any x > 0, it holds

P(X > x) ≤ exp(−x2/2)√
2πx

, and P(|X| > x) ≤
√

2
π

exp(−x2/2)
x

.

Proof. Since X ∼ N (0, 1), one gets

P (X > x) = 1√
2π

∫ +∞

x

exp(−u2/2)du ≤ 1√
2π

∫ +∞

x

u

x
exp(−u2/2)du = exp(−x2/2)√

2πx
.

The second inequality follows from symmetry and the last one using the union bound

P(|X| > x) ≤ 2P (X > x) .

Lemma 4. Let X ∼ N (0, 1) and k ≥ 1, then

E
[
|X|2k

]
≤ 2k+1k!.

Proof.

E
[
|X|2k

]
=
∫ +∞

0
P
(
|X|2k > t

)
dt =

∫ +∞

0
P
(
|X| > t

1
2k

)
dt ≤ 2

∫ +∞

0
exp

(
−t 1

k /2
)
dt

u=t
1
k /2= 2k+1k

∫ +∞

0
uk−1 exp(−u)du = 2k+1k!.

Lemma 5. Let X1, . . . , XM be zero mean ν-subgaussian random variables, i.e., E [exp(rXi)] ≤ exp
(
r2ν2

2

)
for all r > 0. Then

E
[

max
1≤i≤M

Xi

]
≤ ν

√
2 log(M).

Proof. By Jensen’s inequality, for any r > 0

E
[

max
1≤i≤N

Xi

]
= 1
r
E
[
log
(

exp
(
r max

1≤i≤M
Xi

))]
≤ 1

r
log
(
E
[
exp

(
r max

1≤i≤M
Xi

)])
= 1

r
log
(
E
[

max
1≤i≤M

exp (rXi)
])

≤ 1
r

log
(

M∑
i=1

E [exp (rXi)]
)

≤ 1
r

log
(

M∑
i=1

E
[
exp

(
r2ν2

2

)])
= log(M)

r
+ ν2r

2 ,

taking r =
√

2 log(M)
ν2 and we get the result.

Lemma 6. Let N ∈ N∗, a ≥ 1, b and c be two non negative real numbers. Consider Z a positive random
variable such that

P (Z ≥ t) ≤ min(1, exp(a− bNt2) . (25)
Then, there exists a constant C > 0 not depending of N such that

E[Z] ≤ C
( a

bN

)1/2
.
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Proof. By condition (25), we have

E[Z] ≤
∫ +∞

0
min(1, exp(a− bNt2)dt ≤

( a

bN

)1/2
+
∫ +∞

( a
bN )1/2

exp(a− bNt2)dt. (26)

The following elementary inequality (x− y)2 ≤ x2 − y2 for all x, y ≥ 0 yields to∫ +∞

( a
bN )1/2

exp(a− bNt2)dt ≤
∫ +∞

( a
bN )1/2

exp
(
−bN

(
t−

( a

bN

)1/2
)2
)
dt =

∫ +∞

0
exp

(
−bNu2) du ≤ C ( 1

bN

)1/2
. (27)

Combining Equation (27) in Equation (26) to yield the result.

Lemma 7 (Bernstein’s inequality). Let T1, . . . , Tn be independent real valued random variables. Assume
that there exists some positive numbers v and c such that

n∑
i=1

E[T 2
i ] ≤ v ,

and for all integers k ≥ 3
n∑
i=1

E[(Ti ∨ 0)k] ≤ k!
2 vc

k−2 .

Let S =
∑n
i=1 (Ti − E[Ti]), then for every any positive x, we have

P (|S| ≥ x) ≤ 2 exp
(
− x2

2(v + cx)

)
.

Lemma 8 (Hoeffding’s inequality). Let N ∈ N∗ and a > 0 be a real number. Let X1, . . . , XN be
independent random variables having values in [−a, a], then for all t > 0

P

(∣∣∣∣ 1
N

N∑
i=1

(Xi − E[Xi])
∣∣∣∣ > t

)
≤ 2 exp

(
−Nt

2

2a2

)
.

Lemma 9 (Hoeffding’s Lemma). Let X ∈ [a, b] be a bounded random variable with E[X] = 0. Then, for
all λ ∈ R

E [exp(λX)] ≤ exp
(
λ2(b− a)2

8

)
.
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