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This work combines semantic reasoning and machine learning to create tools that allow curators of the visual art collections 

to identify and correct the annotations of the artwork as well as to improve the relevance of the content-based search results 

in these collections. The research is based on the Joconde database maintained by French Ministry of Culture that contains 

illustrated artwork records from main French public and private museums representing archeological objects, decorative arts, 

fine arts, historical and scientific documents, etc. The Joconde database includes semantic metadata that describes 

properties of the artworks and their content. The developed methods create a data pipeline that processes metadata, trains 

a Convolutional Neural Network image classification model, makes prediction for the entire collection and expands the 

metadata to be the base for the SPARQL search queries. We developed a set of such queries to identify noise and silence 

in the human annotations and to search image content with results ranked according to the relevance of the objects quantified 

by the prediction score provided by the deep learning model. We also developed methods to discover new contextual 

relationships between the concepts in the metadata by analyzing the contrast between the concepts similarities in the 

Joconde’s semantic model and other vocabularies and we tried to improve the model prediction scores based on the semantic 

relations. Our results show that cross-fertilization between symbolic AI and machine learning can indeed provide the tools to 

address the challenges of the museum curators work describing the artwork pieces and searching for the relevant images. 
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1. INTRODUCTION 

The value for cultural institutions lies not only in their collections but also in the knowledge extracted by curators 

from the artwork pieces in these collections. However, each artwork piece is peculiar by its content, by the 

material used, and by its style, thus the knowledge extracted for each piece has to be very precise and technical. 
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This increases the difficulty to define a common knowledge representation for an entire artwork collection and 

leads to incomplete metadata or non-uniform metadata due to the variations of annotations between several 

curators. In order to retrieve information in the collections, cultural institutions have put a lot of effort in the last 

two decades to design Content-Based Information Retrieval (CBIR) systems. However, these CBIR search 

engines were exploiting the latest advances of the time on visual content classification and on metadata text 

analysis. An example of the metadata considered at the time was the filenames or topics from the visual content. 

If some metadata were erroneous or missing, CBIR systems were not able to detect it as they were relying a 

lot on the quality of the annotation data. As far as we know, none of the systems so far were combining visual 

information retrieval with semantic analysis and reasoning on the metadata. The only initiative considering both 

views was the CLAROS project [32] but visual content and semantic web data were exploited independently by 

different components and not jointly to correct or refine the content. Moreover, such systems were mostly 

designed to provide new tools for cultural heritage content exploration by a large audience and non-experts 

rather than to support curators in refining and maintaining the knowledge associated with the collections. 

French Ministry of Culture has a long-standing interest in the development of a reliable automated search 

system where artworks (e.g., paintings, sculptures) could be searched by the topics or objects represented in 

the image. For example, find all images with a horse in them. Currently, as illustrated on the Figure 1 the top 3 

search results for the term cheval (horse) are the images where a horse is either on the background or partially 

visible and not a major subject of the artwork. Considering the number of artifacts to be annotated and the 

complexity of image analysis, not all of the museums have been able to describe the objects depicted with 

precision. Querying the images using text search on descriptors is not straightforward and can produce a 

number of non-relevant results or miss very relevant ones. Additionally, the existing metadata describing the 

art objects can be noisy or incomplete. The MonaLIA project was initiated to improve the accuracy and the 

details of the artwork metadata and thus support the expert work of the curators, through cross-fertilization of 

recent advances in fine-grained object recognition and semantic Web annotation. 

Specifically, our research aims to assess whether the coupling of machine learning approaches with 

knowledge representation and reasoning approaches (Semantic Web and linked data) has the potential to (1) 

enhance metadata, (2) automate or semi-automate artwork annotation, (3) rank search results by visual 

relevance of a search criteria, (4) and assess the usability of an existing thesaurus for the latest AI methods. 

To evaluate these questions, we experiment with the Joconde database23 maintained by French Ministry of 

Culture that contains over 400,000 illustrated artwork records from main French public and private museums 

representing archeological objects, decorative arts, fine arts, historical and scientific documents, etc. The 

Joconde database includes semantic metadata built in the preceding project JocondeLab4 [16, 17] developed 

by the Research and Innovation Institute (IRI). The iconographic description metadata was formalized in 

Semantic Web [14] formalism and by linking these annotations to the iconographic Garnier Thesaurus [15] and 

DBpedia.fr for describing the image. 

The rest of the paper is organized as follows: in Section 2 we survey the related works in terms of AI 

approaches to improve the quality and search in cultural collections and image collections. In Section 3 we 

present the dataset, data processing pipeline and model selection process as well as the overall architecture 

                                                 
2 http://www2.culture.gouv.fr/documentation/joconde/fr/pres.htm 
3 http://www2.culture.gouv.fr/documentation/joconde/fr/mentions_legales.htm 
4 http://jocondelab.iri-research.org/jocondelab 



  
 

3 

we designed to combine knowledge representation methods and machine learning methods in the management 

of a single dataset documenting a large cultural collection. Then in Section 4 we describe our approach in 

detection of the silence and noise and in ranking the content-based search results by visual relevance. In 

Section 5 we describe our approach for discovering missing semantic relations by contrasting the vocabularies 

and statistics of metadata. Finally, we conclude with a discussion of possible future work.  

 

Figure 1: Search result for the images of cheval (horse) in the Joconde database on the Open Heritage Platform (POP: la 
plateforme ouverte du patrimoine) maintained by the French Ministry of Culture. 

2. RELATED WORK 

As aforementioned several search engines have been designed in the last two decades to explore cultural 

heritage databases, but all these solutions were either focusing on visual content analysis (just to name a few 

among many works, M4ART [37], Retin-3D [34], CB3DR [35]), or on semantic web data analysis (e.g. 

Europeana [33], MultimediaN E-Culture demonstrator [36]), and none of them were considering these two views 

of the content. CLAROS Project was offering to search in a database either based on knowledge representation 

or based on visual content but not jointly. Furthermore, most of these works have been proposed before the 

advent of Deep Learning (DL), which revolutionized visual content analysis. 

Majority of methodological studies that use DL for image classification are conducted on standard datasets 

such as ImageNet5 [1] and MS COCO6 [2]. Real-world domain datasets popular in image classification are from 

biology or medicine [3, 4]. A few studies were conducted on real-world visual art images [5, 6]. Several articles 

have discussed the problem of art style, genre, artist and art period recognition in visual arts using CNN models 

[7, 8, 9] on emerging art images datasets such as the one included in WikiData [7] or the one of the Web Gallery 

of Art7 (WGA) [10]. Many applications of these neural networks and transfer learning were published over the 

years and span over different domain-specific datasets [25, 26, 27, 28]. The advantages of using standard 

datasets include verified labelling [1, 2] and depiction of prominent objects captured in photographs. In the 

                                                 
5 http://www.image-net.org/  
6 https://cocodataset.org/#home 
7 http://www.wikiart.org/  
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analysis of biomedical datasets, the objective is often to detect a specific category (class, label) with the highest 

accuracy [4] rather than detection of multiple often unrelated concepts. For such studies, binary and multi-class 

classification is common [3, 4, 5, 6, 7, 8, 9]. Art images typically have rich content with simultaneous occurrence 

of multiple visually relevant objects, e.g., horses, dogs, and soldiers all identifiable on a single painting.  

Combining semantic reasoning and deep learning has recently become a focus of interest to try to match 

the implicit knowledge captured by deep networks from data with the explicit organization of known concepts in 

knowledge representation of these same data. This interest spreads between domain specific areas such as 

medicine [49, 50], and more general research [51, 52, 53]. 

Most of the works in this direction have only focused on very direct and basic knowledge relations such as 

subClassOf or relations between labels [39, 40, 41]. In [38], Castellano et al use convolutional neural networks 

to extract visual content representation of paintings. Then they build a graph between artists through a 

knowledge discovery process based on the visual similarity of the artworks in the feature space. This allows 

them to propose a new way for exploring influences between painters. However, their knowledge graph is built 

upon feature space similarities without any link to any knowledge base of the artworks, painters, style, etc. They 

infer possible painter relations from visual feature space similarities but do not reason on the knowledge they 

discover by relating it with confirmed knowledge from Wikipedia or other knowledge bases. 

In our work, we combine two technologies: Deep Learning from images and Semantic Reasoning from 

structured metadata applied to visual art. We explore state-of-the-art CNN models: VGG [12] and Inception v3 

[13], in a transfer learning context. Among the multiple Semantic Web development tools8 for this project’s 

semantic reasoning we chose CORESE9 (Conceptual Resource Search Engine) for its ability to process RDF, 

RDFS, OWL SPARQL 1.1 (query and update) and for its extensions of the standards including rules and 

semantic distances [29]. Its standalone interface and the in-memory implementation also helped us test and 

prototype several queries and manipulations we will mention later. 

The problem of quality of the metadata is closely related to data quality in general has been addressed 

before. However, some works are focused on RDF datasets and ontologies in general [20] or consistency of 

the SKOS-specific properties [21]. These works focus on quality problems with regards to the metadata models 

(RDFS, OWL, SKOS) and the linked data principles but not on domain-dependent quality checks. 

Ontology-based image retrieval solutions have been proposed before [22, 23, 24]. These works have proven 

that with ontology-based annotations images can be found more accurately. However, the proposed 

approaches either employ the semantic reasoning only [22, 24] or while introducing image classifiers into the 

process do not utilize the Deep Learning models [23]. These contributions leverage semantics in improving the 

search results, for instance by adding results obtained with the transitive closure of the subtype or sub-concept 

hierarchy. In our project, we have a unique real-world dataset of visual art images and extensive structured but 

imperfect metadata that allows us to explore the combination of semantic reasoning and image recognition in 

order to improve both the semantic annotation and content-based image retrieval, and support curators’ work. 

                                                 
8 https://www.w3.org/2001/sw/wiki/Tools  
9 https://project.inria.fr/corese/ 
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3. INTEGRATION OF SEMANTIC AND LEARNING PROCESSING OF CULTURAL LINKED DATA 

We now detail the dataset, data processing pipeline, model selection process and the overall architecture we 

designed to combine knowledge representation and machine learning methods in the management of a single 

dataset documenting a large cultural collection. This is the keystone of our work as it enables us to combine 

and contrast results from reasoning on the symbolic metadata (RDF, SKOS) and learning on the sub-symbolic 

data (images) as detailed in sections 4 and 5 of this article. 

3.1 The dataset 

A snapshot of the Joconde database (Joconde dataset) was extracted for us in 2018. The dataset contains 

artwork records metadata and thesauri (Joconde KB) as well as the collection of image files. The metadata is 

represented in the RDF10 format and images are JPEG files of different sizes and resolutions.  

Joconde metadata is based on the ontology developed in the preceding project JocondeLab11 and defined 

in a dedicated namespace12. The ontology defines 76 properties of the artwork. Most of the properties describe 

the artwork itself such as title, author, museum, etc., and 2 properties describe what is depicted by the artwork. 

The dataset contains 483,297 artwork records. 59% (285144) of them have associated images. 56% (165800) 

of the images have the content annotations. In terms of coverage, 37% of the properties defined in the ontology 

(28) are filled over 75% of the collection and 46% (35) are filled under 25% of the collection. 

One particular property sujet représenté (represented subject) describes the content of the image and has 

a zero-to-many cardinality. The values of this property are based on the specific iconographic thesaurus 

developed by François Garnier published in 1984 [15]. The values of the sujet représenté (represented subject) 

property are especially interesting for our work because they can be considered as labels for the image 

classification model training. The sujet représenté (represented subject) concepts (REPR thesaurus) are 

organized in hierarchies with 12 roots. Among all of the 32274 unique REPR concepts, only 70% (22552) are 

associated with the artwork images, 37% (12013) are not named entities, and 2.4% (790) are associated with 

more than 200 images. One research question in the MonaLIA project was the quality and suitability of this old 

thesaurus for the latest AI methods relying on reasoning and learning. For instance, we can notice upfront that 

the roots of the hierarchies may not have the same abstraction level from one sub-hierarchy to another. As a 

concrete example, the concept cheval (horse) is 8 edges removed from the root concept la nature (nature) while 

the other concept bateau (boat) is 4 edges removed from the root concept transport-communications. The 

deepest branches are 11 edges removed from the root. The modelling and conceptualization choices and more 

generally the ontological and formalization commitment made in the ontology, the thesaurus and DBpedia may 

have a strong impact on the efficiency of AI approaches especially when then have not been designed with that 

purpose in mind and when they are reused from other application scenarios. 

In order to scope and ground our evaluation, the French Ministry of Culture has also provided a list of 102 

most searched concepts. Inspired by Large Scale Visual Recognition Challenge (ILSVRC) practices and 

conducting our own experiments we have concluded that ~1000 would be enough images containing a 

representation of a concept to train the DL algorithm. Unfortunately, and for natural reasons only 40 out of 102 

                                                 
10 https://www.w3.org/RDF 
11 http://jocondelab.iri-research.org/jocondelab 
12 http://jocondelab.iri-research.org/ns/jocondelab/ 
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concepts of interest have enough images in our dataset. In Table S5 in the Supplementary materials we provide 

a summary of the concepts with concepts having enough images in bold. 

3.2 Data enrichment workflow with an RDF triplestore as a pivot 

As mentioned above the original Joconde dataset metadata is stored in a type of database specific to RDF 

data called triplestore. Triplestores provide a mechanism for the storage and retrieval of RDF graphs through 

semantic queries and may support other types of intelligent processing including inferences and validation for 

instance. Our proposition is to extend this dataset with the results of image classification and of semantic 

reasoning by relying on the triplestore as an integration point. In order to accomplish this, we develop two-pass 

dataflow for training and for scoring. For the training pass, we query the triplestore using the SPARQL language  
13 to create the labeled image set for training, validation, and testing. The images and labels are selected based 

on criteria discussed in sections 3.3 and 4.1. Then we fine-tune the CNN model described in sections 3.4 and 

4.2 on the training and validation sets and test to assess the model performance on the test set. 

For the scoring pass we query again but this time with different constraints to create a dataset that we run 

through the fine-tuned model and obtain prediction scores for every classification category for every image as 

described in section 4.3 and we create new triples associating the image with prediction scores, the results are 

represented in RDF and are stored back in the triplestore (see example in section 4.3) to be integrated and put 

in use with all the other metadata. As a result, we created an extended triplestore database that allows the 

ontology-based image search with quantified relevance of the search term. On top of this pipeline, we can then 

perform analytics queries leveraging all the annotations gathered and obtained and their semantics. We first 

designed SPARQL queries to look for the anomalies in the annotations such as noise and silence or to search 

for a term with better ranked results as discussed in section 4.4. 

 

Figure 2: Data processing pipeline. 

                                                 
13 https://www.w3.org/TR/sparql11-overview/  
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In addition, a Semantic Web triplestore provides the ability to evaluate quickly the impact of changes in the 

semantic models on the results of the entire pipeline. 

For instance, in the early experiments, we discovered that humans on the images were not necessarily 

annotated by the concepts in the être humain (human being) hierarchy of the Garnier Thesaurus [15] and that 

led to a poor CNN model performance in identifying humans and animals. As shown in the examples in Table 

1, on the first row’s image the human is represented by concepts soldat (soldier) and cavalier (horseman) that 

are not sub-concepts of the être humain (human being) concept in the thesaurus. Also, in many instances where 

the cavalier (horseman) concept is present in the annotation the concept cheval (horse) is omitted like in the 

example on the second row. 

Table 1: Examples of images and sujet représenté (represented subject) property annotation where some of the annotation 
concepts are missing. 

Image Property sujet représenté (represented subject) 

 

figure (Révolution française de 1848, soldat, cavalier, cheval, uniforme) 
 (figure (French Revolution of 1848, soldier, horseman, horse, uniform)) 

 

scène (chasseur, cavalier, bouffon,chien) 
(scene (hunter, rider, jester, dog)) 

To address this issue, we apply rules to create new RDF triples (Code 1) to link the concepts that are not in 

the same hierarchies but should be related to our tasks (search, training, etc.). To follow our example on 

horsemen and soldiers, we added a rule that generates RDF triple to connect the être humain (human being) 

concepts as a parent with hiérarchie militaire (military hierarchy) as a child which transitively connects the soldat 

(soldier), guerrier (warrior), chef militaire (military commander), etc. with être humain (human being).  

This declarative approach and the automatic reasoning that it triggers (transitive propagation following the 

hierarchies) proved to be a very simple and useful technique for improving the labeling of the training and testing 

datasets and impact the learning performance. 

CODE 1: Extract of SPARQL Query to insert new triples to the triplestore and create missing links in the thesaurus 

insert { ?x skos:related ?y } 

where {?x skos:prefLabel "cheval"@fr.      ?y skos:prefLabel "cavalier“@fr.} 

Creating new relations between the concepts that are semantically and/or visually related but do not exist in 

the Garnier Thesaurus benefit the model training datasets thus creating classifiers that are more accurate.  

In the example in Table 2 the second image metadata is missing the term cheval (horse) but with the link 

between the concepts cavalier (horseman) and cheval (horse) the image is properly labeled like the first image 

3.3 Deep Learning Model 

As aforementioned, Deep Learning models have revolutionized data analysis and in particular for computer 

vision problems such as image classification or object detection, but they require a very large training set. 
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Thanks to the huge number of labelled images in ImageNet dataset, Convolutional Neural Networks (CNN) are 

thus able to learn very efficient visual content representation outperforming all previously existing methods, 

even outperforming Humans, to classify images [42]. The second reason for their impact lies in their Transfer 

Learning capabilities. Indeed, Transfer Learning allows using a CNN that was developed and trained to solve a 

given problem (e.g., image classification of ImageNet dataset), to solve another but related problem (e.g., image 

classification of Joconde dataset) [43, 44]. The most important aspect of this capability is to be able then to 

benefit from a model trained on a large amount of data (usually ImageNet), then to refine or even just to use it 

as is for a task with few training samples [45, 46, 47]. In [48], Tan et al exploit this capability to classify images 

from Cultural Heritage datasets where few data are available and consequently very few training data. 

Table 2: Example of the effect of the data link on the labeling. 

Image Labels & Metadata Prediction 

 

cavalier (horseman)  
cheval (horse) 
 
figures (cavalier, homme, cheval) 
(figures (rider, man, horse)) 
 
50440004334 

cheval (horse) : 0.790 
cavalier (horseman) : 0.097 

voiture à attelage(tow car) : 0.051 
chien(dog) : 0.010 

de profil (sideways) : 0.006 
mouton(sheep) : 0.005 

nu(nude) : 0.004 
draperie (drapery) : 0.004 

épée(sword) : 0.003 
casque (helmet) : 0.003 

 

cavalier (horseman)  
cheval (horse) 
chien (dog) 
 
scène (chasseur, cavalier, bouffon, chien) 
 (scene (hunter, rider, jester, dog)) 
 
02110007092 

cavalier (horseman) : 0.557 
cheval (horse: 0.376 

voiture à attelage(tow car) : 0.033 
chien(dog): 0.012 

château (castle) : 0.003 
drapeau (flag) : 0.003 

maison(house) : 0.002 
arbre (tree) : 0.002 

casque (helmet) : 0.002 
nuage (cloud) : 0.002 

The state-of-the-art pre-trained CNN models are typically trained as multi-class classifiers. In multi-class 

classification, a sample can be classified into one category among many. In an image set, one image is 

classified to most likely represent one of the objects from the set of multiple objects. However, the significant 

number of images in the Joconde dataset represent multiple objects of interest. This calls for building a multi-

label classifier where a sample can be classified as a set of classes mutually non-exclusive.  

At first, we have employed transfer learning from ImageNet training and then adapted to a multi-label 

classification by using a one-hot label encoding, a sigmoid function as output layer, and Binary Cross Entropy 

Loss function. To find the best performing solution for the Joconde multi-label classification we evaluated two 

state of the art multi class CNNs, VGG16 with batch normalization and Inception v3. Comparison details can 

be found in Table S1 of Supplementary materials.  

The performance of these two models on the Joconde dataset is compatible while the Inception v3 is slightly 

faster to train and has 35 times less parameters, thus saving time and disk space. Therefore, we chose the 

Inception v3 model for further investigation. We have optimized other hyperparameters, such as initial learning 

rate, learning rate decay, optimizer algorithm and dropout rate.  
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Eventual training setup for a multi-label model: architecture: Inception v3, training mode: fine-tuning, dropout 

rate: 0.5, activation function: Sigmoid, loss function: Binary Cross Entropy, optimizer: Adam, initial learning rate: 

0.001, training epochs: 20, momentum: 0.9. 

3.4 Image Preprocessing for CNN consumption 

The state-of-the-art CNN image classifiers take only the square images as an input. The Joconde artwork 

images have a wide distribution of sizes. Unfortunately, not too many square images (0.2% of all images are 

perfectly square, 3% are within 5% of being square). To deal with the non-square images we have tried several 

approaches. Filtering out “wide” and “tall” images, padding images to square, scaling and multi-cropping. 

Restricting the image set by a certain image aspect ratio may improve the training set and subsequently model 

performance. Empirically we found the optimal maximum for Joconde database AR = 1.2. This aspect ratio puts 

a serious constraint on the number of available images and the more realistic one is 1.4. Restricting the aspect 

ratio of the training set generally improved the performance of the classifier but, at the same time, put a 

constraint on the number of available images per concept. Other techniques such as padding, scaling and multi-

cropping did not substantially improve model performance. 

Table 3: Performance comparison for different limits on aspect ratio of the images. The experimental data: a set of images 
disjointly annotated with concepts animal and être humain (human being). The experimental model: Inception v3. 

Aspect Ratio Not restricted <=2.0 <=1.4 <=1.2 

F1 (macro avg) 0.77 0.84 0.85 0.92 

In the preliminary studies the analysis of the other contributing factors on the classification results uncovered 

that the images of the ceramic arts are out of the distribution of the other images fooling the model and leading 

to a bad training. Not including this group of images into the dataset improved the performance metrics of the 

model up to 6%. Thus, going forward we explicitly removed the ceramic arts from the dataset, and we plan in 

the future to have a specific processing for this form of art. This shows another benefit of considering metadata 

to adapt models for very specific subsets of data. 

As the results of the semantic integration of symbolic and learning processing of cultural linked data and the 

pre-processing performed in this first stage, we obtained a fully operational framework to start designing and 

evaluating methods supporting the life cycle of the data of a cultural collection and their use in search engines. 

4. CHASING NOISE AND SILENCE IN METADATA AND PROVIDING RANKING TO IMPROVE SEARCH 
IN THE COLLECTION 

The MonaLIA approach, we now propose, to improve search and metadata can be described in 4 phases: (1) 

we create training and test subsets images using SPARQL queries on metadata to label the images; (2) we 

fine-tune multi-label CNN classifier on the training set and evaluate its performance on the test set; (3) we 

perform prediction on the entire Joconde dataset using the trained CNN model to extend image metadata with 

prediction scores of classes; and (4) we perform analytical SPARQL queries on extended metadata to improve 

search and to chase noise and silence. As the framework of queries and model training software was developed, 

we gradually scaled the classifier up to 10, 20, 40 classes.  
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4.1 Creating training and test subsets images using SPARQL queries on metadata to label the images.  

To train a CNN image classifier the labeled dataset has to be prepared. In our case, the labels correspond to 

the objects that the classifier is intended to identify. Therefore, in order to prepare the dataset, we need to select 

the images that contain the objects from the object list and build a subset of data containing image references 

and their metadata; we call it the image set. The selection is based on the sujet représenté (represented subject) 

property of the JocondeLab ontology (RDF properties jcl:noticeRepr, jcl:noticeReprTerm). These attributes 

contain the reference to the entities organized in a hierarchy according to the Thesaurus Iconographique 

published by François Garnier in 1984 [15]. 

For a successful model, the training image set must be balanced and large enough. From the Large-Scale 

Visual Recognition Challenge (ILSVRC) we know that the networks can be trained on 1000 images pre class. 

Also, the MonaLIA preliminary study had shown that 1000 is enough artworks images to fine-tune the pre-

trained model. We also need a fraction of the images for the validation and testing.  

For the training set preparation, a generic SPARQL query was developed to: (1) take an arbitrary concept 

list as an input; (2) select the artwork data records with references to the listed objects and their descendants 

in the hierarchy (3) take into account an optional list of exclusions of descendants that can be specified as an 

input in order to add flexibility in choosing the sub-concepts. 

Query results are processed further to filter the records as discussed in section 3.4, make a stratified split to 

3 sets for training validation and testing and save the processed result to a file to be consumed by the data 

loader for the classification step. In order to avoid copying the images to the traditional arrangement of the 

image datasets based on the older structure, we developed a customized data loader that loads the data from 

the Joconde image file structure provided by the Ministry of Culture. 

In the multi-labeled datasets, it is very hard to balance the number of images representing each concept 

and each combination of the concepts increases exponentially with the increase of number of concepts (2C – 

1, where C is the number of concepts). 

We developed a simplified method of selecting images for a training set: (a) Select all the images from the 

Joconde database containing the concepts as a jcl:noticeReprTerm property. (b) Filter out the images with more 

than 5 concepts from the concept list. (c) Filter out images with extremely high aspect ratio (>5). (d) Filter out 

the images of ceramics artworks. (e) Select 1000 images of each concept represented alone. (f) Select all the 

combinations of each concept with other concepts. The last step creates an unbalance that must be 

compensated by calculating the positive weights for each concept when calculating the loss function. Positive 

weights are the weights of the positive sample of the Binary Cross Entropy loss function, pc in formula (1)14.  

 
𝐿𝑐 =  ൛𝑙ଵ,௖ , … , 𝑙ே,௖ൟ

்
, 𝑙௡,௖ =  −𝑤௡,௖[𝑝௖𝑦௡,௖ ∗ 𝑙𝑜𝑔 𝜎൫𝑥௡,௖൯ +  (1 − 𝑦௡,௖) ∗ 𝑙𝑜𝑔 (1 − 𝜎൫𝑥௡,௖൯)]  (1) 𝑝௖ =

௖௢௨௡௧(௫೙,೎ୀୀ଴)

௖௢௨௡௧(௫೙,೎ୀୀଵ)
  (2) 

Choosing the positive weights allows us to trade off recall and precision by adding weights to positive 

examples: pc > 1 increases the recall, pc < 1 increases the precision. We have chosen to increase the recall 

and calculate the pc as a ratio of negative to positive samples of the class (formula 2). 

                                                 
14 https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html#torch.nn.BCEWithLogitsLoss 
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4.2 Fine-tune multi-label CNN classifier on training set and evaluate its performance on test set. 

In the preliminary study, we focused on building and assessing multi-class classifiers. For multi-class, the 

predicted answer is the class with the highest predicted score. For multi-label classification problems, the score 

threshold must be chosen to make predictions and the predicted answer is a set of classes with scores higher 

than the threshold(s). To make sure that the transfer learning and adaptation of the multi-class to multi-label 

works a set of validation runs were made on both ImageNet and Joconde images. 

To evaluate model performance for multi-label classification we use F1 score (macro average formula 3) and 

mean Average Precision (mAP formula 5). The first metric depends on the choice of the probability score 

threshold and the second does not.  

𝐹1 =  
ଵ

஼
∑ 2 ∗  

௉೎∗ ோ೎

௉೎∗ାோ೎ ௖      (3)   𝐴𝑃 = ∑ ൫𝑅௡ − 𝑅{௡ିଵ}൯𝑃௡௡       (4)  𝑚𝐴𝑃 =
ଵ

஼
 ∑ 𝐴𝑃௖௖      (5) 

Where Rn and Pn are the precision and recall at the n-th threshold and C is the number of concepts. 

To improve the accuracy of the classifier (F1 metrics) the threshold selection is important. In multi-label 

classification especially with growing numbers of classified concepts, the F1 metric decreases. To obtain better 

classification results we can vary the threshold to find an optimal recall/precision ratio.  

We experimented with manual threshold validation and implemented the Proportion Cut (PCut) [18, 31] 

method that can be label-wise or global that calibrates the threshold(s) from the training data globally or per 

label. Label-wise PCut sets different thresholds for each label, which guarantees that the predicted positive rate 

for this label is close to the training positive rate. The more concepts we try to recognize the more beneficial it 

is to use calculated label-wise thresholds. The manual validation and PCut threshold selection shows that the 

higher values for the threshold (≥0.80) yield the best results. 

We experimented with different number of target concepts increasing the number of classes in the outputs 

of the classifier. Table 4 summarizes the metrics of model performance for the different number of classes. The 

classes correspond to the list in the Table S1 in Supplementary materials. We have witnessed the performance 

degradation after the number of classes exceeds 40 because of the availability of training images. There is also 

an evidence that the state-of-the-art machine learning algorithm does not work as well in the domain of the 

diverse visual art as it does with the collections consisting of the specifically chosen photographs.  

Table 4: Performance comparison for increasing number of classes. The experimental model was Inception v3. 

Number of classes  Label-wise decision threshold range  F1 (macro avg)  mAP  

10  0.80 - 0.90  0.72  0.80 

20  0.80 - 0.95  0.61  0.65 

40  0.80 - 0.95 0.52  0.54 

50  0.90 - 0.95  0.46   0.47 

100  0.90 - 0.95 0.26  0.28 

4.3 Predict on the entire Joconde dataset with trained CNN model to extend image metadata with 
prediction scores of classes. 

By running the model on all the images of the Joconde dataset we obtained the prediction scores for every 

image in the Joconde dataset and linked these scores with the artwork records by saving the scores in the same 

RDF format as the initial metadata using a vocabulary we designed for this purpose as shown in Code 2.  
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Applying the trained model to the entire Joconde database generates prediction scores for each concept for 

each image. We store these scores linking them with the artwork record. The association is made by creating 

RDF triples linking the jcl:Notice entity with scores. We also specify which classifier generates the scores so 

the result of multiple classifiers can be compared and/or used in the queries. 

As a result, the RDF triplestore contains all the initial data plus all the classification results and the analysis 

of these results can therefore leverage semantic Web reasoning and querying capabilities in the formulation of 

analytic queries. 

CODE 2: Extract of the prediction score represented in RDF and integrated to metadata. 

ml:classifierRepresentedSubject a rdfs:Class ; ml:vocabID "REPR" . 

ml:classifierTenClasses rdfs:label "10 classes" ; 

                        rdfs:comment "Classifier trained on images labeled..." ; 

                        rdfs:subClassOf ml:classifierRepresentedSubject . 

<https://jocondelab.iri-research.org/data/notice/00000055013>  

            ml:imageClassifier [ a ml:classifierTenClasses ; 

            ml:detected [ a t:T523-2744 ; ml:score "0.2535"^^xsd:float ], 

                        [ a t:T523-1740 ; ml:score "0.2075"^^xsd:float ], 

                        . . . 

                        [ a t:T523-1051 ; ml:score "0.1096"^^xsd:float ] ] . 

4.4 Analytic SPARQL queries on extended metadata to improve search and chase noise and silence.  

To support extended metadata search on depicted concepts we developed SPARQL queries that allow the user 

(museum curator) to obtain the lists of images filtered by search term and its prediction scores. If the prediction 

score is high but the term is not mentioned in the image representation description, then it is a sign of omission 

(silence) in the description. If the prediction score is very low and the term is mentioned in the description, then 

it might be a sign that this term in the description might not be necessary (noise). The SPARQL query can also 

simulate a keyword search and return the results sorted by prediction scores high to low which would rank the 

results according to the iconographic relevance due to the fact that CNN classifiers are better in recognizing of 

larger objects [38, 48]. 

Because the multi-label classifiers recognize more than one object represented on the image, ordering and 

ranking the objects also allows a curator of the collection to detect silence and noise of the annotation of the 

image. In Tables S2-S4 in Supplementary materials we present more examples of the artwork image 

classification results and their impact on the quality of the information retrieval.  

In Table 5 we demonstrate the top 4 search results for the concept chien (dog) sorted by the prediction 

scores in the descending order. It is clear that the deep learning model performs well when classifying the 

visually prominent objects and bringing the high scored images on the top of the list serves the purpose of 

ranking the result by relevance for a search engine or recommendation system. 

To compare, on Figure 3 we present the screenshot of the results of the same search criteria returned by 

text-based search algorithm that is currently deployed on the portal of the French Ministry of Culture. The text-
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based algorithm gives the higher rank to the results with titles that contain the search criteria, which may result 

in missing more relevant images if they are not properly named and annotated. 

Table 5: Top 4 results of the query for concept chien (dog) sorted by prediction scores in descending order. 

Image Joconde Metadata Prediction Score 

 

représentation animalière (chien) 
(animal representation (dog)) 
 
07480003359 

chien (dog): 1.0 

 

représentation animalière (tête, chien berger) 
(animal representation (head, shepherd dog)) 
 
01550001084 

chien (dog): 1.0 

 

représentation animalière (tête d'animal, chien) 
(animal representation (animal head, dog)) 
 
50130000049 chien (dog): 1.0 

 

représentation animalière (chien) ; feuillu ; fleur 
(animal representation (dog); foliage; flower) 
 
00000074825 chien (dog): 0.999 

 

 
Figure 3: Search result for the images of chien (dog) in the Joconde database on the Open Heritage Platforme (POP: la 

plateforme ouverte du patrimoine) maintained by the French Ministry of Culture 
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In Table 6 we present the sample of results of querying the extended metadata to detect the noise in the 

existing image annotations. In these examples the query searches for the images that have the concept cheval 

(horse) or related concept cavalier (horseman) but have low prediction scores (⩽ 0.20). On the first row there 

is no visible horse on the sculpture, on the second row the horseman is barely visible on the background, and 

on the third row the horse is small and, although it cannot be ignored, it should have a low significance. All these 

examples are cases where a curator may want to revise and adjust the metadata. 

Table 6: Examples of noise detection in the images that do not have a visually relevant term cheval (horse) with the 
prediction scores below 0.2. 

Image Joconde Metadata  Prediction Scores 

 

cheval (horse) 
 
figure (saint Eloi de Noyon, évêque, en pied, bénédiction, vêtement 
liturgique, mitre, attribut, cheval, marteau, outil : ferronnerie) 
(figure (Saint Eloi de Noyon, bishop, standing, blessing, liturgical 
vestment, mitre, attribute, horse, hammer, tool: ironwork)) 
 
000SC022652 

cheval (horse): 0.006 

 

cheval (horse) 
cavalier (horseman) 
 
figures bibliques (Vierge à l'Enfant, à mi-corps, assis, Enfant Jésus : 
nu, livre);fond de paysage (colline, cours d'eau, barque, cavalier) 
(biblical figures (Virgin and Child, half-body, seated, Child Jesus: 
nude, book);landscape background (hill, river, boat, horseman)) 
 
000PE027041 

cheval (horse): 0.009 

 

cheval (horse) 
 
scène (satirique : Bismarck Otto von : Gargantua, repas, cheval, 
boisson : vin) 
(scene (satire: Bismarck Otto von: Gargantua, meal, horse, drink: 
wine)) 
 
5002E006121 

cheval (horse): 0.011 

In Table 7 we present the results of querying the extended metadata to specifically detect the silence in the 

existing image annotations. In this case the query searches for the images that have high prediction scores 

(⩾0.90) but no corresponding term in the metadata. In all three images the depiction of the cheval (horse) is 

prominent but the metadata is either very general (first and second rows) or has the indirect association with 

the horse through the concept équestre passant (horse riding). This method detects that the association is not 

captured in the thesaurus and could be an input for the linking method described in section 3.2 by providing 

candidate missing links for the thesaurus (e.g., horse - horse riding) and improving the results of the reasoning 

on the metadata.  

All the examples of this section and supplemental materials showed the impact of coupling reasoning and 

learning on symbolic data (RDF annotations) and sub-symbolic data (images) to provide new means of 

improving search results and data quality, in particular noise and silence detection. To extend our ability to 

evaluate the quality of the metadata and their vocabulary, the next section will present a new set of metrics we 

proposed and experiments we performed. 
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Table 7: Examples of the silence detection for the concept cheval (horse) where the concept is visually relevant without 
corresponding concept in the existing annotation. 

Image Joconde Metadata Prediction Scores 

 

portrait 
 
50350012455 

cheval (horse): 0.999 

 

scène historique (guerre de siège : Lawfeld, Louis XV, Saxe 
maréchal de, bataille rangée) 
(historical scene (siege warfare: Lawfeld, Louis XV, Saxony 
marshal of, row battle)) 
 
000PE004371 

cheval (horse): 0.999 

 

figure (sainte Jeanne d'Arc, jeune fille, équestre passant, 
armure, casque, épée) 
(figure (Saint Joan of Arc, young girl, horse riding), armor, 
helmet, sword)) 
 
M0301000355 

cheval (horse): 0.997 

5. DISCOVERING SEMANTIC RELATIONS CONTRASTING VOCABULARIES AND STATISTICS  

Inspired by the empirical discovery of “unlinked” relations and the effect on classification performance of adding 

them before the labelling algorithm we studied the part of Joconde dataset metadata that pertains to the context 

of the image. We were looking for automated ways to discover the concepts that have a semantic relationship 

but are not directly linked by the predefined thesaurus. For example, concept cavalier (horseman) and cheval 

(horse) are semantically and visually related but are not related in the Garnier Thesaurus. 

 The questions we asked were: (1) Are there other pairs of concepts that can be linked to improve image 

context annotations? (2) Can we find them by studying pairwise context co-occurrence and/or distance between 

them in the knowledge graph? (3) Can we find the missing links by accessing external vocabularies including 

the same concepts?  

In order to do this, we selected and evaluated several statistics and metrics on vocabularies both internal 

and external, and on the metadata of the cultural collection to identify pairs of concepts, which could be good 

candidates for introducing additional explicit links.  

In the process we also demonstrated the interest of studying the contrast between the concepts in Garnier 

Thesaurus formalized in the Joconde dataset and the graph of mapped categories extracted from the 

DBPedia.fr showing the impact, bias and potential evolutions for the reference vocabulary selected to ground 

the annotations of the cultural collection. 

5.1 Contrasting context similarity in image metadata with distance similarity in Garnier Thesaurus 

One of the first studies we conducted was to evaluate how different were the aspects captured by the actual 

annotations of the images and the one suggested by the Garnier Thesaurus, in particular in terms of relations 
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made between the concepts. For this study, we chose the top 40 concepts that are most occurring in the image 

annotations among the 102 queries from the search engine provided by the French Ministry of Culture (Table 

S5 in Supplemental materials). We defined and formalized in SPARQL several queries to obtain the graph 

distance between concept pairs in the Garnier Thesaurus as well as the co-occurrences of these concepts in 

human annotations and in Deep Learning model predictions. We then formulated a method and devised metrics 

to compare the results of these different queries and identify the most related pairs of concepts accordingly and 

the differences we found in the proximity we got for them through each source. Intuitively, these differences 

capture the gap between the conceptualization as represented in the thesaurus (the theory) and the effective 

relations made by usage in the annotations (the practice). 

The metric that we used for evaluating pairs’ co-occurrence is Tversky index when 𝛼=0, β=1 in Equation 6 

defines Tversky index for pairs of concepts (A, B) where A and B are the sets of annotations of artworks 

respectively using concepts A and B in their descriptions. 

 𝑇𝑣𝑒𝑟𝑠𝑘𝑦 𝐼𝑛𝑑𝑒𝑥 =  
|஺∩஻|

|஺∩஻|ାఈ|஺ି஻|ାఉ|஻ି஺|
=  

|஺∩஻|

|஻|
, (6) 

We use the asymmetric Tversky Index because it is useful for determining the concept relations by giving a 

hint of the possible direction of the relation between the concepts, i.e., one is broader/narrower than the other. 

Since the Joconde REPR thesaurus is structured as a hierarchy of concepts of the Garnier Thesaurus 

(narrower/broader SKOS relations), this top-down tree structure can be leveraged in metrics for evaluating path 

distances between pairs of concepts. To capture the level of abstractions, the edges between a concept and its 

broader concepts are weighted by 2ିௗ where d is the depth of a node from the top node. Intuitively, the lower 

we are in the hierarchy, the more concrete the concepts are and the less important the differences between 

them are. For instance, the difference between a human and a building are bigger than between a greyhound 

and a german shepherd which are much deeper in the hierarchy. The distance of a path between two nodes is 

the shortest distance across these weighted links between these two nodes through the hierarchy of concepts. 

This distance is formalized in Equation 8. A distance can be inverted to obtain a similarity as in Equation 9. 

𝑑𝑒𝑝𝑡ℎ௪(𝑐) =  
௔൫ଵି௥೏(೎)శభ൯

ଵ – ௥
− 1, (7) 

where α=1, r=0.5, and d is the number of edges from the top 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒௪(𝐴, 𝐵) = 𝑑𝑒𝑝𝑡ℎ௪(𝐴) + 𝑑𝑒𝑝𝑡ℎ௪(𝐵) − 2 ∗ 𝑑𝑒𝑝𝑡ℎ௪൫𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟(𝐴, 𝐵)൯,   (8) 

where ancestor(A,B) is a common parent of concepts A and B. 

     𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) = ቊ
ଶିௗ௜௦௧௔௡௖௘ೢ(஺,஻)

ଶ
, 𝑖𝑓 𝑝𝑎𝑖𝑟 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

0, otherwise
  (9) 

The process that we followed is: (a) Query in SPARQL the Joconde metadata to obtain co-occurrence and 

calculate Tversky index for each concept pair. (b) Query in SPARQL Joconde metadata and its thesaurus to 

obtain distances between concepts and calculate weighted distance and similarity. (c) Select the top pairs with 

Tversky index greater than 0.30 and sort them in descending order in a first list. (d) Rank the same pairs in a 

second list by the graph distance in ascending order. (e) Calculate the rank difference for each pair in the two 
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sorted list 𝑟𝑎𝑛𝑘_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝐴, 𝐵) = 𝑟𝑎𝑛𝑘௦௜௠௜௟௔௥௜௧௬(𝐴, 𝐵) − 𝑟𝑎𝑛𝑘ௗ௜௦௧௔௡௖௘(𝐴, 𝐵) (f) Finally sort the result list of the 

pairs by ascending order of rank difference 𝑟𝑎𝑛𝑘_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝐴, 𝐵)  

As a result, at the top of the resulting list we obtain the pairs of concepts that are far away from each other 

or even not connected by the graph but at the same time related by context. At the bottom of the list, we have 

the pairs that are closely connected but do not appear together in the annotation15.  

Figure 4 represents the results comparing the ranks in the case of human annotations and predictions. 

Analyzing the chart, we may conclude that (1) The analysis incidentally confirms that we were correct by relating 

the (cheval (horse), cavalier (horseman)) concepts during the earlier stage based on visual examination. (2) It 

also points out that other concepts such as (bateau (boat), mer (sea)) and (cheval (horse), voiture à attelage 

(tow car)) could be linked provided the proper predicate to capture these kinds of links. 

These pairs provide candidates to improve the thesaurus and impact the labeling for image classification as 

well as search results. The direction of the link is such as “concept A is likely to appear with concept B”. 

 

Figure 4: Low (negative and close to negative) rank difference indicates that the concept pairs that are not closely related 

by Garnier Thesaurus but are similar by the original annotations' context. 

We applied the same process to the predictions of the deep learning models comparing the co-occurrences 

between the predicted concepts and distance similarity in the thesaurus and the outcome confirms the results 

of the comparison of the human annotation in terms of finding connections between the concepts as shown on 

Figure 5(a). But these results have a longer list of the pairs with a high Tversky similarity index and some of 

them also confirm the results discussed in the next section 5.2. For example, the visually similar “building” 

concepts such as maison (house), château (castle), or tour (tower) often classify as present at the same time 

on the image and it also appears that these concepts are closely related in the DBPedia.fr thesaurus as on 

Figure 5(b). The full figure is available in Supplementary materials (Figure S2). 

                                                 
15 This may be due to the one concept being a sub-concept of another as we can see for (bateau à voile, bateau) pair 
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(a) 

(b) 

Figure 5 Low (negative and close to negative) rank difference indicates that the concepts pairs that are not closely related 

by Garnier Thesaurus but are similar by the predictions (score > 0.9) context. 

5.2 Contrasting distance similarity in Garnier Thesaurus with graph extracted from DBPedia.fr 

The previous sections and experiments all showed the impact of the structure of the thesaurus used as a 

reference to annotate the cultural collection on the analysis and processing we can perform on the data. We 

therefore decided to experiment with methods that could highlight the underlying conceptualization and 

formalization choices of the thesaurus itself and its bias, noises and silences. The idea was that a curator may 

also need to be aware of these shortcomings to improve the metadata and their use. For this study we defined 

and formalized a SPARQL query to obtain the graph of relations between our 40 concepts but this time in the 

hierarchy of the thesaurus that can be found in the linked open dataset DBPedia.fr. The hypothesis was that 

since the DBpedia is a much broader knowledge base it may provide some different information than a 

specialized cultural thesaurus. 

The Joconde dataset provides the mapping between the Garnier Thesaurus concepts and DBPedia.fr 

categories where it is possible. In the case of our 40 concepts, 3 matching categories could not be found in the 

DBPedia.fr (à mi-corps (mid-body), de face (front), de profil (sideways)) and were omitted. 

DBpedia being a very dense graph, when querying the ancestors of the categories we experimented with 

different levels of ancestry from 3 parents to 6 parents. The graph where we query up to 6 parents of the 

categories becomes rooted at the top node of DBPedia.fr and therefore connects all categories in one tree-like 

graph. The graph with lower depth of ancestry (for example, 3) forms a forest of smaller trees and that allows 

for some categories not being connected as shown in Table 8. 

Looking at the Figure 6 (a) and considering the top-5 ranked pairs, large green circles: (1) reveals the 

similarity of pairs of animals in the group (lion, mouton, cheval, chien) that are surprisingly not closely related in 

the DPBedia.fr; (2) confirms the relations between concepts in pairs (cheval, cavalier) and (cheval, voiture à 

attelage) relations discovered by the different methods discussed in section 5.1. On the opposite side, top-5 

ranked orange circles (3) reveals the pairs that have high similarity only in DBpedia and either represent the 

visual similarity (château, église) and (château, maison), or context similarity (arbre, maison) and (en buste, nu) 

and these could be suggestions of additional relations to consider in the thesaurus or metadata. We think that 

the artifact of the (nu, église) pair can be explained by the fact that often the angels and saints are portrayed 
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unclothed. This pair would typically be reviewed by a curator following a “human in the loop” approach and, in 

the end, it may not trigger an extension of the thesaurus.  

Table 8: Same concepts/categories relations sub-graphs extracted from different knowledge graphs: Joconde’s REPR 
thesaurus based on the Garnier Thesaurus and DBPedia.fr with different ancestry depths. 

Garnier Thesaurus graph of 40 leaf 
concepts and their ancestors 

DBPedia.fr graph of 37 leaf categories and 
their ancestors with depth 6 

DBPedia.fr graph of 37 categories and 
their ancestors with depth 3 

   
Even more consistent results in terms of representation of visual similarity are shown by the graph extracted 

with less ancestors as on Figure 6 (b). It shows that the control of the level of abstraction may help in identifying 

relevant additions to make to the knowledge graph. Full resolution charts are included in Supplementary 

materials (Figures S3 & S4). 

 

 

(a) (b)  

Figure 6: The bubble chart of the similarity differences between the sub-graphs extracted from Garnier Thesaurus and 
DBPedia.fr with ancestry depth 6 (a) and 3 (b). Large circles represent large differences between the similarities. 
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In contrast with Granier Thesaurus DBPedias.fr sub-graph with ancestry depth 3 reveals close relations 

between the head covering concepts (casque, chapeau) (helmet, hat), (casque, couronne) (helmet, crown), and 

(chapeau, couronne) (hat, crown) which are visually similar. The pairs (armure, uniforme) (armor, uniform) and 

(casque, uniforme) (helmet, uniform) represent more the context-based similarity. 

By examining the results, we can see that such comparison of the different graphs can uncover the 

information that can help the art collection curators improve the knowledge graph annotating its collection by 

adding relations, classes to the thesaurus and by considering new means to acquire them in generating the 

descriptions. 

5.3 Using semantic relations in improving classification prediction scores 

The complete semantic annotation of an artwork in the collection provides a context that can help identify 

suspiciously present or missing concepts. Considering the results discussed in section 5.1 we wanted to explore 

whether a probability of appearance of one concept of a context-similar pair can improve the probability score 

of the second concept in the same image. For example, if a high classification probability score for a bateau 

(boat) could influence the score of the concept mer (sea). To achieve this, we used a logistic regression 

approach. The idea is to build a pairwise regression predictor of appearance of the concept A of a pair (A, B) 

based on the presence of concept B in the Joconde dataset metadata. Both dependent variable (concept A) 

and predictor (concept B) are binary labels. The regression estimates the log-odds (Equation 6) of observing 

concept A when concept B is present compared to situations when concept B is not present.  

𝑙𝑜𝑔 ൫𝑜𝑑𝑑𝑠(𝐴)൯  =  𝛽଴ + 𝛽ଵ ∗ 𝐵, 𝑤ℎ𝑒𝑟𝑒 𝛽ଵ = 𝑙𝑜𝑔 ቀ
௢ௗௗ௦(஺|஻)

௢ௗௗ௦(஺ ௡௢ ஻
ቁ (6) 

These estimates are dependent on the dataset. If a different dataset is used it might lead to a different value 

of 𝛽ଵ. Binary indicator model compares situations when concept B is present or not. But because machine 

learning models predict concepts with continuous probability scores S(A) and S(B), we want to reuse the 

regression parameters to predict an adjustment of probability score of concept A of pair (A, B) based on a 

difference of probability score of concept B compared to a baseline P(B)base that concept B is present.  

𝑙𝑜𝑔 ൫𝑜𝑑𝑑𝑠(𝐴)௔ௗ௝൯  =  𝛽଴ + 𝛽ଵ ∗ (𝑆(𝐵) − 𝑃(𝐵)௕௔௦௘),  (7) 

where S(B) is a classification prediction score of B. P(B)base can be calculated as a frequency of this concept 

in the dataset. Thus, we consider how much the prediction score for B is higher (or lower) than the one obtained 

purely by chance. For the Joconde dataset we estimated P(B)base by direct counting of concepts in the 

annotations in the training set (to be noticed, that the training set is better balanced than the entire dataset).  

An alternative would be to set it up at the classification threshold determined by threshold selection algorithm 

during classifier training. Another, less desirable alternative, is to set it up 0.5 which indicates that the label 

could be equally present or not present, which is a very strong assumption for a visual art dataset.  

We assume that an unadjusted estimate of S(A) corresponds to the baseline probability P(B)base and the 

adjustment could be made by using the actual prediction score S(B). The adjusted odds of A thus become:  

𝑜𝑑𝑑𝑠(𝐴)௔ௗ௝ =  
ௌ(஺)

ଵିௌ(஺)
∗  𝑒ఉభ∗(ௌ(஻)ି௉(஻)್ೌೞ೐) (8) 
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In case of S(B) = Pbase(B), there will be no adjustments to the score. This approach also considers that when 

the score of label B is lower than the average, it will reduce the probability of label A. This approach might 

impact recall and precision not symmetrically which can lead to subjective decisions. For example, the presence 

of a boat often implies some body of water, however the sea might be present on a painting without any boat. 

We thus considered an additional threshold for the lower values of P(B)base, below which we do not consider 

adjustments. This modification will adjust the prediction score of concept A when the label B is present and will 

leave S(A) unadjusted when P(B)base is low. 

We developed the method of adjusting the probability scores of concept A in the context-bases pair (A, B) 

and evaluated the adjustments on the test set: (a) Estimate the odds ratio from a logistic regression on the 

metadata of the training set. (Equation 6) (b) Estimate the baseline probability for concept B on the same data. 

(c) Calculate the adjusted prediction score for concept A from the estimated odd ratio coefficient and the 

difference between the estimated baseline and prediction score for concept B. (Equation 8) (d) Evaluate the 

adjusted prediction using standard metrics 

For step (b) we experimented with different ways of determining the baseline probability of predictor concept 

P(B)base:. (1) frequency estimate based on the population of image annotations (2) uniformed estimate P(B)base 

= 0.5 (3) subjective decision estimate 1: P(B)base is the decision threshold for the concept B calculated during 

the training (4) subjective decision estimate 2: P(B)base is the decision threshold for the concept B calculated 

during the training but the adjustment to S(A) applied only if S(B) > 0.5 (5) subjective decision estimate 3: 

P(B)base is the decision threshold for the concept B calculated during the training the adjustment to S(A) applied 

if S(B) > 0.70 (6) subjective dichotomised estimate: P(B)base is the decision threshold for the concept B 

calculated during the training. If S(B) >P(B)base, then (S(B) - P(B)base) = 1.0, otherwise 0.0 

The results of our method application to the example of concepts (mer, bateau) (sea, boat) in the population 

of the test set after obtaining the prediction scores with 40-class multi-label Inception v3 model and considering 

different types of P(B)base estimates are shown in Table 9. 

Table 9: Evaluation of adjusted prediction of concept mer (sea) applying different baseline probability of predictor concept 
bateau (boat). 

A = mer (sea) & B = bateau (boat) P(bateau)base F1 AP 

initial model   0.54 0.54 

adjustment with frequency estimated P(B)base 0.0778 0.35 0.48 

adjustment with uniformed estimate of P(B)base 0.5 0.42 0.48 

adjustment with subjective decision estimate 1 of P(B)base 0.85 0.51 0.48 

adjustment with subjective decision estimate 2 of P(B)base 0.85 0.52 0.53 

adjustment with subjective decision estimate 3 of P(B)base 0.85 0.52 0.52 

Although the F1 and AP metrics are lower with any of the adjustment techniques, we chose the highlighted 

technique as the best by looking at what changes the adjustment actually made.  

It turns out that the majority of the changed outcomes were missing annotation, e.g. the original human 

annotations did not contain the concept mer (sea), while the image actually contained the depiction of a sea. 

Thus, model prediction could be used to detect silences with a human in the loop.  

With the adjustment, model prediction moved some of the predictions above the detection threshold, as in 

the example in Table 10 where the original prediction score was under the decision threshold for concept mer 

(sea) 0.90 but after the adjustment the concept mer (sea) prediction score appeared over the threshold. 
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In our sample of 4463 images 109 were labelled as mer (sea) and 300 as bateau (boat), with 59 samples 

with both. Our procedure discovered additional 19 images containing mer (sea) among 300 images of bateau 

where the mer (sea) label was absent. Thus, we increased mer (sea) labels by 17% (19/109) and increased 

joining mer and bateau images by 32%.  

This improvement, however, did not come without a price. For a small number of samples (3% of all images 

labeled mer (sea) the prediction score for concept mer (sea) went down below the decision threshold thus 

creating false negatives. This loss of information was much smaller than the discovery of new labels. In an 

approach where we would keep humans in the loop to validate the curation these results remain very interesting 

in terms of automation and scaling. We could further target to learn the optimal prediction adjustment strategy 

by analyzing the interactions of curators with our system. 

Table 10: Example of the artwork with the adjustment of prediction score of concept mer (sea) by the prediction score of 
concept bateau (boat). 

Image Labels & Metadata S(mer) S(bateau) S(mer)adj 

 

bateau (boat) 
 
paysage (Le Havre, bateau à voiles, 
crépuscule, soleil) 
(landscape (Le Havre, sailing boat, twilight, 
sun)) 

0.8985 0.9981 0.9307 

6. CONCLUSIONS 

The value of cultural institutions lies not only in their collections but also in the knowledge extracted by art 

curators from the works of art in these collections. Quality of the services that can be offered by these collections 

in terms of search engines, recommendation and support depends on the quality of the catalog and its 

metadata. Each art object is peculiar by its content, material, and style, thus the knowledge extracted for each 

piece must be very precise and technical. This increases the difficulty to define a common knowledge 

representation and annotation method for an entire artwork collection, and leads to incomplete metadata, or 

non-uniform metadata due to the variations of methods and the variety of actors involved. As far as we know 

few of the CBIR systems are combining visual information retrieval with semantic analysis and reasoning on 

the metadata or at least not jointly to correct or refine the content. Moreover, such systems were mostly 

designed to provide new tools for cultural heritage content exploration by a large audience and non-experts 

rather than to support curators in refining and maintaining the knowledge associated with the collections. 

In this paper we showed that the coupling of machine learning approaches with knowledge representation 

and reasoning approaches (Semantic Web and linked data) has the potential to (1) enhance metadata, (2) 

automate or semi-automate artwork annotation, (3) rank search results by visual relevance of a search criteria, 

(4) and assess the usability of an existing thesaurus for the latest AI methods. 

In the process, we showed that state-of-the-art machine learning algorithms do not work as well in the domain 

of the diverse visual art as it does with the collections consisting of the specifically chosen photographs. This is 

also true when comparing perfect annotations of standard image benchmark datasets with imperfection of 
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human annotations in a specific domain. However, we found some methods that may allow the museum 

collection curators to improve the annotations in an automated or semi-automated way. 

Our research combined the explorations in the semantic reasoning over the structured metadata to enhance 

the image classification and in reverse to use the results of the image classification to suggest the 

enhancements of the metadata. 

We designed a pipeline that exploits the logic in the metadata organization to enhance the labeling 

mechanism for the deep learning models training, training the model, making predictions, combining the results 

of predictions with the initial metadata, and eventually querying the extended metadata to help with tasks that 

may be performed on such dataset. These tasks include cleaning and enriching the metadata and performing 

content-based information search with better relevance. The integration relies on a semantic Web formalization 

and an extension of the Joconde metadata with a vocabulary for Deep Learning model prediction scores to be 

used in analytical queries leveraging reasoning and querying capabilities of the RDF galaxy. 

In the process we also discovered that the industry standard iconographic thesaurus may not be sufficient 

to describe the data for quality searches. In particular, we showed that the Garnier thesaurus was not designed 

for the tasks we targeted, and we therefore proposed methods to make suggestions on how to extend the 

metadata and the thesaurus to make it more adequate to the tasks of searching the collection and improving 

the catalog metadata. 

For the future we consider several extensions of this work such as synthetic image generation for under-

represented concepts, increasing the metadata exploited by the machine learning methods, and evaluation 

some of the latest approaches in segmentation for relevance scoring and further hybridizing methods between 

neural networks and ontology-based representations.  

Combining deep learning and reasoning to improve information retrieval and predictive modelling results is 

a trend in AI in many areas of science such as medicine, biology, geology to name a few, where both structured 

and unstructured data is available. Although our work was focused on the cultural domain and a specific dataset, 

our proposed methodology can be applied to other datasets that include signal data (e.g. images) and structured 

metadata. Other domains and datasets may call for different reasoning rules and classification models, 

however, the general pipeline of enhancing metadata, selecting and training a classifier, and then using 

classification results as an extension of the metadata can easily be applied to other annotated multimedia data 

collections. 
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