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Abstract. A countably infinite family of Liapunov functionals is constructed for the thin film
Muskat problem, which is a second-order degenerate parabolic system featuring cross-diffusion.
More precisely, for each n ≥ 2 we construct an homogeneous polynomial of degree n, which is
convex on [0,∞)2, with the property that its integral is a Liapunov functional for the problem.
Existence of global bounded non-negative weak solutions is then shown in one space dimension.

1. Introduction

The thin film Muskat problem describes the dynamics of the respective heights of two immiscible
fluids with different densities (ρ−, ρ+) and viscosities (µ−, µ+) in a porous media and reads

∂tf = div (f∇ [(1 +R)f +Rg]) in (0,∞) × Ω , (1.1a)

∂tg = µRdiv [g∇(f + g)] in (0,∞)× Ω , (1.1b)

supplemented with homogeneous Neumann boundary conditions

∇f · n = ∇g · n = 0 on (0,∞)× ∂Ω , (1.1c)

and non-negative initial conditions

(f, g)(0) = (f in, gin) in Ω . (1.1d)

In (1.1), Ω is a bounded domain of Rd, d ≥ 1, with smooth boundary ∂Ω, f and g denote the heights
of the heavier and lighter fluids, respectively, and R := ρ+/(ρ− − ρ+) and µ := µ−/µ+ are positive
parameters depending solely on the densities (ρ− > ρ+) and viscosities of the two fluids. We recall
that (1.1) can be derived from the classical Muskat problem by a lubrication approximation [7,9,14].

From a mathematical viewpoint, the system (1.1) is a quasilinear degenerate parabolic system
with full diffusion matrix and it is well-known that the analysis of cross-diffusion systems is in general
rather involved. Fortunately, as noticed in [7], an important property of (1.1) is the availability of
an energy functional. Specifically,

E(f, g) :=
1

2

∫

Ω

[

f2 +R(f + g)2
]

dx (1.2)

is a non-increasing function of time along the trajectories of (1.1). In fact, a salient feature of (1.1),
first observed in [11], is that it has, at least formally, a gradient flow structure for the energy E
with respect to the 2-Wasserstein distance. This structure provides in particular a variational
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scheme to establish the existence of weak solutions to (1.1). Furthermore, as first noticed in [6] and
subsequently used in [1, 11], the entropy functional

H(f, g) :=

∫

Ω

[

L(f) +
1

µ
L(g)

]

dx , (1.3)

with L(r) := r ln r− r+1 ≥ 0, r ≥ 0, is also a non-increasing function of time along the trajectories
of (1.1).

Building upon the above mentioned properties, the existence of non-negative global weak solu-
tions (f, g) to (1.1) satisfying

(f, g) ∈ L∞((0, T ), L2(Ω,R
2)) ∩ L2((0, T ),H

1(Ω,R2)) , (1.4)

is shown in [6, 12] in one space dimension d = 1, see also [2, 3] for the existence of global weak
solutions to a generalized version of (1.1) in the d-dimensional torus with periodic boundary con-
ditions instead of the homogeneous Neumann boundary conditions (1.1c). Local existence and
uniqueness of classical solutions to (1.1) with positive initial data are reported in [7], along with
the local stability of spatially uniform steady states. As for the Cauchy problem when Ω = R

d

and d ∈ {1, 2}, non-negative global weak solutions are constructed in [1,11] for non-negative initial
conditions (f in, gin) ∈ L1(R

d,R2) ∩ L2(R
d,R2) with finite second moments, exploiting the afore-

mentioned gradient flow structure to set up a variational scheme, see also [10] for an extension to a
multicomponent version of (1.1) in one space dimension. This approach is further developed in [15]
to investigate the existence of non-negative global weak solutions to a broader class of quasilinear
cross-diffusion systems.

In view of (1.4), weak solutions to (1.1) have rather low regularity. It is actually a general feature
of cross-diffusion systems that classical regularity is hard to reach. In particular, the cross-diffusion
structure impedes the use of bootstrap arguments which have proved efficient for triangular systems.
A different route to improved regularity is to look for additional estimates and the purpose of this
paper is to derive (formally) Ln-estimates for solutions to (1.1) for all integers n ≥ 2, eventually
leading to L∞-estimates in the limit n → ∞. This feature paves the way to the construction of
non-negative global bounded weak solutions to (1.1) but, as explained below, we are only able to
complete this construction successfully in one space dimension d = 1. The first main contribution
of this paper is actually to show that, for each n ≥ 2, there is an homogeneous polynomial Φn of
degree n, which is non-negative and convex on [0,∞)2, and such that

u = (f, g) 7−→

∫

Ω
Φn(u) dx (1.5)

is a Liapunov functional for (1.1). More precisely, the first main result of this paper is the following.

Theorem 1.1. Let R > 0, µ > 0, and uin := (f in, gin) ∈ L∞,+(Ω,R
2). If u = (f, g) is a sufficiently

regular solution to (1.1) on [0,∞) with non-negative components, then

(l1) for all t ≥ 0,
∫

Ω
Φ1(u(t, x)) dx+

∫ t

0

∫

Ω

[

|∇f |2 +R|∇(f + g)|2
]

(s, x) dxds ≤

∫

Ω
Φ1(u

in(x)) dx , (1.6)

where Φ1(X) := L(X1) + L(X2)/µ, X = (X1,X2) ∈ [0,∞)2;

(l2) for all n ≥ 2 and all t ≥ 0,
∫

Ω
Φn(u(t, x)) dx ≤

∫

Ω
Φn(u

in(x)) dx , (1.7a)
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where Φn is the homogeneous polynomial of degree n given by

Φn(X) :=

n
∑

j=0

aj,nX
j
1X

n−j
2 , X = (X1,X2) ∈ R

2 , (1.7b)

with a0,n := 1,

aj,n :=

(

n

j

) j−1
∏

k=0

k + αk,n

αk,n
> 0 , 1 ≤ j ≤ n ,

αk,n := R[k + µ(n− k − 1)] > 0 , 0 ≤ k ≤ n− 1 .

(1.7c)

In addition, Φn is convex on [0,∞)2;

(l3) for t ≥ 0,

‖(f + g)(t)‖∞ ≤
1 +R

R
‖f in + gin‖∞ . (1.8)

For n = 2, Theorem 1.1 gives (a0,2, a1,2, a2,2) = (1, 2, (1 +R)/R). Therefore,

Φ2(X) =
1 +R

R
X2

1 + (X1 +X2)
2 , X ∈ R

2 ,

and

E(f, g) =
R

2

∫

Ω
Φ2((f, g)) dx ,

so that we recover the time monotonicity of the energy from (1.7a) with n = 2.

It seems worth pointing out that the availability of an infinite number of Liapunov functionals,
eventually leading to L∞-estimates, seems rather seldom for cross-diffusion systems and that we
are not aware of other systems sharing this feature. Whether it is possible to extend the analysis
performed in this paper to a broader class of cross-diffusion systems will be the subject of future
research.

To construct the family of polynomials (Φn)n≥2, we introduce u = (f, g) and the mobility matrix

M(X) = (mjk(X))1≤j,k≤2 :=

(

(1 +R)X1 RX1

µRX2 µRX2

)

, X ∈ R
2 , (1.9)

so that (1.1a)-(1.1b) becomes

∂tu−

d
∑

i=1

∂i (M(u)∂iu) = 0 in (0,∞) × Ω . (1.10)

We then use the observation that, since Φ ∈ C2(R2), (1.1c), (1.10), and the symmetry of the Hessian
matrix D2Φ(u) of Φ entail that

d

dt

∫

Ω
Φ(u) dx+

d
∑

i=1

∫

Ω
〈D2Φ(u)M(u)∂iu, ∂iu〉 dx = 0 . (1.11)

It readily follows from (1.11) that Φ provides a Liapunov functional for (1.10) as soon as the
matrix D2Φ(u)M(u) is symmetric and positive semidefinite. Using the ansatz (1.7b) for Φ = Φn

and the explicit form of the matrix M , we then compute D2Φn(u)M(u) and require that it is a
symmetric matrix, thereby obtaining (1.7c). Direct computations then show that the polynomial
thus obtained is actually non-negative and convex on [0,∞)2, see section 4 and appendix A.
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Having uncovered the estimates (l1)-(l3) at a somewhat formal level, it is tempting to exploit
them to construct a bounded weak solution to (1.1) endowed with these properties. The difficulty
we face here is the construction of an appropriate approximation of (1.1) having sufficiently smooth
solutions for which the estimates (l1)-(l3) remain valid. In particular, boundedness of solutions to
the approximation seems to be required to be able to compute the integral of Φn(u). Unfortunately,
we have yet been unable to design an approximation scheme producing bounded solutions while
preserving the structure leading to (l1)-(l3) that could work in arbitrary space dimensions and we
only provide below the existence of a bounded weak solution to (1.1) in one space dimension d = 1.

Theorem 1.2. Let R > 0, µ > 0, uin := (f in, gin) ∈ L∞,+(Ω,R
2), and assume that d = 1 (so

that Ω is a bounded interval of R). Then, there is a bounded weak solution u := (f, g) to (1.1) which
satisfies:

(p1) for each T > 0,

(f, g) ∈ L∞,+((0, T ) × Ω,R2) ∩ L2((0, T ),H
1(Ω,R2)) ∩W 1

2 ((0, T ),H
1(Ω,R2)′) ; (1.12)

(p2) for all ϕ ∈ H1(Ω) and t ≥ 0,
∫

Ω
(f(t, x)− f in(x))ϕ(x) dx+

∫ t

0

∫

Ω
f(s, x)∂x [(1 +R)f +Rg] (s, x) · ∂xϕ(x) dxds = 0 (1.13a)

and
∫

Ω
(g(t, x) − gin(x))ϕ(x) dx+ µR

∫ t

0

∫

Ω
g(s, x)∂x (f + g) (s, x) · ∂xϕ(x) dxds = 0 ; (1.13b)

(p3) and the properties (l1), (l2), and (l3) stated in Theorem 1.1.

A key ingredient in the proof of Theorem 1.2 is the continuous embedding of H1(Ω) in L∞(Ω),
which readily provides the above mentioned boundedness of solutions to the approximation of (1.1)
designed below and is of course only available in one space dimension. Besides, we employ a
rather classical approximation approach, relying on a time implicit Euler scheme with constant
time step τ ∈ (0, 1) for the time discretization and a suitable modification of the mobility matrix to
a non-degenerate one.

As a consequence of Theorem 1.2 and of the estimate (A.13), we obtain uniform L∞-bounds for
the height f of the denser fluid in the regime where R → 0 and µ is fixed. Such an estimate has
been used recently in [13, Corollary 1.4] when performing the singular limit R→ 0 (while µ is kept
fixed or µ → ∞) in the thin film Muskat problem (1.1) in order to recover the porous medium
equation ∂tf = div

(

f∇f
)

in the limit.

Corollary 1.3. If Rmax{1, µ} ∈ (0, 1/(2e)], then the solution u = (f, g) to (1.1) from Theorem 1.2
satisfies

‖f(t)‖∞ ≤
(

1 + emax{1, µ}
)

‖f in‖∞ + ‖gin‖∞ , t ≥ 0. (1.14)

We provide the proof of Theorem 1.2 in sections 2 and 3 below. It involves three steps: we begin
with the existence of a weak solution to the implicit time discrete scheme associated to (1.1) which
satisfies a time discrete version of the estimates (1.7) and (1.8) (section 2). This result is achieved
with an approximation procedure which is designed and studied in section 2.1, a technical lemma
being postponed to appendix B. The next section 2.2 is devoted to the time discrete version of the
estimates (1.7) and (1.8), the proof of the properties of the polynomials Φn, n ≥ 2, being collected in
appendix A. The proof of Theorem 1.2 is given in section 3 and is based on a compactness method.
We finally prove Theorem 1.1 in section 4.
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Notation. For p ∈ [1,∞], we denote by ‖ · ‖p the Lp-norm in Lp(Ω), Lp(Ω,R
2) := Lp(Ω)× Lp(Ω),

and H1(Ω,R2) := H1(Ω) × H1(Ω). The positive cone of a Banach lattice E is denoted by E+.
Next, M2(R) denotes the space of 2 × 2 real-valued matrices, Sym2(R) is the subset of M2(R)
consisting of symmetric matrices, and SPD2(R) is the set of symmetric and positive definite matrices
in M2(R). Finally, we denote the positive part of a real number r ∈ R by r+ := max{r, 0} and 〈·, ·〉
is the scalar product on R

2.

2. A time discrete scheme: d = 1

Throughout this section, we assume that d = 1 and Ω is a bounded open interval of R. In order to
construct bounded non-negative global weak solutions to the evolution problem (1.1) we introduce
an implicit time discrete scheme, see (2.1a)-(2.1b), as well as a regularized version of this scheme,
see (2.11). The aim of this section is to prove the existence of a bounded weak solution to the
implicit time discrete scheme, as stated in Proposition 2.1.

Proposition 2.1. Given τ > 0 and U = (F,G) ∈ L∞,+(Ω,R
2), there is a weak solution u = (f, g)

with u ∈ H1
+(Ω,R

2) to
∫

Ω

[

fϕ+ τf∂x [(1 +R)f +Rg] · ∂xϕ
]

dx =

∫

Ω
Fϕ dx , ϕ ∈ H1(Ω) , (2.1a)

∫

Ω

[

gψ + τµRg∂x(f + g) · ∂xψ
]

dx =

∫

Ω
Gψ dx , ψ ∈ H1(Ω) , (2.1b)

which also satisfies
∫

Ω
Φn(u) dx ≤

∫

Ω
Φn(U) dx (2.2)

for n ≥ 2,

‖f + g‖∞ ≤
1 +R

R
‖F +G‖∞ , (2.3)

and
∫

Ω
Φ1(u) dx+ τ

∫

Ω

[

|∂xf |
2 +R|∂x(f + g)|2

]

dx ≤

∫

Ω
Φ1(U) dx . (2.4)

We fix τ > 0 and U = (F,G) ∈ L∞,+(Ω,R
2). Recalling the definition (1.9) of the mobility matrix

M(X) =

(

(1 +R)X1 RX1

µRX2 µRX2

)

, X ∈ R
2 ,

an alternative formulation of (2.1) reads
∫

Ω
[〈u, v〉+ τ〈M(u)∂xu, ∂xv〉] dx =

∫

Ω
〈U, v〉 dx , v ∈ H1(Ω,R2) . (2.5)

Obviously, the mobility matrix M(X) is in general not symmetric and the associated quadratic
form

R
2 ∋ ξ = (ξ1, ξ2) 7→

2
∑

j,k=1

mjk(X)ξjξk ∈ R

is not positive definite (even if X ∈ [0,∞)2), two features which complicate the analysis concerning
the solvability of (2.5). Fortunately, as noticed in [4], the underlying gradient flow structure provides
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a way to transform (2.5) to an elliptic system with symmetric and positive semidefinite matrix. More
precisely, we introduce the symmetric matrix S with constant coefficients

S :=

(

1 +R R
R R

)

,

which is actually the Hessian matrix of RΦ2/2. Clearly, S belongs to SPD2(R) and

〈Sξ, ξ〉 = ξ21 +R (ξ1 + ξ2)
2 ≥

R

1 + 2R
|ξ|2 , ξ ∈ R

2 . (2.6)

Choosing Sv instead of v ∈ H1(Ω,R2) as a test function in (2.5) and using the symmetry of S, lead
to another alternative formulation of (2.1a)-(2.1b) (or (2.5)), which reads

∫

Ω
[〈Su, v〉 + τ〈SM(u)∂xu, ∂xv〉] dx =

∫

Ω
〈SU, v〉 dx , v ∈ H1(Ω,R2) . (2.7)

We next observe that, for X ∈ [0,∞)2,

SM(X) =

(

(1 +R)2X1 + µR2X2 (1 +R)RX1 + µR2X2

(1 +R)RX1 + µR2X2 R2X1 + µR2X2

)

(2.8)

and

〈SM(X)ξ, ξ〉 = X1((1 +R)ξ1 +Rξ2)
2 + µR2X2(ξ1 + ξ2)

2 ≥ 0 . (2.9)

Consequently, SM(X) belongs to SPD2(R) for all X ∈ (0,∞)2 and the formulation (2.7) seems
more appropriate to study the solvability of (2.1a)-(2.1b). However, the matrix SM(X) is still
degenerate as X1 → 0 or X2 → 0, so that we first solve a regularized problem in the next section.

2.1. A regularization of the time discrete scheme. Let ε ∈ (0, 1) and define

Mε(X) := (mε,jk(X))1≤j,k≤2 := εI2 +M((X1,+,X2,+)) , X ∈ R
2 . (2.10)

Lemma 2.2. Given τ > 0, U = (U1, U2) ∈ L∞,+(Ω,R
2), and ε ∈ (0, 1), there is a weak solu-

tion uε = (u1,ε, u2,ε) ∈ H1
+(Ω,R

2) to
∫

Ω
[〈uε, v〉 + τ〈Mε(uε)∂xuε, ∂xv〉] dx =

∫

Ω
〈U, v〉 dx , v ∈ H1(Ω,R2) . (2.11)

Moreover,

‖u1,ε + u2,ε‖∞ ≤
1 +R

R
‖U1 + U2‖∞ , (2.12)

and, for n ≥ 2,
∫

Ω
Φn(uε) dx ≤

∫

Ω
Φn(U) dx . (2.13)

Proof. For each ε ∈ (0, 1), Mε lies in C(R2,M2(R)) and satisfies

mε,11(X) ≥ mε,12(X) = 0 , X ∈ (−∞, 0)× R ,

mε,22(X) ≥ mε,21(X) = 0 , X ∈ R× (−∞, 0) .
(2.14a)

In addition, it follows from (2.6), (2.8), (2.9), and (2.10) that SMε(X) belongs to SPD2(R) for
all X ∈ R

2 with

〈SMε(X)ξ, ξ〉 ≥
εR

1 + 2R
|ξ|2 , ξ ∈ R

2 . (2.14b)
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According to the properties (2.14), we are now in a position to apply Lemma B.1 (with A = S
and B =Mε) and deduce that there is a non-negative solution uε ∈ H1(Ω,R2) to (2.11).

In the remaining part, we prove that uε satisfies both estimates (2.12) and (2.13). We begin
with (2.13) and thus consider n ≥ 2. Since Φn is a polynomial and H1(Ω,R2) continuously embeds
in L∞(Ω,R2), the vector field DΦn(uε) belongs to H1(Ω,R2). We may then take v = DΦn(uε)
in (2.11) to obtain

∫

Ω
[〈uε − U,DΦn(uε)〉+ τ〈Mε(uε)∂xuε, ∂x(DΦn(uε))〉] dx = 0 . (2.15)

On the one hand, it follows from the convexity of Φn on [0,∞)2, see Proposition A.1 (a), that

∫

Ω
〈uε − U,DΦn(uε)〉 dx ≥

∫

Ω
[Φn(uε)− Φn(U)] dx . (2.16)

On the other hand, owing to the symmetry of D2Φn(uε),

〈Mε(uε)∂xuε, ∂x(DΦn(uε))〉 = 〈D2Φn(uε)Mε(uε)∂xuε, ∂xuε〉

= ε〈D2Φn(uε)∂xuε, ∂xuε〉

+ 〈D2Φn(uε)M(uε)∂xuε, ∂xuε〉 .

Since both D2Φn(uε) and D2Φn(uε)M(uε) belong to SPD2(R) by Proposition A.1, we conclude
that

〈Mε(uε)∂xuε, ∂xDΦn(uε)〉 ≥ 0 . (2.17)

Combining (2.15), (2.16), and (2.17), we end up with

∫

Ω
[Φn(uε)− Φn(U)] dx ≤ 0 ,

and we have established (2.13). It next follows from (2.13) and Lemma A.2 that

‖u1,ε + u2,ε‖n ≤

(∫

Ω
Φn(uε) dx

)1/n

≤

(∫

Ω
Φn(U) dx

)1/n

≤
1 +R

R
‖U1 + U2‖n .

Hence, letting n→ ∞ in the above inequality leads us to (2.12), and the proof is complete. �

We next derive estimates on ∂xuε.

Lemma 2.3. Let τ > 0, U ∈ L∞,+(Ω,R
2), and ε ∈ (0, 1). The weak solution uε = (u1,ε, u2,ε)

constructed in Lemma 2.2 satisfies

∫

Ω
Φ1(uε) dx+ τ

∫

Ω

[

|∂xu1,ε|
2 +R|∂x(u1,ε + u2,ε)|

2
]

dx ≤

∫

Ω
Φ1(U) dx .
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Proof. Let η ∈ (0, 1). Recalling that uε ∈ H
1
+(Ω,R

2) has non-negative components, we deduce that

the vector field (ln (u1,ε + η), ln (u2,ε + η)/µ) belongs to H1(Ω,R2), and we infer from (2.11) that

0 =

∫

Ω

[

(u1,ε − U1) ln (u1,ε + η) +
1

µ
(u2,ε − U2) ln (u2,ε + η)

]

dx

+ τ

∫

Ω

(

mε,11(uε)∂xu1,ε +mε,12(uε)∂xu2,ε

) ∂xu1,ε
u1,ε + η

dx (2.18)

+
τ

µ

∫

Ω

(

mε,21(uε)∂xu1,ε +mε,22(uε)∂xu2,ε

) ∂xu2,ε
u2,ε + η

dx .

On the one hand, since L′(r) = ln r, r > 0, the convexity of L guarantees that

∫

Ω

[

(u1,ε − U1) ln (u1,ε + η) +
1

µ
(u2,ε − U2) ln (u2,ε + η)

]

dx

≥

∫

Ω

[

(L(u1,ε + η)− L(U1 + η)) +
1

µ
(L(u2,ε + η)− L(U2 + η))

]

dx

=

∫

Ω
Φ1((u1,ε + η, u2,ε + η)) dx−

∫

Ω
Φ1((U1 + η, U2 + η)) dx .

Owing to the continuity of Φ1 on [0,∞)2, letting η → 0 in the above inequality gives

lim inf
η→0

∫

Ω

[

(u1,ε − U1) ln (u1,ε + η) +
1

µ
(u2,ε − U2) ln (u2,ε + η)

]

dx

≥

∫

Ω
Φ1(uε) dx−

∫

Ω
Φ1(U) dx .

(2.19)

On the other hand,

D(η) := τ

∫

Ω

(

mε,11(uε)∂xu1,ε +mε,12(uε)∂xu2,ε

) ∂xu1,ε
u1,ε + η

dx

+
τ

µ

∫

Ω

(

mε,21(uε)∂xu1,ε +mε,22(uε)∂xu2,ε

) ∂xu2,ε
u2,ε + η

dx

= τε

∫

Ω

(

|∂xu1,ε|
2

u1,ε + η
+

|∂xu2,ε|
2

u2,ε + η

)

dx

+ τ

∫

Ω

[

u1,ε
u1,ε + η

|∂xu1,ε|
2 +R|∂xu1,ε + ∂xu2,ε|

2

]

dx

− τR

∫

Ω

[(

1−
u1,ε

u1,ε + η

)

∂xu1,ε · ∂x (u1,ε + u2,ε)

]

dx

− τR

∫

Ω

[(

1−
u2,ε

u2,ε + η

)

∂xu2,ε · ∂x (u1,ε + u2,ε)

]

dx

≥ τ

∫

Ω

[

|∂xu1,ε|
2 +R|∂x(u1,ε + u2,ε)|

2
]

dx

− J0(η)− J1(η)− J2(η) ,

(2.20)
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with

J0(η) := τ

∫

Ω

(

1−
u1,ε

u1,ε + η

)

|∂xu1,ε|
2 dx ,

J1(η) := τR

∫

Ω

[(

1−
u1,ε

u1,ε + η

)

∂xu1,ε · ∂x (u1,ε + u2,ε)

]

dx ,

J2(η) := τR

∫

Ω

[(

1−
u2,ε

u2,ε + η

)

∂xu2,ε · ∂x (u1,ε + u2,ε)

]

dx .

Now, uε ∈ H1(Ω,R2) and, for j ∈ {1, 2},

lim
η→0

uj,ε
uj,ε + η

= 1 a.e. in {x ∈ Ω : uj,ε > 0} ,

lim
η→0

(

1−
uj,ε

uj,ε + η

)

∂xuj,ε = 0 a.e. in {x ∈ Ω : uj,ε = 0} ,

so that we infer from Lebesgue’s dominated convergence theorem that

lim
η→0

(J0(η) + J1(η) + J2(η)) = 0 . (2.21)

Combining (2.20) and (2.21) gives

lim inf
η→0

D(η) ≥ τ

∫

Ω

[

|∂xu1,ε|
2 +R|∂x(u1,ε + u2,ε)|

2
]

dx . (2.22)

In view of (2.19) and (2.22), we may pass to the limit η → 0 in (2.18) and obtain the stated
inequality. �

2.2. A time discrete scheme: existence. Thanks to the analysis performed in the previous
section, we are now in a position to take the limit ε→ 0 and prove Proposition 2.1.

Proof of Proposition 2.1. Consider τ > 0 and U = (F,G) ∈ L∞,+(Ω,R
2). Given ε ∈ (0, 1),

let uε = (u1,ε, u2,ε) ∈ H
1
+(Ω,R

2) denote the weak solution to (2.11) provided by Lemma 2.2. It
first follows from (2.12) and the componentwise non-negativity of uε that

max {‖u1,ε‖∞, ‖u2,ε‖∞} ≤ ‖uε‖∞ ≤
1 +R

R
‖F +G‖∞ . (2.23)

In view of the non-negativity of Φ1, we infer from Lemma 2.3 that
∫

Ω

[

|∂xu1,ε|
2 +R|∂x(u1,ε + u2,ε)|

2
]

dx ≤
1

τ

∫

Ω
Φ1(U) dx .

Hence, by (2.6),

‖∂xuε‖
2
2 ≤

1 + 2R

τR

∫

Ω
Φ1(U) dx . (2.24)

Due to the compactness of the embedding of H1(Ω) in L∞(Ω), we deduce from (2.23) and (2.24)
that there is u = (f, g) ∈ H1

+(Ω,R
2) and a sequence (uεj )j≥1 such that

uεj ⇀ u in H1(Ω,R2) ,

lim
j→∞

‖uεj − u‖∞ = 0 .
(2.25)

An immediate consequence of (2.12), (2.13), and (2.25) is that (f, g) satisfies (2.2) for n ≥ 2
and (2.3). Moreover, another consequence of (2.25), along with Lemma 2.3 and a weak lower
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semicontinuity argument, is that (f, g) satisfies (2.4). Finally, owing to (2.25) and the boundedness
of the coefficients of Mε(uε) due to (2.23), we may use Lebesgue’s dominated convergence theorem
to take the limit j → ∞ in the identity (2.11) for uεj and conclude that (f, g) satisfies (2.1), thereby
completing the proof of Proposition 2.1. �

3. Existence of bounded weak solutions: d = 1

This section is devoted to the proof of Theorem 1.2. To this end, we argue in a standard way and
construct, starting from the initial condition (f in, gin) ∈ L∞,+(Ω,R

2) and using Proposition 2.1, a
family of piecewise constant functions (uτ )τ∈(0,1). Specifically, we set uτ (0) := uτ0 and

uτ (t) = uτl , t ∈ ((l − 1)τ, lτ ] , 1 ≤ l ∈ N , (3.1)

where, given τ ∈ (0, 1), the sequence (uτl )l≥0 is defined as follows

uτ0 := uin = (f in, gin) ∈ L∞,+(Ω,R
2) ,

uτl+1 = (f τl+1, g
τ
l+1) ∈ H1

+(Ω,R
2) is the solution to (2.1)

with U = uτl = (f τl , g
τ
l ) constructed in Proposition 2.1 for l ≥ 0 .

(3.2)

In order to establish Theorem 1.2, we show that the family (uτ )τ∈(0,1) converges along a subse-
quence τj → 0 towards a pair u = (f, g) which fulfills all the requirements of Theorem 1.2.

Throughout this section, C and Ci, with i ≥ 0, denote positive constants depending only on R, µ,
and (f in, gin). Dependence upon additional parameters will be indicated explicitly.

Proof of Theorem 1.1. Let τ ∈ (0, 1) and let uτ be defined in (3.1)-(3.2). Given l ≥ 0, we infer from
Proposition 2.1 that

∫

Ω

[

f τl+1ϕ+ τf τl+1∂x
[

(1 +R)f τl+1 +Rgτl+1

]

∂xϕ
]

dx =

∫

Ω
f τl ϕ dx , ϕ ∈ H1(Ω) , (3.3a)

∫

Ω

[

gτl+1ψ + τµRgτl+1∂x(f
τ
l+1 + gτl+1)∂xψ

]

dx =

∫

Ω
gτl ψ dx , ψ ∈ H1(Ω) . (3.3b)

Moreover,
∫

Ω
Φn(u

τ
l+1) dx ≤

∫

Ω
Φn(u

τ
l ) dx (3.4)

for n ≥ 2 and we also have
∫

Ω
Φ1(u

τ
l+1) dx+ τ

∫

Ω

[

|∂xf
τ
l+1|

2 +R|∂x(f
τ
l+1 + gτl+1)|

2
]

dx ≤

∫

Ω
Φ1(u

τ
l ) dx . (3.5)

It readily follows from (3.1), (3.2), (3.4), and (3.5) that, for t > 0,
∫

Ω
Φ1(u

τ (t)) dx+

∫ t

0

∫

Ω

[

|∂xf
τ (s)|2 +R|∂x(f

τ + gτ )(s)|2
]

dxds ≤

∫

Ω
Φ1(u

in) dx , (3.6)

and
∫

Ω
Φn(u

τ (t)) dx ≤

∫

Ω
Φn(u

in) dx , n ≥ 2 . (3.7)

An immediate consequence of (3.7) and Lemma A.2 is the estimate

‖f τ (t) + gτ (t)‖n ≤
1 +R

R
‖f in + gin‖n , n ≥ 2 , t > 0 .
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Letting n→ ∞ in the above inequality gives

‖f τ (t) + gτ (t)‖∞ ≤ C1 :=
1 +R

R
‖f in + gin‖∞ , t > 0 . (3.8)

Also, it readily follows from (2.6), (3.6), and the non-negativity of Φ1 that

R

1 + 2R

∫ t

0

∫

Ω

(

|∂xf
τ (s)|2 + |∂xg

τ (s)|2
)

dxds

≤

∫

Ω
Φ1(u

τ (t)) dx+

∫ t

0

∫

Ω

[

|∂xf
τ (s)|2 +R|∂x(f

τ + gτ )(s)|2
]

dxds

≤

∫

Ω
Φ1(u

in) dx .

Therefore we have
∫ t

0

(

‖∂xf
τ (s)‖22 + ‖∂xg

τ (s)‖22
)

ds ≤ C2 :=
1 + 2R

R

∫

Ω
Φ1(u

in) dx , t > 0 . (3.9)

Next, for l ≥ 1 and t ∈ ((l − 1)τ, lτ ], we deduce from (3.3a), (3.8), and Hölder’s inequality that,
for ϕ ∈ H1(Ω),

∣

∣

∣

∣

∫

Ω
(f τ (t+ τ)− f τ (t))ϕ dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ (l+1)τ

lτ

∫

Ω
f τ (s)∂x [(1 +R)f τ (s) +Rgτ (s)] ∂xϕ dxds

∣

∣

∣

∣

∣

≤

∫ (l+1)τ

lτ
‖f τ (s)‖∞‖∂x [(1 +R)f τ (s) +Rgτ (s)] ‖2‖∂xϕ‖2 ds

≤ C1‖∂xϕ‖2

∫ (l+1)τ

lτ
‖∂x [(1 +R)f τ (s) +Rgτ (s)] ‖2 ds .

A duality argument then gives

‖f τ (t+ τ)− f τ (t)‖(H1)′ ≤ C1

∫ (l+1)τ

lτ
‖∂x [(1 +R)f τ (s) +Rgτ (s)] ‖2 ds , t ∈ ((l − 1)τ, lτ ] , l ≥ 1 .

Now, for L ≥ 2 and T ∈ ((L− 1)τ, Lτ ], the above inequality, along with Hölder’s inequality, entails
that

∫ T−τ

0
‖f τ (t+ τ)− f τ (t)‖2(H1)′ dt ≤

∫ (L−1)τ

0
‖f τ (t+ τ)− f τ (t)‖2(H1)′ dt

=

L−1
∑

l=1

∫ lτ

(l−1)τ
‖f τ (t+ τ)− f τ (t)‖2(H1)′ dt

≤ C2
1τ

L−1
∑

l=1

(

∫ (l+1)τ

lτ
‖∂x [(1 +R)f τ (s) +Rgτ (s)] ‖2 ds

)2

≤ C2
1τ

2
L−1
∑

l=1

∫ (l+1)τ

lτ
‖∂x [(1 +R)f τ (s) +Rgτ (s)] ‖22 ds

≤ C2
1τ

2

∫ Lτ

0
‖∂x [(1 +R)f τ (s) +Rgτ (s)] ‖22 ds .
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We then use (3.9) (with t = Lτ) and Young’s inequality to obtain
∫ T−τ

0
‖f τ (t+ τ)− f τ (t)‖2(H1)′ dt ≤ C2

1τ
2

∫ Lτ

0

(

2(1 +R)2‖∇f τ (s)‖22 + 2R2‖∇gτ (s)‖22
)

ds

≤ C3τ
2 , (3.10)

with C3 := 2(1 +R)2C2
1C2. Similarly,

∫ T−τ

0
‖gτ (t+ τ)− gτ (t)‖2(H1)′ dt ≤ C4τ

2 , (3.11)

with C4 := 2µ2R2C2
1C2.

Since H1(Ω,R2) is compactly embedded in L2(Ω,R
2) and L2(Ω,R

2) is continuously embedded
in H1(Ω,R2)′, we infer from (3.8), (3.9), (3.10), (3.11), and [5, Theorem 1] that, for any T > 0,

(uτ )τ∈(0,1) is relatively compact in L2((0, T )× Ω,R2) . (3.12)

Owing to (3.8), (3.9), and (3.12), we may use a Cantor diagonal argument to find a function u := (f, g)
in L∞,+((0,∞) × Ω,R2) and a sequence (τj)j≥1, τj → 0, such that, for any T > 0 and p ∈ [1,∞),

uτj −→ u in Lp((0, T ) × Ω,R2) ,

uτj
∗
⇀ u in L∞((0, T ) ×Ω,R2) ,

uτj ⇀ u in L2((0, T ),H
1(Ω,R2)) .

(3.13)

In addition, the compact embedding of L2(Ω,R
2) in H1(Ω,R2)′, along with (3.7) with n = 2, (3.10),

and (3.11), allows us to apply once more [5, Theorem 1] to conclude that

u ∈ C([0,∞),H1(Ω,R2)′) . (3.14)

Let us now identify the equations solved by the components f and g of u. To this end,
let χ ∈W 1

∞([0,∞)) be a compactly supported function and ϕ ∈ C1(Ω̄). In view of (3.3a), classical
computations give

∫ ∞

0

∫

Ω

χ(t+ τ)− χ(t)

τ
f τ (t)ϕ dxdt+

(

1

τ

∫ τ

0
χ(t) dt

)
∫

Ω
f inϕ dx

=

∫ ∞

0

∫

Ω
χ(t)f τ (t)∂x [(1 +R)f τ (t) +Rgτ (t)] ∂xϕ dxdt .

Taking τ = τj in the above identity, it readily follows from (3.13) and the regularity of χ and ϕ
that we may pass to the limit as j → ∞ and conclude that

∫ ∞

0

∫

Ω

dχ

dt
(t)f(t)ϕ dxdt+ χ(0)

∫

Ω
f inϕ dx

=

∫ ∞

0

∫

Ω
χ(t)f(t)∂x [(1 +R)f(t) +Rg(t)] ∂xϕ dxdt .

(3.15)

Since f∂xf and f∂xg belong to L2((0, T ) × Ω) for all T > 0 by (3.13), a density argument ensures
that the identity (3.15) is valid for any ϕ ∈ H1(Ω). We next use the time continuity (3.14) of f
and a classical approximation argument to show that f solves (1.13a). A similar argument allows
us to derive (1.13b) from (3.3b).
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Finally, combining (3.13), (3.14), and a weak lower semicontinuity argument, we may let j → ∞
in (3.6), (3.7), and (3.8) with τ = τj to show that u = (f, g) satisfies (1.6), (1.7a), and (1.8), thereby
completing the proof. �

We end up this section with the proof of Corollary 1.3.

Proof of Corollary 1.3. Assume that Rmax{1, µ} ∈ (0, 1/(2e)]. Given an integer m ≥ 1, we define
the function ξ : (0, 1/(2e)] → R by the formula

ξ(y) := exp

{

m

[

(1 + y) ln
(

1 +
1

y

)

− 1

]}

− 1.

It then holds

ymξ(y) = (1 + y)m exp

{

m

[

y ln
(

1 +
1

y

)

− 1

]}

− ym >
(1 + y)m

em
− ym ≥

1

em
−

1

(2e)m
≥

1

2em
.

Consequently, the constant νn defined in Lemma A.2 satisfies

νn >
1

2(eRmax{1, µ})n−1
, n ≥ 2,

We then infer from Theorem 1.2 (p3), the above inequality, and (A.13) that, for t > 0 and n ≥ 2,

‖f(t)‖nn ≤
1

νn

∫

Ω
Φn((f(t), g(t))) dx ≤

1

νn

∫

Ω
Φn((f

in, gin)) dx

≤
2(eRmax{1, µ})n−1

Rn
‖(1 +R)f in +Rgin‖nn .

Hence,

‖f(t)‖n ≤

(

2

R

)1/n

(emax{1, µ})(n−1)/n‖(1 +R)f in +Rgin‖n .

Taking the limit n→ ∞ in the above inequality gives

‖f(t)‖∞ ≤ emax{1, µ}‖(1 +R)f in +Rgin‖∞ ,

and we use the upper bound eRmax{1, µ} ≤ 1 to obtain the desired estimate (1.14). �

4. Proof of Theorem 1.1

Proof of Theorem 1.1. Owing to Proposition A.1, the proof of Theorem 1.1 is a simple application
of the scheme described in (1.10) and (1.11). Indeed, let u = (f, g) be a sufficiently regular solution
to (1.1) on [0,∞) and n ≥ 2. It follows from the alternative form (1.10) of the system (1.1a)-(1.1b)
and the boundary conditions (1.1c) that

d

dt

∫

Ω
Φn(u) dx+

d
∑

i=1

∫

Ω
〈D2Φn(u)M(u)∂iu, ∂iu〉 dx = 0 .

According to (A.3) and Proposition A.1 (b), we infer from the componentwise non-negativity of u
and the continuity of D2ΦnM that

〈D2Φn(u)M(u)∂iu, ∂iu〉 ≥ 0 in (0,∞) × Ω , 1 ≤ i ≤ d .

Consequently,
d

dt

∫

Ω
Φn(u) dx ≤ 0 , t > 0 ,
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and (1.7a) is proved. In particular, thanks to (A.13), we have shown that, for t > 0 and n ≥ 2,

‖f(t) + g(t)‖n ≤

(∫

Ω
Φn(u(t)) dx

)1/n

≤

(∫

Ω
Φn(u

in) dx

)1/n

≤
1 +R

R
‖f in + gin‖n .

Taking the limit n→ ∞ in the above inequality gives (1.8). Finally, to establish the inequality (1.6),
we use (1.1) to compute the time derivative of

∫

Ω
Φ1((f(t) + η, g(t) + η)) dx

and argue as in the proof of Lemma 2.3 to derive (1.6). �
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Appendix A. Properties of the polynomials Φn, n ≥ 2

In this section, we establish some important properties of the polynomials Φn, n ≥ 2, defined
in (1.7b) and (1.7c), which lead to Theorem 1.1 according to the scheme outlined in the Introduction,
see (1.10)-(1.11), and are extensively used in Section 2, see the proof of Lemma 2.2. Let thus n ≥ 2.
To begin with, we recall that a0,n = 1,

aj,n =

(

n

j

) j−1
∏

k=0

k + αk,n

αk,n
, 1 ≤ j ≤ n , (A.1a)

where

αk,n = R[k + µ(n− k − 1)] = µR(n− 1) +R(1− µ)k > 0 , 0 ≤ k ≤ n− 1 , (A.1b)

and

Φn(X) :=

n
∑

j=0

aj,nX
j
1X

n−j
2 , X = (X1,X2) ∈ R

2 . (A.2)

Also, the mobility matrix M ∈ C∞(R2,M2(R)) is defined in (1.9) by

M(X) :=

(

(1 +R)X1 RX1

µRX2 µRX2

)

, X ∈ R
2 .

The aim of this section is twofold. On the one hand, we establish the convexity of Φn on [0,∞)2

and actually show that its Hessian matrix D2Φn ∈ C∞(R2,Sym2(R)), defined as usual by

D2Φn(X) =

(

∂21Φn(X) ∂1∂2Φn(X)
∂1∂2Φn(X) ∂22Φn(X)

)

, X ∈ R
2 ,

is positive definite on [0,∞)2 \ {(0, 0)}. On the other hand, we prove that the matrix

Sn(X) := D2Φn(X)M(X) , X ∈ R
2 , (A.3)

belongs to Sym2(R) and actually lies in SPD2(R) for X ∈ (0,∞)2.
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Proposition A.1. Let n ≥ 2.

(a) The polynomial Φn is non-negative and convex on [0,∞)2. Moreover, we have:
(a1) The gradient DΦn(X) belongs to [0,∞)2 provided that X ∈ [0,∞)2;
(a2) The Hessian matrix D2Φn(X) belongs to SPD2(R) for all X ∈ [0,∞)2 \ {(0, 0)}.

(b) Given X ∈ R
2, the matrix Sn(X) defined in (A.3) is symmetric. In addition, it holds

that Sn(X) ∈ SPD2(R) for all X ∈ (0,∞)2.

Proof. The proof in the case n = 2 is a simple exercise. Let now n ≥ 3. We first note that (A.1)
implies that (aj,n)1≤j≤n satisfies the following recursion formula

aj+1,n =
(n− j)(j + αj,n)

(j + 1)αj,n
aj,n , 0 ≤ j ≤ n− 1 , (A.4)

from which we deduce that

aj,n > 0 , 0 ≤ j ≤ n . (A.5)

In particular, Φn is non-negative on [0,∞)2 and, since

∂1Φn(X) =

n−1
∑

j=0

(j + 1)aj+1,nX
j
1X

n−j−1
2 , X ∈ R

2 ,

∂2Φn(X) =

n−1
∑

j=0

(n − j)aj,nX
j
1X

n−j−1
2 , X ∈ R

2 ,

the gradient DΦn(X) belongs to [0,∞)2 for X ∈ [0,∞)2, which proves (a1).

Convexity of Φn on [0,∞)2. The convexity of Φn on [0,∞)2 is a consequence of the property (a2)
which we establish now. Let X ∈ [0,∞)2. We then have

∂21Φn(X) =
n−1
∑

j=1

j(j + 1)aj+1,nX
j−1
1 Xn−j−1

2 =
n−2
∑

j=0

(j + 1)(j + 2)aj+2,nX
j
1X

n−j−2
2 ,

∂1∂2Φn(X) =

n−1
∑

j=1

j(n − j)aj,nX
j−1
1 Xn−j−1

2 =

n−2
∑

j=0

(j + 1)(n − j − 1)aj+1,nX
j
1X

n−j−2
2 ,

∂22Φn(X) =

n−2
∑

j=0

(n− j)(n − j − 1)aj,nX
j
1X

n−j−2
2 .

It then readily follows from (A.5) that the Hessian matrix D2Φn(X) has a non-negative trace

tr(D2Φn(X)) := ∂21Φn(X) + ∂22Φn(X) ≥ 0 , X ∈ [0,∞)2 . (A.6)

Next,

det(D2Φn(X)) = ∂21Φn(X)∂22Φn(X)− [∂1∂2Φn(X)]2

=

n−2
∑

j=0

n−2
∑

k=0

(j + 1)(n − k − 1)Aj,kX
j+k
1 X2n−j−k−4

2 , (A.7)

where

Aj,k := (j + 2)(n − k)aj+2,nak,n − (n− j − 1)(k + 1)aj+1,nak+1,n , 0 ≤ j, k ≤ n− 2 .



16 Ph. Laurençot & B.-V. Matioc

We now simplify the above formula for Aj,k and first use (A.4) to replace aj+2,n and ak+1,n and
subsequently the definition (A.1b) of αk,n, thereby obtaining

Aj,k = (n− j − 1)(n− k)
j + 1 + αj+1,n

αj+1,n
aj+1,nak,n − (n− j − 1)(n − k)

k + αk,n

αk,n
aj+1,nak,n

= µR(n− 1)
(n − j − 1)(n − k)(j + 1− k)

αj+1,nαk,n
aj+1,nak,n (A.8)

for 0 ≤ j, k ≤ n− 2. In particular,

Ak−1,j+1 = −Aj,k , 0 ≤ j ≤ n− 3 , 1 ≤ k ≤ n− 2 . (A.9)

It then follows from (A.7) and (A.8) that

2 det(D2Φn(X)) =

n−2
∑

j=0

n−2
∑

k=0

(j + 1)(n− k − 1)Aj,kX
j+k
1 X2n−j−k−4

2

+

n−1
∑

l=1

n−3
∑

i=−1

l(n− i− 2)Al−1,i+1X
i+l
1 X2n−i−l−4

2

=

n−2
∑

j=0

n−2
∑

k=0

(j + 1)(n− k − 1)Aj,kX
j+k
1 X2n−j−k−4

2

+

n−3
∑

j=−1

n−1
∑

k=1

k(n− j − 2)Ak−1,j+1X
j+k
1 X2n−j−k−4

2

=
n−3
∑

j=0

n−2
∑

k=1

(j + 1)(n− k − 1)Aj,kX
j+k
1 X2n−j−k−4

2

+
n−2
∑

k=0

(n− 1)(n − k − 1)An−2,kX
n−2+k
1 Xn−k−2

2

+
n−3
∑

j=0

(j + 1)(n − 1)Aj,0X
j
1X

2n−j−4
2

+
n−3
∑

j=0

n−2
∑

k=1

k(n − j − 2)Ak−1,j+1X
j+k
1 X2n−j−k−4

2

+
n−1
∑

k=1

k(n− 1)Ak−1,0X
k−1
1 X2n−k−3

2

+
n−3
∑

j=0

(n− 1)(n − j − 2)An−2,j+1X
j+n−1
1 Xn−j−3

2 .

Owing to (A.5) and (A.8), Al,0 > 0 and An−2,l > 0 for 0 ≤ l ≤ n− 2, so that the terms in the above
identity involving a single sum are non-negative. Therefore, using the symmetry property (A.9) and
retaining in the last two sums only the terms corresponding to k = 1 and j = n − 3, respectively,
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we get

2 det(D2Φn(X)) ≥

n−3
∑

j=0

n−2
∑

k=1

[(j + 1)(n − k − 1)− k(n− j − 2)]Aj,kX
j+k
1 X2n−j−k−4

2

+ (n− 1)An−2,n−2X
2n−4
1 + (n− 1)A0,0X

2n−4
2

=
n−3
∑

j=0

n−2
∑

k=1

(n − 1)(j + 1− k)Aj,kX
j+k
1 X2n−j−k−4

2

+ (n− 1)An−2,n−2X
2n−4
1 + (n− 1)A0,0X

2n−4
2 .

Since

(n − 1)(j + 1− k)Aj,k = µR(n− 1)2
(n− j − 1)(n − k)(j + 1− k)2

αj+1,nαk,n
aj+1,nak,n ≥ 0

for 0 ≤ j, k ≤ n− 2 by (A.1b), (A.5), and (A.8), we conclude that

det(D2Φn(X)) ≥ (n− 1)An−2,n−2X
2n−4
1 + (n− 1)A0,0X

2n−4
2 , X ∈ [0,∞)2 . (A.10)

Since A0,0 > 0 and An−2,n−2 > 0, we have thus established that, for each X ∈ [0,∞)2 \{(0, 0)}, the
symmetric matrix D2Φn(X) has non-negative trace and positive determinant, so that it is positive
definite. This proves (a2).

Symmetry of Sn(X). Let X ∈ R
2. It follows from (A.3) that

[Sn(X)]11 = (1 +R)X1∂
2
1Φn(X) + µRX2∂1∂2Φn(X)

= (1 +R)

n−1
∑

j=1

j(j + 1)aj+1,nX
j
1X

n−j−1
2 + µR

n−2
∑

j=0

(j + 1)(n − j − 1)aj+1,nX
j
1X

n−j−1
2 ,

[Sn(X)]12 = RX1∂
2
1Φn(X) + µRX2∂1∂2Φn(X)

= R

n−1
∑

j=1

j(j + 1)aj+1,nX
j
1X

n−j−1
2 + µR

n−2
∑

j=0

(j + 1)(n − j − 1)aj+1,nX
j
1X

n−j−1
2 ,

[Sn(X)]21 = (1 +R)X1∂1∂2Φn(X) + µRX2∂
2
2Φn(X)

= (1 +R)

n−1
∑

j=1

j(n − j)aj,nX
j
1X

n−j−1
2 + µR

n−2
∑

j=0

(n− j)(n − j − 1)aj,nX
j
1X

n−j−1
2 ,

[Sn(X)]22 = RX1∂1∂2Φn(X) + µRX2∂
2
2Φn(X)

= R

n−1
∑

j=1

j(n− j)aj,nX
j
1X

n−j−1
2 + µR

n−2
∑

j=0

(n− j)(n − j − 1)aj,nX
j
1X

n−j−1
2 .

It then holds

[Sn(X)]12 = Rn(n− 1)an,nX
n−1
1 +

n−2
∑

j=1

(j + 1)αj,naj+1,nX
j
1X

n−j−1
2 + µR(n− 1)a1,nX

n−1
2 .
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Using the recursion formula (A.4) and the definition (A.1b) of αj,n, we get

[Sn(X)]12 = R(n− 1)
n − 1 + αn−1,n

αn−1,n
an−1,nX

n−1
1 +

n−2
∑

j=1

(n − j)(j + αj,n)aj,nX
j
1X

n−j−1
2

+ µRn(n− 1)a0,nX
n−1
2

= (1 +R)(n− 1)an−1,nX
n−1
1 + (1 +R)

n−2
∑

j=1

j(n − j)aj,nX
j
1X

n−j−1
2

+ µR

n−2
∑

j=1

(n− j)(n − j − 1)aj,nX
j
1X

n−j−1
2 + µRn(n− 1)a0,nX

n−1
2

= [Sn(X)]21 ,

so that Sn(X) ∈ Sym2(R).

Positive definiteness of Sn(X). Let X ∈ [0,∞)2. It readily follows from (A.5) that [Sn(X)]11 ≥ 0
and [Sn(X)]22 ≥ 0, hence

tr(Sn(X)) ≥ 0 . (A.11)

Moreover, (A.3) and (A.10) imply that

det(Sn(X)) = det(D2Φn(X)) det(M(X)) = µRX1X2 det(D
2Φn(X)) ≥ 0 . (A.12)

Consequently, Sn(X) is a positive semidefinite symmetric matrix for each X ∈ [0,∞)2. Moreover,
if X ∈ (0,∞)2, then det(Sn(X)) > 0 by (A.10) and (A.12), so that Sn(X) ∈ SPD2(R). This
completes the proof of (b). �

We next derive lower and upper bounds for Φn, n ≥ 2.

Lemma A.2. Given n ≥ 2, we have

νnX
n
1 + (X1 +X2)

n ≤ Φn(X) ≤
[(1 +R)X1 +RX2]

n

Rn
, X ∈ [0,∞)2 , (A.13)

where νn is the positive number defined by

νn := exp

{

(n− 1)

[

(1 +Rmax{1, µ}) ln
(

1 +
1

Rmax{1, µ}

)

− 1

]}

− 1 > 0 .

Proof. On the one hand, since the function

χ(z) :=
µR+ [1 +R(1− µ)]z

µR+R(1− µ)z
, z ∈ [0, 1] ,

is increasing, we deduce from (A.1) that, for 1 ≤ j ≤ n,

aj,n =

(

n

j

) j−1
∏

k=0

χ

(

k

n− 1

)

≤

(

n

j

)

[χ(1)]j =

(

1 +R

R

)j (n

j

)

.

The upper bound in (A.13) is then a straightforward consequence of the above inequality.
On the other hand, in order to estimate Φn(X), X ∈ [0,∞)2, from below we infer from (A.1a)

that

aj,n ≥

(

n

j

)

, 0 ≤ j ≤ n− 1 .
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When estimating the coefficient an,n from below we need to be more subtle and proceed as follows:

an,n =

n−1
∏

k=0

k + αk,n

αk,n
=

n−1
∏

k=1

(

1 +
k

R[k + µ(n− k − 1)]

)

≥
n−1
∏

k=1

(

1 +
k

Rmax{1, µ}(n − 1)

)

.

Now,

ln

(

n−1
∏

k=1

(

1 +
k

Rmax{1, µ}(n − 1)

)

)

=
n−1
∑

k=1

ln

(

1 +
k

Rmax{1, µ}(n − 1)

)

≥ (n− 1)

n−1
∑

k=1

∫ k/(n−1)

(k−1)/(n−1)
ln

(

1 +
x

Rmax{1, µ}

)

dx

= (n− 1)

∫ 1

0
ln

(

1 +
x

Rmax{1, µ}

)

dx

= (n− 1)

[

(1 +Rmax{1, µ}) ln
(

1 +
1

Rmax{1, µ}

)

− 1

]

and, taking into account that

(1 + x) ln
(

1 +
1

x

)

> 1 for x > 0 ,

we end up with

an,n ≥ exp

{

(n − 1)

[

(1 +Rmax{1, µ}) ln
(

1 +
1

Rmax{1, µ}

)

− 1

]}

= 1 + νn .

We thus have

Φn(X) ≥ νnX
n
1 +

n
∑

j=0

(

n

j

)

Xj
1X

n−j
2 = νnX

n
1 + (X1 +X2)

n ,

and the proof is complete. �

Appendix B. An auxiliary elliptic system

In this appendix, we establish Lemma B.1, which is an important argument in the proof of
Lemma 2.2. Let τ > 0, B = (bjk)1≤j,k≤2 ∈ C(R2,M2(R)), and A = (ajk)1≤j,k≤2 ∈ SPD2(R)
satisfy AB(X) ∈ SPD2(R) for all X ∈ R

2 and assume that there is δ1 > 0 with the property

〈AB(X)ξ, ξ〉 ≥ δ1|ξ|
2 , (X, ξ) ∈ R

2 ×R
2 . (B.1)

Since A ∈ SPD2(R), there is also δ2 > 0 such that

〈Aξ, ξ〉 ≥ δ2|ξ|
2 , ξ ∈ R

2 . (B.2)

Here, Ω is a bounded interval of R (d = 1) and we recall that, in that specific case, H1(Ω) embeds
continuously in L∞(Ω), so that there is Λ > 0 with

‖z‖∞ ≤ Λ‖z‖H1 , z ∈ H1(Ω) . (B.3)
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Lemma B.1. Given U ∈ L2(Ω,R
2), there is a solution u ∈ H1(Ω,R2) to the nonlinear elliptic

equation
∫

Ω
[〈u, v〉 + τ〈B(u)∂xu, ∂xv〉] dx =

∫

Ω
〈U, v〉 dx , v ∈ H1(Ω,R2) . (B.4)

Moreover, if

b11(X) ≥ b12(X) = 0 , X ∈ (−∞, 0)× R ,

b22(X) ≥ b21(X) = 0 , X ∈ R× (−∞, 0) ,
(B.5)

and U(x) ∈ [0,∞)2 for a.a. x ∈ Ω, then u(x) ∈ [0,∞)2 for a.a. x ∈ Ω.

Proof. To set up a fixed point scheme, we define δ0 := min{τδ1, δ2} and introduce the compact and
convex subset K of L2(Ω,R

2) defined by

K :=

{

u ∈ H1(Ω,R2) : ‖u‖H1 ≤
‖AU‖2
δ0

}

, (B.6)

the compactness of K being a straightforward consequence of the compactness of the embedding
of H1(Ω,R2) in L2(Ω,R

2). According to (B.3),

‖u‖∞ ≤
Λ‖AU‖2

δ0
, u ∈ K . (B.7)

We now consider u ∈ K and define a bilinear form bu on H1(Ω,R2) by

bu(v,w) :=

∫

Ω
[〈Av,w〉 + τ〈AB(u)∂xv, ∂xw〉] dx , (v,w) ∈ H1(Ω,R2)×H1(Ω,R2) .

Owing to (B.1) and (B.2),

bu(v, v) ≥ δ0‖v‖
2
H1 , v ∈ H1(Ω,R2) , (B.8)

while the continuity of B and the boundedness (B.7) of u guarantee that

|bu(v,w)| ≤ b∗u‖v‖H1‖w‖H1 , (v,w) ∈ H1(Ω,R2)×H1(Ω,R2) ,

where

b∗u := 2 max
1≤j,k≤2

{|ajk|}

(

1 + 2τ max
1≤j,k≤2

{‖bjk(u)‖∞}

)

.

We then infer from Lax-Milgram’s theorem that there is a unique V[u] ∈ H1(Ω,R2) such that

bu(V[u], w) =

∫

Ω
〈AU,w〉 dx , w ∈ H1(Ω,R2) . (B.9)

In particular, taking w = V[u] in (B.9) and using (B.8) and Hölder’s inequality give

δ0‖V[u]‖
2
H1 ≤ bu(V[u],V[u]) ≤ ‖AU‖2‖V[u]‖2 ≤ ‖AU‖2‖V[u]‖H1 .

Consequently,

‖V[u]‖H1 ≤
‖AU‖2
δ0

and V[u] ∈ K . (B.10)

We now claim that the map V is continuous on K with respect to the norm-topology of L2(Ω,R
2).

Indeed, consider a sequence (uj)j≥1 in K and u ∈ K such that

lim
j→∞

‖uj − u‖2 = 0 .
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Upon extracting a subsequence (not relabeled), we may assume that

lim
j→∞

uj(x) = u(x) for a.a. x ∈ Ω ,

so that the continuity of B and (B.7) ensure that

lim
j→∞

B(uj(x)) = B(u(x)) for a.a. x ∈ Ω (B.11a)

and

max

{

‖B(u)‖∞, sup
j≥1

{‖B(uj)‖∞}

}

≤ max
|X|≤Λ‖AU‖2/δ0

{|B(X)|} . (B.11b)

It also follows from (B.10) and the compactness of the embedding of H1(Ω,R2) in L2(Ω,R
2) that

there is v ∈ H1(Ω,R2) such that, after possibly extracting a further subsequence,

lim
j→∞

‖V[uj ]− v‖2 = 0 and V[uj ]⇀ v in H1(Ω,R2) . (B.12)

Since
∫

Ω
〈AB(uj)∂xV[uj ], ∂xw〉 dx =

∫

Ω
〈∂xV[uj ], AB(uj)∂xw〉 dx ,

due to the symmetry of AB(X) for X ∈ R
2, it readily follows from (B.11), (B.12), and Lebesgue’s

dominated convergence theorem that we may pass to the limit j → ∞ in the variational iden-
tity (B.9) for V[uj ] and conclude that

bu(v,w) =

∫

Ω
〈AU,w〉 dx , w ∈ H1(Ω,R2) ,

that is, v = V[u]. We have thus shown that any subsequence of (V[uj ])j≥1 has a subsequence that
converges to V[u], which proves the claimed continuity of the map V. We are therefore in a position
to apply Schauder’s fixed point theorem, see [8, Theorem 11.1] for instance, and conclude that the
map V has a fixed point u ∈ K. In particular, the function u satisfies

bu(u,w) =

∫

Ω
〈AU,w〉 dx , w ∈ H1(Ω,R2) .

Now, given v ∈ H1(Ω,R2), the function w = A−1v also belongs to H1(Ω,R2) and we infer from the
above identity and the symmetry of A that

∫

Ω
〈U, v〉 dx =

∫

Ω
〈AU,w〉 dx = bu(u,w) = bu(u,A

−1v)

=

∫

Ω
[〈u, v〉 + τ〈B(u)∂xu, ∂xv〉] dx .

We have thus constructed a solution u ∈ H1(Ω,R2) to (B.4).
We now turn to the non-negativity-preserving property and assume that U(x) ∈ [0,∞)2 for

a.a. x ∈ Ω. Let u ∈ H1(Ω,R2) be a solution to (B.4) and set ϕ := −u. Then (ϕ1,+, ϕ2,+) belongs
to H1(Ω,R2) and it follows from (B.4) that

∫

Ω



ϕ1ϕ1,+ + ϕ2ϕ2,+ + τ
2
∑

j,k=1

bjk(u)∂xϕk∂x(ϕj,+)



 dx

= −

∫

Ω
(U1ϕ1,+ + U2ϕ2,+) dx ≤ 0 . (B.13)
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We now infer from (B.5) that

b11(u)∂xϕ1∂xϕ1,+ = b11(u)1(−∞,0)(u1)|∂xu1|
2 ≥ 0 ,

b12(u)∂xϕ2∂xϕ1,+ = b12(u)1(−∞,0)(u1)∂xu1∂xu2 = 0 ,

b21(u)∂xϕ1∂xϕ2,+ = b21(u)1(−∞,0)(u2)∂xu1∂xu2 = 0 ,

b22(u)∂xϕ2∂xϕ2,+ = b22(u)1(−∞,0)(u2)|∂xu2|
2 ≥ 0 ,

so that the second term on the left-hand side of (B.13) is non-negative. Consequently, (B.13) gives
∫

Ω

(

|ϕ1,+|
2 + |ϕ2,+|

2
)

dx ≤ 0 ,

which implies that ϕ1,+ = ϕ2,+ = 0 a.e. in Ω. Hence, u(x) ∈ [0,∞)2 for a.a. x ∈ Ω and the proof
of Lemma B.1 is complete. �
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