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Abstract 

Intrinsically disordered regions/proteins (IDRs/IDPs) are abundant across all the domains 

of life, where they perform important regulatory roles and supplement the biological functions of 

structured proteins/regions (SRs). Despite the multi-functionality features of IDRs, several 

interrogations on the evolution of viral genomic regions encoding IDRs in diverse viral proteins 

remain unreciprocated. To fill this gap, we benchmarked the findings of two most widely used 

and reliable intrinsic disorder prediction algorithms (IUPred2A, and ESpritz) to a dataset of 

6,108 reference viral proteomes to unravel the multi-faceted evolutionary forces that shape the 

codon usage in the viral genomic regions encoding for IDRs and SRs. We found persuasive 

evidence that the natural selection predominantly governs the evolution of codon usage in 

regions encoding IDRs by most of the viruses. In addition, we confirm not only that codon usage 

in regions encoding IDRs is less optimized for the protein synthesis machinery (tRNAs pool) of 

their host than for those encoding SRs, but also that the selective constraints imposed by codon 

bias sustain this reduced optimization in IDRs. Our analysis also establishes that IDRs in viruses 

are likely to tolerate more translational errors than SRs. All these findings hold true irrespective 

of the disorder prediction algorithms used to classify IDRs. In conclusion, our study offers a 

novel perspective on the evolution of viral IDRs and the evolutionary adaptability to multiple 

taxonomically divergent hosts.   

Keywords: Viral proteome, intrinsically disordered regions; disorder prediction algorithms; 

evolutionary forces, CpG contents, translation adaptation. 
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Introduction 

By virtue of genetic code redundancy, more than one codon (synonymous codons) codes for the 

same amino acid. Increasing pieces of evidence suggest that in any given organism, synonymous 

codons are not used arbitrarily, a phenomenon called codon usage bias, and results in species-

specific codon usage bias [1-7]. The origin of the codon usage bias is mostly explained with the 

help of widely accepted ‘selection-mutation-drift theory’, which posits that the mutational bias 

and the natural selection are the two leading evolutionary forces that shape the codon usage bias 

in a species [8].  

Mutational biases are likely to accrue certain types of mutations unevenly, resulting in 

interspecies differences in the complete genome. Such mutation biases may arise from errors 

during DNA replication [9, 10], transcription-mediated mutational biases [9, 11, 12], methylation 

of CpG dinucleotide to form 5-methylcytosine followed by deamination resulting in C-T 

substitution [13], and uneven DNA repair [14]. On the contrary, natural selection can influence 

the synonymous codon usage patterns by selecting specific codon subsets to match the most 

abundant host tRNAs (or translational selection) [15-17]. This phenomenon is predominantly 

observed in highly expressed genes. Besides, other factors that may influence the codon usage 

bias include regulatory structural RNA elements, secondary RNA structure, and viral RNA 

packaging [18-20]. 

Defying the classical structure-function paradigm, intrinsically disordered regions (IDRs, i.e. 

regions that fail to acquire a defined secondary or tertiary structure under physiological 

conditions) perform important biological functions such as signaling, recognition and regulation 

[21-25]. IDRs are abundant in nature, and their prevalence among the three kingdoms of life (i.e., 

bacteria, archaea, and eukaryotes) differs significantly, with IDRs being enriched in eukaryotes 
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and in complex life forms [21, 26-30]. Viral proteins have been reported to possess distinct 

structural features such as a high occurrence of IDRs and lower van der Waals contact densities 

[31, 32]. Furthermore, increasing evidences suggest that IDRs in viruses also play important 

roles in both virus replication and adaptation to the host [22, 25, 30, 33-39]. These unique 

features of viral proteins might provide increased structural malleability needed for interaction 

with various components of the host immune system and quickly adapt to the host environment 

[33, 40-42]. Since a defined structure is not a prerequisite for IDRs function, IDRs are more 

tolerant of mutations. As such, IDRs might provide a unique strategy for tolerating the typically 

high mutation rates observed in viruses, and especially in RNA viruses [25, 42].  

While the functional importance of IDRs in viruses has already been established, to date, there is 

a limited understanding of the evolutionary forces shaping viral IDRs. Herein, we benchmarked 

the findings of two most widely used and accurate intrinsic disorder predictors (IUPred2A and 

ESpritz, both of which utilizes distinct algorithms for the prediction of IDRs, viz., IUPred2A 

estimates total pairwise interaction energy from the amino acid compositions, while the latter 

employs bi-directional recursive neural networks for the predictions for IDRs) to a dataset 

comprising 6,108 reference viral proteomes encompassing 283,000 viral proteins. In addition, a 

systematic analysis of the evolutionary forces (natural selection and mutational bias) that shape 

the codon usage bias in virus genomic regions encoding IDRs and structural regions (SRs) was 

performed using selective bioinformatics tools to measure the effective number of codons (ENc) 

plots [43], neutrality plots [44], and tRNA adaptation index (tAI) [15]. Our results suggest that 

the codon usage in regions encoding IDRs are strongly influenced by the natural selection in 

most of the viruses. Moreover, IDRs contribute significantly to viral protein functionality and 

evolutionary adaptability to multiple taxonomically divergent hosts. 
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Materials and Methods 

Sequence Dataset 

The reference viral proteomes (n = 6,108) used in this study were retrieved from the UniProt 

database Release 2018_1 [45]. The viral proteomes considered in the present study account for 

more than 283,000 viral proteins. The categorization of the viral genomes corresponding to the 

viruses in reference proteomes was performed on the basis of the Baltimore Classification that 

relies on the nature of the viral nucleic acid to group them. The categorization resulted in 

splitting the reference viruses into 10 groups, viz. ssDNA (n = 741), dsDNA (n = 2,596), 

dsDNA-RT (n = 76), ssRNA(-) (n = 413), ssRNA(+) (n = 597), dsRNA (n = 189), ssRNA-RT (n 

= 55), virophage (n = 7), satellite (n = 59), and unclassified (n = 1,375) viruses. The taxonomy of 

all the viruses and their associated hosts were retrieved from the UniProt database and further 

cross-checked from virus-host DB [46]. The hosts were classified based on the RH Whittaker 

five kingdom classification system [47] as shown in Table S1. 

Identification of Intrinsically Disordered Regions (IDRs) 

Two different disorder predictors (IUPred2A, and ESpritz) were employed for the prediction of 

IDRs across the diverse virus proteomes. Since these two prediction algorithms are using 

principally different attributes and approaches for disorder prediction, this allowed us to capture 

flavors of disorder in our dataset. Not only do these two disorder predictors depend on very 

distinct ID prediction algorithms, they have also been shown to provide robust predictions with a 

favorable trade-off between speed and accuracy [48-51], being also able to outperform several 

other disorder predictors [52-54]. Therefore, we utilized these two prediction algorithms to 

provide information about disorder in our dataset. 
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IUPred2A is one of the commonly used methods for predicting protein disorder and it is based 

on capturing the basic biophysical properties of IDRs. This predictor is based on the assumption 

that IDRs have a specific amino acid composition that does not allow the formation of enough 

favorable inter-residue interactions to stabilize a well-defined structural state, with said 

interaction capacity of each residue being captured by an energy estimation scheme [55, 56]. In 

addition, IUPred2A offers two prediction types, long and short regions of disorder, with the 

former being an acclaimed option for predicting biologically relevant disordered regions, and the 

latter being recommended for short proteins, such as those of viruses. The long and short 

disorder prediction types allow predicting IDRs of at least 30 and 10 consecutive residues, 

respectively. These two prediction types additionally contribute to the flavors of disorders in our 

dataset. IUPred2A provides a per residue ID probability score for the protein sequence that 

ranges from 0 to 1. Residues having an ID probability score ≥ 0.5 are defined as disordered, and 

the content in IDRs for each protein is calculated as the ratio between the number of predicted 

disordered residues and the total number of residues in the protein. A similar approach is used 

for the calculation of the content of IDRs in a viral proteome, calculated as the ratio between the 

total number of residues predicted to be disordered in a given proteome and the total number of 

residues in that proteome.   

The second disorder predictor, ESpritz is an ensemble of protein disorder predictors based on 

bidirectional recursive neural networks and trained on three different flavors of disorder (DisProt 

disorder, X-ray disorder, and NMR mobility) [57]. Similar to IUPred2A, ESpritz can produce 

fast and accurate sequence-only disorder predictions and therefore is suitable for disorder 

annotation of large datasets. A short-disorder prediction (trained on the missing atoms from the 

Protein Data Bank X-ray crystallography structures) with a 5% false positive rate implemented 
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in ESpritz, was run on the dataset of the reference viral proteomes. Like IUPred2A, ESpritz 

provides a per residue ID probability score and an approach similar to that described above was 

used for the calculation of the content of IDRs in a viral proteome. 

 

In addition, we assessed and validated the performance of two distinct disorder predictors 

(IUPred2A, and ESpritz) used in our study against the experimental disorder content information 

of viral proteins. To achieve this, we retrieved viral proteins (n = 79) whose disordered region 

annotations have been achieved experimentally from the Disprot database Version: 8.1 

(https://www.disprot.org/) and estimated the sensitivity and specificity of disorder content 

prediction. The summary of viral proteins dataset retrieved from the Disprot database is provided 

in Table S2A. 

Assessing the factors driving the evolution of codon usage in IDRs and SRs of viral proteins 

The nucleotide sequences encoding viral IDRs and SRs, as predicted by IUPred2A, were 

extracted separately from the reference virus genomes derived from the NCBI GenBank Release 

230.0 (n = 6,108). The virus nucleotide sequences (n = 646) containing either internal stop 

codons or non-translatable codons or both, were discarded and the remaining sequences from 

5,462 reference viruses were used for further analysis.  

ENc-GC3s plots 

The effective number of codons (ENc) represents the magnitude of codon usage bias within a 

gene. The ENc values range from 20 to 61, where the smaller the ENc value the greater the 

extent of codon usage bias and vice-versa. The plotting of ENc values against the GC3s 

(frequency of either a guanine or cytosine at the third codon position of the synonymous codons, 

https://www.disprot.org/
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excluding Met, Trp, and stop codons) provides a qualitative estimation of the driving factors 

(mutation bias and natural selection) that shape the codon usage patterns [43]. In the codon usage 

table, there are two amino acids (Met, and Trp) with only one codon choice (AUG, and UGG, 

respectively), nine amino acids with two codon choices, one with three, five with four, and three 

with six codon choices that make up five distinct synonymous families (1, 2, 3, 4, and 6). The 

overall contributions made by each synonymous family to codon usage bias thus make up the 

ENc. The ENc values were calculated for IDRs and SRs coding sequences using the formula 

described in equation (1). 

       
 

  
̅̅̅

  
 

  
̅̅̅

   
 

  ̅
   

 

  
̅̅̅

 (1) 

                                  

where F(i = 2,3,4,6) is the mean of Fi (homozygosity frequency) values for the i-fold (synonymous 

family type) degenerate amino acid. The Fi values were calculated using equation (2). 

  ̅   
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(2) 

where n represents the total number of occurrences of the codons for that amino acid and nj is the 

total number of occurrences of the j
th

 codon for that amino acid.  

In the ENc-GC3s plot, the ENc values occupy the ordinate, while the GC3s values (frequency of 

either a guanine or cytosine at the third codon position of the synonymous codons, excluding 

Met, Trp, and stop codons) occupy the abscissa [43]. In those cases where the calculated ENc 

values cluster on or just below the standard/expected curve (functional relation between expected 

ENc and GC3s), the codon usage is constrained only by G+C mutational bias. By contrast, 

clustering of the calculated ENc values far below the standard curve indicates a predominant role 



9 
 

of natural selection in shaping the codon usage bias. Expected ENc values were calculated by 

using equation (3). 

                 
  

            
 (3) 

 

where, ‘s’ is the frequency of G + C at the third codon position of synonymous codons (i.e. 

GC3s). 

Neutrality plots 

The role of the mutational bias in shaping the evolution of synonymous codon usage has been 

shown to be related to a higher or lower GC content of the genomes. GC content changes have 

been observed more frequently in GC3 (nucleotides G + C at the third codon position), one of the 

most neutral nucleotides of the genome [44]. Therefore, the quantitative contributions of the 

mutational bias and the natural selection that influenced the codon usage patterns of the IDR/SR 

coding sequences of a virus was assessed by using neutrality plots. 

The neutrality plot was constructed with GC3 as abscissa and GC12 (a sum of nucleotides G + C 

at the first, GC1 and second, GC2 codon positions) as ordinate, where each dot represents an 

independent IDR/SR of a virus. The regression line slopes of this plot give an estimation of the 

evolutionary rates of the mutational bias - natural selection equilibrium. For example, a 

regression line with a slope of zero indicates an insignificant influence of the mutational bias in 

shaping the codon usage patterns, while a slope of one is indicative of complete neutrality [44]. 

tRNA adaptation index 
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The tRNA adaptation index (tAI) is a widely used tool to measure the translation efficiency 

which takes into account the adaptation of codons to the intracellular tRNA pool of the host and 

the efficiency of each codon–anticodon pairing [15, 58]. The tAI for the IDRs and SRs coding 

sequences from 1637 viruses (the host tRNA genes information for the rest of the viruses are not 

available) with respect to their hosts was estimated (Table S3). The absolute adaptiveness value 

of the i
th

 codon was calculated using equation (4) 

    ∑(      )       

  

   

 (4) 

where, ni is the number of tRNA isoacceptors that recognize the i
th

 codon, tGCNij is the gene 

copy number of the j
th

 tRNA that identifies the i
th

 codon, and Sij is a selective constraint on the 

efficiency of the interaction between the i
th

 codon and the j
th

 tRNA [15]. 

  

The codon relative adaptiveness value (wi) was calculated by dividing each Wi by the maximum 

Wi value over all codons [15]. The tAI of a IDR/SR is the geometric mean of the wi values of its 

codons. The frequencies of host tRNA genes specific for each codon were retrieved from the 

GtRNAdb database [59]. In the case of multiple hosts for a particular virus, a reservoir or clinical 

host was considered for the analysis. 

Investigation of the factors driving the evolution of codon usage in the core and the non-

core regions of the viral proteins 

In order to gain insight into the viral proteins segments encoding for structured regions (SRs), we 

divided SRs into core regions (CRs) consisting of the α-helix and the β-sheet, and non-core 

regions (NCRs) forming random coils or loops. All the accessible experimentally solved protein 

structures (n = 1077) were downloaded from the Protein Databank (https://www.rcsb.org/) and 

https://www.rcsb.org/
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filtered for redundant protein sequences (Table S4). The protein sequences and corresponding 

secondary structures (n = 737) were extracted using STRIDE secondary structure assignment 

tool [60]. The nucleotide sequences corresponding to CRs and NCRs were extracted by mapping 

UniProt identifiers to respective gene identifiers. The same set of protein sequences (n = 737) 

was considered for IDRs prediction using IUPred2A and ESpritz. The factors driving the 

evolution of codon usage in the CRs, NCRs and IDRs of these viral protein sequences were 

investigated by using the selected genetic tools as described in the previous sections of the 

manuscript.    

Statistical analyses 

Statistical analyses were carried out using GraphPad Prism 7.01 (GraphPad Software, San Diego, 

CA, USA). One-Way Analysis of Variance (ANOVA) with Bonferroni correction was used to 

compare the differences between tAI and CpG dinucleotide contents of IDRs and SRs. While in 

the case of ENc-GC3s plots, which shows the functional relationship between ENc and GC3s, 

we first estimated the signed distances of each IDRs and SRs of every virus genome type from 

the standard curve and thereafter, employed the Wilcoxon signed rank test, a non-parametric test, 

to compute the differences between the mean distances of IDRs and SRs from the standard 

curve. In all the statistical analyses, a p-value less than 0.01 was considered statistically 

significant. Additionally, we calculated Cohen’s term d — commonly used to measure the effect 

size that is independent of group size — for each of the tAI values, CpG contents, and IDRs/SRs 

distances from the standard curve in the ENc-GC3s plots, and thereafter, classified the effect size 

as small (d = 0.2), medium (d = 0.5) and large (d ≥ 0.8) [61]. In the case of linear regression 

analyses, the effect size was estimated by Cohen’s ƒ
2
 where ƒ

2
 = 0.02, 0.15, and ≥ 0.35 denotes 

small, medium and large size effects, respectively [62]. All the graphs were generated by using 

GraphPad Prism 7.01. 

Results 
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The magnitude of mutational bias in shaping the codon usage in genomic regions encoding 

IDRs in double-stranded viral genomes is significantly higher than in regions encoding SRs 

Previous studies emphasized that the mutational bias and the natural selection are the key factors 

driving the evolution of codon usage patterns in viral genomes [4]. Therefore, ENc plots were 

generated to investigate the influence of these factors on the viral IDRs and SRs. In the ENc–

GC3s plot, the clustering of points over the standard curve suggests the absolute role of the 

mutational bias in shaping the codon usage patterns, whereas the below-curve clustering is 

indicative of the foremost influence of natural selection. So, the signed distances of each IDRs 

and SRs of every virus genome type from the standard curves are considered to examine the 

influence of natural selection and mutational bias. The variable size of datasets in different virus 

groups are further taken care by performing statistical analysis for effect-size. The mean signed 

distances of IDRs in ssDNA (d = 1.012, p < 0.0001), ssRNA(+) (d = 0.529, p = 0.0014), and 

ssRNA(-) (d = 0.460, p < 0.0001) viral genomes from the standard curve are significantly greater 

than that of SRs, whereas these differences are insignificant in other viral genomes (dsDNA, 

dsDNA-RT, dsRNA, ssRNA-RT, satellite, virophage, and unclassified) (Figure 1). These 

findings suggest that although the evolution of codon usage bias in IDRs of ssDNA, ssRNA(-), 

and ssRNA(+) viral genomes is primarily governed by the natural selection, nevertheless, the 

influence of mutational bias is not completely negligible. Furthermore, since the points falling 

on, or just below, the standard curve also indicate an optimal codon usage, the codon usage, 

especially in the IDRs of ssDNA, ssRNA(-), and ssRNA(+) viral genomes was found to be sub-

optimal as compared to that of SRs. 

We next employed the neutrality plots to explain the magnitude of mutational bias and natural 

selection in driving the codon usage bias. In these plots, a significant correlation between GC12 
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and GC3 coupled with a regression slope close to 1 indicates the prominent role of mutational 

bias while a non-significant or negative correlation with a regression slope close to zero indicates 

the predominant influence of natural selection in governing the codon usage patterns. It is clear 

from Figure 1 and Table S5 that the contribution of the mutational bias in influencing the codon 

usage in IDRs of dsDNA (r = 0.843, p < 0.0001, ƒ
2
 = 0.168, 28.3%), dsDNA-RT (r = 0.653, p < 

0.0001, ƒ
2
 = 0.234, 47.1%), and dsRNA (r = 0.669, p < 0.0001, ƒ

2
 = 0.713, 45.4%) is remarkably 

high. By contrast, in the rest of the viral genome types, a non-significant contribution of 

mutational bias in influencing the codon usage in IDRs was observed. These results are in 

concordance with ENc–GC3s plots. IDRs, as predicted by ESpritz, also experienced a prominent 

influence of mutational bias in governing the codon usage of double-stranded viral genomes 

(Table S6). We also investigated the magnitude of mutational bias and natural selection in 

driving the codon usage bias in the viral genomic segments encoding for core regions (CRs), and 

non-core regions (NCRs). We noted that the contribution of natural selection in dictating the 

evolution of codon usage in the NCRs (80.2%) is higher than that of CRs (75.7 %) (p < 0.01) 

(Figures S1A and S1B). 
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Figure 1. ENc–GC3s and neutrality plots for viral genomic segments encoding for intrinsically disordered regions 

(IDRs) and structured regions (SRs). In the ENc–GC3s plots, the black dotted line represents the standard curve, 

where the codon usage bias was determined by the GC3s compositions only. In the case of neutrality plots, the linear 

regressions of GC12 against GC3 for both the IDRs and SRs are shown. The IDRs and SRs encoded from each virus 

genome type are color coded, i.e., blue and orange, respectively.  

The codon usage in genomic regions encoding IDRs in viruses is less optimized to the 

protein synthesis machinery of their corresponding hosts than that of genomic regions 

encoding SRs 

We first classified the reference virus proteomes, for which host tRNA gene copy number 

information was available in the GtRNAdb database (n = 1637), into IDRs and SRs based on the 

two types of IDRs predictions (viz. short and long disorder) implemented in the IUPred2A 

program, and computed the tAIs of codons encoding IDRs and SRs with respect to their 

corresponding hosts. The computed tAIs showed a highly significant correlation between the two 

types of disorder (short and long) used for predicting IDRs (r = 0.978, p < 0.0001) and SRs (r = 
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0.998, p < 0.0001) indicating a consistency in results between the two disorder types (Figures 2A 

and 2B). This consistency is also maintained when a different IDRs predictor, e.g. ESpritz, was 

used, which showed a highly significant correlation between the computed tAIs of IDRs (r = 

0.921, p < 0.0001) and SRs (r = 0.998, p < 0.0001), with the IUPred2A short disorder type 

(Figures S2A and S2B). 

 

Figure 2. tRNA adaptation index (tAI) analyses of viral genomic segments encoding for intrinsically disordered 

regions (IDRs) and structured regions (SRs). (A), and (B) represent the correlation analyses between the long and 



16 
 

short disorder methods of IDRs predictions implemented in the IUPred2A for IDRs and SRs, respectively. (C) 

shows the comparison of the tAI of the viral genomic segments encoding IDRs and SRs of different virus genome 

types. (D) shows the difference between the tAI of real coding sequences of IDRs and SRs in comparison to the tAI 

of shuffled sequences of IDRs and SRs. (E) shows the comparison of the tAI of IDRs with respect to SRs in both 

IDRs-rich and IDRs-poor viral proteomes. One-Way Analysis of Variance (ANOVA) with Bonferroni correction 

was used to compare the differences between tAIs of IDRs and SRs. ‘d’ denotes the Cohen’s term d that measures 

the effect size, independent of group size. The error bars correspond to the standard deviation. 

The calculations revealed that the mean tAIs of viral genome regions encoding IDRs is lower 

than that of the regions encoding SRs (0.289±0.115, and 0.373±0.112, respectively, p < 0.0001). 

These results indicate that the codon usage is less optimized in the regions encoding IDRs than in 

those encoding SRs. In order to check whether this phenomenon depends on the virus genome 

type, we further investigated the tAIs in different viral genomes. Importantly, the mean tAIs of 

the regions encoding IDRs was found to be significantly lower than those of the regions 

encoding SRs in dsDNA, ssDNA, ssRNA(+), ssRNA(-) and unclassified viruses (d = 0.594 to 

0.880, p < 0.001 to < 0.0001), while no significant difference was observed in dsRNA, dsDNA-

RT and ssRNA-RT viruses (Figure 2C). These results were consistently obtained irrespective of 

whether IDRs were predicted by the IUPred2A short disorder type or by ESpritz (Figures S2C 

and S2D, respectively). In addition, we noted that reduced codon optimization in the viral 

genomic regions encoding IDRs was maintained even when compared to the viral genomic 

regions encoding CRs (p < 0.01) and NCRs (p < 0.001) (Figure S1C).    

To investigate whether the reduced optimization in IDRs comes actually from codon bias or an 

intrinsic bias due to the amino acid bias associated with IDRs, we generate a synthetic dataset 

(by shuffling or randomizing codons) encoding IDRs and SRs where the amino acid composition 

is held fixed [63]. By doing this, it is possible to study the constraints associated with real and 

randomized coding sequences. We found that the randomized coding sequence in IDRs is 

significantly optimized (increased tAI) as compared to the real coding sequence (d = 0.375, p < 

0.0001) (Figure 2D). Conversely, in the case of SRs, the randomized coding sequence is sub-
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optimized (reduced tAI) in comparison to the real coding sequence (d = 0.282, p < 0.0001). 

These results imply that the selective constraints imposed by codon bias maintain the reduced 

optimization in IDRs. 

It is known that the expression level of proteins rich in IDRs is tightly controlled and codons of 

poorly expressed proteins tend to be less optimized [64, 65]. If this is the case, then IDRs in IDR 

rich-proteins are expected to be less codon-optimized. To test this hypothesis, we divided the 

viral proteomes into two large categories, i.e. those that are enriched in IDRs (> 30%), and those 

that are poor in IDRs (< 20%). We showed that the reduced optimization in IDRs compared to 

that of SRs is a common trend in both IDRs-rich and IDRs-poor viral proteomes (d = 0.553-

0.643, p < 0.0001) (Figure 2E). This finding is further supported by the non-significant 

difference in codon optimization (tAI) between the IDRs-rich and IDRs-poor viral proteomes. 

Furthermore, we tested the aforementioned hypothesis on the viral proteins level, where we 

categorized them into two groups, i.e. those that are enriched in IDRs (> 50%), and those that are 

poor in IDRs (< 20%). We showed that the results — reduced optimization of IDRs in 

comparison to that of SRs in both the IDRs-rich and IDRs-poor viral proteins — remained same 

(d = 0.572-0.857, p < 0.0001) (Figure S3). These results imply that, in comparison to SRs, the 

reduced optimization in IDRs is maintained irrespective of whether the viral proteins/proteomes 

are rich or poor in IDRs contents. 

CpG dinucleotide content in viral genomic regions encoding IDRs is higher than in regions 

encoding SRs 

The frequency of the CpG dinucleotide in IDRs and SRs of different viral genome types was 

estimated by dividing the number of CpG dinucleotides by that of total dinucleotides from the 

genome base compositions. The reverse transcribing (dsDNA-RT, and ssRNA-RT) and ssRNA(-
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) viruses showed the most severe CpG depletion among all the viruses (Figure 3A). The viruses 

infecting Animalia, Plantae, and Protista showed a comparatively high CpG depletion with 

respect to viruses infecting Archaea, Fungi, and Bacteria (p < 0.01 to < 0.0001).  

 

Figure 3. Comparison of CpG dinucleotide contents in the regions encoding IDRs and SRs of different virus genome 

types (A) and in viruses infecting taxonomically divergent hosts (B). One-Way Analysis of Variance (ANOVA) 

with Bonferroni correction was used to compare the differences between CpG content of IDRs and SRs. The error 

bars correspond to the standard deviation. 

Interestingly, the abundance of the CpG dinucleotide in regions encoding IDRs is significantly 

higher compared to that of regions encoding SRs, a finding consistent for all virus genome types 

except dsDNA-RT, ssRNA-RT, virophage and satellite viruses (d = 0.390-1.63, p = 0.0003 to < 
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0.0001). Even, the CpG dinucleotide content in the IDRs is substantially higher compared to the 

viral genomic segments encoding for core (CRs, p < 0.0001) and non-core regions (NCRs, p < 

0.0001) of SRs (Figure S1D). A higher content in the CpG dinucleotide in regions encoding 

IDRs compared to SRs is observed in viruses infecting Bacteria (d = 1.56, p < 0.0001), Animalia 

(d = 0.948, p < 0.0001), Plantae (d = 0.676, p < 0.0001), and Archaea (d = 0.323, p  < 0.001), 

while no significant difference was observed for viruses infecting Fungi, Protista and isolated 

from the environment (Figure 3B). Although the CpG dinucleotide contents in the IDRs 

predicted by ESpritz show a minor discrepancy as compared to those predicted by IUPred2A 

(Figures S4A and S4B), the overall results do not affect the interpretations. 

Discussion 

Despite the functional importance of IDRs in viruses, a deep understanding of the evolutionary 

forces acting on them is lacking so far. To fill this gap in knowledge, we herein performed a 

comprehensive analysis of the abundance of IDRs in 6,108 proteomes from representative 

viruses belonging to 10 different genome types. We explored IDRs in these viral proteomes from 

multiple perspectives using selected genetic tools that enabled us to assess the evolutionary 

forces that shape the codon usage bias in IDRs/SRs. 

Intrinsic disorder (ID) in proteins, in fact, is not a single state, but rather a set of biophysical 

features that lead to a variety of conformational states (known as flavors of disorder) [66]. As a 

result, IDPs/IDRs are characterized by high spatiotemporal heterogeneity and exist as dynamic 

structural ensembles. As a consequence, despite the fact that structure and disorder are often 

treated as binary states, they actually sit on a structural continuum [67]. Therefore, a correlation 

between protein structure and function is described by a "protein structure-function continuum" 

model, where a given protein exists as a dynamic conformational ensemble containing multiple 



20 
 

proteoforms characterized by a broad spectrum of structural features and possessing various 

functional potentials [68]. ID in proteins can be precisely defined in terms of conformational 

ensembles and can be captured by various experimental methods. Since only a small number of 

viral proteins have been characterized experimentally to capture the conformational ensembles, 

computational tools continue to be methods of choice that have allowed the large-scale disorder 

predictions. 

Our study has a few limitations, since it depends on the disorder predictions, accuracies of which 

are not perfect. However, scarcity of the experimentally proven disorder information in viral 

proteins precludes the development of dedicated and the most precise disorder predictors specific 

for viruses. Furthermore, although viral disordered proteins are expected to undergo function-

related structural transitions in their host's diverse and complex microenvironments, currently 

available disorder predictors are not entirely capable of relating to such biological 

microenvironments. Therefore, in the absence of accurate tools for unambiguous evaluation of 

intrinsic disorder in viral proteins, we can only rely on the careful use of currently available 

disorder predictors.  

We accept the fact that none of the disorder predictors is perfect, and the resulting mispredictions 

might affect the reliability of the subsequent analyses and mislead the results for the evolutionary 

forces acting on IDRs. Therefore, we designed and conducted our experiments based on the 

utilization of two different disorder predictors (IUPRed2A, and ESpritz) for the analysis of the 

diverse virus proteomes. The benchmarking of these two disorder predictors against the 

experimentally validated disorder content information of viral proteins has also shown that the 

performance of IUPred2A (Specificity = 86.72%, and Sensitivity = 62.71%) and ESpritz 

(Specificity = 89.90%, and Sensitivity = 69.10%) is considerably high (Table S2B). Therefore, 
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these tools are frequently used as stand-alone predictors or in combination with other tools to 

provide information about disorder. Nevertheless, by evaluating the three key components of the 

findings, the magnitude of mutational bias in shaping the codon usage, translation efficiency and 

CpG dinucleotide content, we showed that our results remain consistently the same on a set of 

IDRs predicted by two principally different disorder predictors. These results also support the 

robustness and reliability of our findings and interpretations. Therefore, we consider that this 

approach allows us to create a more reliable depiction of the evolutionary forces acting on IDRs. 

In the first place, we investigated the contribution of mutational bias and natural selection in the 

evolution of codon usage in the virus genomic regions encoding IDRs and SRs, using selected 

genetic tools, such as the ENc-plot, and the neutrality plot. The results showed that the codon 

usage in regions encoding IDRs of viruses possessing a single-stranded genome (ssDNA, 

ssRNA(-), and ssRNA(+)) is sub-optimal and primarily governed by the natural selection. Of 

note, a significantly higher mutational bias was observed in regions encoding IDRs of viruses 

possessing a double-stranded genome (dsDNA, dsDNA-RT, and dsRNA). Overall, the natural 

selection dictates the evolution of codon usage in regions encoding IDRs in all viruses, with the 

notable exception of viruses with a double-stranded genome. In addition, the evolution of codon 

bias in the segments encoding the core (composed of α-helix and β-sheet) and non-core (random 

coils or loops) regions of viral proteins are primarily governed by the natural selection, however, 

degree of extent varies. Previous studies have shown that both purifying selection and mutational 

bias are primarily responsible for the rapid evolution of IDRs in comparison to globular proteins, 

which is in concordance with our findings [69-74].  

Many viruses possess the ability to infect multiple taxonomically divergent hosts for their 

efficient transmission in nature [75]. However, maintaining and adopting a multiple-host cell 
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cycle strategy seems to be intrinsically challenging for a virus, because these taxonomically 

divergent hosts do possess species-specific codon usage reflecting differences in intracellular 

tRNA pools. Our study has shown that codon usage in the viral genomic regions encoding IDRs 

is less optimized to the tRNA pool of their corresponding hosts than that of regions encoding 

SRs including the CRs and NCRs. This peculiar feature, however, is not limited to viruses, but 

has also been detected in eukaryotic genomic regions coding for IDRs [7, 76]. In eukaryotes, the 

reduced optimization of IDRs or reduced IDR translation efficiency (primarily due to non-

optimal codons usage) has been shown to be important for both protein structure and biological 

function(s), where delaying the translation of IDRs may allow sufficient time for the proper 

folding of SRs or structured domains (SDs) [7]. Furthermore, protein expansion in the hosts is 

largely due to indels in regions encoding IDRs rather than in regions encoding SRs [77]. Because 

IDRs tend to arise later than SRs in the evolution of modern proteins, the codons in the genetic 

regions encoding IDRs tend to be less optimized than those encoding SRs [76].  

Additionally, to examine whether the low optimization of the codon usage in the regions 

encoding IDRs arises from codon bias or from an intrinsic bias due to the amino acid bias 

associated with IDRs, we generated a synthetic dataset by shuffling the codons encoding IDRs 

and SRs while keeping the amino acid compositions fixed. In line with previous studies [71, 76], 

we showed that the poor codon usage optimization of regions encoding IDRs is pronounced in 

viruses because the codon usage patterns in regions encoding IDRs are more selectively 

constrained than in those encoding SRs. Furthermore, the codons in regions encoding IDRs are 

less optimized in both IDRs-rich and IDRs-poor viral proteins, thus ruling out the hypothesis that 

the regions encoding IDRs in IDRs-rich proteins tend to be less codon-optimized. We next 

investigated whether the low codon usage optimization in the regions encoding IDRs depends on 
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the lengths of the latter. To this end, we have compared disorder prediction results provided by 

the long disorder method of IUPred2A, conceived to identify IDRs longer than 30 amino acids, 

to those provided by the short disorder method (conceived for the identification of IDRs of 10 

amino acids). The strong correlation between the short and long disorder prediction types 

indicates that the length of IDRs does not affect the results. The consistency in the results is 

conserved even when using a different IDRs predictor. Taken together, based on these findings, 

we speculate that the sub-optimal codon usage likely provides an opportunity to use divergent 

host species-specific tRNA pools, with this being especially true for the regions encoding IDRs 

of RNA viruses that typically have a broad host-specificity (i.e. they can infect multiple hosts). 

Concomitantly, this sub-optimal codon usage, with ensuing delayed translation of IDRs, would 

also ensure proper folding and function of viral SRs/SDs. This sub-optimal adaptation to the 

codon usage of the host would help the virus to be maintained among the multiple taxonomically 

divergent hosts (Figure S5). 

Certain dinucleotides, such as CpG, are known to be over- and under-represented in the genomes 

of living organisms, thus creating distinct nucleotide compositional patterns or codon usage 

patterns [78]. The genomes of organisms, especially of the Animalia and Plantae, where the 

DNA methylation is extensive, employ a unique enzymatic mechanism to suppress CpG [79, 80]. 

In such organisms, including the Human, the methylated cytosine in a CpG dinucleotide is more 

prone to mutate into thymines through spontaneous deamination, creating mutation hotspots, and 

thus contributes to shaping the codon usage bias [71]. Furthermore, the regulatory activity of 

histone methyltransferases (which catalyze the methylation of histones and thus contribute to the 

regulation of gene transcription) has been shown to be mediated by their IDRs [81]. In contrast, 

although Prokaryotes and Archaea genomes do undergo methylation, such methylation 
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frequently occurs at a different site, i.e. N6-methyladenine, thereby explaining why these 

genomes show little CpG dinucleotide depletion [82].  

Similarly, a CpG dinucleotide depletion has also been observed in viruses and appears to have 

functional roles in improving virus replication [83], escaping the host antiviral immune response 

[17, 84], and mimicking the hosts’ CpG usage [85, 86]. Consistent with these studies, the 

genomes of viruses infecting Prokaryotes and Archaea show little CpG dinucleotide depletion 

[87-89]. Of note, high CpG depletion, especially in reverse transcribing viruses (dsDNA-RT and 

ssRNA-RT), may be due to the host-driven methylation pressure as these viruses produce DNA 

intermediates during their genome replication [90, 91]. Our results provide a link between virus 

CpG dinucleotide content and the methylation capabilities of the corresponding hosts.  

In particular, the CpG dinucleotide depletion in RNA viruses provides them with an alternative 

mechanism to escape the host antiviral innate immune system. The unmethylated CpG is in fact a 

PAMP (Pathogen Associated Molecular Pattern) being recognized by Toll-like receptor 9 

(TLR9), a type of intracellular pattern recognition receptor [86, 92]. In addition, dsRNA viruses 

that involve DNA intermediates during their viral genome replication seem to be affected 

primarily by the host methylation. Therefore, the host-driven CpG selective pressure on RNA 

viruses shapes their codon usage patterns. Nevertheless, the genomic regions encoding IDRs 

show significantly less CpG dinucleotide depletion compared to genomic regions encoding SRs 

including the CRs and NCRs. The less CpG dinucleotide depletion in the genome regions 

encoding IDRs is not only restricted to viruses, but it has also been observed in the human 

proteome [71]. Overall, these findings suggest that the host-driven methylation (most likely in 

DNA viruses) or CpG selective pressure (most likely in RNA viruses) contribute more 
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significantly in shaping the codon usage patterns in the regions encoding SRs than in those 

encoding IDRs. 

Conclusion  

Out study showed that the evolution of codon usage in viral IDRs is primarily dictated by the 

natural selection. The non-optimal codon usage (leading to poor optimization to host protein 

biosynthesis machinery) in viral IDRs seems to reflect the need to adapt to divergent host 

species-specific tRNA pools, while concomitantly allowing proper folding and function of viral 

SRs. Furthermore, the genomic regions encoding IDRs are comparatively more enriched in CpG 

than those encoding SRs, and therefore, experience comparatively less pressure imposed by the 

host-driven methylation or CpG selective pressure, making them hot-spots for mutations. 

Therefore, IDRs in viruses likely accept more translational errors than SRs.  

 

Key points 

 The study offers benchmarking of two distinct disorder prediction algorithms on a dataset 

comprising 6,108 reference viral proteomes to unravel the evolutionary forces acting on 

intrinsically disordered regions (IDRs).  

 The natural selection predominantly governs the evolution of codon usage in regions 

encoding IDRs. 

 The codon usage in regions encoding IDRs is less optimized to the protein synthesis 

machinery of their host than in those encoding structured regions (SRs). 

 The selective constraints imposed by codon bias maintain reduced codon optimization in 

IDRs. 
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 The viral genomic regions encoding IDRs are comparatively more enriched in CpG than 

those encoding SRs, and therefore, IDRs in viruses likely accept more translational errors 

than SRs. 
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