
Robust and Decomposable Average Precision
for Image Retrieval

Elias Ramzi1,2

elias.ramzi@lecnam.net
Nicolas Thome1

nicolas.thome@cnam.fr

Clément Rambour1

nicolas.thome@cnam.fr
Nicolas Audebert1

nicolas.audebert@cnam.fr

Xavier Bitot2

xavier.bitot@coexya.com
1CEDRIC, Conservatoire National des Arts et Métiers, Paris, France

2Coexya, Paris, France

Abstract

In image retrieval, standard evaluation metrics rely on score ranking, e.g. av-
erage precision (AP). In this paper, we introduce a method for robust and de-
composable average precision (ROADMAP) addressing two major challenges for
end-to-end training of deep neural networks with AP: non-differentiability and
non-decomposability. Firstly, we propose a new differentiable approximation of
the rank function, which provides an upper bound of the AP loss and ensures robust
training. Secondly, we design a simple yet effective loss function to reduce the de-
composability gap between the AP in the whole training set and its averaged batch
approximation, for which we provide theoretical guarantees. Extensive experiments
conducted on three image retrieval datasets show that ROADMAP outperforms
several recent AP approximation methods and highlight the importance of our two
contributions. Finally, using ROADMAP for training deep models yields very good
performances, outperforming state-of-the-art results on the three datasets.

1 Introduction

The task of ‘query by example’ is a major prediction problem, which consists in learning a similarity
function able to properly rank all the instances in a retrieval set according to their relevance to the
query, such that relevant items have the largest similarity. In computer vision, it drives several major
applications, e.g. content-based image retrieval, face recognition or person re-identification.

Such tasks are usually evaluated with rank-based metrics, e.g. Recall@k, Normalized Discounted
Cumulative Gain (NDCG), and Average Precision (AP). AP is also the de facto metric used in several
vision tasks implying a large imbalance between positive and negative samples, e.g. object detection.

In this paper, we address the problem of direct AP training with stochastic gradient-based optimization,
e.g. using deep neural networks, which poses two major challenges.

Firstly, the AP loss LAP = 1− AP is not differentiable and is thus not directly amenable to gradient-
based optimization. There has been a rich literature for providing smooth and upper bound surrogate
losses for LAP [48, 23, 24, 6, 28]. More recently, smooth differentiable rank approximations have
been proposed [39, 15, 16, 3, 31, 8, 2], but generally lose the important LAP upper bound property.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

(a) LSupAP ≥ LAP and∇LSupAP > 0 in this example,
in contrast to SmoothAP [2]. This ensures robust
training and comes from a new approximation of the
rank function.

(b)LAP non-decomposability: LAP = 0 in all batches
Bi despite LAP 6= 0 over the whole

⋃
i B

i. Lcalibr.
controls the absolute scores between batches, such
that LROADMAP 6= 0 in each batch.

Figure 1: Our robust and decomposable Average Precision training (ROADMAP) includes (a) a
smooth lossLSupAP upper-boundingLAP, and (b) a calibration lossLcalibr. supporting decomposability.

The second important issue of AP optimization relates to its non-decomposability: LBAP averaged over
batches underestimates LAP on the whole training dataset, which we refer as the decomposability
gap. In image retrieval, the attempts to circumvent the problem involve ad hoc methods based on batch
sampling strategies [10, 36, 22, 36, 34], or storing all training representations/scores [42, 3, 31, 28],
leading to complex models with a large computation and memory overhead.

In this paper, we introduce a method for RObust And DecoMposable Average Precision (ROADMAP),
which explicitly addresses the aforementioned challenges of AP optimization.

Our first contribution is to propose a new surrogate loss LSupAP for LAP. In particular, we introduce
a smooth approximation of the rank function, with a different behaviour for positive and negative
examples. By this design, LSupAP provides an upper bound of LAP, and always back-propagates
gradients when the correct ranking is not satisfied. These two features illustrated in the the toy
example on Figure 1a are not fulfilled by binning approaches [3, 31] or by SmoothAP [2].

As a second contribution, we propose to improve the non-decomposability in AP training. To this
end, we introduce a simple yet effective training objective Lcalibr., which calibrates the scores among
different batches by controlling the absolute value of positive and negative samples. We provide a
theoretical analysis showing that Lcalibr. decreases the decomposability gap. Figure 1b illustrates how
Lcalibr. can be leveraged to improve the overall ranking.

We provide a thorough experimental validation including three standard image retrieval datasets
and show that ROADMAP outperforms state-of-the-art methods. We also report the large and
consistent gain compared to rank/AP approximation baselines, and we highlight in the ablation
studies the importance of our two contributions. Finally, ROADMAP does not entail any memory or
computation overhead and remains competitive even with small batches.

2 Related work

We discuss here the literature in image retrieval dedicated to AP optimization, and compare to other
approaches based on optimizing representations [25, 1, 49, 51, 37] in the experiments.

Smooth AP approximations Studying smooth surrogate losses for AP has a long history. The
widely used surrogate for retrieval is to consider constraints based on pairs [45, 12, 30], triplets [11],
quadruplets [20] or n-uplets [34] to enforce partial ranking. These metric learning methods optimize
a very coarse upper bound on AP and need complex post-processing and tricks to be effective.

One option for training with AP is to design smooth upper bounds on the AP loss. Seminal works are
based on structural SVMs [48, 23] , with extensions to speed-up the "loss-augmented inference" [24]
or to adapt to weak supervision [6]. Recently, a generic blackbox combinatorial solver has been
introduced [28] and applied to AP optimization [32]. To overcome the brittleness of AP with respect to
small score variations, an ad hoc perturbation is applied to positive and negative scores during training.
These methods provide elegant AP upper bounds, but generally are coarse AP approximations.

2

Other approaches rely on designing smooth approximations of the the rank function. This is done in
soft-binning techniques [15, 16, 39, 3, 31] by using a smoothed discretization of similarity scores.
Other approaches rely on explicitly approximating the non-differentiable rank functions using neural
networks [8], or with a sum of sigmoid functions in the recent SmoothAP approach [2]. These
approaches enable accurate AP approximations by providing tight and smooth approximations of the
rank function. However, they do not guarantee that the resulting loss is an AP loss upper bound. The
LSupAP introduced in this work is based on a smooth approximation of the rank function leading to an
upper bound on the AP loss, making our approach both accurate and robust.

Decomposability in AP optimization Batch training is mandatory in deep learning. However, the
non-decomposability of AP is a severe issue, since it yields an inconsistent AP gradient estimator.

Non-decomposability is related to sampling informative constraints in simple AP surrogates, e.g.
triplet losses, since the constraints’ cardinality on the whole training set is prohibitive. This has
been addressed by efficient batch sampling [13, 10, 36] or selecting informative constraints within
mini-batches [34, 9, 4, 36]. In cross-batch memory technique [42], the authors assume a slow drift in
learned representations to store them and compute global mining in pair-based deep metric learning.

In AP optimization, the non-decomposability has essentially been addressed by a brute force increase
of the batch size [3, 31, 28]. This includes an important overhead in computation and memory, gen-
erally involving a two-step approach for first computing the AP loss and subsequently re-computing
activations and back-propagating gradients. In contrast, our loss Lcalibr. does not add any overhead
and enables good performances for AP optimization even with small batches.

3 Robust and decomposable AP training

We present here our method for RObust And DecoMposable AP (ROADMAP) dedicated to direct
optimization of a smooth surrogate of AP with stochastic gradient descent (SGD), see Fig. 2.

Training context Let us consider a retrieval set Ω = {xj}j∈J1;NK composed of N elements, and a
set of M queries included in Ω, i.e. Q = {qi}i∈J1;MK ⊆ Ω. For each query qi, each element in Ω

is assigned a label y(xj , qi) ∈ {+1;−1}, such that y(xj , qi) = 1 (resp. y(xj , qi) = −1) if xj is
relevant (resp. irrelevant) with respect to qi. This defines a query-dependent partitioning of Ω such
that Ω = Pi ∪Ni, where Pi := {xj ∈ Ω|y(xj , qi) = +1} and Ni := {xj ∈ Ω|y(xj , qi) = −1}.
For each xj ∈ Ω, we define a prediction model parametrized by parameters θ, e.g. a deep neural
network, which provides a vectorial embedding vqi ∈ Rd of each element, i.e.: vqi := fθ(qi). In
the embedded space Rd, we compute a similarity score between each query qi and each element in

Ω, e.g. by using the cosine similarity: s(qi,xj) =
vqi

Tvj

||vqi
||2||vj||2 .

During training, our goal is to optimize, for each query qi, the model parameters θ such that positive
elements are ranked before negatives. More precisely, we aim at minimizing the AP loss LAPi

for
each query qi in the retrieval set Ω.

Our overall AP loss LAP is averaged over all queries:

LAP(θ) = 1− 1

M

M∑
i=1

APi(θ), APi(θ) =
1

|Pi|
∑
k∈Pi

Pre(k, θ) =
1

|Pi|
∑
k∈Pi

rank+(k, θ)

rank(k, θ)
(1)

where Pre(k, θ) is the precision for the kth positive example xk, rank+(k, θ) its rank among positives
Pi, and the rank(k, θ) its rank over Ω = Pi ∪Ni.
As previously mentioned, there are two main challenges with SGD optimization of AP in Eq. (1):
i) AP(θ) is not differentiable with respect to θ, and ii) AP does not linearly decompose into
batches. ROADMAP addresses both issues: we introduce the robust differentiable LSupAP surrogate
(Section 3.1), and add the Lcalibr. loss (Section 3.2) to improve AP decomposability. Our final loss
LROADMAP is a linear combination of LSupAP and Lcalibr., weighted by the hyperparameter λ:

LROADMAP(θ) = (1− λ) · LSupAP(θ) + λ · Lcalibr.(θ) (2)

3

Figure 2: ROADMAP training: we optimize parameters θ of a deep neural networks to minimize
a smooth surrogate of LAPi

(θ) between the query qi and the retrieval set Ω. Our smooth rank
approximations H+ and H− enables LSupAP to be both accurate and robust (sec 3.1), and Lcalibr.
enables an implicit batch scores comparison for better decomposability without additional storing
(sec 3.2).

3.1 Robustness in smooth rank approximation

The non-differentiablity in Eq (1) comes from the ranking operator, which can be viewed as counting
the number of instances that have a similarity score greater than the considered instance, i.e.1:

rank+(k) = 1 +
∑

j∈Pi\{k}

H(sj − sk), where H(t) =

{
1 if t ≥ 0

0 otherwise

rank(k) = rank+(k) +
∑
j∈Ni

H(sj − sk) = rank+(k) + rank−(k) (3)

From Eq. (3) it becomes clear that the non-differentiablity is due to the Heaviside (step) function H ,
whose derivative is either zero or undefined. Note that the computation of rank+(k) and rank−(k)
in Eq. (3) relates to the rank of positive instances xk ∈ Pi: the score sk in Eq. (3) is always the score
of a positive, whereas sj can either be a negative’s or positive’s score.

Smooth loss LSupAP To provide a smooth approximation of LAP in Eq. (1), we introduce a smooth
approximation of the rank function. In particular, we propose a different behaviour between rank+(k)
and rank−(k) in Eq. (3) by defining two functions H+ and H−.

For rank+(k), we choose to keep the Heaviside (step) function, i.e. H+ = H (see Fig. 3a),
which consists in ignoring rank+(k) in gradient-based AP optimization. This is done on purpose
since ∂AP

∂ rank+(k)
= rank−(k)

(rank+(k)+rank−(k))2
≥ 0: the gradient would tend to increase rank+(k) and to

decrease the score of sk. Reminding xk is always a positive instance, this behaviour is undesirable.

For rank−(k), we define the following smooth surrogate H− for H , shown in Fig 3b:

H−(t) =

σ(tτ) if t ≤ 0, where σ is the sigmoid function (Fig. 3c)
σ(tτ) + 0.5 if t ∈ [0; δ] with δ ≥ 0

ρ · (t− δ) + σ(δτ) + 0.5 if t > δ

(4)

1For the sake of readability we drop in the following the dependence on θ for the rank, i.e. rank(k) :=
rank(k, θ) and on the query for the similarity, i.e. sj := s(qi, xj).

4

(a) H+(x) = H(x) in Eq. (3) (b) H−(x) in Eq. (4) (c) Sigmoid used in [2]

Figure 3: Proposed surrogate losses for the Heaviside (step): with H+(x) in Fig. 3a and H−(x) in
Fig. 3b, LSupAP in Eq. (5) is an upper bound of LAP. In addition, H−(x) back-propagates gradients
until the correct ranking is satisfied, in contrast to the sigmoid used in [2] (Fig. 3c).

where τ and ρ are hyperparameters, and δ is defined such that the sigmoidal part of H− reaches the
saturation regime and is fixed for the rest of the paper (see supplementary Sec. A).

From theH− smooth approximation defined in Eq. (4), we obtain the following smooth approximation
rank−s (k) =

∑
j∈Ni

H−(sj − sk), leading to the following smooth AP loss approximation:

LSupAP(θ) = 1− 1

M

M∑
i=1

1

|Pi|
∑
k∈Pi

rank+(k)

rank+(k) + rank−s (k)
(5)

LSupAP in Eq. (5) fulfills two main features for AP optimization:

I 1 LSupAP is an upper bound of LAP in Eq. (1). Since H− in Eq. (4) is an upper bound of a
step function (Fig 3b), it is easy to see that LSupAP ≥ LAP. This is a very important property, since
it ensures that the model keeps training until the correct ranking is obtained. It is worth noting that
existing smooth rank approximations in the literature [39, 3, 31, 2] do not fulfill this property.
I 2 LSupAP brings training gradients until the correct ranking plus a margin is fulfilled.

When the ranking is incorrect, the negative xj is ranked before the positive xk, thus sj > sk and
H−(sj − sk) in Eq. (4) has a non-null derivative. We use a sigmoid to have a large gradient when
sj − sk is small. To overcome vanishing gradients of the sigmoid for large values sj − sk, we use a
linear function ensuring constant ρ derivative.

When the ranking is correct (sj < sk), we enforce robustness by imposing a margin parametrized by
τ (sigmoid in Eq. (4)). This margin overcomes the brittleness of rank losses, which vanish as soon as
the ranking is correct [15, 3, 28].

Comparison to SmoothAP [2] LSupAP differs from LSmoothAP in [2] by i) providing an upper bound
on LAP, ii) improving the gradient flow (Fig. 3b vs Fig. 3c), and iii) overcoming adverse effects of
the sigmoid for rank+, as shown in Fig. 1a (and in supplementary sec. A).

We experimentally verify the consistent gain brought out by LSupAP over LSmoothAP.

3.2 Decomposable Average Precision

In Eq. (1), AP decomposes linearly between queries qi, but APi does not decomposes linearly
between samples. We therefore focus our analysis of the non-decomposability on a single query. For a
retrieval set Ω of N elements, we consider {Bb}b∈{1:K} batches of size B, such that N/B = K ∈ N.
Let APbi (θ) be the AP in batch b for query qi, we define the "decomposability gap" DGAP as follows:

DGAP(θ) =
1

K

K∑
b=1

APbi (θ)− APi(θ) (6)

DGAP ≥ 0 in Eq. (6) is a direct measure of the non-decomposability of AP (see supplementary Sec.
A). Our motivation here is to decrease DGAP, i.e. to have the average AP over the batches as close as

5

possible to the AP computed over the whole training set. To this aim, we introduce the following loss
during training:

Lcalibr.(θ) =
1

M

M∑
i=1

1

|Pi|
∑
xj∈Pi

[α− sj]+︸ ︷︷ ︸
L+

calibr.

+
1

|Ni|
∑
xj∈Ni

[sj − β]+︸ ︷︷ ︸
L−

calibr.

(7)

where [x]+ = max(0, x). The loss L+
calibr. enforces the score of the positive xi ∈ Pi to be larger than

α, and L−calibr. enforces the score of the negative xj ∈ Ni to be smaller than β < α.

Lcalibr. is a standard pair-based loss [12], which we revisit in our context to "calibrate" the values
of the scores between mini-batches: intuitively, the fact that the positive (resp. negative) scores are
above (resp. below) a threshold in the mini-batches makes the average AP closer to the AP on the
whole dataset.

Upper bound on the decomposabilty gap To formalize this idea, we provide a theoretical analysis of
the impact on the global ranking of Lcalibr. in Eq. (7). Firstly, we can see that if L−calibr. = L+

calibr. = 0,
on each batch, the overall AP and the AP in batches is null, i.e. DGAP(θ) = 0 and we get a
decomposable AP. In a more general setting, we show that minimizing Lcalibr. on each batch reduces
the decomposability gap, hence improving the decomposability of the AP.

Let’s consider K batches {Bb}b∈{1:K} of batch size B divided in Pbi positive instances and N b
i

negative instances w.r.t. the query qi. To give some insight we assume that the AP of each batch is
one (i.e. AP bi = 1), and give the following upper bound of DGAP :

0 ≤ DGAP ≤ 1− 1∑K
b=1 |Pbi |

 K∑
b=1

B∑
j=1

j + |P1
i |+ · · ·+ |P

b−1
i |

j + |P1
i |+ · · ·+ |P

b−1
i |+ |N 1

i |+ · · ·+ |N
b−1
i |

 (8)

This upper bound of the decomposability gap is given in the worst case for the global AP : the global
ranking is built from the juxtaposition of the batches (see supplementary Sec. A).

We can refine this upper bound by introducing the calibration loss Lcalibr. and constraining the scores
of positive and negative instances to be well calibrated.

On each batch we define the following quantities E−b =
∑
j∈N−

i
1(sj > β) which are the negative

instances that do not respect the constraints and G−b =
∑
j∈N−

i
1(sj ≤ β) the negative instances that

do. We similarly define E+
b andG+

b . We then have the following upper bound on the decomposability
gap :

0 ≤ DGAP ≤ 1− 1∑K
b=1 |Pbi |

(
K∑
b=1

[G+
b∑

j=1

j +G+
1 + · · ·+G+

b−1

j +G+
1 + · · ·+G+

b−1 + E−1 + . . . E−b−1
+ (9)

E+
b∑

j=1

j +G+
b + |P1

i |+ · · ·+ |P
b−1
i |

j +G+
b + |P1

i |+ · · ·+ |P
b−1
i |+ |N 1

i |+ · · ·+ |N
b−1
i |

])

This refined upper bound is tighter than the upper bound of Eq. (8). Our new Lcalibr. loss directly
optimizes this upper bound, making it tighter, hence improving the decomposability of the AP (see
supplementary Sec. A).

4 Experiments

Experimental setup We evaluate ROADMAP on the following three image retrieval datasets:
CUB-200-2011 [40] contains 11 788 images of birds classified into 200 fine-grained classes. We
follow the standard protocol and use the first (resp. last) 100 classes for training (resp. evaluation).
Stanford Online Product (SOP) [35] is a dataset with 120 053 images of 22 634 objects classified

6

into 12 categories (e.g. bikes, coffee makers). We use the reference train and test splits from [35].
INaturalist-2018 is a large scale dataset of 461 939 wildlife animals images classified into 8142
classes. We use the splits from [2] with 70% of the classes in the train set and the rest in the test set.

ROADMAP settings For all experiments in Section 4.1 and Section 4.2, we use λ = 0.5 for
LROADMAP in Eq. (2), τ = 0.01 and ρ = 100 for LSupAP in Eq. (5), α = 0.9 and β = 0.6 for Lcalibr.
in Eq. (7). We study more in depth the impact of those parameters in Section 4.3. Deep models are
trained using Adam [19] for ResNet-50 backbones and AdamW [21] for DeiT transformers [38].
Test protocol Methods are evaluated using the standard recall at k (R@k) and mean average precision
at R [26] (mAP@R) metrics (see supplementary Sec. B).

4.1 ROADMAP validation

In this section, all models are trained in the same setting for a fair comparison: we use a ResNet-50
backbone with an embedding size of 512 and a batch size of 64.

Comparison to AP approximations. In Table 1, we compare ROADMAP on the three datasets to
recent AP loss approximations including the soft-binning approaches FastAP [3] and SoftBinAP [31],
the generic solver BlackBox [32], and the smooth rank approximation [2]. We use the publicly
available PyTorch implementations of all these baselines. We can see that ROADMAP outperforms
all the current AP approximations by a large margin. The gain is especially pronounced on the large
scale dataset INaturalist. This highlights the importance our two contributions, i.e. our robust smooth
AP upper bound and our AP decomposability improvement (see supplementary Sec. B).

Table 1: Comparison between ROADMAP and state-of-
the-art AP ranking based methods.

CUB SOP INaturalist

Method R@1 mAP@R R@1 mAP@R R@1 mAP@R

FastAP [3] 58.9 22.9 78.2 51.3 53.5 19.6
SoftBin [31] 61.2 24.0 80.1 53.5 56.6 20.1
BlackBox [32] 62.6 23.9 80.0 53.1 52.3 15.2
SmoothAP [2] 62.1 23.9 80.9 54.6 59.8 20.7

ROADMAP 64.2 25.3 82.0 56.5 64.5 25.1

Comparison to memory methods. We
experimented the Cross batch memory
(XBM) [42] GitHub code, reaching 80.6
on SOP vs 82 for ROADMAP in Table 1
(see supplementary Sec. B). In addition,
XBM stores the embeddings of the whole
dataset (60k images for SOP), resulting in
a training time overhead of ∼x3 compared
to ROADMAP. This becomes critical on
INaturalist, where training while storing
60k images takes about 3 days, and reaches
only a R@1 of 60. This shows the suitabil-
ity of ROADMAP on large-scale settings.

Ablation study. To study more in depth the impact of our contributions, we perform ablation studies
in Table 2. We show the improvement against SmoothAP [2] when changing the sigmoid by H+

and H− for LSupAP in Eq. (5), and the use of Lcalibr. in Eq. (7). We can see that LSupAP consistently
improves performances over LSmoothAP (0.9pt on CUB, 0.5pt on SOP and 1.5pt on INaturalist). LSupAP
and Lcalibr. equally contribute to the overall gain in CUB and SOP, but the gain of Lcalibr. is much
more important on INaturalist. This is explained by the fact that the batch vs. dataset ratio size B

N is
tiny (� 1), making the decomposability gap in Eq. (6) huge. We can see that Lcalibr. is very effective
for reducing this gap and brings a gain of more than 3pt.

Table 2: Ablation study for the impact of our two contribution on and the SmoothAP baseline.
CUB SOP INaturalist

Method H− Lcalibr. R@1 mAP@R R@1 mAP@R R@1 mAP@R

SmoothAP [2] 7 7 62.1 23.9 80.9 54.6 59.7 20.7
SupAP 3 7 62.9 24.6 81.4 55.3 61.2 21.3
ROADMAP 3 3 64.2 25.3 82.0 56.5 64.5 25.1

4.2 State of the art comparison

We compare ROADMAP to other state of the art methods across three image retrieval datasets and
report the results in Table 3. We divide competitor methods into three categories: metric learning
[33, 41, 50, 17, 42, 46], classification losses for image retrieval [51, 49, 1, 37], and AP approximations

7

Table 3: Comparison of state of the art performances from the literature on SOP, CUB and INaturalist
with the proposed ROADMAP (recall@k). Except for the DeiT category, all methods rely on a
standard convolutional backbone (generally ResNet-50).

SOP CUB INaturalist
Method dim 1 10 100 1 2 4 8 1 4 16 32

M
et

ri
c

le
ar

ni
ng

Triplet SH [44] 512 72.7 86.2 93.8 63.6 74.4 83.1 90.0 58.1 75.5 86.8 90.7
LiftedStruct [35] 512 62.1 79.8 91.3 47.2 58.9 70.2 80.2 - - - -
MIC [33] 512 77.2 89.4 95.6 66.1 76.8 85.6 - - - - -
MS [41] 512 78.2 90.5 96.0 65.7 77.0 86.3 91.2 - - - -
SEC [50] 512 78.7 90.8 96.6 68.8 79.4 87.2 92.5 - - - -
HORDE [17] 512 80.1 91.3 96.2 66.8 77.4 85.1 91.0 - - - -
XBM [42] 128 80.6 91.6 96.2 65.8 75.9 84.0 89.9 - - - -
Triplet SCT [46] 512/64 81.9 92.6 96.8 57.7 69.8 79.6 87.0 - - - -

C
la

ss
ifi

ca
tio

n

ProxyNCA [25] 512 73.7 - - 49.2 61.9 67.9 72.4 61.6 77.4 87.0 90.6
ProxyGML [51] 512 78.0 90.6 96.2 66.6 77.6 86.4 - - - - -
NSoftmax [49] 512 78.2 90.6 96.2 61.3 73.9 83.5 90.0 - - - -
NSoftmax [49] 2048 79.5 91.5 96.7 65.3 76.7 85.4 91.8 - - - -
Cross-Entropy [1] 2048 81.1 91.7 96.3 69.2 79.2 86.9 91.6 - - - -
ProxyNCA++ [37] 512 80.7 92.0 96.7 69.0 79.8 87.3 92.7 - - - -
ProxyNCA++ [37] 2048 81.4 92.4 96.9 72.2 82.0 89.2 93.5 - - - -

A
P

lo
ss

FastAP [3] 512 76.4 89.0 95.1 - - - - 60.6 77.0 87.2 90.6
BlackBox [32] 512 78.6 90.5 96.0 64.0 75.3 84.1 90.6 62.9 79.4 88.7 91.7
SmoothAP [2] 512 80.1 91.5 96.6 - - - - 67.2 81.8 90.3 93.1
SoftBin* [31] 512 80.6 91.3 96.1 61.2 73.14 83.0 89.5 64.2 77.1 82.7 91.7
ROADMAP (ours) 512 83.1 92.7 96.3 68.5 78.7 86.6 91.9 69.1 83.1 91.3 93.9

D
ei

T IRTR [7] 384 84.2 93.7 97.3 76.6 85.0 91.1 94.3 - - - -
ROADMAP (ours) 384 86.0 94.4 97.6 77.4 85.5 91.4 95.0 73.6 86.2 93.1 95.2

[3, 32, 2]. ROADMAP falls in the latter category. We use the same setup as in Section 4.1 and follow
standard practices for ResNet-50 [37, 46, 1] by using larger images (256× 256 on SOP and CUB)
and using max instead of average pooling and layer normalization for CUB.

Using the popular ResNet-50 backbone, ROADMAP establishes a new state of the art across all meth-
ods for SOP and the challenging INaturalist dataset and outperforms all previous AP approximations
on CUB, while being competitive with the other two top performers (ProxyNCA++ and SEC). R@k
improvements are consistent on all datasets with a ∼2pts R@1 increase on INaturalist and ∼3pts
increase on SOP compared to SmoothAP, the best performing AP approximation from the literature.

Switching the backbone to the more recent vision transformer architecture DeiT [5, 38], further lifts
the performances of ROADMAP by several point, from 3 to 9 points depending on the dataset, with
a smaller embedding size (384 vs 512). The decomposable AP approximation ROADMAP also
outperforms by a significant margin IRTR, the DeiT architecture for image retrieval introduced in [7]
trained with a contrastive loss. Overall ROADMAP achieves state-of-the-art performances across all
three datasets by a significant margin.

4.3 Model Analysis

We show in Fig. 4 the impact of the main ROADMAP hyperparameters on INaturalist. The relative
weighting λ from Eq. (2) controls the balance between our two training objectives LSupAP and Lcalibr.:
λ = 0 reduces LROADMAP to LSupAP while λ = 1 to Lcalibr.. We can see in Fig. 4a that training with
the complete LROADMAP with both Lcalibr. and LSupAP is always better than using only one of the
two losses. Note that results are stable in the [0.2, 0.8] range with a consistent ∼1.5pt increase,
demonstrating the robustness of ROADMAP to this hyperparameter tuning.

8

0 0.2 0.5 0.8 1

23

24

25

26

27

28

m
A

P@
R

(a) mAP@R vs λ for LROADMAP

10−1 100 101 102 103 104
24

24.5

25

25.5

26

26.5

(b) mAP@R vs ρ for LSupAP

0 0.2 0.4 0.6 0.8
16

18

20

22

24

26

28

LROADMAP
LSupAP

(c) mAP@R vs α− β for Lcalibr.

Figure 4: Analysis of ROADMAP hyperparameters on INaturalist (batch size 224).

Fig. 4b shows the influence of the slope ρ that controls the linear regime in H− and determines the
amount of gradient backpropagated for negative samples with a (wrong) high score. As shown in
Fig. 4b, the improvement is important and stable in [10, 100]. Note that ρ > 0 already improves the
results compared to ρ = 0 in [2]. There is an important decrease when ρ� 100 probably due to the
high gradient that takes over the signal for correctly ranked samples.
The impact of the margin α− β in Lcalibr. is shown in Fig. 4c. Once again, ROADMAP exhibits a
robust behaviour w.r.t. the values of its hyperparameters: any margin in the [0.1, 0.6] range results in
an improvement in mAP@R compared to the LSupAP baseline without the decomposability loss. Best
results are achieved with smaller margins 0.1 < α− β < 0.4.

Fig. 5 shows the improvement in mAP@R on the three datasets when adding Lcalibr. to LSupAP. We
can see that the increase becomes larger as the batch size gets smaller. This confirms our intuition
that the decomposability in Lcalibr. has a stronger effect on smaller batch sizes, for which the AP
estimation is noisier and DGAP larger. This is critical on the large-scale dataset INaturalist where
the batch AP on usual batch sizes is a very poor approximation of the global AP.

3264128224384
0

1

2

3

3.4

2.62.42.3
2

(a) CUB

3264128224384
0

0.5

1

1.5

2

2.5 2.42.4
2.2

1.7

1.2

(b) SOP

3264128224384
0

5

10

15

20 18.4
16.3

10.3

5.8
3.2

(c) INaturalist

Figure 5: Relative increase of the mAP@R vs batch size when adding Lcalibr. to LSupAP.

As a qualitative assessment, we show in Fig. 6 some results of ROADMAP on INaturalist. We show
the queries (in purple) and the 4 most similar retrieved images (in green). We can appreciate the
semantic quality of the retrieval. More qualitative results are provided in supplementary Sec. C.

5 Conclusion

This paper introduces the ROADMAP method for gradient-based optimization of average precision.
ROADMAP is based on a smooth rank approximation, leading to the LSupAP being both accurate and
robust. To overcome the lack of decomposability in AP, ROADMAP is equipped with a calibration
lossLcalibr. which aims at reducing the decomposability gap. We provide theoretical guarantees as well
as experiments to assess this behavior. Experiments show that ROADMAP can combine the strength
of ranking methods with the simplicity of a batch strategy. Without bells and whistles, ROADMAP is
able to outperform state-of-the-art performances on three datasets, and remains effective even with
small batch sizes.

As any work on image retrieval, our contribution could be applied to critical applications in surveil-
lance scenarios, e.g. face recognition or person re-identification. ROADMAP is neither worse nor

9

Figure 6: Results on INaturalist: a query (purple) with the 4 most similar retrieved images (green).

better than previous work in this regard. Our work is also a data-driven learning method, and thus
inherits the risk of perpetuating dataset biases. Future work will focus on improving fair and accurate
retrieval by reducing dataset biases. We also plan to relax the need for full supervision to tackle
situations more representative to in-the-wild scenarios.

Acknowledgement This work was granted access to the HPC resources of IDRIS under the
allocation 2021-AD011012645 made by GENCI.

10

References
[1] Malik Boudiaf, Jérôme Rony, Imtiaz Masud Ziko, Eric Granger, Marco Pedersoli, Pablo

Piantanida, and Ismail Ben Ayed. A unifying mutual information view of metric learning:
cross-entropy vs. pairwise losses. In European Conference on Computer Vision, pages 548–564.
Springer, 2020.

[2] Andrew Brown, Weidi Xie, Vicky Kalogeiton, and Andrew Zisserman. Smooth-ap: Smoothing
the path towards large-scale image retrieval. In European Conference on Computer Vision,
pages 677–694. Springer, 2020.

[3] Fatih Cakir, Kun He, Xide Xia, Brian Kulis, and Stan Sclaroff. Deep metric learning to rank. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1861–1870, 2019.

[4] Micael Carvalho, Rémi Cadène, David Picard, Laure Soulier, Nicolas Thome, and Matthieu
Cord. Cross-modal retrieval in the cooking context: Learning semantic text-image embeddings.
In Kevyn Collins-Thompson, Qiaozhu Mei, Brian D. Davison, Yiqun Liu, and Emine Yilmaz,
editors, The 41st International ACM SIGIR Conference on Research & Development in Infor-
mation Retrieval, SIGIR 2018, Ann Arbor, MI, USA, July 08-12, 2018, pages 35–44. ACM,
2018.

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[6] Thibaut Durand, Nicolas Thome, and Matthieu Cord. Exploiting negative evidence for deep
latent structured models. IEEE Transactions on Pattern Analysis and Machine Intelligence,
41(2):337–351, 2019.

[7] Alaaeldin El-Nouby, Natalia Neverova, Ivan Laptev, and Hervé Jégou. Training vision trans-
formers for image retrieval. arXiv preprint arXiv:2102.05644, 2021.

[8] Martin Engilberge, Louis Chevallier, Patrick Perez, and Matthieu Cord. Sodeep: A sorting deep
net to learn ranking loss surrogates. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

[9] Fartash Faghri, David J. Fleet, Jamie Ryan Kiros, and Sanja Fidler. VSE++: improving visual-
semantic embeddings with hard negatives. In British Machine Vision Conference 2018, BMVC
2018, Newcastle, UK, September 3-6, 2018, page 12. BMVA Press, 2018.

[10] Weifeng Ge. Deep metric learning with hierarchical triplet loss. In Proceedings of the European
Conference on Computer Vision (ECCV), September 2018.

[11] Albert Gordo, Jon Almazán, Jérôme Revaud, and Diane Larlus. End-to-end learning of deep
visual representations for image retrieval. Int. J. Comput. Vis., 124(2):237–254, 2017.

[12] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an
invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06), volume 2, pages 1735–1742. IEEE, 2006.

[13] Ben Harwood, Vijay Kumar B G, Gustavo Carneiro, Ian Reid, and Tom Drummond. Smart
mining for deep metric learning. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), Oct 2017.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. corr abs/1512.03385 (2015), 2015.

[15] Kun He, Fatih Cakir, Sarah Adel Bargal, and Stan Sclaroff. Hashing as tie-aware learning to
rank. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

11

[16] Kun He, Yan Lu, and Stan Sclaroff. Local descriptors optimized for average precision. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[17] Pierre Jacob, David Picard, Aymeric Histace, and Edouard Klein. Metric learning with horde:
High-order regularizer for deep embeddings. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6539–6548, 2019.

[18] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734, 2017.

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[20] Marc T. Law, Nicolas Thome, and Matthieu Cord. Learning a distance metric from relative
comparisons between quadruplets of images. Int. J. Comput. Vis., 121(1):65–94, 2017.

[21] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[22] R. Manmatha, Chao-Yuan Wu, Alexander J. Smola, and Philipp Krähenbühl. Sampling matters
in deep embedding learning. In IEEE International Conference on Computer Vision, ICCV
2017, Venice, Italy, October 22-29, 2017, pages 2859–2867. IEEE Computer Society, 2017.

[23] Brian Mcfee and Gert Lanckriet. Metric learning to rank. In In Proceedings of the 27th annual
International Conference on Machine Learning (ICML, 2010.

[24] Pritish Mohapatra, Michal Rolínek, C.V. Jawahar, Vladimir Kolmogorov, and M. Pawan Kumar.
Efficient optimization for rank-based loss functions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

[25] Yair Movshovitz-Attias, Alexander Toshev, Thomas K Leung, Sergey Ioffe, and Saurabh Singh.
No fuss distance metric learning using proxies. In Proceedings of the IEEE International
Conference on Computer Vision, pages 360–368, 2017.

[26] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A metric learning reality check. In
European Conference on Computer Vision, pages 681–699. Springer, 2020.

[27] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. Pytorch metric learning, 2020.

[28] Marin Vlastelica P., Anselm Paulus, Vít Musil, Georg Martius, and Michal Rolínek. Differenti-
ation of blackbox combinatorial solvers. In ICLR, 2020.

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[30] Filip Radenovic, Giorgos Tolias, and Ondrej Chum. CNN image retrieval learns from bow:
Unsupervised fine-tuning with hard examples. In Bastian Leibe, Jiri Matas, Nicu Sebe, and
Max Welling, editors, Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part I, volume 9905 of Lecture Notes in
Computer Science, pages 3–20. Springer, 2016.

[31] Jerome Revaud, Jon Almazán, Rafael S Rezende, and Cesar Roberto de Souza. Learning with
average precision: Training image retrieval with a listwise loss. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 5107–5116, 2019.

[32] Michal Rolínek, Vít Musil, Anselm Paulus, Marin Vlastelica, Claudio Michaelis, and Georg
Martius. Optimizing rank-based metrics with blackbox differentiation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7620–7630, 2020.

12

[33] Karsten Roth, Biagio Brattoli, and Bjorn Ommer. Mic: Mining interclass characteristics for
improved metric learning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 8000–8009, 2019.

[34] Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc., 2016.

[35] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted
structured feature embedding. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[36] Yumin Suh, Bohyung Han, Wonsik Kim, and Kyoung Mu Lee. Stochastic class-based hard
example mining for deep metric learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

[37] Eu Wern Teh, Terrance DeVries, and Graham W Taylor. Proxynca++: Revisiting and revitalizing
proxy neighborhood component analysis. In European Conference on Computer Vision (ECCV).
Springer, 2020.

[38] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. arXiv
preprint arXiv:2012.12877, 2020.

[39] Evgeniya Ustinova and Victor Lempitsky. Learning deep embeddings with histogram loss.
In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

[40] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011
Dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

[41] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R Scott. Multi-similarity
loss with general pair weighting for deep metric learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 5022–5030, 2019.

[42] Xun Wang, Haozhi Zhang, Weilin Huang, and Matthew R Scott. Cross-batch memory for
embedding learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6388–6397, 2020.

[43] Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

[44] Chao-Yuan Wu, R Manmatha, Alexander J Smola, and Philipp Krahenbuhl. Sampling matters
in deep embedding learning. In Proceedings of the IEEE International Conference on Computer
Vision, pages 2840–2848, 2017.

[45] Eric Xing, Michael Jordan, Stuart J Russell, and Andrew Ng. Distance metric learning with
application to clustering with side-information. In S. Becker, S. Thrun, and K. Obermayer,
editors, Advances in Neural Information Processing Systems, volume 15. MIT Press, 2003.

[46] Hong Xuan, Abby Stylianou, Xiaotong Liu, and Robert Pless. Hard negative examples are hard,
but useful. In European Conference on Computer Vision, pages 126–142. Springer, 2020.

[47] Omry Yadan. Hydra - a framework for elegantly configuring complex applications. Github,
2019.

[48] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten Joachims. A support vector method
for optimizing average precision. In Proceedings of the 30th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’07, pages 271–278,
New York, NY, USA, 2007. ACM.

[49] Andrew Zhai and Hao-Yu Wu. Making classification competitive for deep metric learning.
CoRR, abs/1811.12649, 2018.

13

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

[50] Dingyi Zhang, Yingming Li, and Zhongfei Zhang. Deep metric learning with spherical embed-
ding. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 18772–18783. Curran Associates,
Inc., 2020.

[51] Yuehua Zhu, Muli Yang, Cheng Deng, and Wei Liu. Fewer is more: A deep graph metric
learning perspective using fewer proxies. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 17792–17803. Curran Associates, Inc., 2020.

14

A ROADMAP model

A.1 Properties of SupAP & comparison to SmoothAP

We further discuss and give additional explanations of the property of our LSupAP loss function, and
especially its comparison with respect to the SmoothAP [2] baseline.

As shown in Fig. 1.a of the main paper, and discussed in Section 3.1 ("Comparison to SmoothAP"),
the smooth rank approximation in [2] has several drawbacks, that we show below:

Figure 7: Limitation of the smooth rank approximation in [2]: contradictory gradient flow for the
positives samples x1 and x2 (in green), vanishing gradient for the negative example x3 (in red), and
no guarantees of having an upper bound of LAP.

Specifically, we explain in more detail the following three limitations identified in the main paper
for SmoothAP [2], which comes from the use of the sigmoid function to approximate the Heaviside
(step) function for computing the rank:

i Contradictory gradient flow for positives samples: Firstly we can see on the toy dataset of
Fig. 7 that the gradients of the two positive examples (in green) with SmoothAP have opposite
directions. The positive with the lowest rank x1 has a gradient in the good direction, since it
leads to increase x1’s score because the correct ordering is not reached (the negative instance
x3 has a better rank). But the gradient of the positive with the highest rank x2 is on the wrong
direction, since it tends to decrease x2’s score. This is an undesirable behaviour, which comes
from the use of the sigmoid in LSmoothAP. In the example of Fig. 7, we can actually show that

∂LSmoothAP

∂s1
= −∂LSmoothAP

∂s2

To see this we write :

∂LSmoothAP

∂s1
=
∂LSmoothAP

∂ rank+(x1)
· ∂ rank+(x1)

∂s1
+

∂LSmoothAP

∂ rank+(x2)
· ∂ rank+(x2)

∂s1

+
∂LSmoothAP

∂ rank−(x1)
· ∂ rank−(x1)

∂s1
+

∂LSmoothAP

∂ rank−(x2)
· ∂ rank−(x2)

∂s1

Because rank−(x2) = σ(s3−s2τ), we have ∂ rank−(x2)
∂s1

= 0 and ∂ rank−(x1)
∂s1

= 0 in the example
of Fig. 7, because rank−(x1) = σ(s3−s1τ) and s3 − s1 falls into the saturation regime of the
sigmoid. We get a similar result for the derivative of LSmoothAP wrt. s2 :

∂LSmoothAP

∂s2
=

∂LSmoothAP

∂ rank+(x1)
· ∂ rank+(x1)

∂s2
+

∂LSmoothAP

∂ rank+(x2)
· ∂ rank+(x2)

∂s2

Furthermore we have :

∂ rank+(x1)

∂s1
= −∂ rank+(x1)

∂s2

15

(a) When replacing H+ by the Heaviside function
in SmoothAP we stop the unexpected behaviour of
the gradient flow. However there is still vanishing
gradients.

(b) Our LSupAP has gradients that do not stop until the
correct ranking is achieved.

Figure 8: We illustrates the different steps to built LSupAP. On Fig. 8a we change H+ to be the true
Heaviside (step) function. On Fig. 8b we replace the sigmoid by H− defined in Eq. (4) of the main
paper. Using H+ and H−, LSupAP is an upper bound of LAP.

Indeed rank+(x1) = 1 + σ(s2−s1τ), such that ∂ rank+(x1)
∂s1

= −τ · σ(s2−s1τ)
(
1− σ(s2−s1τ)

)
and

∂ rank+(x1)
∂s2

= τ · σ(s2−s1τ)
(
1− σ(s2−s1τ)

)
. Similarly the derivatives of rank+(x2) wrt. s1

and s2 also have opposite signs: ∂ rank+(x2)
∂s1

= −∂ rank+(x2)
∂s2

. It concludes the proof that
∂LSmoothAP
∂s1

= −∂LSmoothAP
∂s2

.

ii Vanishing gradients: Secondly, SmoothAP [2] has vanishing gradients due to its use of the
sigmoid function. This is illustrated on the toy dataset in Fig. 7. The negative instance x3 has
a high score s3, but does not receive any gradient, which does not enable it to lower its score
although it would improve the overall ranking. This is because the score difference between x3

and x2 is large, i.e. s3 − s2 = 0.13. Similarly, s3 − s1 = 0.14. Consequently, both s3 − s2 and
s3 − s1 fall into the saturation regime of the sigmoid, preventing to propagate any gradient (see
Fig. 3c. in the main paper).

iii Finally, LSmoothAP is not an upper bound of LAP. The use of the sigmoid means that both rank+

and rank− can be over or under estimated. If rank+ is overestimated (resp. underestimated)
LSmoothAP underestimates LAP (resp. overestimates). And if rank− is overestimated (resp.
underestimated) LSmoothAP overestimates LAP (resp. overestimated). Therefore, LSmoothAP can be
larger or lower than LAP in general. In the example of Fig. 7, we show that LSmoothAP is lower
than LAP.

We address those three issues with LSupAP:

i Using the the true Heaviside (step) function H+ for rank+ allows to have the expected
behaviour regarding the gradients of positives. When Changing H+ for rank+ in Fig. 8a, we can
see that we fix the problem of opposite gradients for the positive examples x1 and x2 - although
the gradient is zero.

ii Using H− for rank− overcomes vanishing gradients. By using H− in Eq. (4) in submission,
we design a linear function for positive (sj − sk) values, where sj (resp. sk) is the score of a
negative (resp. positive) example - see Fig. 3b in the main paper. We can see in Fig. 8b that this
change enables to have gradients in the correct directions for the two positive instances x1 and
x2 (tending to increase their scores), and for the negative instance x3 (tending to decrease its
score).

iii LSupAP is an upper bound of LAP. By the proposed design of H− in Eq. (4) in submission, we
have rank−s (k) ≥ rank−(k). Since we do not approximate rank+(k) by keeping the Heaviside
function, it leads to rank+(k)

rank+(k)+rank−
s (k)

≤ rank+(k)
rank+(k)+rank−(k)

, and therefore LSupAP ≥ LAP.

Overall, LSupAP has all the desired properties : i) A correct gradient flow during training, ii) No
vanishing gradients while the correct ranking is not reached, iii) Being an upper bound on the AP
loss LAP.

16

A.2 Properties of the Lcalibr. loss function

We remind the reader of the definition of the decomposability gap given in Eq. (6) of the main paper.

DGAP(θ) =
1

K

K∑
b=1

APbi (θ)− APi(θ)

We illustrates the decomposability gap, DGAP with the toy dataset of Fig. 9. The decomposability
gap comes from the fact that the AP is not decomposable in mini-batches as we discuss in the Sec.
3.2 of the main paper. The motivation behind Lcalibr. is thus to force the scores of the different batches
to aligned as illustrated in the Fig. 2b of the main paper.

Figure 9: Illustration of the decomposability gap on a toy dataset.

Proof of Eq. (8): Upper bound on the DGAP with no LAP We choose a setting for the proof of
the upper bound similar to the one used for training, i.e. all the batch have the same size, and the
number of positive instances per batch (i.e. Pbi) is the same.

Eq. (8) from the main paper gives an upper bound for DGAP . This upper bound is given in the worst
case: when the AP has the lowest value guaranteed by the AP on each batch. We illustrate this case
in Fig. 10.

In Eq. (8) from the main paper the 1 in the right hand term comes from the average of AP over all
batches:

1

K

K∑
b=1

AP bi (θ) = 1

We then justify the term in the parenthesis of Eq. (8) in the main paper, which is the lower bound
of the AP. In the global ordering the positive instances are ranked after all the positive instances
from previous batches giving the following rank+: j + |P1

i |+ · · ·+ |P
b−1
i |, with j the rank+ in

the batch, Positive instances are also ranked after all negative instances from previous batches giving
rank−: |N 1

i |+ · · ·+ |N
b−1
i |.

Therefore we obtain the resulting upper bound of Eq. (8) of the main paper:

0 ≤ DGAP ≤ 1− 1∑K
b=1 |Pbi |

 K∑
b=1

B∑
j=1

j + |P1
i |+ · · ·+ |P

b−1
i |

j + |P1
i |+ · · ·+ |P

b−1
i |+ |N 1

i |+ · · ·+ |N
b−1
i |

Proof of Eq. (9): Upper bound on the DGAP with LAP In the main paper we refine the upper
bound on DGAP in Eq. (9) by adding Lcalibr. which calibrates the absolute scores across the mini-
batches.

17

Figure 10: The worst case when computing the global AP would be that each batch is juxtaposed.

We now write that each positive instance that respects the constraint of Lcalibr. is ranked after
the positive instances of previous batch that respect the constraint giving the following rank+:
j +G+

1 + · · ·+G+
b−1, with j the rank+ in the current batch. Positive instances are also ranked

after the negative instances of previous batches that do not respect the constraints yielding rank− :
E−1 + · · ·+ E−b−1.

We then write that positive instances that do not respect the constraints are ranked after all positive
instances from previous batches and the positive instances respecting the constraints of the current
batch giving rank+ : j +G+

b |P1
i |+ · · ·+ |P

b−1
i |. They also are ranked after all the negative

instances from previous batches giving rank− : |N 1
i |+ · · ·+ |N

b−1
i |.

Resulting in Eq. (9) from the main paper:

0 ≤ DGAP ≤ 1− 1∑K
b=1 |Pbi |

(
K∑
b=1

[G+
b∑

j=1

j +G+
1 + · · ·+G+

b−1

j +G+
1 + · · ·+G+

b−1 + E−1 + . . . E−b−1
+

E+
b∑

j=1

j +G+
b + |P1

i |+ · · ·+ |P
b−1
i |

j +G+
b + |P1

i |+ · · ·+ |P
b−1
i |+ |N 1

i |+ · · ·+ |N
b−1
i |

])

A.3 Choice of δ

In the main paper we introduce δ in Eq. (4) to define H−. We choose δ as the point where the
gradient of the sigmoid function becomes low< ε, and we then have δ = τ · ln 1−ε

ε . This is illustrated
in Fig. 11. For our experiments we use ε = 10−2 giving δ ' 0.05.

B Experiments

B.1 Metrics

We detail here the performance metrics that we use to evaluate our models.

Recall@K The Recall@K metrics is often used in the literature. For a single query the Recall@K
is 1 if a positive instance is in the K nearest neighbors, and 0 otherwise. The Recall@K is then
averaged on all the queries. Researcher use different values of K for a given dataset (e.g. 1, 2, 4, 8 on
CUB).

R@K =
1

M

M∑
i=1

r(i), where r(i) =

{
1 if a positive instance has a ranking smaller than i
0 otherwise

(10)

18

sk sj

0.00

0.05

0.10

0.15

0.20

0.25

= ln 1

(sk sj)

Figure 11: Gradient of the temperature scaled sigmoid (τ = 0.01) vs the difference of scores sk − sj
of a negative pair.

mAP@R Recently, the mAP@R has been introduced in [26]. The authors show that this metric is
less noisy and better captures the performance of a model. The mAP@R is a partial AP, computed
on the R first instances retrieved, with R being set to the number of positive instances wrt. a query.
mAP@R is a lower bound of the AP (mAP@R = AP when the correct ranking is achieved, i.e.
mAP@R = AP = 1).

mAP@Ri =
1

R

R∑
j=1

P (j), where P (j) =

{
precision at j if the jth retrieval is correct
0 otherwise

(11)

B.2 Detail on experimental setup

In this section, we describe the experimental setup used in the Sec. 4.1 of the main paper, and the
Sec. B of the supplementary.

We use standard data augmentation strategy during training: images are resized so that their shorter
side has a size of 256, we then make a random crop that has a size between 40 and 256, and aspect
ratio between 3/4 and 4/3. This crop is then resized to 224x224, and flipped horizontally with a 50%
chance. During evaluation, images are resized to 256 and then center cropped to 224.

We use two different strategy to sample each mini-batch. On CUB and INaturalist we choose a batch
size (e.g. 128) and a number of samples per classes (e.g. 4). We then randomly sample classes (e.g.
32) to construct our batches. For SOP we use the hard sampling strategy from [3]. For each pair
of category (e.g. bikes and coffee makers) we use the preceding sampling strategy. This sampling
techniques is used because it yields harder and more informative batches. The intuition behind this
sampling is that it will be harder to discriminate two bikes from one another, than a bike and a sofa.

We train the ResNet-50 models using Adam [19]. On CUB we train our models with a learning rate
of 10−6 for 200 epochs. For SOP and INaturalist we take the same scheduling as in [2]. We set the
learning rate for the backbone to 10−5 and the double for the added linear projection layer. We drop
the learning rate by 70% on the epochs 30 and 70. Finally the models are trained for 100 epochs on
SOP and 90 on INaturalist (as in [2]).

We train the DeiT transformers models using AdamW [21] as in [7]. On INaturalist we use the same
schedule as when training ResNet-50, with a learning rate of 10−5. On SOP we train for 75 epochs
with a learning rate of 10−5 which is dropped by 70% at epochs 25 and 50. Finally on CUB we train
the models for about 100 epochs with a learning rate of 10−6.

19

B.3 Details of the backbones used

We briefly describe the backbones used throughout out the experiments presented in the main paper
and the supplementary.

ResNet-50 [14] We use the well-known convolutional neural network ResNet-50. We remove the
linear classification layer. We also add a linear projection layer to reduce the dimension (e.g. from
2048 to 512).

DeiT [38] Recently transformer models have been introduced for computer vision [5, 38]. They
establish new state-of-the-art performances on computer vision tasks. We use the DeiT-S from [38]
which has less parameters than the ResNet-50 (∼ 21 million for DeiT vs 25 for ResNet-50). We use
the pretrained version with distillation from [38] and its implementation in the timm library [43].

B.4 ROADMAP validation

Comparison to AP approximations We compare in Table 4 ROADMAP vs other ranking losses
on different settings : a batch size of 128 and two backbones (ResNet-50 and DeiT). We conduct this
comparison on 5 runs to show the statistical improvement of our method compared to other ranking
losses baselines.

We observe that our method outperforms recent ranking losses on the two backbones and the three
datasets. On SOP and CUB, ROADMAP has a high increase for the mAP@R, of +1pt on CUB and
+2pt on SOP. The performance improvement is greater on the large scale dataset INaturalist with
∼+3.5pt with a ResNet-50 backbone and ∼+2pt with a DeiT backbone of mAP@R. This trend is the
same as in the comparison of the main paper (Table 1).

Table 4: Comparison between ROADMAP and state-of-the-art AP ranking based losses on three
image retrieval datasets. Bck in the first column stands for bakcbone. Models are trained with a batch
size of 128.

CUB SOP INaturalist

Bck Method R@1 mAP@R R@1 mAP@R R@1 mAP@R

R
es

N
et

-5
0 FastAP [3] 61.28±0.37 24.11±0.16 78.97±0.05 52.23±0.09 57.23±0.05 22.17±0.05

SoftBinAP [31] 61.70±0.10 24.29±0.16 80.30±0.21 53.69±0.27 60.88±0.06 23.22±0.05
BlackBoxAP [32] 61.96±0.28 23.83±0.14 80.97±0.07 54.49±0.15 59.53±0.12 19.62±0.02
SmoothAP [2] 62.45±0.48 24.32±0.1 81.13±0.05 54.74±0.16 64.48±0.05 24.33±0.07
ROADMAP (ours) 64.05±0.51 25.27±0.12 82.20± 0.09 56.64±0.09 68.15±0.10 27.01±0.10

D
ei

T

FastAP [3] 73.42±0.22 31.96±0.06 82.92±0.07 59.06±0.03 62.18±0.07 25.48±0.10
SoftBinAP [31] 74.84±0.11 33.57±0.08 84.09±0.05 60.53±0.07 65.97±0.13 27.57±0.09
BlackBoxAP [32] 75.45±0.22 33.97±0.10 84.07±0.09 60.20±0.05 70.29±0.10 29.44±0.06
SmoothAP [2] 76.02±0.14 34.69±0.08 84.28±0.06 60.49±0.17 69.80±0.08 29.56±0.04
ROADMAP (ours) 77.14±0.12 36.30±0.08 85.44± 0.06 62.73±0.06 72.81±0.11 31.31±0.10

We perform a paired student t-test to further asses the statistical significance of the performance boost
obtained with ROADMAP. We compute the p-values for both the R@1 and mAP@R: it turns out that
the p-values are never larger than 0.001, meaning that the gain is statistically significant (with a risk
less than 0.1%).

Comparison to cross batch memory (XBM) [42]. XBM stores the embeddings of previously
seen batches to alleviate complex batch sampling and better approximate AP on the whole dataset.
Although XBM has a low memory overhead (a few hundreds megabytes on SOP), it is time consuming.
We ran experiments storing the entire dataset for SOP (60k embeddings), but for INaturalist we
could not train while storing all the dataset in tractable time. We chose to store the same amount of
embeddings as for SOP : 60k embeddings which is about 17% of the training set.

We can see in Table 5 that for both datasets XBM has a x3 compute time overhead. Moreover
ROADMAP outperforms XBM on both datasets. On SOP there is a ∼+2pt increase on both metrics.

20

The gap is especially large for INaturalist, where we did not store all the embeddings, which affects
drastically the performances of the XBM. There is a difference of 5pt on the R@1 and more than 6pt
on the mAP@R.

Table 5: Our method compared to cross batch memory [42]. The unit of time (m/e) stands for minutes
per epoch.

SOP INaturalist

Method R@1 mAP@R time (m/e) ↓ R@1 mAP@R time (m/e) ↓
XBM [42] 80.6 54.9 6 59.3 18.5 34

ROADMAP (ours) 82.0 56.5 2 64.2 25.1 12

Ablation studies In Table 6 we extend the ablation studies of the main paper (Table 2 of main paper)
to other settings, including more batch sizes (32, 128, 224, 384) and two backbones (ResNet-50 and
DeiT). On all settings LSupAP outperforms the LSmoothAP baseline by almost ∼+0.5pt consistently, and
almost +1pt on every setting for INaturalist. When we add Lcalibr. the gain is further increased. As
noticed in Table 2 (main paper) the gain when adding Lcalibr. is particularly noticeable on the large
scale dataset INaturalist with boost in performances that can be up to +3.3pt of mAP@R for the
ResNet-50 with a batch size 32.

In Table 7 we extend ablation studies with a transformer backbone (DeiT). We observe the same
trend as in Table 6. LSupAP is consistently better than the LSmoothAP baseline, with gain up to more
than 1pt (e.g. on batch size 128 on INaturalist). Lcalibr. further lifts the performances on the three
datasets and all batch sizes.

Comparison to state of the art method We show in Table 8 the impact of increasing the embedding
dimension when using ResNet-50. All metrics improve on the three datasets when the embedding
dimension increases. We observe a gain particularly important on CUB and SOP with ∼+1pt in R@1
and mAP@R.

Choosing an embedding size of 2048 further boost the performances of ROADMAP, yielding
competitive performances on CUB and state-of-the-art performances for SOP and INaturalist.

21

Table 6: Ablation study for the impact of our two contribution vs the SmoothAP baseline for the three
datasets and different batch sizes, with a ResNet-50 backbone [14]

CUB SOP INaturalist

BS Method H− Lcalibr. R@1 mAP@R R@1 mAP@R R@1 mAP@R

32
SmoothAP 7 7 61.84 23.76 79.96 53.21 53.25 16.4
SupAP 3 7 62.58 24.12 80.51 53.85 55.01 17.13
ROADMAP 3 3 63.69 24.97 80.74 54.68 56.43 20.43

128
SmoothAP 7 7 62.81 24.44 81.19 54.96 64.53 24.26
SupAP 3 7 63.18 24.9 81.72 55.65 65.79 24.77
ROADMAP 3 3 64.18 25.38 82.18 56.64 68.28 27.13

224
SmoothAP 7 7 62.93 24.69 81.2 54.73 66.62 26.08
SupAP 3 7 64.08 25.13 81.88 55.75 67.43 26.32
ROADMAP 3 3 64.65 25.51 82.3 56.55 69.28 27.74

384
SmoothAP 7 7 63.69 24.89 81.45 55.1 67.39 26.77
SupAP 3 7 64.64 25.27 81.94 55.78 68.37 27.24
ROADMAP 3 3 64.69 25.36 82.31 56.47 69.19 27.85

Table 7: Ablation study for the impact of our two contribution vs the SmoothAP baseline for the three
datasets and different batch sizes, with a DeiT backbone [38]

CUB SOP INaturalist

BS Method H− Lcalibr. R@1 mAP@R R@1 mAP@R R@1 mAP@R

128
SmoothAP 7 7 76.2 34.7 84.16 60.18 69.83 29.49
SupAP 3 7 76.33 34.91 84.74 61.29 71.12 30.5
ROADMAP 3 3 77.09 35.76 85.44 62.57 72.82 31.36

224
SmoothAP 7 7 76.38 35.33 84.3 60.49 70.55 30.25
SupAP 3 7 76.47 35.67 84.77 61.38 71.9 31.31
ROADMAP 3 3 77.14 36.18 85.56 62.75 73.64 31.82

384
SmoothAP 7 7 76.72 35.86 84.66 61.26 71.09 30.89
SupAP 3 7 77.13 36.17 85.01 61.76 72.55 31.89
ROADMAP 3 3 77.38 36.23 85.35 62.29 73.64 32.12

Table 8: Difference in performance when using an embedding size of 512 vs 2048 with a ResNet-50
backbone, on the three datasets. Performances are obtained with the same setup as described in the
Sec. 4.2 of the main paper.

CUB SOP INaturalist

Method dim R@1 mAP@R R@1 mAP@R R@1 mAP@R

ROADMAP (ours) 512 68.5 27.97 83.19 58.05 69.19 27.85
ROADMAP (ours) 2048 69.87 28.8 83.77 59.38 69.62 27.87

22

B.5 Model analysis

Hyperparameters In ?? we show the impact of the hyperparameters of LSupAP. We plot the
mAP@R vs τ in Fig. 12a and mAP@R vs ρ in Fig. 12b. The experiments are conducted on SOP with
a batch size of 128.

We observe on Fig. 12a that LSupAP is stable with small values of τ , i.e. in the range [0.001, 0.05]. As
a reminder we use the default value τ = 0.01 in all our results, as it was the suggested value from the
SmoothAP paper [2].

We conduct a study of the impact of ρ in Fig. 12b. We find that LSupAP is very stable wrt. this
hyperparameter. Performances are improving with a greater value of ρ before dropping after 104.
The trend follows what was observed in the Fig. 4b of the main paper, although this time using a
value if ρ = 104 yields better performances. Using cross-validation to choose an optimal value for ρ
may lead to even better performances for LSupAP.

10−3 10−2 10−1 100
0

10

20

30

40

50

m
A

P@
R

(a) mAP@R vs τ for LSupAP.

10−1 100 101 102 103 104
55

55.2

55.4

55.6

55.8

56

(b) mAP@R vs ρ for LSupAP.

Figure 12: Analysis of LSupAP hyperparameters on SOP (batch size 128).

Decomposability gap In Table 9 we measure the relative decrease of the decomposability gap
DGAP on SOP and CUB test sets. On both datasets we can see that Lcalibr. decreases the decompos-
ability gap.

Table 9: Relative decrease of the decomposability gap when adding Lcalibr. to LSupAP (ROADMAP).
Dataset decrease of DGAP
CUB 3.7%
SOP 5.4%

B.6 Source code

We describe in this section the software used for our work, and discuss the computation costs
associated with training models presented in this paper.

Librairies We use several Python libraries often used in image retrieval.

We use PyTorch [29] as a general framework to implement our neural networks, losses and training
loops. We use several utilities from PyTorch Metric Learing [27], an open-source Python library
focused on helping researcher working on image retrieval and metric learning. We use Faiss [18] to
compute metrics (i.e. to perform nearest neighbours search), which is a Python library often used
in image retrieval to compute the rankings or the similarity matrix. To load and use the transformer
models we use timm [43], a library implementing recent computer vision models, with pretrained
weights for most of them. To handle all our config files, we use Hydra [47], this library makes it
possible to combine the use of Yaml configuration files and overriding them using the command line.

23

We use the publicly available implementation of SoftBinAP2 [31] which is under a BSD-3 license.
The original codes of SmoothAP3 [2], BlackBox4 [28, 32] are under an MIT license. For FastAP [3]
we use the implementation from [27] (MIT license), the original implementation of FastAP5 is also
under an MIT license.

Compute costs We use mixed-precision learning offered within PyTorch [29]. The time and
memory consumption are reduced by a factor between 2 and 3/2 with no notable difference in
performances. We could train all models on 16GiB GPUs, except for models trained with a batch
size of 384 which requires a 32GiB GPU.

CUB Models take between 30 minutes and 1 hour to train on a Nvidia Quadro RTX 5000 with 16GiB.

SOP Models take between 4 and 8 hours to train on a Nvidia Quadro RTX 5000 with 16GiB.

INaturalist To train models on INaturalist we were granted access to a HPC cluster with Tesla V-100
GPUs (of 16GiB or 32GiB). Models train for approximately 20 hours.

We could not train models with mixed-precision when using BlackBox [32]. Models trained with it
took longer to train (e.g. 30 hours on INaturalist) and are more demanding on memory (almost 16GiB
with a batch size of 128 while models trained with other loss functions required less than 10Gib).

C Qualitative results

CUB As a qualitative assessment, we show in Fig. 13 some results of ROADMAP on CUB. We
show the queries (in purple) and the 10 most similar retrieved images, with relevant instances in green
and irrelevant instances in red.

SOP In Fig. 14 we perform the same assessment for SOP. In SOP there are fewer relevant instances
per query (in average 5). So even for queries that retrieved all the relevant instances, there will be
negative instances that have high ranks (in Fig. 14 ranks that are lower than 10).

INaturalist Finally we show on Fig. 15 some examples of queries and the 10 most similar instances
for a model trained with ROADMAP on INaturalist.

2https://github.com/naver/deep-image-retrieval
3https://github.com/Andrew-Brown1/Smooth_AP
4https://github.com/martius-lab/blackbox-backprop
5https://github.com/kunhe/FastAP-metric-learning

24

https://github.com/naver/deep-image-retrieval
https://github.com/Andrew-Brown1/Smooth_AP
https://github.com/martius-lab/blackbox-backprop
https://github.com/kunhe/FastAP-metric-learning

Figure 13: Qualitative results on CUB: a query (purple) with the 10 most similar instances. Relevant
(resp. irrelevant) instances are in green (resp. red).

25

Figure 14: Qualitative results on SOP: a query (purple) with the 10 most similar instances. Relevant
(resp. irrelevant) instances are in green (resp. red).

26

Figure 15: Qualitative results on INaturalist: a query (purple) with the 10 most similar instances.
Relevant (resp. irrelevant) instances are in green (resp. red).

27

	Introduction
	Related work
	Robust and decomposable AP training
	Robustness in smooth rank approximation
	Decomposable Average Precision

	Experiments
	ROADMAP validation
	State of the art comparison
	Model Analysis

	Conclusion
	ROADMAP model
	Properties of SupAP & comparison to SmoothAP
	Properties of the Lcalibr. loss function
	Choice of

	Experiments
	Metrics
	Detail on experimental setup
	Details of the backbones used
	ROADMAP validation
	Model analysis
	Source code

	Qualitative results

