
HAL Id: hal-03356509
https://hal.science/hal-03356509

Submitted on 28 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MatMorpher: A Morphing Operator for SVBRDFs
Alban Gauthier, Jean-Marc Thiery, Tamy Boubekeur

To cite this version:
Alban Gauthier, Jean-Marc Thiery, Tamy Boubekeur. MatMorpher: A Morphing Operator for
SVBRDFs. Eurographics Symposium on Rendering, Jun 2021, Saarbrücken, France. �hal-03356509�

https://hal.science/hal-03356509
https://hal.archives-ouvertes.fr

Eurographics Symposium on Rendering (DL-only Track) (2021)
A. Bousseau and M. McGuire (Editors)

MatMorpher: A Morphing Operator for SVBRDFs

Alban Gauthier1, Jean-Marc Thiery1, Tamy Boubekeur2

1LTCI, Télécom Paris, Institut Polytechnique de Paris, France
2Adobe

Input material

Linear interpolation

Input material Input material Input material

Linear interpolation Linear interpolation

Our interpolation Our interpolation Our interpolation

Figure 1: Our operator provides a structure-preserving morphing between pairs of materials. It prevents the washed-out effect caused by
linear blending and enhances the shape features during the interpolation between structured, semi-structured and unstructured materials.

Abstract
We present a novel morphing operator for spatially-varying bidirectional reflectance distribution functions. Our operator takes
as input digital materials modeled using a set of 2D texture maps which control the typical parameters of a standard BRDF
model. It also takes an interpolation map, defined over the same texture domain, which modulates the interpolation at each
texel of the material. Our algorithm is based on a transport mechanism which continuously transforms the individual source
maps into their destination counterparts in a feature-sensitive manner. The underlying non-rigid deformation is computed
using an energy minimization over a transport grid and accounts for the user-selected dominant features present in the input
materials. During this process, we carefully preserve details by mixing the material channels using a histogram-aware color
blending combined with a normal reorientation. As a result, our method allows to explore large regions of the space of possible
materials using exemplars as anchors and our interpolation scheme as a navigation mean. We also give details about our real
time implementation, designed to map faithfully to the standard physically-based rendering workflow and letting users rule
interactively the morphing process.

CCS Concepts
• Computing methodologies → Texturing; Reflectance modeling;

1. Introduction

The physically-based rendering (PBR) workflow [Bur12] [Kar13]
has become a standard for video games, visual special effects, prod-
uct design and architecture, enabling developers and artists to cre-
ate and share ready-to-use photorealistic materials among a wide
variety of applications. In this workflow, 3D surfaces are mapped

to a 2D texture space where their Spatially Varying Bidirectional
Reflectance Distribution Functions (SVBRDF) are encoded as a set
of bitmap images called PBR maps. These maps (e.g. Albedo, Nor-
mal, Roughness, ...) represent interpretable physically-based quan-
tities while modeling good and versatile approximations of real
world materials for the creative industries. The maps can be either

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Gauthier et al. / MatMorpher: A Morphing Operator for SVBRDFs

reconstructed from real-world photographs or generated procedu-
rally, using specialized tools such as Substance Designer or Quixel
Mixer. Unfortunately, both of these approaches to PBR material au-
thoring require advanced skills and a significant amount of time to
model convincing materials to be used by photorealistic renderers.

In this paper, we propose a new structure-preserving material in-
terpolation operator which allows to create new materials by simply
blending two existing ones while preserving their dominant fea-
tures all along the interpolation. We designed this operator to be:
(i) fast enough to provide real-time feedback, (ii) easily controlled
using an intuitive blending map, (iii) feature-preserving across the
multiple material channels. We stress the need of our technique to
support interactive editing of high resolution SVBRDF maps up to
a resolution of 4K.

Our method is based on a transport mechanism which continu-
ously transforms the individual input PBR maps into their destina-
tion counterparts in a feature-sensitive manner. Exploring such high
dimensional space could be naively achieved through linear inter-
polation but would then suffer from unwanted overlap of structures,
ghosting artifacts and a lack of sharpness in the output. To alleviate
these problems, we take inspiration from the image morphing com-
munity [Wol99] and first detect salient edges in the materials and
create a mapping in the form of a transport grid in order to preserve
important visual features during the interpolation. Each PBR map
is then carefully interpolated to avoid detail losses and ghosting
stemming from the naive interpolation. More precisely, we propose
the following contributions:

• an efficient operator to explore and design-by-interpolation
novel SVBRDFs based on an existing collection of materials,

• a transport grid model to guide the morphing process from the
dominant mesostructures of the materials,

• novel real-time detail-preserving mechanisms to blend albedo
and normal vectors consistently in this context.

2. Related work

Exemplar texture synthesis [WLKT09] [BZ17] provide means to
generate numerous variations of a texture, starting from an exem-
plar pattern. Specific variations of input textures have been stud-
ied, such as weathering texture simulations [BKCO16] which can
be used to synthesize general tileable, inhomogeneous and di-
rectional textures [MJH∗17] [ZSL∗17], but such techniques act
on a single input RGB texture. [RLW∗09] produce a 3D texture
tile from two input RGB textures and their feature masks to al-
low for spatially varying texturing of surfaces. We choose a more
lightweight approach, as their technique requires both high stor-
age and long precomputation for high resolution textures. Recently,
Guel et al. [GAD∗20] presented a semi-procedural approach that
avoids drawbacks of procedural textures and leverages advantages
of data-driven methods. This approach allows for material struc-
ture interpolation but requires a binary segmentation of the input
material, does not preserve the input features and is spatially but
not temporally stable.

The work of Matusik et al. [MZD05] is closely related to ours.
They present a system for designing novel textures starting from an

input database, allowing to smoothly interpolate textures in a pur-
posefully created space. Their work applies to RGB textures but
not SVBRDF maps, which lie in incompatible spaces (color, spa-
tial components, and distribution coefficients) and do not exhibit a
complete spatial redundancy. We provide a thorough comparison to
their method, which we reimplemented. [KPRN11] also focus on
RGB texture interpolation, by optimizing for the complete texture
metamorphosis, under an optical flow framework. In contrast, we
optimize for an advection field retargeting salient structures, be-
fore blending retargeted signals in a secondary phase (similar to
[MZD05]). Schuster et al. [STSK20] extended patch-based texture
generation to meshes, which uses a multiscale optimization to min-
imize the visual artifacts between patches. They propose height-
based blending as well as a histogram preserving blending (similar
to [HN18] [Bur19]) as a mean of interpolating between SVBRDF
maps. These methods do not tackle the problem of blending be-
tween two distinct materials however.

Two successive works [HN18] [Bur19] studied the synthesis of
infinite textures using a randomized texture tiling of a stochastic
input, preserving sharpness along the boundaries of each tile. As
we observed that the approach to RGB texture blending presented
in [MZD05] falls short with high-resolution images, we take in-
spiration from the aforementioned methods to preserve the albedo
sharpness in our morphing operator.

Material editing methods allow for the direct manipulation of ex-
isting BRDFs or SVBRDFs (see [SPN∗16] for a comprehensive
review of material design and editing methods). [WTL∗06] and
[WCPW∗08] navigate through the space of appearance by mod-
eling the time-varying surface response or manipulating homoge-
neous diffuse BSSRDFs. [DRCP14] propose editing spaces for
material parameters, providing common editing operations such as
scaling, curve fitting and interpolation. Our method shares with this
work the local frames editing approach. However our method dif-
fers in its ability to morph the mesostructures from one SVBRDF
to another to explore the space of possible appearances.

Image Morphing and Manipulation. Image Retargeting [SS09],
[RGSS10] address natural images and videos scaling/cropping,
including seam-carving [AS07], scale-and-stretch [WTSL08] and
distortion-free shape deformation [KFG09]. [LWX∗09] focus on
texture-guided refinement, by leveraging the texton appearance
from one input texture and the distribution of the other. These tech-
niques apply to RGB images only and do not provide interpolation
between two input images, but rather focus on the deformation.

Patch-based methods. Fang et al. [FH07] build upon patch-based
texture synthesis to deform shapes while avoiding stretch and com-
pression. Barnes et al. [BSFG09] provide an interactive editing tool
based on a quick randomized algorithm for finding approximate
nearest neighbor matches between image patches, with applications
in retargeting and reshuffling. Darabi et al. [DSB∗12] proposed to
synthesize a transition region between two source images leverag-
ing an enriched patch-based search, a screened Poisson equation
solver and a sharpness preserving norm. Mechrez et al. [MSZM19]
base their optimization framework on a patch-based manipulation
to enhance natural images.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Gauthier et al. / MatMorpher: A Morphing Operator for SVBRDFs

[RSK10] is related to our work and proposes a patch-based
method to create spatial interpolations between two RGB textures
but differs from ours in several ways. This method is not fit for
interactive design and requires a user-supplied distribution mask
prior to the patch interpolation. In contrast, our method can lever-
age a blending mask interactively. In their work, manually crafted
feature maps are used – instead of the compass operator [MZD05],
which is deemed unsatisfactory by [RSK10]. Last but not least,
their method is fundamentally a spatial interpolation method be-
tween non-superposed inputs (an in-painting method) whereas ours
is a temporal interpolation method between superposed inputs. Im-
age Melding [DSB∗12] produces similar results than [RSK10] with
a more lightweight optimization.

Contour detection. Contours are known to play a major role in
human visual perception [PP11]; the cues they provide inspired a
number of methods coming from the vast image processing liter-
ature. However, contour detection remains an ill-posed problem,
somewhat dual to the image segmentation problem. Recently, Con-
volutional Neural Networks have proven their efficiency at address-
ing such problems, detecting contours of foreground objects as op-
posed to regions in the background [MPTAVG17]. These methods
are trained on natural images, which differ significantly in structure
from PBR maps, for which the notions of foreground/background
are not well defined. They are also costly to evaluate, making them
not ideal for interactive manipulation. The resulting contours ap-
pear thicker and blurrier than classical approaches based on lo-
cal operators, which we adopt in our framework. In particular,
Grompone Von Gioi et al. [GvGR16] proposed an Unsupervised
Smooth Contour Detection. They present an efficient algorithm
producing sub-pixel contour detection, without the need to learn
a distribution prior to the detection.

Optimal Transport provides a framework for smooth inter-
polation and has been used for images [M1́1] [XFPA14],
BRDFs [BVDPPH11], 3D shapes [Lév15, SDGP∗15], point
clouds [BRPP15, BC19], color histograms [BPC16] and textures
[RPDB12]. Recently, Nader et al. [NG19] proposed to quickly
compute continuous transport maps between 2D probability den-
sities discretized on uniform grids. Unfortunately, this framework
does not aim at preserving structures during interpolation, but
rather minimizing the cost of transforming one distribution to the
other. Such costs are sensitive to outliers, in the sense that all mass
is required to be transported to a target distribution.

Deep Neural Networks are often used to perform non-linear im-
age transformation by leveraging massive image datasets. Navigat-
ing through the latent space stemming from these large datasets
can indeed be interpreted as a form of advanced interpolation. For
instance, Upchurch et al. [UGP∗17] leverage a simple deep convo-
lutional neural network and interpolate linearly among deep con-
volutional features, allowing high-level semantic transformations
of human faces. Zhu et al. [ZPIE17] propose a Generative Adver-
sarial Network (GAN) [GPAM∗14] for learning to translate an im-
age from a source to a target domain in the absence of paired ex-
amples, which was later improved and applied to a dataset of star
faces [CCK∗18]. Zhu et al. [ZKSE16] proposed to learn the natural
image manifold directly from data using a GAN, allowing for im-

age interpolation with user control over the object’s shapes. Effland
et al. [EKP∗20] propose a multiscale feature space approach incor-
porating a deep convolutional neural network. Deep learning meth-
ods have recently proven their efficiency at synthesizing 2D and
3D textures [SCO17] [GRGH20] as well as interpolating between
them [YBS∗19] [HMR20]. [VDKCC20] study texture interpolation
and synthesis with deep neural networks, providing insights about
the distribution of CNN activations of natural textures. These tech-
niques work well with stochastic textures but the models tend to
overfit to the trained data, and always fail to preserve salient struc-
tures and autosimilarities in the inputs. MaterialGAN [GSH∗20]
requires an inverse rendering optimization to project the SVBRDF
in the latent space. The interpolation of the latent variables pro-
duces temporally stable interpolation but fails to preserve both in-
put textures. With respect to all these methods, and in the particular
context of SVBRDFs, our method does not require lengthy training
and only uses two input materials to produce a continuous, structure
preserving interpolation, with no need to learn an a priori distribu-
tion. Indeed, our approach can feed the learning ones by providing
an advanced mechanism to amplify the data set before training, as
a substitute to the simple linear interpolations performed by e.g.,
Deschaintre et al. [DAD∗18] or Guo et al. [GSH∗20] to populate
their training set.

3. Overview

Let us denote an input SVBRDF as a function

M : [0,1]2→{[0,1]3,S2, [0,1], [0,1], [0,1]}

which associates to each point of the unit square domain Ω :=
[0,1]2 a diffuse albedo, a normal vector as well as roughness, metal-
licness and height (or displacement) scalar values. Starting from
two input materials M1 and M2, our method (Figure 2) aims at pro-
ducing a new SVBRDF Mα by morphing between the maps of M1
and M2 with a ratio α. To do so, we first compute a transport grid
(Section 4) guided by the contours detected out of M1 and M2, and
use it to morph each individual map in real time. Secondly, we use
two novel operators (Section 5) to preserve the appearance of M1
and M2 during the morphing. More precisely, we use a histogram
aware color blending to preserve the sharpness of the input albedo
maps and introduce a normal-and-height cross-interpolation mech-
anism to recompute the normal from the interpolated geometry and
preserve details. Propelled by our transport grid, these operators
yield the final interpolated SVBRDF Mα. In its most general form,
our morphing mechanism lets the user provide a spatially vary-
ing morphing ratio α given by a scalar field αS : Ω→ [0,1]. This
scalar field is defined over the same texture domain as M and its
range values modulate a per-texel interpolation of Mα, performing
a spatially-varying non-linear mix between M1 and M2.

4. Transport grid

Our transport grid models per-texel correspondences between M1
and M2. We design it specifically to avoid the default per-pixel cor-
respondence of linear blending which yields unsatisfactory geom-
etry during the interpolation. The transport grid aims at preserving

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Gauthier et al. / MatMorpher: A Morphing Operator for SVBRDFs

𝑀1

𝑀2 𝐷(𝑀2, 𝜃2)

𝐷(𝑀1, 𝜃1)
𝜃1

Real Time Interpolation

𝜃2

 𝛼𝑆

Transport grid

computation

Contour

detection

Contour

detection

Histogram Aware

Color Blending

Normal

Reorientation

Figure 2: Overview of our method.

the structures present in the material as much as possible all along
the interpolation. To do so, we first detect contours from the in-
put materials before optimizing a deformation over the meshed unit
square.

4.1. Contour detection

We seek feature lines present in the input materials to use them as a
super structure driving the morphing process. Such lines typically
separate materials regions where texel statistics are close to uni-
form. In our case, the different channels of each SVBRDF provide
a rich space that we leverage to detect the dominant mesostructures.
More precisely, we base our contour extraction on the parameter-
free algorithm proposed by Grompone et al. [GvGR16] which pro-
duces locally consistent results across all SVBRDF maps in a mat-
ter of seconds.

By default, we run this algorithm on the heightmap of each ma-
terial M. Since our method aims at preserving shape features dur-
ing the interpolation, most heightmaps are sufficient to describe the
geometry and produce meaningful contours. Optionally, the user
can control the process by activating contour detection on a per-
channel basis using a set of booleans θ = {θa,θr,θm,θn,θh}. This
prevents unsatisfactory detection in materials where the heightmap
fails to provide sharp features. The contour detection algorithm is
fed with greyscale images. For the normal map, we simply retain its
z component. The albedo map is converted to greyscale using the
luminance channel. Secondly, we sample the resulting polylines in
the selected maps before concatenating the resulting 2D point sets
into a single contour sampling C = {p1, ..., pk} made of 2D points
pi ∈Ω. This yields a global contour extraction operator:

D(M,θ)→C

that we apply on both M1 and M2.

4.2. Transport Map Generation

Our transport map provides a one-to-one correspondence for each
texel between M1 and M2. We aim at transporting efficiently points

P = {pi ∈ Ω}i sampled from the source material contours C1 in
order to best align them onto a target point set Q = {q j ∈ Ω} j
sampled from the target material contours C2.

Since we cannot make assumptions on the input such as, e.g.,
perfect sampling or one-to-one structure correspondence, we de-
sign our algorithm with the prime intent of being robust to outliers.
To do so, we propose to minimize a transport energy modeling a
kind of elastic sparse Iterative Closest Point method [BTP13]:

Efit(f) :=∑
i, j

wi j∥ f (pi)−q j∥s +λEreg(f) (1)

s.t. f (∂Ω) = ∂Ω

wi j being a localization kernel, s∈]0,2] (s< 1 resulting in increased
robustness to outliers).

Iterative solver. Minimizing this energy is nontrivial for sparsity
parameters s < 2. We present here an efficient iterative solver for
this task. We start with a given configuration f (by default: Iden-
tity). In practice, at each iteration, we restrict the double summation
by taking the k nearest neighbors of f (pi), and set the weights wi j
to 0 for any q j further away from f (pi). Our implementation makes
use of a Gaussian kernel with standard deviation 0.01. Further, we
enforce harmonic (null Laplacian) deformations to regularize the
solution.

We start with a uniform grid with vertices {vk,l = (xk,l ,yk,l) ∈
Ω;(k, l) ∈ [0,N[2} stacked into the optimization unknowns vec-
tor v, together with bilinear interpolation basis functions (f (pi) =
Ai · v, Ai being the row containing the bilinear coordinates of pi
in the input grid-mesh), and the standard four-point approxima-
tion of the Laplacian operator onto the grid-mesh (∆ f (vk,l) :=
vk+1,l + vk−1,l + vk,l+1 + vk,l−1 − 4vk,l). In order to approximate
the Ls norm, we use a standard reweighting scheme, and finally
minimize at each iteration

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Gauthier et al. / MatMorpher: A Morphing Operator for SVBRDFs

Unidimensional Laplacian Periodic harmonicity

Figure 3: Boundary conditions analysis. In the more general
case, when dealing with dense structures to match (top), the bound-
ary conditions impact the solution only locally. When dealing with
structures to match that are very sparsely distributed (below), the
boundary conditions strongly impact the solution globally, as most
conditions are too loose to enforce strong regularization in these
cases. Whether the inputs are tileable or not, we find that periodic
harmonicity provides the best results in all cases.

E′
fit(v) := ∑

i, j∈NN(i)
w′

i j∥Ai ·v−q j∥2 (2)

+λ ∑
0<k,l<N−1

∥∆ f (vk,l)∥2

︸ ︷︷ ︸
interior regularity term

+ E∂︸︷︷︸
boundary terms

where w′
i j = wi j max(ε,∥Ai · vcurrent− q j∥)s−2 is used to approx-

imate the Ls norm objective function (ε being a safety parameter
here to avoid divisions by 0, ε = 10−3 in our implementation).

In practice, we repeat this optimization T times using a Cholesky
decomposition, and advect the solution with a step δ = t/T at iter-
ation t ∈ [1,T]. This allows refining progressively the local match-
ing NN(i) (the k points in Q nearest from point f current(pi) =
Ai · vcurrent), and typically results in better matchings when struc-
tures to be matched are not aligned properly or in presence of out-
liers.

Boundary conditions So far, we have not constrained the bound-
aries of the mesh explicitly. While typical boundary conditions such
as Neumann or Dirichlet are used in a variety of transport problems
in Computer Graphics, we advocate the use of ad-hoc boundary
conditions that are better suited to our problem. We analyze in the
following various boundary conditions and discuss their pros and
cons.

Constraining the boundary image (i.e., f (∂Ω) = ∂Ω) can be done
trivially by removing the corresponding variables from the opti-
mization, or almost equivalently, by adding a large penalty term
onto those (e.g., µ|x0,l − 0|2, µ|xN−1,l − 1|2). The boundary term
takes in this case the form:

E∂+=µ∑
k
|yk,0−0|2 + |yk,N−1−1|2 (3)

+µ∑
l
|x0,l−0|2 + |xN−1,l−1|2

Note that tileability (i.e., f (∂Ω) ̸= ∂Ω and { f (Ω)+ i ∗ (1,0)+
j∗(0,1); i, j ∈Z} defines a partition of R2) can be enforced instead
in a trivial manner similarly, e.g., by adding a large penalty such as
µ|xN−1,l− x0,l−1|2.

Boundary smoothness can be enforced in several ways. We have
studied unidimensional harmonicity as well as periodic harmonic-
ity.

The former can be enforced by adding the following terms to E∂:

E∂+=λ ∑
0<k<N−1

|2xk,0− xk−1,0− xk+1,0|2 (4)

+λ ∑
0<l<N−1

|2y0,l− y0,l−1− y0,l+1|2

while the latter is enforced by adding the following terms to E∂:

E∂+= λ ∑
(k,l)∈∂[0,N−1]2

∥∆ f (vk,l)∥2

while making sure that off-grid indices point to the correct variables
inducing periodicity in the Laplacian operator (e.g. x−1,l , resp. xN,l ,
is replaced xN−2,l , resp. x1,l).

We have analyzed the impact of these conditions on various ex-
amples, and we found that periodic harmonicity results in increased
stability in all cases, even if the input textures are not tileable (see
Fig.3). Note that in that case, the output interpolation will not be
constrained to be tileable, but will merely be constrained to be ad-
vected in a smooth manner around the boundaries.

5. Material Interpolation

With our transport grid in hand, we can now perform an interpola-
tion that produces visually appealing motions of the input materials
mesostructures. The second component of our method is dedicated
to the blending applied to each texel during the interpolation. Our
experiments revealed that linearly combining the input color (resp.
normal) maps produces unsatisfactory results; therefore, we pro-
pose techniques to improve the blending in Section 5.1 (resp. 5.2)
before describing our final SVBRDF morphing method (Section
5.3).

5.1. Histogram aware color blending

When interpolating colors linearly, details from each material tend
to be lacking and colors appear dull. Matusik et al. [MZD05]
who link this behavior to the averaging effect led by the blend-
ing suggest extracting high-frequency statistics and enforce these
statistics on the interpolated result. This is achieved by capturing
high-frequency content using a multiscale frequency decomposi-
tion. They use color histogram matching and enforce the histogram
of the linearly blended texture decomposition to be an interpola-
tion of the histograms of the input decompositions. We tested their

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Gauthier et al. / MatMorpher: A Morphing Operator for SVBRDFs

approach on albedo maps, and it appears the effect of the decom-
position vanishes when working with high resolution textures (1K
and 4K). Their interpolation focuses on 128x128 textures, which
do not require a multiscale approach. A simpler way of interpolat-
ing texture is done by using histogram matching as in [MZD05],
but with no prior decomposition of the images.

ℋ1 ℋ2

𝐶𝐷𝐹ℋ ∘ 𝐶𝐷𝐹−1𝒢

(1 − 𝑡) 𝑡

ℋ𝛼

𝐶𝐷𝐹𝛼
−1 ∘ 𝐶𝐷𝐹𝒢

𝐼2𝐼1

𝐼2
𝐺𝐼1

𝐺

𝐼𝛼
𝐺

𝐼𝛼

Figure 4: Starting with albedos I1 and I2, we compute the gaus-
sianized albedos IG

1 and IG
2 , interpolate them to get IG

α and apply
the inverse histogram composition which results in Iα. Our tech-
nique better preserves color sharpness compared to a linear inter-
polation.

We take insights from Heitz et al. [HN18] who show that blend-
ing linearly between two random variables acts as a histogram con-
volution, resulting in a low variance in the histogram of blended
textures. Even though this result is given under the assumptions
that the texture’s pixels are independent and identically distributed
– which breaks in our case – the idea inspired our histogram aware
blending operator (see Algorithm 1). We use both the Cumulative
Distribution Function of each input, and the truncated gaussian dis-
tribution from Burley et al. [Bur19]. Similarly to Burley, we use
gaussianization with a Soft-clipping Contrast Operator S∗

[Ĝ]
to ob-

tain more contrasted interpolation. We gaussianize independently
each input and obtain IG

1 and IG
2 , which we then interpolate lin-

early before reverting the histogram equalization by applying suc-
cessively the truncated gaussian CDF (CDFG in Algorithm 1), and
the interpolated inverse CDF of the input textures through a lookup
table (LUT−1

α in Algorithm 1). The pipeline is illustrated in Fig-
ure 4. The whole pipeline is executed per channel. In practice, the
user can choose to run our histogram aware interpolation in either
RBG or YCbCr color space to prevent a slight shift in hue which
occurs with one or the other depending on the input material pair.

We compare the results of different linearly interpolated tex-
ture enhancements (sharpness preservation, histogram matching
and gaussianization) in Fig. 13 and in the supplemental materials.

Algorithm 1: Histogram aware blending of texels p1, p2

pα← (1−α) IG
1 [(x,y)p1]+α IG

2 [(x,y)p2]

W ←
√

(1−α)2 +α2

pα← S∗
[Ĝ]

(pα,W)

pα← LUT−1
α [CDFG(pα)]

with LUT−1
α = (1−α) CDF−1

1 +α CDF−1
2

5.2. Height and Normal cross-interpolation

5.2.1. Normal map preprocessing

For procedural PBR materials, the normal and height maps are of-
ten created following these steps: first, artists create displacement
information which corresponds to the base geometry. This infor-
mation is stored in a greyscale height map. Second, they add shad-
ing details – bump mapping – on top of the base geometry and
store the resulting normal in pre-displacement tangent space, in-
stead of the local space induced by the displacement of the geome-
try (post-displacement tangent space). Fetching normals from pre-
displacement tangent space simplifies the computations at runtime
and avoids the regeneration of the post-displacement tangent space,
which does not vary across time in classical scenarios. At runtime,
the per-vertex tangent-space basis is provided and helps the reori-
entation of the normal according to the geometry. However, this
results in wrongly oriented normals when modifying the displace-
ment factor during rendering if the tangent frame is not recomputed
(Fig. 5, bottom).

Figure 5: Normal map and geometric normal mismatch. At the
top, the normals (right hemisphere) are computed from the dis-
placed surface, at the bottom, a simple texel fetch in the normal
map followed by a change of frame using the TBN matrix, over-
layed on the displaced geometry. Displacing the geometry with a
varying height factor creates a "painting effect" (left hemisphere),
where the normal reflections seem to be painted on the surface, no
matter the orientation of the tiles.

In our context, the interpolation between structures is non-trivial
and such an approach fails to produce a valid interpolated nor-
mal. Besides, the extra details lie in post-displacement tangent

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Gauthier et al. / MatMorpher: A Morphing Operator for SVBRDFs

space, and must consequently be blended in this basis. Similarly
to [DRCP14], we use a decomposition of the normal map w.r.t. the
geometric normal. Specifically, we start by reverse-engineering the
normal baking process, in order to access these post-displacement
details (bump maps). At runtime, the geometry i.e., the height map
information, is linearly interpolated. The details are combined us-
ing a spherical linear interpolation, and the resulting detail normals
are consistently added back to the geometry.

To further support our argumentation about invalid normals in-
terpolation, we illustrate the need for a joint interpolation of the
height and the normal maps in Fig. 6. When interpolating linearly
the geometry between the flat solid shape and the dotted shape
(Fig. 6, left), one can see that the slope at a point located between
the two plateaus follow the relation θ(α) = arctan(αh/d) (the blue
curve), and not simply the one given by the SLERP interpolation of
the normal map (i.e., αarctan(h/d), the red curve). One has there-
fore to distinguish between the macro-structure orientation given
by the height map and the meso-structure orientation, which is de-
scribed by the deviation of the normal from the macro-structure ori-
entation. We base our height-and-normal interpolation operator on
this observation. In order to preserve sharp geometric features dur-
ing the interpolation, we perform a two-scale analysis of the normal
map by decomposing it into a coarse and a detail map, recomposed
after interpolation.

Figure 6: The linear interpolation of the height map is inconsistent
with the spherical linear interpolation (SLERP) of the normal map.
The plots were computed for h/d = 10.

5.2.2. Normal reorientation pipeline

Following [DRCP14] and Mikkelsen [Mik19] layered approach,
we propose a normal map decomposition summarized in Fig. 7.
Basically, we first compute a detail map for each material, using
the regular normal map and a coarse normal map derived from
the height map. Then we interpolate linearly the heightmaps, and
compute a coarse normal map from the geometry. Lastly, we use a
spherical linear interpolation on the detail maps, extract the proper
normal from the geometry, and add the details to get the final inter-
polated normal map.

Algorithm 2: Normal Reorientation algorithm

nh
1← normalize((∇xH1,∇yH1,h1))

nh
2← normalize((∇xH2,∇yH2,h2))

d1← getDetails(nh
1,n1)

d2← getDetails(nh
2,n2)

dα← slerp(d1,d2,α)
nh

α← normalize(cross(dFdx(position),dFdy(position)))
nα← addDetails(nh

α,dα)

To extract a detail map vector d w.r.t. the original normal and

𝐧1
ℎ
, 𝐧2

ℎ 𝒅1 , 𝒅2

𝐧1 , 𝐧2

∇xy

∇xy

𝒅𝛼

+

𝐧𝛼
ℎ

H𝛼 𝐧𝛼

𝑀1 , 𝑀2

⋆

×

Sobel operator

add / get details

lerp / slerp

_

∇xy

+

× ⋆

_

_

H1 , H2

Figure 7: Normal reorientation pipeline.

height map (method getDetails in Alg. 2) (i) we define the coarse
base normal nh from the height map, (ii) we build a transform R
that rotates nh into the normal map vector n containing a higher
frequency signal and (iii) we apply R to z, the unit normal of the
plane (see Fig. 8). We then combine these details by using a spheri-
cal linear interpolation, and we add them to the interpolated coarse
normal similarly to Barré-Brisebois and Hill [BBH12].

𝑅

𝐧

𝐧
ℎ

𝒅
𝑧 =

0
0
1

𝑅

Figure 8: Normal reorientation. We compute the rotation R from
the coarse geometry nh to the detailed one n and apply it to a unit
vector perpendicular to the plane z to obtain the detail vector d.

To compute a normal map from each material’s height map, we
use a Sobel filter which provides smoother results than a simple
gradient [WBW20]. We use 16 bits height maps for better preci-
sion. However, recovering normals from the height maps with the
same orientation and amplitude as the original normal maps re-
quires the knowledge of the global height factor h used to com-
pute it originally. Therefore, we retrieve this factor as follows: let
H : [0,1]× [0,1]→ [0,1] be the height map and∇x,∇y the vertical,
resp. horizontal Sobel operators, such that:

∇xH =
(−1 0 1
−2 0 2
−1 0 1

)
∗H and ∇yH =

(−1 −2 −1
0 0 0
1 2 1

)
∗H

To retrieve h, we solve the following optimization problem,
where N is the original normal map and Nh the normal map re-
covered from the heightmap:

argmin
h∈[0,1]

f (h) = ∑(i, j) d(nh
i, j,ni, j) with d(x,y) = ∥acos(x ·y)∥1

In practice we compute 128 normal maps from the height map
in a compute shader with a varying height factor h ∈ {i/127, i ∈

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Gauthier et al. / MatMorpher: A Morphing Operator for SVBRDFs

[0,127]} prior to the rendering. Experimentally we found out that
all the computed f functions show a convex behavior, thus allowing
to easily recover the h parameter.

5.3. Practical Implementation

Our transport map f provides a one-to-one correspondence be-
tween both materials. As previously stated, the user can provide
a scalar field αS with values between 0 and 1 at each texel to con-
trol the interpolation. This field is parameterized both spatially and
temporally and drives the transport function:

fS : Ω→Ω, fS(p) = (1−αS(p))p+αS(p) f (p)

For a point p1 ∈ Ω describing a location in M1 and the corre-
sponding interpolation parameter α fetched from the αS, we com-
pute the value at the interpolated point pα by linearly interpolating
between its source p1 and its target f (p1) = p2 ∈ Ω, where we
gather the corresponding SVBRDF parameters in M2:

pα = (1−α)p1 +αp2, (5)

At pα, we map values of M1 at p1, and those of M2 at p2. For
the height and metallic maps, we linearly blend the values to obtain
those of the final maps - note that PBR materials being physically
inspired rather than physically correct [Bur12], linearly interpolat-
ing the metallic term is considered the industry de facto standard
for interpolation. We observe that the transition from shiny metal
to a rusty or worn aspect gives a pleasing result. Regarding rough-
ness, [DRCP14] proposes to interpolate the cumulated distribution
functions of the BRDFs, which can be seen as a form of optimal-
transport-based interpolation. While this framework provides sat-
isfying results and is mathematically well-grounded, we chose to
simply interpolate the square mapping of the roughness, as advo-
cated in Disney’s principled BRDF model [Bur12], as artists ob-
serve empirically that this results in a perceptual linear change of
the materials (see Section 5.4: Specular D details). For the albedo
and normal, we use our previously introduced operators. Those val-
ues are fed to a standard microfacet model with a GGX normal
distribution function for rendering.

In practice, we run this process in real time using the pro-
grammable rendering pipeline of modern GPUs. We first rasterize
the displaced grid using rest positions as a color attribute. The dis-
placement of each vertex v is computed as fS(v) (i.e., using the α

values at their original position in αS, see Equation 5), thus result-
ing effectively in a coarse linear rendering of f−1

S : Ω 7→Ω. At each
output texel q of the computed image, we first read the coordinate
p1 = f−1

S (q) of the texel m1 from M1 to blend, we then fetch α at
position p1, and we compute the coordinate p2 = f (p1) of the texel
p2 from M2 to blend. With these at hand, we then interpolate the
materials’ texels m1 and m2 accordingly, and finally shade the out-
put fragment. Being real time, our method allows the user to vary
the blending field αS interactively using a brush metaphor or the
parameters of a procedural texture.

6. Evaluation and Applications

In Fig. 11, we present a collection of interpolation results obtained
with our method on a set of pairs of SVBRDFs. Note that videos

no warpgrid [MZD05] warpgrid our warpgrid

Figure 9: Transport grid ablation. Without our transport grid,
i.e. using linear blending (left), undesired overlapping of structures
along the edges tend to appear. [MZD05] technique (middle) fails
to correctly register contours, due to imprecise feature maps. The
resulting warpgrid exhibits discontinuities along borders due to
the independent per-vertex optimization. Using our transport grid
(right) allows for contour registration (circle) and creates a natu-
ral morphing even if a contour does not find a correspondent in the
other material (rectangles).

spherical linear interpolation

normals visualized in [0,1]3 full shading

our normal reorientation

normals visualized in [0,1]3 full shading

Figure 10: Normal reorientation ablation. We show a halfway in-
terpolation between two materials. Our reorientation component
better conveys the shape features all along the interpolation by
computing a geometric normal with added details. No transport
map was used for this example.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Gauthier et al. / MatMorpher: A Morphing Operator for SVBRDFs

linear

ours

linear

ours

linear

ours

linear

ours

Figure 11: Interpolated materials Mα with a linear blending (top row) compared to our technique (bottom row), using a uniform value for
α ∈ {0,0.2,0.4,0.6,0.8,1}. We stress that temporal interpolations are better viewed in videos (provided as supplemental materials).
© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Gauthier et al. / MatMorpher: A Morphing Operator for SVBRDFs

are better suited to visualize temporal interpolation, and that we
provide video comparisons in the supplemental materials.

6.1. Ablation study

We evaluate the benefit of individual components of our approach
in an ablation study.

Transport Grid. Our transport grid allows for a clean contour reg-
istration which morphs the structures of the first input material into
the others. We show in Fig. 9 that when a contour from one mate-
rial has no match in the other material, a ridge collapses or appears
while preserving its shape. This is the desired transport behavior
when outliers occur. We compare our transport grid with [MZD05],
which fails to produce precise contour registration between maps.

Normal Reorientation allows to preserve the shape features of
the geometry along the interpolation. Compared to spherical linear
interpolation, which produces wrongly oriented normals, this com-
ponent ensures proper detail preservation (see Fig. 10).

6.2. Comparisons

We reimplemented the method of [MZD05] in order to compare
their results to ours, in the restricted context of RGB texture in-
terpolation. We provide a comparison in Fig. 12 and in the sup-
plemental materials, and explain the shortcomings of the method
when dealing with high resolution SVBRDF maps. Their technique
is composed of two main steps : the warp grid computation and
the RGB texture interpolation. First, the warp grid computation re-
veals discontinuity artifacts, which result from the independent per-
vertex optimization at each iteration. The method fails to provide a
globally smooth warpgrid, and as a result creates discontinuities at
the borders of each region inside materials. We also noted that pro-
cessing a material as a 9D stack of greyscale images fails to create
salient feature maps to blend. Therefore, we exhaustively selected
the best feature maps combination for each of our example mate-
rials, visualizing the resulting halfway morphing between albedo
maps. This results in warpgrids which are not able to consistently
align features in materials. Second, the steerable pyramid decom-
position followed by histogram matching falls short when dealing
with high resolution textures. We applied the technique on both
128x128 textures (as in their work) and with 1K and 4K textures,
and as the resolution increases, the effect of matching histograms
on the filtered images fades progressively.

We noticed that in most cases, simply applying histogram match-
ing [MZD05] to the whole image with no predecomposition yields
better contrasted results. In Fig. 13, we provide a comparison be-
tween linearly interpolated textures. The advantage of this method
over simpler histogram matching is that the histogram of the in-
terpolated texture is known during interpolation, and does not re-
quire a pass through the whole image to compute the histogram
of the interpolated texture. As explained previously, simpler his-
togram matching can be used as a way of sharpening the interpo-
lated texture. Unfortunately, this method has a runtime complexity
of O(N) (N being the total number of pixels of each image) com-
pared to the constant O(1) complexity of the gaussianization (in

Timings
Contour Detection Transport Grid

4K downsampled to 1K 3.1 ± 2.1 s 18.6 ± 6.7 s
Gaussianization Normal Compute

Ours 4K 350 ms 400 ms
Single light 3 lights + IBL

Linear 4K 7.87 ± 0.07 ms 9.89 ± 0.09 ms
Ours 4K 15.10 ± 0.06 ms 19.41 ± 0.13 ms

Table 1: Timings. We render an interpolation between two mate-
rials for a total of about 50 million triangles under a single point
light, and under three point lights and Image Based Lighting for
the experiment of the last two lines of this table.

that case the histogram matching happens during precomputation),
which makes real-time editing possible.

We also compare our technique to MaterialGAN [GSH∗20],
which proposes the exploration of a learned distribution of material
appearance by interpolation. To do so, we project input renderings
in the latent space to recover noise and style vectors, that we use
to create the final interpolation. The results are shown in the sup-
plementary materials. MaterialGAN provides a temporally stable
interpolation, but offers no control over the appearance, and fails to
preserve the appearance of the input textures.

6.3. Performance

The transport grid precomputation depends on the number of con-
tour samples detected in each material. We report the timings of the
contour detection for a single map at 4K resolution (which is down-
sampled at 1K beforehands only for the contour detection phase),
along with the transport grid computation in Table 1. For this exper-
iment, all contour points were provided to the later stage (ranging
from 10’000 up to 80’000) but a resampling can be done to achieve
better performance. At runtime, the dynamic interpolation cost of
our method is roughly twice higher than linear interpolation, still
allowing for real time design of the interpolation scalar field αS.
In Table 1 we compare our method against a simple linear inter-
polation and report the precomputation timing, all measured on a
Ryzen 5 5600X CPU running at 4.6GHz equipped with a Nvidia
RTX 2080 Ti GPU.

7. Limitations and Future Work

Our method struggles with materials which contain only stochas-
tic structures such as moss or dirt, and is favored when materi-
als exhibit medium to large salient structures. We also assume a
rough initial alignment of the two inputs when they are highly peri-
odic, which could be automated but raises the question of preserv-
ing tileability if present. Similarly, the transport grid provides good
contour matches when the mesostructures of the two inputs are spa-
tially close. Otherwise, the interpolation results in a simple blend
for the regions where no structures can be blended with. Last, even
if most of our material examples present a low frequency periodic-
ity in their structures, our technique does not exploit this selfsimi-
larity, which is an interesting direction for future work.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Gauthier et al. / MatMorpher: A Morphing Operator for SVBRDFs

Figure 12: RGB texture interpolation comparison between [MZD05] (top) and our method (bottom). For each example, we show the features
used to compute the transport grid (visualized in red) and five interpolation steps from 0.0 to 1.0.

8. Conclusion

We presented a novel structure-preserving operator for interpolat-
ing two SVBRDFs. To do so, we introduced a transport grid which
guides the interpolation based on the dominant mesostructures de-
tected in the input, and combined it with normal reorientation and
histogram-aware color blending to better preserve details and sharp
features. Our operator is fast enough to run in real time, provid-
ing a simple mechanism to explore material variations out of a set
of exemplars, with a visual quality which is superior to previous
methods, for a cost which is close to linear interpolation. Our ap-
proach proposes multiple techniques which can be used indepen-
dently. For instance, the height factor retrieval from Section 5.2
can benefit workflows which produce both a geometry and its cor-
responding normal map. Last, our operator shall find application in

material database amplification, as leveraged by deep nets in neural
rendering.

References
[AS07] AVIDAN S., SHAMIR A.: Seam carving for content-aware image

resizing. In ACM SIGGRAPH 2007 papers. 2007, pp. 10–es. 2

[BBH12] BARRÉ-BRISEBOIS C., HILL S.: Blending in detail.
https://blog.selfshadow.com/publications/blending-in-detail/, 2012. 7

[BC19] BONNEEL N., COEURJOLLY D.: SPOT: sliced partial optimal
transport. ACM Transactions on Graphics 38, 4 (2019), 1–13. 3

[BKCO16] BELLINI R., KLEIMAN Y., COHEN-OR D.: Time-varying
weathering in texture space. ACM Transactions on Graphics 35, 4
(2016), 1–11. 2

[BPC16] BONNEEL N., PEYRÉ G., CUTURI M.: Wasserstein barycentric
coordinates: histogram regression using optimal transport. ACM Trans-
actions on Graphics 35, 4 (2016), 1–10. 3

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Gauthier et al. / MatMorpher: A Morphing Operator for SVBRDFs

texture A texture Bno enhancement
[MZD05] sharpness

preservation
histogram
matching

gaussianization

Figure 13: Comparison of linearly interpolated RGB texture enhancements. Halfway per-pixel linear interpolations between texture A
(leftmost column) and B (rightmost column) are shown. [MZD05] sharpness preservation fails to enhance details on 1K pairs of images
and helps to sharpen the result at the pixel scale (require zooming-in). Simpler histogram matching of interpolated textures produces sharp
results but has a higher runtime complexity than texture gaussianization, which helps to preserve details after linear blending. Note that no
warping is done for this comparison.

[BRPP15] BONNEEL N., RABIN J., PEYRÉ G., PFISTER H.: Sliced and
Radon Wasserstein Barycenters of Measures. Journal of Mathematical
Imaging and Vision 51, 1 (2015), 22–45. 3

[BSFG09] BARNES C., SHECHTMAN E., FINKELSTEIN A., GOLDMAN
D. B.: PatchMatch: a randomized correspondence algorithm for struc-
tural image editing. ACM Transactions on Graphics 28, 3 (2009), 1–11.
2

[BTP13] BOUAZIZ S., TAGLIASACCHI A., PAULY M.: Sparse iterative
closest point. In Computer graphics forum (2013), vol. 32, Wiley Online
Library, pp. 113–123. 4

[Bur12] BURLEY B.: Physically-Based Shading at Disney. 26. 1, 8

[Bur19] BURLEY B.: On Histogram-preserving Blending for Random-
ized Texture Tiling. Journal of Computer Graphics Techniques (JCGT)
8, 4 (2019), 8. 2, 6

[BVDPPH11] BONNEEL N., VAN DE PANNE M., PARIS S., HEIDRICH
W.: Displacement interpolation using lagrangian mass transport. In Pro-
ceedings of the 2011 SIGGRAPH Asia Conference (2011), pp. 1–12. 3

[BZ17] BARNES C., ZHANG F.-L.: A survey of the state-of-the-art in
patch-based synthesis. Computational Visual Media 3, 1 (2017), 3–20. 2

[CCK∗18] CHOI Y., CHOI M., KIM M., HA J.-W., KIM S., CHOO
J.: Stargan: Unified generative adversarial networks for multi-domain
image-to-image translation. In Proceedings of the IEEE conference on
computer vision and pattern recognition (2018), pp. 8789–8797. 3

[DAD∗18] DESCHAINTRE V., AITTALA M., DURAND F., DRETTAKIS
G., BOUSSEAU A.: Single-image SVBRDF capture with a rendering-
aware deep network. ACM Transactions on Graphics 37, 4 (2018), 1–15.
3

[DRCP14] DI RENZO F., CALABRESE C., PELLACINI F.: Appim: Lin-

ear spaces for image-based appearance editing. ACM Trans. Graph. 33,
6 (Nov. 2014). 2, 7, 8

[DSB∗12] DARABI S., SHECHTMAN E., BARNES C., GOLDMAN
D. B., SEN P.: Image melding: combining inconsistent images using
patch-based synthesis. ACM Transactions on Graphics 31, 4 (2012), 1–
10. 2, 3

[EKP∗20] EFFLAND A., KOBLER E., POCK T., RAJKOVIĆ M., RUMPF
M.: Image Morphing in Deep Feature Spaces: Theory and Applications.
Journal of Mathematical Imaging and Vision (2020). 3

[FH07] FANG H., HART J. C.: Detail preserving shape deformation in
image editing. ACM Transactions on Graphics 26, 3 (2007), 12. 2

[GAD∗20] GUEHL P., ALLÈGRE R., DISCHLER J., BENES B., GALIN
E.: Semi-procedural Textures Using Point Process Texture Basis Func-
tions. Computer Graphics Forum 39, 4 (2020), 159–171. 2

[GPAM∗14] GOODFELLOW I., POUGET-ABADIE J., MIRZA M., XU
B., WARDE-FARLEY D., OZAIR S., COURVILLE A., BENGIO Y.: Gen-
erative adversarial nets. In Advances in neural information processing
systems (2014), pp. 2672–2680. 3

[GRGH20] GUTIERREZ J., RABIN J., GALERNE B., HURTUT T.: On
Demand Solid Texture Synthesis Using Deep 3D Networks. Computer
Graphics Forum 39, 1 (2020), 511–530. 3

[GSH∗20] GUO Y., SMITH C., HAŠAN M., SUNKAVALLI K., ZHAO S.:
Materialgan: Reflectance capture using a generative svbrdf model. ACM
Trans. Graph. 39, 6 (2020), 254:1–254:13. 3, 10

[GvGR16] GROMPONE VON GIOI R., RANDALL G.: Unsupervised
Smooth Contour Detection. Image Processing On Line 5 (2016), 233–
267. 3, 4

[HMR20] HENZLER P., MITRA N. J., RITSCHEL T.: Learning a Neural

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Gauthier et al. / MatMorpher: A Morphing Operator for SVBRDFs

3D Texture Space From 2D Exemplars. In CVPR (2020), pp. 8353–8361.
3

[HN18] HEITZ E., NEYRET F.: High-Performance By-Example Noise
using a Histogram-Preserving Blending Operator. Proc. ACM Comp.
Graph. and Int. Tech. 1, 2 (2018), 1–25. 2, 6

[Kar13] KARIS B.: Real Shading in Unreal Engine 4. 59. 1

[KFG09] KARNI Z., FREEDMAN D., GOTSMAN C.: Energy-Based Im-
age Deformation. Computer Graphics Forum 28, 5 (2009), 1257–1268.
2

[KPRN11] KABUL I., PIZER S. M., ROSENMAN J., NIETHAMMER M.:
An optimal control approach for texture metamorphosis. Computer
Graphics Forum 30, 8 (2011), 2341–2353. 2

[Lév15] LÉVY B.: A numerical algorithm for l2 semi-discrete optimal
transport in 3d. ESAIM: Mathematical Modelling and Numerical Analy-
sis 49, 6 (2015), 1693–1715. 3

[LWX∗09] LIU Y., WANG J., XUE S., TONG X., KANG S. B., GUO B.:
Texture splicing. Computer Graphics Forum 28, 7 (2009), 1907–1915. 2

[M1́1] MÉRIGOT Q.: A Multiscale Approach to Optimal Transport. Com-
puter Graphics Forum 30, 5 (2011), 1583–1592. 3

[Mik19] MIKKELSEN M. S.: Surface Gradient Based Bump Mapping
Framework. 24. 7

[MJH∗17] MORITZ J., JAMES S., HAINES T. S., RITSCHEL T.,
WEYRICH T.: Texture Stationarization: Turning Photos into Tileable
Textures. Computer Graphics Forum 36, 2 (2017), 177–188. 2

[MPTAVG17] MANINIS K.-K., PONT-TUSET J., ARBELÁEZ P.,
VAN GOOL L.: Convolutional oriented boundaries: From image seg-
mentation to high-level tasks. IEEE transactions on pattern analysis and
machine intelligence 40, 4 (2017), 819–833. 3

[MSZM19] MECHREZ R., SHECHTMAN E., ZELNIK-MANOR L.:
Saliency driven image manipulation. Machine Vision and Applications
30, 2 (2019), 189–202. 2

[MZD05] MATUSIK W., ZWICKER M., DURAND F.: Texture design
using a simplicial complex of morphable textures. ACM Transactions on
Graphics (TOG) 24, 3 (2005), 787–794. 2, 3, 5, 6, 8, 10, 11, 12

[NG19] NADER G., GUENNEBAUD G.: Instant transport maps on 2D
grids. ACM Transactions on Graphics 37, 6 (2019), 1–13. 3

[PP11] PAPARI G., PETKOV N.: Edge and line oriented contour detec-
tion: State of the art. Image and Vision Computing 29, 2-3 (2011), 79–
103. 3

[RGSS10] RUBINSTEIN M., GUTIERREZ D., SORKINE O., SHAMIR
A.: A comparative study of image retargeting. In ACM SIGGRAPH
Asia (2010), p. 1. 2

[RLW∗09] RAY N., LEVY B., WANG H., TURK G., VALLET B.: Mate-
rial Space Texturing. Computer Graphics Forum (2009). 2

[RPDB12] RABIN J., PEYRÉ G., DELON J., BERNOT M.: Wasser-
stein Barycenter and Its Application to Texture Mixing. In Scale
Space and Variational Methods in Computer Vision, Bruckstein A. M.,
ter Haar Romeny B. M., Bronstein A. M., Bronstein M. M., (Eds.),
vol. 6667. Springer Berlin Heidelberg, 2012, pp. 435–446. Series Title:
Lecture Notes in Computer Science. 3

[RSK10] RUITERS R., SCHNABEL R., KLEIN R.: Patch-based texture
interpolation. Computer Graphics Forum 29, 4 (2010), 1421–1429. 3

[SCO17] SENDIK O., COHEN-OR D.: Deep Correlations for Texture
synthesis. ACM Transactions on Graphics (2017), 15. 3

[SDGP∗15] SOLOMON J., DE GOES F., PEYRÉ G., CUTURI M.,
BUTSCHER A., NGUYEN A., DU T., GUIBAS L.: Convolutional
wasserstein distances: Efficient optimal transportation on geometric do-
mains. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1–11. 3

[SPN∗16] SCHMIDT T.-W., PELLACINI F., NOWROUZEZAHRAI D.,
JAROSZ W., DACHSBACHER C.: State of the art in artistic editing of ap-
pearance, lighting and material. Computer Graphics Forum 35, 1 (2016),
216–233. 2

[SS09] SHAMIR A., SORKINE O.: Visual media retargeting. In ACM
SIGGRAPH ASIA 2009 Courses on - SIGGRAPH ASIA ’09 (2009), ACM
Press, pp. 1–13. 2

[STSK20] SCHUSTER K., TRETTNER P., SCHMITZ P., KOBBELT L.: A
three-level approach to texture mapping and synthesis on 3d surfaces.
Proceedings of the ACM on Computer Graphics and Interactive Tech-
niques 3, 1 (2020), 1–19. 2

[UGP∗17] UPCHURCH P., GARDNER J., PLEISS G., PLESS R.,
SNAVELY N., BALA K., WEINBERGER K.: Deep Feature Interpolation
for Image Content Changes. In CVPR) (2017), IEEE, pp. 6090–6099. 3

[VDKCC20] VACHER J., DAVILA A., KOHN A., COEN-CAGLI R.: Tex-
ture interpolation for probing visual perception. In Advances in Neural
Information Processing Systems (2020), vol. 33, pp. 22146–22157. 3

[WBW20] WEISS S., BAYER F., WESTERMANN R.: Triplanar Displace-
ment Mapping for Terrain Rendering. Eurographics 2020 - Short Papers
(2020), 4 pages. 7

[WCPW∗08] WANG R., CHESLACK-POSTAVA E., WANG R., LUEBKE
D., CHEN Q., HUA W., PENG Q., BAO H.: Real-time editing and re-
lighting of homogeneous translucent materials. The Visual Computer 24,
7-9 (2008), 565–575. 2

[WLKT09] WEI L.-Y., LEFEBVRE S., KWATRA V., TURK G.: State of
the Art in Example-based Texture Synthesis. 25. 2

[Wol99] WOLBERG G.: Image morphing: A survey. The Visual Computer
14 (03 1999). 2

[WTL∗06] WANG J., TONG X., LIN S., PAN M., WANG C., BAO H.,
GUO B., SHUM H.-Y.: Appearance manifolds for modeling time-variant
appearance of materials. ACM Transactions on Graphics (TOG) 25, 3
(2006), 754–761. 2

[WTSL08] WANG Y.-S., TAI C.-L., SORKINE O., LEE T.-Y.: Opti-
mized scale-and-stretch for image resizing. Proceedings of ACM SIG-
GRAPH Asia (2008), 1–8. 2

[XFPA14] XIA G.-S., FERRADANS S., PEYRÉ G., AUJOL J.-F.: Syn-
thesizing and Mixing Stationary Gaussian Texture Models. SIAM Jour-
nal on Imaging Sciences 7, 1 (2014), 476–508. 3

[YBS∗19] YU N., BARNES C., SHECHTMAN E., AMIRGHODSI S.,
LUKAC M.: Texture mixer: A network for controllable synthesis and
interpolation of texture. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (2019), pp. 12164–12173. 3

[ZKSE16] ZHU J.-Y., KRÄHENBÜHL P., SHECHTMAN E., EFROS
A. A.: Generative visual manipulation on the natural image manifold. In
European conference on computer vision (2016), Springer, pp. 597–613.
3

[ZPIE17] ZHU J.-Y., PARK T., ISOLA P., EFROS A. A.: Unpaired
Image-to-Image Translation Using Cycle-Consistent Adversarial Net-
works. In ICCv (2017), IEEE, pp. 2242–2251. 3

[ZSL∗17] ZHOU Y., SHI H., LISCHINSKI D., GONG M., KOPF J.,
HUANG H.: Analysis and Controlled Synthesis of Inhomogeneous Tex-
tures. Computer Graphics Forum 36, 2 (2017), 199–212. 2

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

