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Abstract

This work focuses on a parameter-free joint piecewise smooth image denoising and con-
tour detection. Formulated as the minimization of a discrete Mumford-Shah functional and
estimated via a theoretically grounded alternating minimization scheme, the bottleneck of
such a variational approach lies in the need to fine-tune their hyperparameters, while not
having access to ground truth data. To that aim, a Stein-like strategy providing optimal
hyperparameters is designed, based on the minimization of an unbiased estimate of the
quadratic risk. Efficient and automated minimization of the estimate of the risk crucially
relies on an unbiased estimate of the gradient of the risk with respect to hyperparameters.
Its practical implementation is performed using a forward differentiation of the alternat-
ing scheme minimizing the Mumford-Shah functional, requiring exact differentiation of the
proximity operators involved. Intensive numerical experiments are performed on synthetic
images with different geometry and noise levels, assessing the accuracy and the robustness
of the proposed procedure. The resulting parameter-free piecewise-smooth estimation and
contour detection procedure, not requiring prior image processing expertise nor annotated
data, can then be applied to real-world images.

1 Introduction
Context – Image processing is characterized by several key tasks such as image recovery (e.g.,
debluring and/or denoising), feature extraction, segmentation, and contour detection, to name a
few. To provide the user with the requested information, it is standard to perform successively
a certain number of these tasks. A first major drawback of cascading tasks, is that important
information might be thrown away at each stage. A second key issue is that each task might
introduce estimation variance and/or regularization bias, which may accumulate and lead to
subsequent errors on the target quantity. Finally, the selection of hyperparameters, e.g., reg-
ularization parameters, needs to be performed for each task independently, which might turn
sub-optimal overall in minimizing the final error on the output estimate.

The benefit of performing jointly several steps has been illustrated in the context of texture
segmentation [9], providing a comparison between a two-step procedure (extract relevant local
texture features followed by segmentation) against an original single-step procedure intertwining
the estimation of relevant features and the segmentation procedure. Both strategies lead to
strongly convex optimization schemes and fair comparisons can be provided by having recourse
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to an automatic hyperparameters selection procedure relying on Stein Unbiased Risk Estimator
[13].

Along this line, recent contributions in the image processing literature were dedicated to joint
image denoising/restoration and contour detection [7, 14, 15] via biconvex proximal optimization
schemes. However, the automatic tuning of hyperparameters in this context has not been dealt
with yet: this is the object of the present contribution.
D-MS – This work focuses on a bi-convex formulation, refered as Discrete Mumford-Shah (D-
MS) functional, that can trace back to the Mumford-Shah [8] or Geman and Geman function-
als [5], aiming to perform joint image denoising and contour detection, which may be written in
the discrete variational formulation setting as:

min
u∈R|Ω|,e∈R|E|

1

2
‖u− z‖22 + β‖(1− e)�Du‖22 + λh(e), (1)

where z = u+σζ ∈ R|Ω| with ζ ∼ N (0|Ω|, I|Ω|) denotes the observed degraded image, defined on
a grid of pixels Ω such that |Ω| = N , and σ > 0 is the known standard-deviation of the noise. The
variable e is a discrete field defined on the lattice E , encapsulating the contour information, whose
values are 1 when a contour is detected and 0 otherwise, D : R|Ω| → R|E| is a discrete difference
operator such that Du lives on a lattice of contours E , � denotes the component-wise product,
h denotes a convex separable function enforcing sparsity having its minimum in 0 and such that,
for every e = (ei)1≤i≤E , h(e) =

∑
i hi(ei). β > 0 and λ > 0 are regularization parameters. The

minimization is performed with SL-PAM, a nonconvex alternated minimization scheme, with
descent parameters genuinely chosen to ensure fast convergence [4] and recalled in Algorithm 4
in the Appendix 4. An exhaustive state-of-the-art regarding variations of the minimization
problem (19) is provided in Appendix D.
Hyperparameter selection – The aforementioned procedure for image denoising and contour
detection involves hyperparameters, e.g. β and λ in (19). To reach satisfactory performance, the
fine-tuning of these parameters is crucial. Although central in signal and image processing, this
difficult task is still an ongoing challenge, particularly for variational methods.

The difficult problem of the selection of the regularization parameters of the D-MS functional
is addressed considering a Stein Unbiased Risk Estimate (SURE), combined with a Finite Differ-
ence Monte Carlo (FDMC) strategy making its practical computation tractable. For a detailed
state-of-the-art dedicated to hyperparameter selection, the reader could refer to Appendix C.
The optimal regularization parameters obtained by minimizing FDMC SURE via exhaustive
grid search are shown to lead to denoised estimates with high signal-to-noise ratio and relevant
contours.

Then, to provide a fast procedure selecting the regularization parameters, a Stein Unbiased
GrAdient Risk estimate (SUGAR) adapted to D-MS functional (19) is designed, involving the
Jacobian of the parametric estimator obtained from (19). Practical implementation of SUGAR
requires iterative differentiation of the SL-PAM minimization scheme, for which closed-form
formulas are provided. An averaging Monte Carlo strategy is discussed, providing a robust
FDMC SUGAR estimator. The resulting procedure compares favorably against exhaustive grid
search in terms of signal-to-noise ratio, while requiring a significantly smaller computational cost.
To the best of our knowledge, the proposed automated D-MS bi-level scheme constitutes a first
automated, prior-free and fast discrete Mumford-Shah-like formalism with automated selection
of regularization parameters.
Outline – The proposed automated and fast procedure is described in Section 2. Numerical
experiments are provided in Section 3.
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2 Hyperparameter selection for D-MS

2.1 Stein estimators for D-MS
The minimization of the D-MS functional of Eq. (19) provides both a piecewise smooth image
reconstruction, denoted û(z;β, λ) and a set of detected contours, encapsulated into ê(z;β, λ),
depending on the choice of hyperparameters Θ = (β, λ) ∈ R+×R+. In such a context, we should
ideally minimize a global error criterion

Θ̂ ∈ Argmin
Θ

d(x̂(z; Θ),x), (2)

measuring the ability of the piecewise-smooth image and contour estimates
x̂(z; Θ) = (û(z;β, λ), ê(z;β, λ)) to approximate the original data x = (u, e), using a measure of
similarity d. If d is chosen to be a quadratic risk, it reads:

d(x̂(z; Θ), x) = E[‖û(z; Θ)− u‖22] + ζE[‖ê(z; Θ)− e‖22], (3)

where ζ ≥ 0. However, the degradation model only describes how the observed image z relates
to the ground truth image u, no prior knowledge about how the ground truth contours e are
affected by the observation noise being assumed. Further, measuring the accuracy of the contours
is a tedious task, involving complicated criteria, such as the Jaccard index [6]. For these reasons,
in the present work, the quadratic error on which the choice of hyperparameter relies is chosen
to be the quadratic estimation error on the reconstructed image (i.e. ζ = 0).

The present work focuses on a strategy combining Finite Difference approximated differen-
tiation and Monte Carlo averaging, which was first described by [11]. Making use of a Finite
Difference step ε > 0 and a Monte Carlo vector δ ∈ RN drawn from N (0N , IN ), Finite Difference
Monte Carlo (FDMC) SURE is defined as:

SUREε,δ(z; Θ|σ2) := ‖(û(z; Θ)− z)‖22 +
2

ε
〈û(z + εδ; Θ)− û(z; Θ), σ2δ〉 − σ2N. (4)

It involves the denoised image û(z;β, λ), obtained from the minimization of (19), and the stan-
dard deviation of the noise σ. Under technical assumptions detailed in Appendix E, the true
inaccessible quadratic risk estimator (3) when ζ = 0 satisfies the following asymptotic unbiased-
ness property:

lim
ε−→0

E[SUREε,δ(z; Θ|σ2)] = E[‖û(z; Θ)− u‖22]. (5)

Then, the design of a fast gradient-based hyperparameter selection strategy providing optimal
hyperparameter from the minimization of (25) requires an unbiased estimate ∂ΘSUREε,δ(z; Θ|σ2)
of the gradient of the quadratic risk with respect to hyperparameters Θ. Such a general procedure
is sketched in Algorithm 5 and relies on the FDMC Stein Unbiased GrAdient Risk (SUGAR)
estimate defined as:

SUGARε,δ(z; Θ|σ2) = 2∂Θû(z; Θ)∗(û(z; Θ)− z) +
2

ε
(∂Θû(z + εδ; Θ)− ∂Θû(z; Θ))

∗
σ2δ, (6)

where ∂Θû(z; Θ) denotes the Jacobian of the parametric estimator û(z; Θ) with respect to the
hyperparameters Θ. The first proposal of such Stein Unbiased GrAdient Risk (SUGAR) estimate
was formulated by [3] for i.i.d. Gaussian noise, and then extended in [10] for correlated noise. The
main difficulty when it comes to practical implementation is to evaluate the Jacobian matrices.
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Algorithm 1 Automated selection of hyperparameters.
Input: Data z, ε, δ, and true or estimated σ2.
Initialization: Set Θ[0] ∈ RL.
For t = 0 to Tmax − 1 do

Compute SUREε,δ(z; Θ[t]|σ2)
Compute SUGARε,δ(z; Θ[t]|σ2)
Update Θ[t] to Θ[t+1] via a gradient
descent step

Output: Θ∗ = Θ[Tmax]

2.2 Differentiated SL-PAM
Practical evaluation of the risk and gradient of the risk estimates from Eq. (25) and (6), requires
to compute the Jacobian of the D-MS estimator. No closed-form expression being available for
û(z;β, λ), the derivatives are obtained from the iterative differentiation of the recursive scheme of
DMS-SLPAM, Algorithm 4 in Appendix D. This strategy raises several technical issues. Indeed,
following [3] and [10], the Jacobian matrices ∂Θû(z;β, λ) and ∂Θû(z + εδ;β, λ) are computed
iteratively from a differentiated recursive scheme. Particularized to the case of D-MS estimates,
the chain differentiation of the SL-PAM scheme (cf. Algorithm 4 in Appendix D) is derived in
Algorithm 2. For ease of computation, a specific choice of the step-size dk = ηβ‖D‖2 involved
in the update of the variable e is considered, without inducing any loss of generality.

Algorithm 2 Iterative differentiation of SL-PAM
Input: Data z̃ = {z, z + εδ}. Set Θ = (β, λ) ∈ R+ × R+.
Initialization: u[0] = z̃, e[0] = 1|E|,
∂Θũ

[0] = ∂Θu
[0] = 0N , ∂Θẽ

[0] = ∂Θe
[0] = 0|E|.

Set γ > 1 and η > 0.
While |Ψ(u[k+1], e[k+1])−Ψ(u[k], e[k])| > ξ

Set ck = γβ‖D‖2 and dk = ηβ‖D‖2

ũ[k+1] = u(k) − 1
ck
∇ug(u[k], e[k])

u[k+1] = prox 1
ck
f(·;z̃)

(
ũ[k+1]

)
Compute ∂Θũ

[k+1] from Eq. (8)
Compute ∂Θu

[k+1] from Eq. (9)
For all i ∈ {1, . . . , |E|}

ẽ
[k]
i =

β(Diu
[k+1])2 +

dke
[k]
i

2

β(Diu
[k+1])2 +

dk
2

e
[k+1]
i = prox λ

2β(Diu
[k+1])2+dk

hi
(ẽ

[k]
i )

Compute ∂Θẽ
[k+1]
i from Eq. (10)

Compute ∂Θe
[k+1]
i from Eq. (11)

General procedure – The purpose is to differentiate the mapping Θ 7→ (û(z; Θ), ê(z; Θ)),
where the estimates (û(z; Θ), ê(z; Θ)) are obtained solving (19) for fixed z.

The recursive chain differentiation consists in differentiating step by step DMS-SLPAM each
update of which can be written as v(z; Θ) = Γ(u(z; Θ), e(z; Θ), τ(Θ)), where u : RN×RL → RN ,
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e : RN × RL → R|E| and τ : RL → R are functions of the observed noisy image z and of the
hyperparameters Θ, with respect to which the differentiation is to be performed and v(z; Θ) ∈ K,
where K = RN when updating u or ũ, and K = R|E| when updating e or ẽ.

Then, applying the chain rule differentiation principle yields the following partial derivative
expression, for every component θ of the hyperparameter vector Θ and for every index j ∈
{1, . . . ,dim(K)}:

∂θvj =

N∑
`=1

(∂u`Γj)(∂θu`) +

|E|∑
m=1

(∂emΓj)(∂θem) + (∂τΓj)(∂θτ) (7)

leading to the following closed form expression for ∂Θũ
[k+1], ∂Θu

[k+1], ∂Θẽ
[k+1]
i and ∂Θe

[k+1]
i ,

for i ∈ {1, . . . , |E|}.
Iterative differentiation of DMS-SLPAM – Applying Formula (7) to each step of DMS-
SLPAM leads to Algorithm 2. Proposition 1 provides closed-form expressions of the updates of
the Jacobian matrices of the iterates involved in the minimization of a D-MS functional with
hi = | · |, thus allowing an easy and direct implementation of FDMC SURE and FDMC SUGAR
estimates of Eq. (25) and (6).

Proposition 1. Considering the D-MS functional (19) when hi = | · | and its minimization via
SL-PAM Algorithm 3 in Appendix D with dk = βd, d = η‖D‖22, for every θ ∈ {β, λ}:

∂θũ
[k] = ∂θu

[k] − 2β

ck

|E|∑
i=1

(1− e[k]
i )2 D∗iDi∂θu

[k] +
4β

ck

|E|∑
i=1

(1− e[k]
i )∂θe

[k]
i D∗iDiu

[k], (8)

∂θu
[k+1] =

ck
ck + 1

∂θũ
[k] +

ũ[k] − z
(βc+ 1)2

∂θck, (9)

where ∂βck = γ‖D‖2 and ∂λck = 0, and for every i ∈ {1, . . . , |E|}:

∂θ ẽ
[k]
i =

2Diu
[k+1]Di∂θu

[k+1] d
2 (1− e[k]

i )[(
Diu[k+1]

)2
+ d

2

]2 +
d
2∂θe

[k]
i(

Diu[k+1]
)2

+ d
2

, (10)

∂θe
[k+1]
i = −∂uφ[k+1]

i ∂θu
[k+1] ẽ

[k]
i

|ẽ[k]
i |
I|ẽ[k]

i |>φ
[k+1]
i

+ ∂θ ẽ
[k]
i I|ẽ[k]

i |>φ
[k+1]
i
− ∂τφ

[k+1]
i ∂θτ

|ẽ[k]
i |

ẽ
[k]
i I|ẽ[k]

i |>φ
[k+1]
i

,

(11)

where 
∂uφ

[k+1]
i ∂θu

[k+1] = − 4τDiu
[k+1]Di∂θu

[k+1][
2(Diu[k+1])

2
+d

]2 ,

∂τφ
[k+1]
i = 1

2(Diu[k+1])
2
+d
,

∂βτ = − λ
β2 , ∂λτ = 1

β .

(12)

Proof. The proof is given in Appendix F and the notation I is defined in Appendix A.
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2.3 Monte Carlo averaging strategy
Following [10], the risk and gradient of the risk FDMC Stein estimators, introduced in Eq. (25) and (6),
are defined from one realization of the Monte Carlo vector δ. Yet, in the context of a parametric
estimator û(z; Θ) obtained from the minimization of a nonconvex objective functional, such as
(19), it can be necessary to go further, and to consider Monte Carlo averaging strategies to get
more robust risk and gradient of the risk estimates.

The Monte Carlo averaging strategy consists in averaging the FDMC Stein estimators of
Eq. (25) and (6) over a certain number R of random Monte Carlo vectors δ(r) ∈ RN , indepen-
dently sampled from the standard Gaussian distribution as stated properly in Definition 1.

Definition 1 (Monte Carlo averaged Stein estimators). Let z = u + σζ ∈ R|Ω| with ζ ∼
N (0|Ω|, I|Ω|) and let û(z; Θ) a parametric estimator of the underlying ground truth u, depending
on some hyperparameters stored in Θ ∈ RL. For ε > 0 a Finite Difference step and ∆ =
[δ(1), . . . , δ(R)] a concatenation of independent Monte Carlo vectors sampled from the standard
Gaussian distribution. The Monte Carlo averaged SURE is defined as

SURE
R

ε,∆(z; Θ) :=
1

R

R∑
r=1

SUREε,δ(r)(z; Θ), (13)

where SUREε,δ(r)(z; Θ) is the FDMC SURE (25). Similarly, the Monte Carlo averaged SUGAR
estimator writes

SUGAR
R

ε,∆(z; Θ) :=
1

R

R∑
r=1

SUGARε,δ(r)(z; Θ), (14)

involving SUGARε,δ(r)(z; Θ), the FDMC SUGAR estimate (6).

Proposition 2. Let û(z; Θ) an estimator being uniformly Lipschitz w.r.t the observations z and
w.r.t the hyperparameters Θ, with a Lipschitz modulus Lû(z;·) independent of z, and satisfying
the univocity condition û(0N ; Θ) = 0N . For ε a infinitesimal positive Finite Difference step
and ∆ =

[
δ(1), . . . , δ(R)

]
a collection of independent standard Gaussian Monte Carlo vectors,

the Monte Carlo averaged estimates SURE
R

ε,∆(z; Θ) and SUGAR
R

ε,∆(z; Θ) are asymptotically
unbiased estimates of respectively the risk and of the gradient of the risk with respect to hyperpa-
rameters

lim
ε−→0

E[SURE
R

ε,∆(z; Θ|σ2)] = Q[û](Θ) (15)

and

lim
ε−→0

E[SUGAR
R

ε,∆(z; Θ|σ2)] = ∂ΘQ[û](Θ). (16)

Moreover, SUGAR
R

ε,∆(z; Θ|σ2) is exactly the gradient of SURE
R

ε,∆(z; Θ|σ2) with respect to the
hyperparameters Θ.

Proof. The proof is provided in Appendix G.

2.4 Averaged SUGAR D-MS
The framework presented in Section 2, combined with Proposition 2, enable us to design an au-
tomated strategy to select the D-MS regularization parameters described below and assessed
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in Section 3. First, R independent Monte Carlo vectors δ(r) are sampled. The set ∆ =
{δ(1), . . . , δ(R)} is kept fixed throughout the procedure. Then, Algorithm 5 with the averaged
estimates Q̂(z; Θ|σ2) = SURE

R

ε,∆(z; Θ|σ2) and ∂ΘQ̂(z,Θ|σ2) = SUGAR
R

ε,∆(z; Θ|σ2), defined
respectively in Eq. (13) and (14), whose practical implementation is based on Algorithm 2, pro-
vides the optimal hyperparameters. The overall procedure is referred to as Averaged SUGAR
D-MS. Note that, for R = 1, ∆ = {δ(1)}, and one retrieves the standard SURE and SUGAR
estimates. In the case when R = 1, the automated hyperparameter strategy is hence referred to
as Standard SUGAR D-MS.

3 Performance assessment

3.1 Settings
Data – To assess the relevance of SURE (25) in the context of interface detection, as well as
the efficiency of the proposed automated minimization making use of the SUGAR proposed in
Section 2, systematic experiments are performed on the test data displayed in Fig. 7 and several
noise levels are explored, corresponding to σ ∈ {0.01, 0.05, 0.1}. Additional experiments with
other geometries and level of noise are provided in Appendix H.
Algorithmic setup – See Supplementary materials.
Performance criteria – In practice, standard and averaged SURE are compared to the fol-
lowing quadratic error : Q(û|u) := ‖û−u‖22. To assess the performance of D-MS denoising with
automatically selected hyperparameters, the quality of the reconstruction is quantified by the
peak signal-to-noise ratio defined as: PSNR(û|u) = 20log10

(
‖u‖
‖û−u‖

)
.

3.2 SURE for D-MS
We first illustrate in Fig. 2 the asymptotic unbiasedness of the standard and averaged SURE on
the example z displayed in Fig. 7 (top-middle) with noise level σ = 0.05. To better locate and
compare the minima, three level sets of SURE are displayed by the Matlab function contour.

Even though the overall shape of the standard SURE maps are similar to the quadratic error
profile, Fig. 2(a-c) shows that the location of the minimum varies significantly with the Monte
Carlo vector δ(r). Averaged SURE also well reproduces the quadratic error map while being
more robust to achieve the minimum (cf. Fig. 2(d)).

This first set of experiments illustrate that the proposed averaged SURE reproduces accu-
rately the quadratic risk as expected from Proposition 2

3.3 Comparison between Standard and Averaged SUGAR D-MS

Fig. 3 investigates the ability of the hyperparameter selection strategies proposed in Section 2.4
for different numbers R ∈ {5, 10, 20} of Monte Carlo vector δ(r) to achieve the optimal hyperpa-
rameters minimizing the quadratic error Q(û|u).

The optimal hyperparameters Θ∗(r) = (β∗(r), λ∗(r)) reached by the Standard SUGAR D-
MS are scattered (Fig. 3 left), probably due to a lack of accuracy of the estimator SUGARε,δ =

SUGAR
R=1

ε,∆ . A first approach to alleviate the variability of the result is to carry out an averaging
of R hyperparameters (β∗(r), λ∗(r)) obtained by the Standard SUGAR D-MS method:

Θ∗
R

= (β∗
R
, λ∗

R
) =

1

R

R∑
r=1

(β∗(r), λ∗(r)). (17)

7



Figure 1: Piecewise smooth grey level image corrupted by i.i.d. Gaussian noise with level
σ ∈ {0.01, 0.05, 0.1}. Associated D-MS estimates û and ê (superimposed in red) The D-MS
hyperparameters are selected with the proposed Averaged SUGAR D-MS (with R = 5) using
the true standard deviation σ.

SUREε,δ(1) (z; Θ|σ2) SUREε,δ(2) (z; Θ|σ2) SUREε,δ(3) (z; Θ|σ2) SUREε,∆(z; Θ|σ2) E[‖û(z; Θ)− u‖22]
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Figure 2: Comparison between the quadratic error, standard and averaged SURE
estimates for D-MS denoising of the image displayed in Fig. 7(middle).
1st row – Map on a logarithmic grid of 40 × 40 hyperparameters Θ = (β, λ): (a-c)
SUREε,δ(r)(z; Θ|σ2) values for some realizations of the Monte Carlo vector, (d) SUREε,∆(z; Θ|σ2)
values for R = 5 realizations of the Monte Carlo vector and (e) quadratic error Q(û(z; Θ)|u)
values with level sets (black lines). 2nd row – Optimal solutions

(
û(z; ΘGrid), ê(z; ΘGrid)

)
ob-

tained from a grid search over each map. The red (resp. yellow and green) cross corresponds to
the solution displayed in (j) (resp. (f)-(h) and (i)) associated with the minimum of the quadratic
error grid (e) (resp. SURE estimate grids (a)-(c) and (d)).

As it can be observed in Fig. 3 left, this improvement of the method remains unsatisfactory,
compared to Averaged SUGAR D-MS which reaches more accurate hyperparameters.

The conclusions reached with this set of experiments are twofold: first, we highlight thatR = 5
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Figure 3: Impact of the number of realizations R of the Monte Carlo vectors when
selecting the hyperparameters with the methods described in Section 2.4. (left) R = 5

, (middle) R = 10 and (right) R = 20. (yellow) Standard SUGAR D-MS for different δ(r) leading
to Θ∗(r), (pink) Mean over the R realizations of Standard SUGAR D-MS leading to Θ∗

R
, (green)

Averaged SUGAR D-MS, (red) optimum obtained by performing a grid search minimization of
the quadratic error. For the 3 maps, the background displays the logarithmic grid of 40 × 40
hyperparameters Θ = (β, λ) of quadratic error Q(û(z; Θ)|u) values with level sets (black lines).

Degraded SUGAR T-ROF SUGAR D-MS Original Degraded T-ROF D-MS
(State-of-the-art) (Proposed) zoom zoom zoom zoom
SSIM: 0.87 SSIM: 0.86
Jacc: 0.31 Jacc: 0.50

Figure 4: Comparisons between SUGAR T-ROF and SUGAR D-MS for noisy images extracted
from the BSD69 dataset [12].

realizations are sufficient to achieve a good estimation of the optimal hyperparameters, second,
we note that the proposed automated procedure is 20 times faster compared to exhaustive search,
a grid search on averaged SURE requiring 60 minutes of calculation, while Averaged SUGAR
D-MS requires 3 minutes, when using Matlab R2018a and an Intel Core i5 processor.

Few estimated images obtained with the fully unsupervised parameter-free Averaged SUGAR
D-MS are provided in Fig. 7 (2nd row).

3.4 Real-world images
The proposed automated joint denoising and contour detection procedure Averaged SUGAR
D-MS is evaluated on real-world images extracted from BSD69 dataset [12] degraded with a
Gaussian noise with σ = 0.05. In our experiments we set R = 5 and σ has been estimated
from noisy data following Eq. (53) in Appendix H.3. Denoised images and contours provided
by the proposed data-driven Averaged SUGAR D-MS strategy are compared with those yield

9



by SUGAR T-ROF (a two-step procedure, consisting in, first, a piecewise constant denoising
with automated tuning of the regularization parameter [3], followed by an iterative thresholding
procedure [2]). In Fig. 8, we can observe that the denoising performance are very close for both
procedures (in terms of SSIM, SUGAR T-ROF is slightly better) while the contour detection is
significantly improved with the SUGAR D-MS procedure (which is confirmed when computing
Jaccard index w.r.t contours obtained from the original image).

4 Conclusion
This work devises a procedure to automatically select the hyperparameters of the D-MS func-
tional allowing to perform simultaneously image denoising and contour detection. This approach
is fully unsupervised compared to alternative deep learning strategies such as [1] and reference
therein. However, in a future work, it would probably benefit to combine D-MS functional with
unfolded deep learning strategies in order to design efficient supervised combined denoising and
contour detection approaches.

A Matlab toolbox implementing the proposed automated image denoising and contour de-
tection procedure is publicly available1.

A Notations
Let H a real Hilbert space, and f : H → (+∞,+∞] a function which is proper, convex, and
lower-semicontinuous and τ > 0 a real parameter, the proximity operator of τf at point v ∈ H is
uniquely defined by proxτf (v) = arg min

u∈H

1
2‖u−v‖

2
2 +τf(v). Additionally, let G be a real Hilbert

space and let A : H → G a Lipschitzian map, we denote by LA > 0 the Lipschitz modulus of A,
such that, for every (x, y) ∈ H×H, ‖A(x)−A(y)‖ ≤ LA‖x−y‖. Further, for every (x, y) ∈ R×R,
we denote Ix>y = 1 if x > y and 0 otherwise. Finally, IN denotes the identity matrix acting on
RN , and 1N (resp. 0N ) is the vector of RN containing only ones (resp. zeros).

B State-of-the-art for contour detection in image processing
This work focuses on performing jointly piecewise smooth denoising and contour detection on
images. In many classical approaches, image reconstruction is embedded into a variational for-
malism [34, 44], which amounts to find a minimizer of a functional consisting of the sum of a
data fidelity term and a prior penalization, i.e.,

minimize
u

1

2
‖u− z‖22 + γp(Du) (18)

where γ > 0, z ∈ R|Ω| denotes the observed degraded image, defined on a grid of pixels Ω, and
D : R|Ω| → R|E| is a discrete difference operator such that Du lives on a lattice of contours E .
Appropriate choices of the penalization term p, yield e.g. the Potts functional, when p = ‖·‖0, or
the Blake and Zisserman functional [21, 23], corresponding to p(Du) =

∑
b min{‖Dbu‖qq, χq}, for

some q ∈ [1,∞) and χ > 0, with Db being associated with several rows of D. In the same vein,
considering a convex relaxation of Potts functional, contour detection can be obtained from the
minimization of the Rudin-Osher-Fatemi (ROF) functional [41], which favors piecewise constant
estimate when considering p(Du) =

∑
b ‖Dbu‖2. An alternative solution relies on a bi-convex

1https://github.com/charlesglucas/sugar_dms
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formulation that can trace back to the Mumford-Shah [8] or Geman and Geman functionals [5],
which may be written in the discrete variational formulation setting as:

minimize
u∈R|Ω|,e∈R|E|

1

2
‖u− z‖22 + β‖(1− e)�Du‖22 + λh(e), (19)

where � denotes the component-wise product, h denotes a convex function enforcing sparsity and
β > 0 and λ > 0 are regularization parameters. This Discrete Mumford-Shah (D-MS) functional
provides a piecewise-smooth reconstructed image û as well as estimated sparse contours ê.

To achieve segmentation into K regions, Cai and Steidl designed an iterated thresolding
strategy [2] applied as a post-processing onto the minimizer of ROF functional. The resulting
state-of-the-art two-step procedure, referred to as Thresholded ROF (T-ROF), was proven to be
equivalent to minimizing the K-region piecewise constant Mumford-Shah functional. From this
thresholded solution, it is then straightforward to identify the contours of the image. However,
such an indirect contour extraction procedure restricts to closed contours. Fig. 5 shows a com-
parison between D-MS and T-ROF methods on a piecewise smooth image. The Mumford-Shah
estimate is piecewise smooth preserving the discontinuities of the image while the ROF estimate
is piecewise constant, leading to staircasing effects. We observe that T-ROF erroneously detects
interfaces in areas on which the image is piecewise smooth, as opposed to the D-MS whose es-
timated contour variable is approximately zero everywhere except at the location of the actual
signal discontinuity.

(a) Original image (b) Noisy Observation (c) T-ROF (d) D-MS

Figure 5: Comparison of state-of-the-art convex variational formulation T-ROF and the stud-
ied non-convex D-MS performing image denoising and contour extraction. From left to right:
(a) Original noise-free piecewise smooth image, (b) Observations z corrupted by an additive
Gaussian noise, (c) State-of-the-art ROF piecewise constant estimate and contours derived from
thresholding into K = 3 regions (displayed in red), and (d) Studied D-MS piecewise smooth
approximation and estimated contours (displayed in red).

C State-of-the-art for Hyperparameter selection
All aforementioned procedures for image denoising and contour detection involve hyperparame-
ters, e.g. β and λ in (19). To reach satisfactory performance, the fine-tuning of these parameters
is crucial. Although central in signal and image processing, this difficult task is still an ongoing
challenge, particularly for variational methods.

A first class of methods relying on hierarchical Bayesian approaches and has been widely
used, both in signal and image processing [19, 27, 37, 45]. The drawbacks of Bayesian methods
are that they rapidly become computationally heavy as the model for observed data gets more
complicated, and their computational cost increases with the number of hyperparameters to be
tuned. For specific 1D denoising problems, efficient hybrid variational/Bayesian strategies can
be designed [31].
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Several other classes of methods, such as cross-validation or Stein Unbiased Risk Estimate
(SURE) formulation, can be formulated as a bilevel optimization problem. Cross-validation relies
on a given labeled data set composed of noisy samples with their associated ground truth [33, 43].
However, in several real-world applications, such as medical imaging [36] or nonlinear physics
problems [39], obtaining a large enough labeled dataset is very challenging, if not impossible.
Hence, SURE, initially proposed in [13], has long been favored for its combined simplicity and
efficiency. Stein-based hyperparameter strategies rely on an additive Gaussian noise model to
design an estimate of the inaccessible true risk, defined as the quadratic error between the
estimate and ground truth. The major advantage of these approaches is that they do not require
to access ground truth. Then, the selection of optimal hyperparameters is done by minimizing
SURE and by making use of Finite Difference strategies [42, 46] or/and Monte Carlo averaging [3,
11, 32], to yield tractable and fast implementation of Stein-based risk estimates.

However, the strategy to find the optimal hyperparameters for a specific criterion has a huge
impact on the solution both in terms of quality assessment and in terms of computational load.
The most standard approach consists in computing a chosen error criterion over a grid of pa-
rameters [11, 29, 30], and to select the parameter of the grid for which the error is minimal.
Such a grid search procedure suffers from a high computation cost, especially when dealing with
L ≥ 2 regularization parameters. To circumvent this difficulty, efficient automated minimiza-
tion methods are required. It was early envisionned by Chaux et al. [24], who proposed and
assessed numerically an empirical descent algorithm for automated choice of regularization pa-
rameters, but with no convergence guarantee. A deeper theoretical analysis was then provided
by Deledalle et al. [3], evidencing sufficient conditions so that Stein Unbiased Risk Estimate is
differentiable with respect to hyperparameters, thus enabling to define the Stein Unbiased GrA-
dient of the Risk (SUGAR) estimator and to provide a practical implementation based on an
iterative differentiation strategy. Combining SUGAR with a quasi-Newton descent procedure, a
fast algorithm was designed to achieve optimal hyperparameters selection for objective functions
of the form (18). This strategy, later extended in [10, 30] for correlated noise, proved its effi-
ciency for texture segmentation [10], piecewise linear signal denoising [39], and in spatial-spectral
deconvolution for large multispectral data [17].

D Minimization of the discrete Mumford-Shah functional
The D-MS functional introduced in Eq. (19) being nonconvex, standard proximal algorithms [20,
25, 38] cannot be used directly for its minimization. However, the fact that the functional is
separately convex with respect to each variable advocates the use of alternating schemes. Among
the vast variety of existing alternating algorithms benefiting from convergence guarantees [4, 18,
22], a numerically efficient procedure for the minimization of D-MS like functionals appears to
be the Semi-Linearized Proximal Alternating Minimization (SL-PAM) scheme proposed in [4],
whose iterations in the general setting of Problem 1 are recalled in Algorithm 3.

Problem 1 (Nonconvex and nonsmooth minimization). Let f : R|Ω| → (−∞,+∞], h : R|E| →
(−∞,+∞] two proper lower semi-continuous functions and g : R|Ω| × R|E| → (−∞ +∞] a C1

function. Let λ > 0 and β > 0. We aim to estimate:

(û, ê) ∈ Argmin
u∈R|Ω|,e∈R|E|

Ψ(u, e) := f(u) + βg(u, e) + λh(e). (20)

The algorithmic scheme SL-PAM (Algorithm 3) is an hybrid version between PAM [18] and
PALM [22]. The key ingredient for the efficiency of SL-PAM consists in avoiding the linearization
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with respect to the variable e[k], enabling to choose larger descent steps. Under some techni-
cal assumptions, such as the existence of a closed-form expressions of the involved proximity
operators, the sequence

(
u[k], e[k]

)
k∈N

converges toward a critical point of Ψ(u, e).

Algorithm 3 SL-PAM
Initialization: u[0] = z, e[0] = 1|E|, γ > 1 and ξ > 0.
While |Ψ(u[k+1], e[k+1])−Ψ(u[k], e[k])| > ξ

Set ck = γLβ∇ug(·,e[k]) and dk > 0

ũ[k] = u[k] − β
ck
∇ug(u[k], e[k])

u[k+1] = prox 1
ck
f

(
ũ[k]

)
e[k+1] = prox 1

dk
(λh+βg(u[k+1],·))

(
e[k]
)

The piecewise smooth image denoising and contour detection strategy defined by (19) and
on which this paper focuses corresponds to a particularization of Problem 1. The three terms of
the objective function Ψ of Eq. (20) are particularized to

f(u) =
1

2
‖u− z‖22,

g(u, e) =

|E|∑
i=1

(1− ei)2(Diu)2,

h(e) =

|E|∑
i=1

hi(ei)

(21)

where, for all i ∈ {1, . . . , |E|}, Di denotes the ith-row of the discrete gradient operator D, and
hi : R 7→ (−∞,+∞] is a separable proper, lower semi-continuous, and convex function having a
proximal operator with known closed-form expression. The iterations of Algorithm 3 specified
to the minimization of D-MS lead to Algorithm 4 [4].

For a detailed discussion of the convergence behavior depending on the choice of the descent
steps γ and dk, the reader is referred to [4]. The most efficient setting appears to choose both of
them the smallest possible.

E Risk estimation
As previously discussed in introduction, many variational approaches for image restoration and
contour detection consists in designing a parametric estimator û(z; Θ), e.g., defined as a mini-
mizer of (18) or (19), which aims at providing the best possible estimate of a quantity of interest
u from noisy observations z. By construction, the quality of this estimate crucially relies on the
precise selection of the hyperparameters Θ, which can be for instance the regularization param-
eters β and λ in D-MS functional (19).

Quadratic risk based parameter selection
The hyperparameters tuning task is commonly formulated as the minimization of the following
quadratic risk :

Q[û](Θ) = E[‖û(z; Θ)− u‖22], (22)
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Algorithm 4 DMS-SLPAM to solve (19)
Input: Data z. Set β > 0, λ > 0.
Initialization: u[0] = z, e[0] = 1|E| ∈ R|E|.
Set γ > 1 and ξ > 0.
While |Ψ(u[k+1], e[k+1])−Ψ(u[k], e[k])| > ξ

Set ck = γβ‖D‖2 and dk > 0.
ũ[k] = u[k] − β

ck
∇ug(u[k], e[k])

u[k+1] = prox 1
ck
f (ũ[k])

For all i ∈ {1, . . . , |E|}
ẽ

[k]
i =

β(Diu
[k+1])2 +

dke
[k]
i

2

β(Diu
[k+1])2 +

dk
2

e
[k+1]
i = prox λ

2β(Diu
[k+1])2+dk

hi
(ẽ

[k]
i )

measuring the expected reconstruction error made when estimating ground truth u by û(z; Θ).
The expectation in Eq. (22) runs over the realizations of the noise corrupting z.

In practice, u being unknown and the number of observed samples z being limited, if not
reduced to one, the exact quadratic riskQ[û](Θ) of Eq. (22) is not accessible. Thus, the minimiza-
tion of the quadratic risk Q[û](Θ) is replaced by the minimization of some estimate Q̂(z; Θ|σ2)
computed from a single noisy sample z, not requiring the knowledge of ground truth but only
some prior knowledge about the noise, e.g., its standard deviation σ :

Θ̂ ∈ Argmin
Θ

Q̂(z; Θ|σ2). (23)

Then, the design of a fast gradient-based hyperparameter selection strategy providing optimal
hyperparameters from the minimization of (23) requires an unbiased estimate ∂ΘQ̂(z; Θ|σ2) of
the gradient of the quadratic risk with respect to hyperparameters Θ. Such a general procedure
is sketched in Algorithm 5.

Algorithm 5 Automated selection of hyperparameters.
Input: Data z and true or estimated σ2.
Initialization: Set Θ[0] ∈ RL.
For t = 0 to Tmax − 1 do

Compute Q̂(z; Θ[t] |σ2)

Compute ∂ΘQ̂(z; Θ[t] |σ2)
Update Θ[t] to Θ[t+1] via a gradient
descent step

Output: Θ∗ = Θ[Tmax]

Stein Unbiased Risk Estimate – To address the fact that the ground truth u is unknown,
the pioneer work of Stein [13] proposed an unbiased estimate of the quadratic risk, based on an
i.i.d. Gaussian noise additive model in which the observations are supposed to write

z = u+ σζ, ζ ∼ N (0N , IN ) (24)
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with N = |Ω| is the number of pixels and σ2 the known variance of the noise. Then, under
integrability and regularity assumptions, together with the observation model (24), the so-called
Stein Unbiased Risk Estimator (SURE) was derived in [13], and has then been intensively used in
signal and image processing [9, 16, 24, 39, 40]. In most applications, the original Stein estimator
is not usable directly and further strategies are necessary to yield a practical estimator. The
present work focuses on a strategy combining Finite Difference approximated differentiation and
Monte Carlo averaging, which was first described by [11]. Making use of a Finite Difference step
ε > 0 and a Monte Carlo vector δ ∈ RN drawn from N (0N , IN ), Finite Difference Monte Carlo
(FDMC) SURE is defined as:

SUREε,δ(z; Θ|σ2) := ‖(û(z; Θ)− z)‖22 +
2

ε
〈û(z + εδ; Θ)− û(z; Θ), σ2δ〉 − σ2N, (25)

Under the Lipschitzianity with respect to z of û(z; Θ) and the natural unambiguity property
û(0N ,Θ) = 0N , the true inaccessible quadratic risk estimator (22) satisfies the following asymp-
totic unbiasedness property:

lim
ε−→0

E[SUREε,δ(z; Θ|σ2)] = Q[û](Θ), (26)

where the expectation is to be understood on both the realizations of the observation noise ζ
appearing in Eq. (24), and the realizations of the Monte Carlo vector δ. Eq. (26) ensures that,
for small enough Finite Difference step ε, and provided that N is large enough so that the Monte
Carlo strategy is relevant, a minimizer of SUREε,δ(z; Θ|σ2) is an approximately optimal set of
hyperparameters in terms of quadratic risk.

Risk estimate minimization – The gradient-based strategy sketched at Algorithm 5 when

Q̂(z; Θ|σ2) = SUREε,δ(z; Θ|σ2) (27)

relies on the FDMC Stein Unbiased GrAdient Risk (SUGAR) estimate defined as:

SUGARε,δ(z; Θ|σ2) = 2∂Θû(z; Θ)∗(û(z; Θ)− z) +
2

ε
(∂Θû(z + εδ; Θ)− ∂Θû(z; Θ))

∗
σ2δ, (28)

where ∂Θû(z; Θ) denotes the Jacobian of the parametric estimator û(z; Θ) with respect to the
hyperparameters Θ. The first proposal of such Stein Unbiased GrAdient Risk (SUGAR) estimate
was formulated by [3] for i.i.d. Gaussian noise, and then extended in [10] for correlated noise. The
main difficulty when it comes to practical implementation is to evaluate the Jacobian matrices.
In [3, 10], the authors proposed an efficient implementation when û(z; Θ) is estimated from the
resolution of a convex minimization problem of the form (18) while in this contribution we extend
it in the context of interface detection involving a minimization problem such as (19) solved with
SL-PAM described in Section D.

Under technical assumptions such as Lipschitzianity of û(z; Θ) with respect to Θ and z, it
has been proved in [3] that the quadratic risk estimator (25) is weakly differentiable with respect
to Θ and its gradient is exactly the gradient estimator recalled in (28), i.e.,

∂ΘSUREε,δ(z; Θ|σ2) = SUGARε,δ(z; Θ|σ2). (29)

Eq. (29) ensures that the gradient estimate SUGARε,δ(z; Θ|σ2) is indeed the gradient of the
quadratic risk estimate SUREε,δ(z; Θ|σ2) with respect to hyperparameters Θ, justifying the use
of the gradient descent approach of Algorithm 5 to solve a particular instance of Problem (23)
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when Q̂(z; Θ|σ2) is defined by (27). Additionally, FDMC SUGAR estimator introduced in (28)
is an asymptotically unbiased estimator of the gradient of the true quadratic risk, i.e.

lim
ε−→0

E[SUGARε,δ(z; Θ|σ2)] = ∂ΘQ[û](Θ), (30)

where ∂ΘQ[û](Θ) is the true inaccessible gradient of quadratic risk with respect to hyperparam-
eters Θ, and the expectation is to be understood on both the realizations of the observation
noise ζ appearing in Eq. (24) and the realizations of the Monte Carlo vector δ. The asymptotic
unbiasedness of the gradient estimate ensures that the risk profile around its minimum is well
enough reproduced by Stein-like estimates so that Algorithm 5 can be reasonably supposed to
output a good approximation of the true optimal hyperparameters.

F Iterative differentiation of SL-PAM for D-MS

F.1 Update of ∂θũ[k]

For the function g given in Eq. (21), the update rule of ũ[k] reads:

ũ[k] = u[k] − β

ck
∇ug(u[k], e[k])

= u[k] − 2β

ck

|E|∑
i=1

(1− e[k]
i )2 D∗iDiu

[k].

(31)

The update of ũ[k] can be written:

ũ[k] = Γ(u[k], e[k], τ [k]), (32)

where 
Γ(u, e, τ) = u− τ

|E|∑
i=1

(1− ei)
2 D∗iDiu,

τ [k] = 2β
ck
.

(33)

The derivative ∂θv of v = Γ(u, e, τ), for θ ∈ {β, λ}, is:

∂θv =∂θu− τ
|E|∑
i=1

(1− ei)
2 D∗iDi∂θu

+ 2τ

|E|∑
i=1

(1− ei)∂θei D∗iDiu

− ∂θτ
|E|∑
i=1

(1− ei)
2D∗iDiu,

(34)

and, since ck = βγ‖D‖2, for θ ∈ {β, λ},

∂θτ
[k] = ∂θ

(
2β

ck

)
= ∂θ

(
2

γ‖D‖2

)
= 0. (35)
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F.2 Update of ∂θu[k+1]

The function f given in Eq. (21) has a proximal operator with a closed form expression. Thus
the update rule of u[k] can be explicitely expressed as follows:

u[k+1] = prox 1
ck
f (ũ[k]) =

ckũ
[k] + z

ck + 1
. (36)

For the update of u[k+1], we thus have:

u[k+1] = Γ(ũ[k],0|E|, τ
[k]), (37)

where {
Γ(u, e, τ) = τu+z

τ+1 ,

τ [k] = ck.
(38)

The derivative ∂θv of v = Γ(v, e, τ), for θ ∈ {β, λ}, is:

∂θv =
τ

τ + 1
∂θu +

u− z
(τ + 1)2

∂θτ, (39)

and ∂βτ [k] = γ‖D‖2 and ∂λτ [k] = 0.

F.3 Update of ∂θẽ[k]

In Algorithm 4, the parameter for the update of e[k+1] is set to dk = βd where d = η‖D‖22. This
choice is discussed in [4] and gives good numerical results for some values of η. This setting
simplifies the computation of the derivatives due to the linear dependance of dk with β. Indeed,
the update rule of ẽ[k]

i , for every i ∈ {1, . . . , |E|}, can be rewritten as follows:

ẽ
[k]
i =

(Diu
[k+1])2 +

de
[k]
i

2

(Diu[k+1])2 + d
2

. (40)

Thus, for every i ∈ {1, . . . , |E|},

ẽ
[k]
i = Γi(u

[k+1], e[k], τ [k]), (41)

where
{

Γi(u, e, τ) =
(Diu)2+ τ

2 ei
(Diu)2+ τ

2
,

τ [k] = d.
(42)

The derivative ∂θv of v = Γ(u, e, τ), for θ ∈ {β, λ} and for i ∈ {1, . . . , |E|}, is:

∂θvi =
2DiuDi∂θu

(Diu)
2

+ τ
2

−
2DiuDi∂θu

[
(Diu)

2
+ τ

2 ei

]
[
(Diu)

2
+ τ

2

]2
+

τ
2∂θei

(Diu)
2

+ τ
2

+
∂θτ
2 ei

(Diu)
2

+ τ
2

−
[(Diu)2 + τ

2 ei]
∂θτ
2[

(Diu)
2

+ τ
2

]2 ,

(43)

and ∂θτ [k] = 0, which yields to the result in [35, Proposition 2].
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F.4 Update of ∂θe[k+1]

For the update of e[k+1]
i , for every i ∈ {1, . . . , |E|}, the fonction h in Eq. (21) is chosen with

hi = |.|. This latter function corresponds to the common `1-norm penalization of the contour.
The setting dk = βd simplifies this update which now reads:

e
[k+1]
i = prox

φ
[k+1]
i |.|(ẽ

[k]
i ), φ

[k+1]
i = φi(u

[k+1]; τ), (44)

where φi(u, τ) = τ

[2(Diu)2+d]
, τ = λ

β ,

proxφi(u,τ)|.|(ei) = max(0, 1− φi(u;τ)
|ei| )ei.

(45)

For every i ∈ {1, . . . , |E|},
e

[k+1]
i = Γi(u

[k+1], ẽ[k], τ [k]), (46)

where {
Γi(u, e, τ) = proxφi(u;τ)|.|(ei),

τ [k] = λ
β .

(47)

The derivative ∂θv of v = Γ(u, e, τ), for θ ∈ {β, λ} and for i ∈ {1, . . . , |E|}, is:

∂θvi =− ∂uφi∂θu
ei
|ei|
I|ei|>φi(u,τ) + ∂θeiI|ei|>φi(u,τ)

− ∂θτ[
2 (Diu)

2
+ d
] ei
|ei|
I|ei|>φi(u,τ),

(48)

with Jacobian matrices product

∂uφi∂θu = − τ[
2 (Diu)

2
+ d
]2 (4DiuDi∂θu) , (49)

and ∂βτ [k] = 1
β and ∂λτ [k] = − λ

β2 .

G Proof of Proposition 2

For each Monte Carlo vector δ(r), the FDMC SUREε,δ(r) and SUGARε,δ(r) estimates, defined at
Eq. (25) and (28) are asymptotically unbiased and SUGARε,δ(r) , is the derivative of SUREε,δ(r) ,
w.r.t. Θ. Then, by linearity of both the limit limε→0 and the summation over the R Monte
Carlo vectors, the Monte Carlo averaged estimates SURE

R

ε,∆(z; Θ|σ2) and SUGAR
R

ε,∆(z; Θ|σ2)

are also unbiased and SUGAR
R

ε,∆(z; Θ|σ2) is the derivative of SURE
R

ε,∆(z; Θ|σ2) w.r.t. Θ.

H Additional experiments

H.1 Algorithmic setup
SL-PAM – The minimization of the D-MS functional (19) providing estimates of both the
piecewise smooth image and its salient contours, is performed running Algorithm 4. The stopping
criterion, based on the objective function increments, is set to ξ = 10−4, while the descent steps
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(a) σ = 0 (b) σ = 0.01 (c) σ = 0.03 (d) σ = 0.05 (e) σ = 0.07 (f) σ = 0.1

Figure 6: Piecewise smooth grey level images (σ = 0) corrupted by i.i.d. Gaussian noise with
level σ ∈ {0.01, 0.03, 0.05, 0.07, 0.1}.

are tuned manually so as to obtain the fastest convergence, leading to γ = 1.01 and dk = ηβ‖D‖22
with η = 1.01× 10−3 following [4].
Stein estimators – FDMC SURE (25) is computed with a Finite Difference step

ε = 2
σ

Nα
, 0 < α < 1 (50)

where σ is the standard deviation of the noise on the observed image z ∈ RN . Formula (50)
derives from a heuristic reasoning developed in [3], in the context of `1-norm penalization. The
dependency of the Finite Difference step on the size of the data is controlled via the exponent
α, which is fixed at α = 0.3 for all the numerical simulations. In the systematic numerical
experiments, four values of the number R of realizations of the Monte Carlo vector δ(r) are
envisioned and systematically compared: R ∈ {1, 5, 10, 20}.
BFGS algorithm – To perform the risk minimization described in Algorithm 5 for different
choices of Q̂(z; Θ |σ2) and ∂ΘQ̂(z; Θ |σ2) we used the GRadient-based Algorithm for Non-Smooth
Optimization, implemented in GRANSO toolbox2, consisting of the low memory BFGS quasi-
Newton algorithm proposed in [26] with box constraints, enabling to enforce positivity of β and
λ. The maximal number of iterations of BFGS Algorithm 5 is set to Tmax = 20, while the
stopping criterion on the gradient norm is set to 10−8. Further, it is well-documented that the
initialization of quasi-Newton algorithms might drastically impact their convergence. Hence,
we propose a model-based strategy for initializing Algorithm 5. Inspired from the initialization
strategies proposed in [3, 10], hyperparameters Θ = (β, λ) are initialized as

β(0) =
Nσ2

4‖Dz‖22
and λ(0) =

β(0)‖Dz‖22
2N

, (51)

while, for κ = 0.9, the initial approximated inverse Hessian involved in the BFGS strategy is set
to

H(0) = diag

(∣∣∣∣∣ κβ(0)

∂βQ̂(z; Θ(0)|σ2)

∣∣∣∣∣ ,
∣∣∣∣∣ κλ(0)

∂λQ̂(z; Θ(0) |σ2)

∣∣∣∣∣
)
. (52)

2http://www.timmitchell.com/software/GRANSO/
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(a) σ = 0.01 (b) σ = 0.03 (c) σ = 0.05 (d) σ = 0.07 (e) σ = 0.1

Figure 7: D-MS estimates û and ê (superimposed in red) of piecewise smooth grey level images
corrupted by i.i.d. Gaussian noise with noise level σ displayed in Fig. 6. The D-MS hyperpa-
rameters are selected with the proposed Averaged SUGAR D-MS using either the true standard
deviation σ (first and third rows) or the estimated standard deviation σ̂ (second and fourth
rows).

H.2 Performance w.r.t noise level
We now focus on the Averaged SUGAR D-MS for R = 5 and assess its performance for the
different geometries and noise levels displayed in Fig. 6. Averaged PSNR for 10 realizations of
the noise are reported in Table 1, denoised images and detected contours are displayed in Fig. 7
(1st and 3rd rows) for one realization of the noise.

As expected, the PSNR decreases as the noise level increases. Further, large error bars
are observed mainly due to the variability of the gradient descent scheme in Algorithm 5, the
realizations of the Monte Carlo vector, or the SL-PAM non-convex minimization procedure.
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Degraded SUGAR T-ROF SUGAR D-MS Original Degraded T-ROF D-MS
(State-of-the-art) (Proposed) zoom zoom zoom zoom
SSIM: 0.85 SSIM: 0.83
Jacc: 0.38 Jacc: 0.43

SSIM: 0.86 SSIM: 0.84
Jacc: 0.34 Jacc: 0.61

SSIM: 0.87 SSIM: 0.85
Jacc: 0.35 Jacc: 0.49

Figure 8: Comparisons between SUGAR T-ROF and SUGAR D-MS for noisy images extracted
from the BSD69 dataset [12].
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Table 1: PSNR values with 95% confidence interval for true noise level σ and for estimated noise
level σ̂.

σ
Losange Ellipse

True σ Estimated σ̂ True σ Estimated σ̂
0.01 43.85± 0.06 43.64± 0.12 41.77± 0.06 41.08± 0.25
0.03 38.94± 0.12 38.89± 0.13 31.80± 2.73 33.64± 2.23
0.05 34.33± 0.70 34.71± 0.12 26.05± 2.92 26.37± 2.80
0.07 31.60± 0.52 30.55± 1.78 26.73± 2.46 22.64± 2.68
0.1 28.86± 0.47 27.24± 1.84 21.25± 3.03 22.61± 3.33

H.3 Impact of the estimation of σ
On real data, the noise level σ needed to implement Averaged SUGAR D-MS is unknown. The
most usual method to estimate the noise standard deviation is the median absolute deviation
(MAD) of 2D discrete wavelet coefficients [28]:

σ̂ =
MAD

({
|ψH,k|, |ψV,k|, |ψD,k||k ∈ {1, . . . , N4 }

})
0.6745

, (53)

where ψH,k, ψV,k, ψD,k are the three wavelets coefficents (horizontal, vertical and diagonal) at
the finest scale. Table 1 presents the PSNR values with the estimated noise level σ̂. In addition,
some estimates are depicted in Fig. 7 (2nd and 4th rows).

The results with either estimated or true noise level are similar, attesting the robustness of
Averaged SUGAR D-MS to the estimation of the noise level.

H.4 Real-world images
The proposed automated joint denoising and contour detection procedure Averaged SUGAR
D-MS is evaluated on real-world images extracted from BSD69 dataset [12] degraded with a
Gaussian noise with σ = 0.05. In our experiments we set R = 5 and σ has been estimated
from noisy data following (53). Denoised images and contours provided by the proposed data-
driven Averaged SUGAR D-MS strategy are compared with those yield by SUGAR T-ROF (a
two-step procedure, consisting in, first, a piecewise constant denoising with automated tuning of
the regularization parameter [3], followed by an iterative thresholding procedure [2]). In Fig. 8,
we can observe that the denoising performance are very close for both procedures (in terms of
SSIM, SUGAR T-ROF is slightly better) while the contour detection is significantly improved
with the SUGAR D-MS procedure (which is confirmed when computing Jaccard index w.r.t
contours obtained from the original image).

References
[1] Bertasius G, Shi J, Torresani L (2015) Deepedge: A multi-scale bifurcated deep network

for top-down contour detection. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp 4380–4389

[2] Cai X, Steidl G (2013) Multiclass segmentation by iterated ROF thresholding. In: In-
ternational Workshop on Energy Minimization Methods in Computer Vision and Pattern
Recognition, Springer, pp 237–250

22



[3] Deledalle CA, Vaiter S, Fadili J, et al (2014) Stein Unbiased GrAdient estimator of the Risk
(SUGAR) for multiple parameter selection 7(4):2448–2487

[4] Foare M, Pustelnik N, Condat L (2019) Semi-linearized proximal alternating minimization
for a discrete Mumford–Shah model. IEEE Trans Image Process 29(1):2176–2189

[5] Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Trans Pattern Anal Match Int (6):721–741

[6] Jaccard P (1901) Distribution de la flore alpine dans le bassin des Dranses et dans quelques
régions voisines. Bull Soc Vaudoise Sci Nat 37:241–272

[7] Kiefer L, Storath M, Weinmann A (2020) PALMS Image Partitioning-A New Parallel Al-
gorithm for the Piecewise Affine-Linear Mumford-Shah Model. Image Processing On Line
10:124–149

[8] Mumford DB, Shah J (1989) Optimal approximations by piecewise smooth functions and
associated variational problems. Commun Pure Appl Math 42(5):577 – 685

[9] Pascal B, Pustelnik N, Abry P (2021) Strongly convex optimization for joint fractal feature
estimation and texture segmentation. Appl Comp Harm Analysis 54:303–322

[10] Pascal B, Vaiter S, Pustelnik N, et al (2021) Automated data-driven selection of the hyper-
parameters for Total-Variation based texture segmentation. J Math Imaging Vis pp 1–30

[11] Ramani S, Blu T, Unser M (2008) Monte-carlo SURE: A black-box optimization of regular-
ization parameters for general denoising algorithms. IEEE Trans Image Process 17(9):1540–
1554

[12] Roth S, Black MJ (2009) Fields of experts. International Journal of Computer Vision
82(2):p.205–229

[13] Stein C (1981) Estimation of the mean of a multivariate normal distribution. Ann Stat
9(6):1135–1151

[14] Storath M, Weinmann A, Demaret L (2014) Jump-sparse and sparse recovery using Potts
functionals. IEEE Trans Signal Process 62(14):3654–3666

[15] Zach C, Häne C (2017) Discretized convex relaxations for the piecewise smooth Mumford-
Shah model. In: Proc. Energy Minimization Methods in Computer Vision and Pattern
Recognition, pp 548–563

[16] Ammanouil R, Ferrari CA.and Richard (2018) ADA-PT: An adaptive parameter tuning
strategy based on the weighted stein unbiased risk estimator. In: 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp 4449–4453

[17] Ammanouil R, Ferrari A, Mary D, et al (2019) A parallel and automatically tuned algorithm
for multispectral image deconvolution. Monthly Notices of the Royal Astronomical Society
490(1):37–49

[18] Attouch H, Bolte J, Redont P, et al (2010) Proximal alternating minimization and pro-
jection methods for nonconvex problems: An approach based on the Kurdyka-Łojasiewicz
inequality. Mathematics of operations research 35(2):438–457

23



[19] Babacan SD, Molina R, Katsaggelos AK (2009) Variational Bayesian blind deconvolution
using a total variation prior. IEEE Trans Image Process 18(1):12–26

[20] Bauschke HH, Combettes PL (2017) Convex Analysis and Monotone Operator Theory in
Hilbert Spaces. Springer, New York

[21] Blake A, Zisserman A (1987) Visual reconstruction. MIT press

[22] Bolte J, Sabach S, Teboulle M (2014) Proximal alternating linearized minimization for
nonconvex and nonsmooth problems. Mathematical Programming 146(1):459–494

[23] Chambolle A (1995) Image segmentation by variational methods: Mumford and Shah func-
tional and the discrete approximations. SIAM Journal on Applied Mathematics 55(3):827–
863

[24] Chaux C, Duval L, Benazza-Benyahia A, et al (2008) A nonlinear Stein-based estimator for
multichannel image denoising. IEEE Trans Signal Process 56(8):3855–3870

[25] Combettes PL, Pesquet JC (2011) Proximal splitting methods in signal processing. In:
Fixed-point algorithms for inverse problems in science and engineering. Springer, New York,
p 185–212

[26] Curtis FE, Mitchell T, Overton ML (2017) A BFGS-SQP method for nonsmooth, noncon-
vex, constrained optimization and its evaluation using relative minimization profiles. Optim
Methods Softw 32(1):148–181

[27] Dobigeon N, Tourneret JY, Davy M (2007) Joint segmentation of piecewise constant autore-
gressive processes by using a hierarchical model and a Bayesian sampling approach. IEEE
Trans Signal Process 55(4):1251–1263

[28] Donoho DL (1995) Denoising by soft-thresholding. IEEE Trans Inform Theory 41(3):613–
627

[29] Donoho DL, Johnstone JM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika
81(3):425–455

[30] Eldar YC (2008) Generalized SURE for exponential families: Applications to regularization.
IEEE Trans Signal Process 57(2):471–481

[31] Frecon J, Pustelnik N, Dobigeon N, et al (2017) Bayesian Selection for the `2-Potts
Model Regularization Parameter: Constant Signal Denoising. IEEE Trans Signal Process
65(25):5215–5224

[32] Girard A (1989) A fast ‘Monte-Carlo cross-validation’ procedure for large least squares
problems with noisy data. Numerische Mathematik 56(1):1–23

[33] Golub GH, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing
a good ridge parameter. Technometrics 21(2):215–223

[34] Golub GH, Hansen PC, O’Leary DP (1999) Tikhonov regularization and total least squares.
SIAM journal on matrix analysis and applications 21(1):185–194

[35] Lucas C, Pascal B, Pustelnik N, et al (2022) Hyperparameter selection for Discrete Mumford-
Shah. to be specified

24



[36] Marin Z, Batchelder KA, Toner BC, et al (2017) Mammographic evidence of microenviron-
ment changes in tumorous breasts. Medical Physics 44(4):1324–1336.

[37] Molina R, Nunez J, Cortijo FJ, et al (2001) Image restoration in astronomy: A Bayesian
perspective. IEEE Signal Proc Mag 18(2):11–29

[38] Parikh N, Boyd S (2014) Proximal algorithms. Foundations and Trends® in Optimization
1(3):127–239

[39] Pascal B, Pustelnik N, Abry P, et al (2020) Parameter-free and fast nonlinear piecewise
filtering: application to experimental physics. Ann Telecommun 75(11):655–671

[40] Pesquet JC, Benazza-Benyahia A, Chaux C (2009) A SURE approach for digital sig-
nal/image deconvolution problems. IEEE Trans Signal Process 57(12):4616–4632

[41] Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algo-
rithms. Physica D: Nonlinear Phenomena 60(1-4):259–268

[42] Shen X, Ye J (2002) Adaptive model selection. J Am Stat Assoc 97(457):210–221

[43] Stone M (1978) Cross-validation: A review. Statistics: A Journal of Theoretical and Applied
Statistics 9(1):127–139

[44] Tikhonov AN, Goncharsky AV, Stepanov VV, et al (2013) Numerical methods for the solu-
tion of ill-posed problems, vol 328. Springer Science & Business Media

[45] Vacar C, Giovannelli JF (2019) Unsupervised joint deconvolution and segmentation method
for textured images: a Bayesian approach and an advanced sampling algorithm. EURASIP
J Adv Signal Process 2019(1):17

[46] Ye J (1998) On measuring and correcting the effects of data mining and model selection. J
Am Stat Assoc 93(441):120–131

25


	Introduction
	Hyperparameter selection for D-MS
	Stein estimators for D-MS 
	Differentiated SL-PAM
	Monte Carlo averaging strategy
	Averaged SUGAR D-MS

	Performance assessment
	Settings
	SURE for D-MS
	Comparison between Standard and Averaged SUGAR D-MS
	Real-world images

	Conclusion
	Notations
	State-of-the-art for contour detection in image processing
	State-of-the-art for Hyperparameter selection
	Minimization of the discrete Mumford-Shah functional
	Risk estimation
	Iterative differentiation of SL-PAM for D-MS 
	Update of [k]
	Update of bold0mu mumu uu2005/06/28 ver: 1.3 subfig packageuuuu[k+1] 
	Update of [k]
	Update of bold0mu mumu ee2005/06/28 ver: 1.3 subfig packageeeee[k+1] 

	Proof of Proposition 2
	Additional experiments
	Algorithmic setup
	Performance w.r.t noise level
	Impact of the estimation of 
	Real-world images


