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0000-0002-1493-5777

Anthony Larcher
LIUM

Le Mans, France
0000-0003-4398-0224

Abstract—In this paper we investigate a template recon-
struction attack against a speaker verification system. A stolen
speaker embedding is processed with a zero-shot voice-style
transfer system to reconstruct a Mel-spectrogram containing as
much speaker information as possible. We assume the attacker
has a black box access to a state-of-the-art automatic speaker
verification system. We modify the AutoVC voice-style transfer
system to spoof the automatic speaker verification system.

We find that integrating a new loss targeting embedding recon-
struction and optimizing training hyper-parameters significantly
improves spoofing. Results obtained for speaker verification are
similar to other biometrics, such as handwritten digits or face
verification. We show on standard corpora (VoxCeleb and VCTK)
that the reconstructed Mel-spectrograms contain enough speaker
characteristics to spoof the original authentication system.

Index Terms—x-vector, Zero-shot voice style transfer, Auto-
matic Speaker Verification

I. INTRODUCTION

There is a rising interest of ethical concerns about machine
learning systems, especially for personal data protection. Most
biometric authentication systems [1] use personal data such
as voice recordings [2], face images [3], fingerprints [4] or
handwritten digits [5] to extract identity characteristics of their
users as high dimensional vectors, using deep feature extrac-
tors. Those vectors, usually named embeddings or templates,
are stored in a database when a user registers during the
enrollment phase. In the context of this paper, embeddings
and templates are equivalent terms: high-dimensional vectors
extracted by neural networks. Then for the authentication
phase, new data from the user requiring access is collected
and processed by the same feature extractor to compute trial
embeddings. The computation and analysis of a score between
trial and enrollment embeddings gives an estimation of the
legitimacy of the user. Because enrollment embeddings are
stored and transferred between devices, they could be vulner-
able to theft, therefore they represent a potential breach in the
system’s security and a risk for the users’ data safety. While
template protection mechanisms exist [6], [7], we suppose here
that the embeddings are not protected.

Mai et al. [3] investigate template reconstruction attacks on
face images that require a black box access to the feature
extractor. This attack uses a comparison feature extractor and
a generator to reconstruct the face images from deep face
templates. Our long term goal is to similarly design a template

reconstruction attack on text-independent voice-based authen-
tication systems, but without access to the feature extractor
(as performed on handwritten digits in [8]). First, we need to
prove such an attack is even feasible with a black box access
to the extractor. Due to the nature of speech and the design
of modern speaker verification feature extractors (temporal
pooling layers [9]), it is yet to prove speaker embeddings [10]
contain sufficient information to generate spoofing utterances.
In this paper we propose to perform a template reconstruction
attack with a black-box access to the feature extractor. We
investigate a solution for the generation of spoofing speech
utterances, only focused on the speaker’s identity and not
on the linguistic content of the utterances. The fastResNet34
feature extractor architecture of [11] is chosen to extract
the speaker identity features from Mel-spectrograms. For the
generation of spoofing samples, we use a modified version of
AutoVC [12], a zero-shot non-parallel voice conversion system
that was designed for voice style transfer: disentangle identity
and linguistic contents to generate Mel-spectrograms as uttered
by a given speaker.

The main contributions of this paper are:

1) The use of a voice style transfer system [12] to recon-
struct Mel-spectrograms related to an utterance-related
speaker embedding.

2) The improvement of this system for spoofing attacks,
thanks to an enhanced reconstruction loss.

3) The use of the voice style transfer system on speech
embeddings extracted using a state of the art feature
extractor [11].

4) The proposition of an evaluation protocol for template
reconstruction attacks on text-independent speaker verifi-
cation systems.

In section II, we expose related works about template
reconstruction attacks and voice style transfer systems. Section
III presents the experimental data. Section IV introduces the
threat model and the attack scenario that we propose, while
section V presents implementation details about the systems
used in that scenario. In section VI we present the experiments
and their associated results. Finally, section VII concludes and
discusses possible future works.



II. RELATED WORK

A. Template reconstruction attacks
Modern biometrics rely on neural network based templates

to encode the identity of a user, as well as other features,
such as linguistic content [10] for speech analysis. [3], [8],
[13] expose vulnerabilities of such authentication systems by
reconstructing face images, handwritten digits and iris images
from templates. Our present work is inspired from [3], a
template reconstruction attack that uses stolen templates and
the associated black-box feature extractor, also referred to
as the encoder. An artificially generated set of deep face
templates is used to train a decoder to reconstruct faces
images from their associated embeddings. Used on stolen face
templates, this decoder succeeds in approximating the original
face images. Such images used in a spoofing setting achieve
87.37% of Attack Success Rate for a 1% False Acceptation
Rate threshold.

Our work differs from [3] as we work with speech, on text-
independent automatic speaker verification (ASV) systems.
It was already shown that ASV systems can be fooled with
adversarial examples [14]. Contrary to face images, speech
utterances carry not only identity characteristics of the speaker,
but also linguistic content. Due to the temporal pooling layer
of modern speaker verification front end [9], most of the
content information is lost during feature extraction [10]:
this is not surprising considering linguistic content is not so
discriminative between speakers. Therefore it is not possible
to regenerate speech from embeddings as efficiently as face
images without any prior linguistic content information.

In our work, we do not use artificially generated data to train
our decoder, but real data, from a distinct set of speakers
available to the attacker. In the case of voice biometrics,
the speech encoder is a text-independent ASV system (see
section V-A), and as the decoder a suitable voice style
transfer system (see section V-B). While we choose to focus
only on the identity characteristics in this work, we will
have to consider the problem of speech intelligibility for the
reconstruction of audible speech in future works.

B. Zero-shot voice style transfer
Voice conversion [15] consists in transforming a speech

utterance of a speaker to another utterance that sounds like
another speaker with its linguistic content preserved [16]. The
first voice conversion systems were parallel [17]–[19], mean-
ing they used audio sequences from different speakers with the
same linguistic content. Then, non-parallel systems started to
get more attention [20]–[23], trained on samples containing
different sentences for different speakers. One major difficulty
of the voice conversion task is to generalize well to unseen
speakers, to produce efficient conversion from and/or to unseen
speakers. Recently, few zero-shot voice style transfer (VST)
systems emerged [12], [24], [25], zero-shot meaning they can
transfer the voice from and to previously unseen speakers.
The authors of [12] view the voice conversion problem as a
voice style transfer problem, where the vocal qualities can
be regarded as styles, and speakers as domains.

AutoVC [12] works as an auto-encoder that disentangles
identity from linguistic content of Mel-spectrograms, to re-
construct segments uttered by a source speaker in the style of
a target speaker represented by a speaker embedding.

To perform a template reconstruction attack, we need a
decoder able to reconstruct original Mel-spectrograms from
templates of a target speaker. AutoVC theoretically allows
to generate spoofing Mel-spectrograms by taking any source
Mel-spectrogram and reconstructing it with the style of a
target speaker, a speaker never seen by the decoder during
its training.

In this paper, we optimize AutoVC for speaker verification
spoofing. In particular, we extend the reconstruction loss for
embedding stability, we work with state-of-the-art speaker
embeddings and we use utterance-related speaker embeddings,
instead of one single average embedding per speaker.

III. DATA

Experimental data is composed of files from three different
datasets: VoxCeleb 1 [26], VoxCeleb 2 [27] and VCTK [28],
presented in table I.

TABLE I
DATASETS USED.

Dataset Role Speakers

VoxCeleb 1 [26] Template 1251
VoxCeleb 2 [27] ASVtrain/valid/test 5994

VCTK [28] VSTtrain/valid/test 110

The VoxCeleb 2 [27] and VCTK [28] sets are split to
constitute training, validation and testing subsets to train re-
spectively the ASV and VST systems. The speech utterances
of 10% of the speakers are selected for evaluation. 10% of
the speech utterances of the remaining speakers constitute
the validation sets, and the remaining utterances are used for
training. VoxCeleb 1 [26] is fully used as a testing set. The
table II details the different subsets used1.

TABLE II
DETAILED SPLIT OF THE DIFFERENT SETS USED.

Datasets From Speakers Files alias

Template VoxCeleb 1 [26] 1251 148642 T
ASVtrain VoxCeleb 2 [27] 5395 939766
ASVvalid VoxCeleb 2 [27] 5395 104419
ASVtest VoxCeleb 2 [27] 600 1547
VSTtrain VCTK [28] 100 34733 A
VSTvalid VCTK [28] 100 3860
EVSTTest

VCTK [28] 10 3671

For any given dataset of speech utterances S, let MS be the
set of Mel-spectrograms computed from its files:

MS := {mu
i | ∀u, i ∈ [1, Nuttr]× [1, Nspeaker]} (1)

1Exact distribution available on
https://github.com/Dretse/Spoofing speaker verif datasets

https://github.com/Dretse/Spoofing_speaker_verif_datasets


mu
i being the uth Mel-spectrogram of the dataset, uttered by

the ith speaker.
Let ES be the associated embedding set, computed using

the black box ASV system:

ES := {eui = ASV(mu
i ) | ∀mu

i ∈MS} (2)

Let M̂S be the Mel-spectrogram spoofing set generated by the
VST system:

M̂S := {m̂v
i = VST(eui ,m

v
j ) | (eui ,mv

j ) ∈ ES ×MA} (3)

Finally, let ÊS be the associated spoofing embedding set,
computed using the black box ASV system:

ÊS := {êui = ASV(m̂u
i ) | ∀m̂u

i ∈ M̂S} (4)

In the previous equations, S can be replaced by any of the
datasets from the table II. For better readability, we will refer
to the Template set (resp. the VSTtrain set) as the T set
(resp. the A set).

IV. PROPOSED ATTACK SCENARIO

A. Threat model

We propose a template reconstruction attack of a text-
independent ASV system [11]. As detailed in section II-A,
we follow the threat model proposed for deep face templates
in [3], but change the encoder and decoder because of the
different nature of the data.

We suppose the attacker has an unlimited black box access
to the encoder, an ASV feature extractor, meaning he can
compute a speaker embedding for the Mel-spectrogram of
his choice. This ASV system was trained beforehand on the
ASVtrain set (see table II)

Using the notations developed in the section III, we suppose
the attacker stole the embedding set ET, but doesn’t have
access to its counter part MT. The attacker also has access
to external sets of speech utterances from distinct speakers,
from which he can compute Mel-spectrograms and associated
embeddings, respectively the MA and EA datasets.

B. The attack scenario

As the attacker, we aim to generate Mel-spectrograms m̂u
i ∈

M̂T to spoof the ASV system, thanks to the stolen ET set. To
achieve this, we train a zero-shot VST system with MA and
EA to reconstruct Mel-spectrograms as if they were uttered
by another speaker represented by a known embedding. We
use both ASV and VST systems, detailed in section V, and
databases of speech utterances that are detailed in section III.
This attack scenario is composed of three steps (illustrated by
yellow numbers in the figure 1), where the attacker:

1) Computes the embeddings EA from the Mel-spectrogram
database MA using the black box ASV system.

2) Trains a VST system with the Mel-spectrograms set MA

and the embedding set EA.
3) Uses the trained VST system to generate spoofing Mel-

spectrograms M̂T from source Mel-spectrograms MA,
targeting the speaker embeddings of ET.

For the evaluation, we compute the embeddings ÊT from the
spoofing Mel-spectrograms M̂T and we score them against
the stolen embeddings ET using cosine similarity.

Those steps are illustrated with colored numbers in the
figure 1. The ASV system is black because the attacker can
only access it as a black box, and MT is masked because
the attacker does not have any access to it. The steps 1-3 are
sufficient to execute the attack, but the steps 4-5 allow us to
evaluate its efficiency.
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Fig. 1. Illustration of the systems and data used. The VST system is
represented in green. Numbered steps of the attack are in yellow, evaluation
steps are in purple. Schematic best viewed in color.

V. IMPLEMENTATION DETAILS

A. Automatic Speaker Verification

The ASV system is based on the fastResNet34 architecture
of [11]. It is designed to process a given Mel-spectrogram
mu

i , uth utterance of a speaker i into an embedding eui of
dimension N = 256, as noted in 5.

ASV(mu
i ) = eui | eui ∈ RN (5)

The ASV is trained beforehand on ASVtrain and the encoder
weights are frozen for the experiments. It achieves an EER of
0.85% on the EA set, and an EER of 2.31% on the ET set.

B. Voice Style Transfer

The VST is inspired from the architecture described
in [12]. Figure 2 details the complete processing pipeline for
its training. It works as an Auto-Encoder.

The encoder processes the concatenation of a Mel-
spectrogram mu

i and its associated embedding eui , represent-
ing a source speaker i. It compresses them into a carefully
chosen bottleneck to filter out the identity part of the Mel-
spectrogram and only let the linguistic content through.
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Fig. 2. Schematic of the training of the VST system. Losses are in Orange (copy synthesis loss is used for same source and target speakers, aka i=j).
Schematic best viewed in color.

Then the decoder takes the concatenation of bottleneck layer
output and the target embedding evj of the speaker j, and
computes a Mel-spectrogram of same dimensions as the input
(m̂u

i−>j, as shown in equation 6).

m̂u
i−>j = VST(mu

i , e
u
i , e

v
j )

= VST(mu
i ,ASV(mu

i ), e
v
j )

= VST(mu
i , e

v
j )

(6)

Originally [12], the average embedding of a speaker was
used (ei := 1

Nuttr

∑Nuttr

u=1 eui ), both for the source and target
embedding. In our implementation, we use the embedding
associated with each particular Mel-spectrogram (eui ). This
slight change underlines its practical use as a decoder: using
only a given embedding from a given speaker j and a Mel-
spectrogram mu

i to reconstruct an output as if it was uttered
by that target speaker.

Similarly to [12], our VST system is trained using the copy
synthesis technique: using same source and target speakers and
Mel-spectrograms, corresponding to equation (6) with i = j.
When source and target speakers are identical, the target Mel-
spectrogram is supposed to be identical to the source one, so
we use the Mean Squared Error (MSE) between both as a first
loss to minimize, as shown in equation 7.

Lspect = ||m̂u
i−>i −mu

i ||2 (7)

This loss guides the system to reconstruct realistic Mel-
spectrograms.

The output Mel-spectrogram (m̂u
i−>j) is, after training,

supposed to contain the linguistic content of the source spec-
trogram mu

i with only the identity of the target speaker j. A
way to figure out the identity associated to the output Mel-
spectrogram is to compute its associated embedding êui−>j

and compare it to euj . êui−>j is supposed to represent the
target speaker j in the embedding space. Thus, to help the
VST system achieve this correct representation, we propose
to minimize the MSE between êui−>j and euj , as shown in
equation 8.

Lemb = ||êui−>j − eui ||2 (8)

The training aims to minimize the global loss L:

L = Lspect + Lemb (9)

Results in the use of the Voice Style Transfer system for
the template reconstruction attack are detailed in the section
VI-C.

VI. PROTOCOL EXPERIMENTS

A. Metrics

We chose to use three metrics to evaluate the efficiency of
the VST system, all applied to the spoofing embeddings ÊT.

If we consider the source identity of a given spoofing
embedding êui−>j (here the speaker i), we can compute the
EERsource. For this EER computation, the cosine score
between every pair of distinct embeddings (as defined in
equation 10) is a match if i = a and non-match otherwise.

score(êui−>j, ê
v
a−>b) =

êui−>j · êva−>b

||êui−>j|| · ||êva−>b||
(10)

Then, considering the target identity of the spoofing embed-
dings, we can compute the EERtarget with the cosine score
between every pair of distinct embeddings (as defined in 10),
being a match if j = b and non-match otherwise.

The analysis of those two metrics already gives a good
understanding of the efficiency of the VST system. A low
EERsource means that we can still discriminate the Mel-
spectrogram outputs according to the source identity, thus the
system has not learned how to properly disentangle the identity
part of the source Mel-spectrograms from the content part. A
low EERtarget means that the outputs have a distribution in
the embedding space that can be well split according to their
target identities. However, a low EERtarget does not assure
that the reconstructed embeddings ÊT are close to the original
ones ET, which is the goal of a template reconstruction attack.

To address this issue, we introduce an other metric: the
Attack Success Rate (ASR). We want to evaluate the recon-
structed embeddings ÊT, to know how much of them would
be accepted as produced by the target user if scored by the
authentication system against the original embeddings ET. To
compute the ASR, we first set a threshold that gives a False
Acceptation Rate of n% on the ET set. The Attack Success
Rate for a n% threshold is referred to as ASRn. If n is equal
to the EER of the ET set, then we write: ASREER. The
original EERs for both test sets being around 1%, we will



compute Attack Success Rates for 1% and 0.1% (ASR1 and
ASR0.1). Every metric is computed on the test sets ET and
EVSTTest

.

B. Configurations explored

All systems are trained with a learning rate of 10−4. We
use the Adam optimizer [29] and train our VST system
over 500 epochs (around 40 hours on a single GTX 1080
GPU). The Mel-spectrograms are extracted from random 2
seconds segments of .wav files sampled in 16kHz. Mel-
spectrograms are computed with the Sidekit toolkit [30], using
64ms Hanning windows with a 16ms shift, for 80 Mel filters,
frequencies between 90 and 7600Hz.

Before using the complete VST system, the attack is
performed with the targeted speaker embeddings only, in
section VI-C1, equivalent as using only the VST decoder,
to underline the need of its encoder part and the source Mel-
spectrogram.

Then, the VST system is trained as suggested in [12], to
constitute a baseline attack with performances shown in the
first line of table III. This AutoVC [12] system is trained
with the initial hyper-parameters proposed (batch size of 2,
bottleneck of 16), using the average embeddings for each
speaker.

Then we explored the hyper-parameters space to get the
best results (notably batch size of 64 for the rest of the
configurations) and trained the VST system using the em-
bedding associated with each Mel-spectrogram instead of the
average embedding of each speaker, as explained in V-B. The
results for the attack using that optimized VST system are
presented in the line 2 of the table III. To measure the impact
of the bottleneck dimension, we compiled that experiment for
bottlenecks from 1 to 128, to show the side effects for too wide
or narrow ones. The results are presented in the section VI-C2.
Then, we added our new loss on embedding reconstruction to
that optimal configuration (line 3). A new search over the local
hyper-parameters space did not give better results after adding
this new loss.

C. Results

1) Decoder only: To measure the impact of the information
transmitted through the bottleneck, we train a VST system
with a bottleneck of 0, meaning we only trained the VST de-
coder. This is equivalent to perform an adversarial attack [14]
on the black-box ASV system. After training, the system got
an EERsource of 48.15% and an EERtarget of 18.51% on the
EVSTTest

set. Those results show that reconstructing accurate
original Mel-spectrograms from speaker embeddings alone is
not possible. Thus the use of a source Mel-spectrogram in a
VST setting plays an important role in our attack.

2) Bottleneck comparisons: The figure 3 shows compara-
tive results for different bottlenecks than the one used previ-
ously (16), to show the evolution of the results for extremely
wide and narrow bottlenecks. We can see the impact of a too
large bottleneck where the EERtarget skyrockets while the
EERsource drops quickly, meaning the network keeps too
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Fig. 3. Graph of the EERsource and EERtarget for different bottlenecks
values, computed on the EVSTTest

set.

much information about the source speakers, so it does not
care about target speakers information for Mel-spectrogram
reconstruction.

3) The optimal scenario: The results for the different
configurations are exposed in the table III. EERtarget and
EERsource are computed on the EVSTTest

set, while ASR1

and ASR0.1 are computed on the EVSTTest
and the ET sets.

Sets and metrics are respectively presented in the sections
III and VI-A. In this table, we can see that the original
AutoVC [12] configuration is not fine-tuned for the purpose of
this attack, because of the EER and ASR results shown line
1. Once we improve the hyper-parameters (line 2), we obtain
better EER results (lower EERtarget and higher EERsource)
but not enough for the attack to work correctly (11.27%
on a 10 speakers dataset is close to random). Adding the
reconstruction loss (line 3), we succeed in getting a functional
template reconstruction attack, with up to 99.74% ASR1

(99.04% ASR0.1) on the VCTK test dataset and 60.07% ASR1

(0.93% ASR0.1) on the VoxCeleb 1 dataset.
4) Related works comparisons: Finally, in the table III,

we compared our results to other templates reconstruction
attacks [3], [8]. Line 4 presents the best type-II attack result
from [3]. The type-II attack consists in scoring different
templates from the same speaker against each other, which is
how we evaluated the previous configurations. Line 5 presents
the performances obtained using a black box access to the
feature extractor in [8] (from table 1). The result line 5 is
given for an ASREER, meaning for a threshold at the EER,
as the EER of the handwritten digit verification system is much
higher than 1% [5].

D. Further exploration

1) Mel-spectrograms visualisation: In the figure 4, we
plot spoofing Mel-spectrograms targeting embeddings from
the EVSTtest and the ET sets, from random source Mel-
spectrograms belonging to MA. Both were generated by our



TABLE III
TABLE OF THE EER AND ASV RESULTS FOR DIFFERENT EXPERIMENTS. VST BASELINE IS FOR UNMODIFIED VST SYSTEM FROM [12]. LINES 2 AND 3

REFER TO THE SYSTEM IMPROVED FOLLOWING SECTION V-B DETAILS. LINES 4 AND 5 COMPARE TO KNOWN TEMPLATE RECONSTRUCTION ATTACKS
WITH SIMILAR CONDITIONS ON OTHER BIOMETRIES [3], [8]. FOR LINES 1 TO 4 ASREER ≈ ASR1 .

Rec. loss Dataset EERsource EERtarget ASREER ASR0.1

1 Baseline [12] EVSTTest
38.27% 26.23% 0.23% 0.08%

ÊT 45.50% 9.51% 0.01% 0%

2 Optimized AutoVC EVSTTest
30.24% 23.50% 11.27% 1.75%

ÊT 37.24% 6.48% 0.63% 0%

3 Optimized AutoVC X
EVSTTest

49.12% 0.25% 99.74% 99.04%
ÊT 46.15% 1.10% 60.07% 0.93%

Comparisons ASREER ASR0.1

4 ASR from [3] (Type-II) Face images 87.37% 58.05%
5 ASR from [8] X Handwritten digits 87.48%

best VST system. We can see that the Mel-spectrogram

Fig. 4. Original and generated Mel-spectrograms, for target embeddings from
the EVSTtest (line 1) and the ET (line 2) sets, using random source Mel-
spectrograms from MA.

generated using a target embedding from EVSTtest (top right
in the figure) is fully reconstructed, with some blurred artifacts.
However, the Mel-spectrogram on the bottom right contains
repetitive patterns towards the end, a common error we found
on almost all Mel-spectrograms generated using target embed-
dings from the ET set. This difference probably explains the
performance differences between both sets: the system is less
efficient for a dataset out of the training domain.

2) Limitations: While the proposed approach achieves in-
teresting Attack Success Rates, we underline the following:

• The attack is performed on Mel-spectrograms, a vocoder
should be used to complete the attack with waveforms.

• Performances significantly drop when executed on a out
of domain test set. This issues could be addressed using
additional datasets for VST training (such as VoxCeleb).

• VST training makes it dependant to the ASV system,
cross system attacks are worth investigating (e.g. training
the VST system on a different feature extractor than the
one targeted for the attack).

• We only consider 2 seconds speech segments for our
experimental work, while in actual ASV systems, em-
beddings are computed on variable length utterances.

VII. CONCLUSION AND FUTURE WORK

This paper introduces a template reconstruction attack on an
automatic text-independent speaker verification system [11],
with a black box access to the feature extractor, in the event
of a voice embeddings database theft. The attack aims to
reconstruct Mel-spectrograms from a stolen embedding set in
order to spoof the ASV system. This attack is inspired by the
template reconstruction attack on face images of [3]. The main
difference here being that speech utterances not only carry the
identity of the speaker (extracted by the ASV, contained in
the stolen embeddings), but also a linguistic content, where
the stolen embeddings are supposed to contain mainly [10] the
identity part. To reconstruct realistic Mel-spectrograms, we use
a zero-shot voice style transfer system [12] that takes a Mel-
spectrogram from any speaker and a voice embedding from
a target speaker, and generates a spoofing Mel-spectrogram
with the same linguistic content as the input, but as if it
was uttered by the speaker of the represented by the target
embedding. In order to improve the results on this task, we
added a reconstruction loss on the embeddings computed from
the reconstructed Mel-spectrograms.

We evaluate our attack on two test datasets, containing users
distinct from the training and validation sets of the ASV
and VST systems. On the first one (E ASVtest, in domain
data for the VST system), we spoof the speaker verification
system with an attack success rate of up to 99.74% (for a
false acceptation rate on the original embeddings at 1%). On
the second one (ET, in domain data for the ASV system),
we spoof the system for up to 60.07% of attack success rate.
This difference is probably linked to the different recording
conditions of the two sets.

These results show that template protection strategies for
voice-based biometrics are required. The emergence of deep
representations in biometric systems show that privacy issues
need to be properly addressed. One promising outcome of the
present work could be the use of zero-shot voice style transfer
methods for speaker anonymization. Another one could be to
help improve voice anti-spoofing mechanisms.

In the future, we plan to go beyond Mel-spectrogram
reconstruction and focus on the intelligibility of reconstructed
speech.
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