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Dihypergraph decomposition: application to
closure system representations ?

Lhouari Nourine and Simon Vilmin

LIMOS, Université Clermont Auvergne, Aubière, France
simon.vilmin@ext.uca.fr, lhouari.nourine@uca.fr

Abstract. Closure systems and their representations are essential in nu-
merous fields of computer science. Among representations, dihypergraphs
(or attribute implications) and meet-irreducible elements (reduced con-
text) are widely used in the literature. Translating between the two rep-
resentations is known to be harder than hypergraph dualization, a well-
known open problem. In this paper we are interested in enumerating the
meet-irreducible elements of a closure system from a dihypergraph. To
do so, we use a partitioning operation of a dihypergraph which gives a
recursive characterization of its meet-irreducible elements. From this re-
sult, we deduce an algorithm which computes meet-irreducible elements
in a divide-and-conquer way and puts the light on the major role of du-
alization in closure systems. Using hypergraph dualization, this strategy
can be applied in output quasi-polynomial time to particular classes of
dihypergraphs, improving at the same time previous results on ranked
convex geometries.

Keywords: Dihypergraphs · Decomposition · Closure systems · Meet-
irreducible elements

1 Introduction

Closure systems play a major role in several areas of computer science and
mathematics such as database [9, 18, 19], Horn logic [16], lattice theory [6, 7] or
Formal Concept Analysis (FCA) [12] where they are known as concept lattice.

Due to the exponential size of a closure system, several compact representa-
tions have been studied over the last decades [12,14,16,20]. Among all possible
representations, there are two prominent candidates: implicational bases and
meet-irreducible elements. The former consists in set a of rules B!h over the
ground set where B is the body and h the head of the rule. A rule depicts a
causality relation between the elements of B and h, i.e., whenever a set con-
tains B, it must also contain h. As several implicational bases can represent the
same closure system, numerous bases with “good” properties have been studied.
Among them, the Duquenne-Guigues base [13] being minimum or the canonical
direct base [5] are worth mentioning. Like closure systems, implicational bases
are ubiquitous in computer science. They appear for instance as Horn theories
in propositional logic [16], attribute implications in FCA [12], functional de-
pendencies in databases theory [9, 18] and they are conveniently expressed by
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directed hypergraphs (dihypergraphs for short) [1,11] where an implication B!h
corresponds to an arc (B, h). A nice survey on the topic can be found in [23].

The second representation for a closure system is a (minimum) subset of
its elements from which it can be reconstructed. These elements are known as
meet-irreducible elements [7]. In Horn logic, they are known as the characteristic
models [16]. In FCA, they are written as a binary relation: the context [12]. They
appear in the Armstrong relation [19] in database theory.

The problem of translating between these representations has been widely
studied in the literature [2, 4, 8, 16, 19, 23]. Even though the two directions of
the translation are equivalent [16], computing meet-irreducible elements from
a set of implications has been less studied. This problem can be equivalently
reformulated in FCA terms as follows: given a set of attribute implications,
find an associated (reduced) context. Algorithms for this problem are used in
databases to build relations satisfying a set of functional dependencies [19]. Fur-
thermore, some tasks such as a abduction [16] are easier with meet-irreducible
elements than implications. On the negative side, it has been shown in [16]
that this problem is harder than enumerating minimal transversals of a hyper-
graph, also known as hypergraph dualization for which the best algorithm runs
in output quasi-polynomial time [10]. Furthermore, Kavvadias et al. [15] have
shown that enumerating maximal meet-irreducible elements cannot be done in
output-polynomial time unless P = NP. On the positive side, exponential time
algorithms have been given in [19, 22]. More recently, output quasi-polynomial
time algorithms have been given for some classes of closure systems [4, 8].

In this paper we seek to push further the understanding of this problem,
based on previous works such as [8, 17]. We use a hierarchical decomposition
method introduced in [21] for dihypergraphs representing implicational bases.
To achieve this decomposition we use a restricted version of a split, a partition-
ing operation of the ground set [21]. We call this restriction an acyclic split. An
acyclic split of H is a bipartition of its ground set V into two non-trivial parts
V1,V2 such that any arc (B, h) (i.e., any implication) is either fully contained
in one of the two parts or the body B is in V1 while the head h is in V2. In-
tuitively, H is divided in three subhypergraphs, H[V1],H[V2] and a bipartite
dihypergraph H[V1,V2] which models interactions from V1 to V2. Clearly, some
dihypergraphs do not admit such splits. An acyclic split yields a decomposition
of the underlying closure system into projections (or traces) and provide a re-
cursive characterization of its meet-irreducible elements. Therefore, we propose
an algorithm which compute meet-irreducible elements of a dihypergraph from
a hierarchical decomposition using acyclic splits.

The paper is presented as follows. In Section 2 we recall definitions about
directed hypergraphs and closure systems. Section 3 introduces acyclic split of
a dihypergraph H and presents an example to illustrate our contribution. In
Section 4 we study the construction of the underlying closure system and we
give a characterization of its meet-irreducible elements. This characterization
suggests a recursive algorithm which computes meet-irreducible elements of H
in a divide-and-conquer way with acyclic splits, discussed in Section 5. We obtain



new classes of dihypergraphs for which computing meet-irreducible elements can
be done in output quasi-polynomial time using hypergraph dualization, thus
generalizing recent works on ranked convex geometries [8].

2 Preliminaries
All the objects considered in this paper are finite. If V is a set, 2V denotes its
powerset. For n ∈ N, we denote by [n] the set {1, . . . , n}. Sometimes we will
denote by x1 . . . xn the set {x1, . . . , xn}.

We begin with notions on lattices and closure systems [6,7]. A closure system
on V is a set system F ⊆ 2V such that V ∈ F and for any F1, F2 ∈ F, F1∩F2 ∈ F.
An element F of F is called a closed set. The number of closed sets in F represents
its size, written |F |. When ordered by set-inclusion, (F,⊆) is a lattice. Let F ∈ F.
The ideal of F , denoted #F is the collection of closed sets of F included in F ,
namely #F = {F ′ ∈ F | F ′ ⊆ F}. The filter "F is defined dually. For a subset
B of F, we put #B =

⋃
F∈B #F and dually "B =

⋃
F∈B "F . Let F1, F2 ∈ F. We

say that F1 and F2 are incomparable if F1 * F2 and F2 * F1. Assume F1 ⊆ F2.
Then F2 is a cover of F1, written F1 ≺ F2, if for any other F ′ ∈ F, F1 ⊆ F ′ ⊆ F2

implies F1 = F ′ or F2 = F ′. A closed set M of F is a meet-irreducible element if
for any F1, F2 ∈ F, M = F1 ∩F2 implies M = F1 or M = F2. The ground set V
is not a meet-irreducible element. Equivalently, M is a meet-irreducible element
of F if and only if it has a unique cover. The set of meet-irreducible elements
of F is written M(F) or simply M when clear from the context. A subset B of
F is an antichain if elements of B are pairwise incomparable. Let U ⊆ V. The
trace (or projection) of F on U , denoted F : U , is obtained by intersecting each
closed set of F with U , i.e., F : U = {F ∩ U | F ∈ F}. If F′ ⊆ F is a closure
system, it is a meet-sublattice of F. Let F1,F2 be two closure systems on disjoint
V1,V2 respectively. The direct product of F1 and F2, denoted F1×F2, is given
by F1×F2 = {F1 ∪ F2 | F1 ∈ F1, F2 ∈ F2}.

In this paper, we suppose that implicational bases are given as directed hy-
pergraphs. Directed hypergraphs are a convenient representation for attribute
implications of FCA, Horn clauses, functional dependencies [1,11,23]. We mainly
refer to papers [1, 11] for definitions of dihypergraphs. A (directed) hypergraph
(dihypergraph for short) H is a pair (V(H),E(H)) where V(H) is its set of
vertices, and E(H) = {e1, . . . , en}, n ∈ N, its set of arcs. An arc e ∈ E(H) is a
pair (B(e), h(e)), where B(e) is a non-empty subset of V called the body of e and
h(e) ∈ V \B called the head of e. When clear from the context, we write V, E and
(B, h) instead of V(H), E(H) and (B(e), h(e)) respectively. An arc e = (B, h)
is written as the set e = B ∪ {h} when no confusion can arise. Whenever a
body B is reduced to a single vertex b, we shall write (b, h) instead of ({b}, h)
for clarity. In this case, the arc (b, h) is called a unit arc. A dihypergraph where
all edges are unit is a digraph. Let H = (V,E) be a dihypergraph and U ⊆ V.
The subhypergraph H[U ] induced by U is the pair (U,E(H[U ])) where E(H[U ])
is the set of arcs of E contained in U , namely E(H[U ]) = {e ∈ E | e ⊆ U}. A
bipartite dihypergraph is a dihypergraph in which the ground set can be parti-
tioned into two parts (V1,V2) such that for any (B, h) ∈ E, B ⊆ V1 or B ⊆ V2.
We denote a bipartite dihypergraph by H[V1,V2]. A split [21] of a dihypergraph



H is a non-trivial bipartition (V1,V2) of V such that for any arc (B, h) of H,
either B ⊆ V1 or B ⊆ V2. A split (V1,V2) partitions H into three arc disjoint
subhypergraphs H[V1],H[V2] and a bipartite dihypergraph H[V1,V2].

The closure system associated to a dihypergraph H is obtained with the
forward chaining algorithm. It starts from a subset X of V and constructs a
chain X = X0 ⊆ X1 ⊆ · · · ⊆ Xk = XH such that for any i = 1, . . . , k we have
Xi = Xi−1 ∪ {h | ∃(B, h) ∈ E s.t. B ⊆ Xi−1}. The operation (.)H is a closure
operator, that is for any X,Y ⊆ V, we have X ⊆ XH, X ⊆ Y =⇒ XH ⊆ Y H

and (XH)H = XH. A set X is closed if X = XH. Note that X is closed for H if
and only if for any arc (B, h) ∈ E, B ⊆ X implies h ∈ X. We say that X satisfies
an arc (B, h) if B ⊆ X =⇒ h ∈ X. The collection F(H) = {XH | X ⊆ V} of
closed sets of H is a closure system. For clarity, we may write F instead of F(H).
Our definition of a dihypergraph implies ∅ ∈ F, without loss of generality.

3 Acyclic split and illustration on an example

In this section we introduce acyclic splits and we illustrate our approach to com-
pute meet-irreducible elements from a dihypergraph on a toy example. Let V =
[7] andH = (V, {(2, 3), (4, 3), (6, 5), (57, 6), (24, 6), (24, 7), (1, 4), (1, 5), (1, 7)}). It
is represented in Figure 1 (a). To represent an arc (B, h) with |B| ≥ 2 we use a
black vertex connecting every elements of B from which starts an arrow towards
h. The closure system F associated to H is given in Figure 1 (b).
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(b) The closure system F associated to
H, where meet-irreducible elements are
darkened.

Fig. 1: The dihypergraph H and its closure system F

The idea is to split H into three subhypergraphs H[V1],H[V2] and H[V1,V2]
as in [21]. However we use a restricted version of a split we call an acyclic
split. A split is acyclic if for any arc (B, h) of H[V1,V2], B ⊆ V1 and h ∈
V2. A dihypergraph which does not have any acyclic split is indecomposable. A
maximum subhypergraph of H which has no acyclic split is a c-factor (cyclic



factor) of H. If a c-factor H′ of H is reduced to a vertex, i.e., H′ = ({x}, ∅), it
is a singleton c-factor of H.

For instance in H, the bipartition V1 = {1, 2, 3}, V2 = {4, 5, 6, 7} is not
a split because the body of (24, 6) has elements from both V1 and V2. If we
fix V1 = {1, 2, 4, 6} and V2 = {3, 5, 7}, then the bipartition is a split but not
acyclic since the arc (6, 5) goes from V1 to V2 and (57, 6) from V2 to V1. An
acyclic split is V1 = {1, 2, 3, 4} and V2 = {5, 6, 7}. It induces the three subhy-
pergraphs H[V1] = (V1, {(4, 3), (1, 4), (2, 3)}), H[V2] = (V2, {(6, 5), (57, 6)} and
H[V1,V2] = (V, {(24, 6), (24, 7), (1, 5), (1, 7)}). Observe that H[V2] is indecom-
posable: the unique split of V1 is V′1 = {5, 7} and V′2 = {6}, which is not acyclic.
Hence, H[V2] is a c-factor of H. Closure systems F1, F2 of H[V1] and H[V2] are
given in Figure 2. Note that F is a meet-sublattice of F1×F2.
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Fig. 2: Closure lattices of H[V1] and H[V2], meet-irreducible are darkened.

The splitting operation provides a partition of M(F) into two classes. The
first class contains meet-irreducible elements of F1 to which we added V2. This is
the case for example of 234567 and 567, which are the meet-irreducible elements
234 and ∅ of F1. The second class contains meet-irreducible which are inclusion-
wise maximal closed sets of F whose trace on V2 is meet-irreducible in F2.
For instance, 235 and 345 are inclusion-wise maximal closed sets of F whose
intersection with V2 rise 5, a meet-irreducible element of F2.

Thus, every meet-irreducible element of F belongs to exactly one of these two
classes. Observe that any other F ∈ F cannot be part of M(F). As F ⊆ F1×F2,
every M ∈ M arise from the combination of some F1 ∈ F1 and F2 ∈ F2. Let
F ∈ F be outside of those two class. If V2 ⊆ F , then F ∩ V1 cannot be meet-
irreducible in F1. In this case, covers of F ∩ V1 in F1 can be used to produce
distinct covers of F in F. If however V2 * F , then covers of F ∩ V2 in F2 yield
covers of F in F. In the case where F ∩ V2 is meet-irreducible in F2, there will
be a closed set F1 in F1 such that F ∩V1 ⊂ F1 and F1 ∪ (F ∩V2) will be closed
in F by assumption. This can be used to find another cover of F in F.

This characterization suggests to recursively find meet-irreducible elements
of F. If H is indecomposable, we computes M with known algorithms [4, 19].
Otherwise, we find an acyclic split (V1,V2) and recursively applies on H[V1,V2].
Then, we compute M using H[V1,V2], M1 and M2. In Figure 3, we give the
trace of a decomposition for H using acyclic splits. This strategy is particularly
interesting for cases where c-factors of H are all of the form ({x}, ∅) for x ∈ V,
since the unique meet-irreducible element in this case is ∅.



Thus, the steps we will follow are the following. Given a dihypergraph H

and its closure system F, we will study the construction of F with respect to an
acyclic split. This will lead us to a characterization of M. Recursively applying
this characterization, we will get an algorithm to compute M from H.
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Fig. 3: Hierarchical decomposition of F using acyclic splits. Meet-irreducible el-
ements are darkened.

4 The closure system induced by an acyclic split
In this section, we show the construction of a closure system with respect to an
acyclic split. We give a characterization of its closed sets and meet-irreducible
elements M. Let H = (V,E) be a dihypergraph and (V1,V2) an acyclic split of
H. Let F1,F2 be the closure systems associated to H[V1] and H[V2] respectively.
Similarly, M1,M2 are their meet-irreducible elements. We show how to construct
F from F1,F2 and H[V1,V2]. We begin with the following theorem from [21]:

Theorem 1 (Theorem 3 of [21]). Let (V1,V2) be a split of H, F1 and F2

the closure systems corresponding to H[V1] and H[V2] respectively. Then,

1. If F ∈ FH then Fi = F ∩Vi ∈ Fi, i = {1, 2}. Moreover, FH ⊆ F1 × F2.
2. If H[V1,V2] has no arc then FH = F1 × F2.
3. If B ⊆ V1 for any arc (B, h) of H[V1,V2], then FH : Vi = Fi for i ∈ {1, 2}.
4. If B ⊆ V2 for any arc (B, h) of H[V1,V2], then FH : Vi = Fi for i ∈ {1, 2}.

The first item states that F is a meet-sublattice of F. From item 2 we can de-
rive a characterization of meet-irreducible elements of the direct product F1×F2.
This result has already been formulated in lattice theory, for instance in [7]. We
reprove it in our framework for self-containment.



Proposition 1. Let H be a dihypergraph an (V1,V2) an acyclic split of H where
H[V1,V2] has no arcs. Then M = {M1∪V2 |M1 ∈M1}∪{M2∪V1 |M2 ∈M2}.

Proof. Let M ∈ M, i ∈ {1, 2} and Mi = M ∩ Vi. As M 6= V, Vi * M for
at least one of i ∈ {1, 2}. Suppose it holds for V1 and V2. Then, there exists
M ′i ∈ Fi, such that Mi ≺M ′i in Fi. However, by Theorem 1, F = F1×F2. Hence
M1 ∪M ′2 and M ′1 ∪M2 belong to F. Furthermore they are incomparable and we
have M ≺ M1 ∪M ′2 and M ≺ M ′1 ∪M2 which contradicts M ∈ M. Therefore,
either V1 ⊆ M or V2 ⊆ M . Assume without loss of generality that V1 ⊆ M .
Let M ′′ be the unique cover of M in F. Then, V1 ⊆ M ′′ and it follows that
M2 ≺ M ′′ ∩ V2 in F2. As M ′′ is the unique cover of M in F, we conclude that
M ′′ ∩V2 is the unique cover of M2 in F2 and M2 ∈ F2.

Let M1 ∈M1 and consider M1 ∪V2 ∈ F2. Let M ′1 be the unique cover of M1

in F1. As F = F1×F2 by Theorem 1, we have that M1 ∪ V2 ≺ M ′1 ∪ V2 is in
F. Let F be any closed set such that M1 ∪ V2 ⊂ F . We have F ∩ V2 = V2 and
hence M1 ⊂ F ∩ V1. Since F = F1×F2, we get F ∩ V1 ∈ F1. As M1 ≺ M ′1 in
F1 and M1 ∈M1, we conclude that M ′1 ⊆ F ∩V1 and hence that M ′1 ∩V2 ⊆ F .
Therefore, M1 ∪V2 ∈M. Similarly we obtain M2 ∪V1 ∈M, for M2 ∈M2. ut

Item 3 of Theorem 1 considers the case where the split is acyclic (as item 4 ).
In particular, the proof of Theorem 1 shows that F2 ⊆ F in this case. Since F

is a meet-sublattice of F1×F2, and both F1, F2 appear as traces of F, we have
that |F | ≥ |F1 | and |F | ≥ |F2 |. As F2 ⊆ F, for each F2 ∈ F2, it may exists
several closed sets of F1 which extend F2 to another element of F.

Definition 1. Let H be a dihypergraph with acyclic split (V1,V2). Let F1 ∈ F1,
F2 ∈ F2. We say that F1∪F2 is an extension of F2 if it belongs to F. We denote
by Ext(F2) the set of extensions of F2, namely Ext(F2) = {F ∈ F | F ∩V2 = F2}.

We denote by Ext(F2) : V1 the set of closed sets of F1 which make extensions
of F2. Hence, any closed set F of F can be seen as the extension of some F2 ∈ F2

so that F results from the union of extensions of closed sets in F2:

F =
⋃

F2∈F2

Ext(F2)

Extensions of F2 ∈ F2 can be characterized using H[V1,V2] as follows.

Lemma 1. Let F1 ∈ F1, F2 ∈ F2. Then F1 ∪ F2 is an extension of F2 if and
only if for any arc (B, h) in H[V1,V2], B ⊆ F1 implies h ∈ F2.

Proof. We begin with the only if part. Let F1 be a closed set of F1 such that
F1∪F2 is an extension of F2 and let (B, h) ∈ H[V1,V2]. If B ⊆ F1, then it must
be that h ∈ F2 since otherwise we would contradict F1 ∪ F2 ∈ F.

We move to the if part. Let F1 be a closed set of F1 and F2 a closed set of
F2 such that for any arc (B, h) ∈ H[V1,V2], B ⊆ F1 implies h ∈ F2. We have
to show that F1 ∪ F2 is closed. Let (B, h) be an arc of H. As (V1,V2) is an
acyclic split of V, we have two cases for (B, h): either (B, h) is in H[V1,V2] or
it is not. In the second case, assume it is in H[V1]. As B ⊆ F1 ∪ F2, we have



B ⊆ F1. Furthermore, F1 is closed for H[V1]. Hence, h ∈ F1 ⊆ F1 ∪ F2. The
same reasoning can be applied if (B, h) is in H[V2]. Now assume (B, h) is in
H[V1,V2]. We have that B ⊆ V1 by definition of an acyclic split. In particular
we have B ⊆ F1 which entails h ∈ F2 by assumption. In any case, F1∪F2 already
contains h for any arc (B, h) such that B ⊆ F1 ∪ F2 and F1 ∪ F2 is closed. ut

Observe that for the particular case F2 = V2, we have Ext(V2) : V1 = F1

because any arc (B, h) of H[V1,V2] satisfies h ∈ V2. A consequence of Lemma
1 is that the extension is hereditary, as stated by the following lemma.

Lemma 2. Let F1 ∈ F1, F2 ∈ F2. If F1∪F2 is an extension of F2, then for any
closed set F ′1 of F1 such that F ′1 ⊆ F1, F ′1 ∪ F2 is also an extension of F2.

Proof. Let F1 ∈ F1, F2 ∈ F2 such that F1 ∪ F2 ∈ F. Let F ′1 ∈ F1 such that
F ′1 ⊆ F1. As F1 ∪ F2 is an extension of F2, for any arc (B, h) of H[V1,V2] such
that B ⊆ F1, we have h ∈ F2 by Lemma 1. Since F ′1 ⊆ F1, this condition holds
in particular for any arc (B, h) of H[V1,V2] such that B ⊆ F ′1 ⊆ F1. Applying
Lemma 1, we have that F ′1 ∪ F2 is closed. ut

As F is a meet-sublattice of F1×F2 by Theorem 1, it follows from Lemma 2
that for any F2 ∈ F2, the set Ext(F2) : V1 is an ideal of F1. Thus, it is uniquely
determined by its maximal elements. They are inclusion-wise maximal closed
sets of F1 satisfying the condition of Lemma 1.

Example 1. We consider the introductory example H and the acyclic split V1 =
{1, 2, 3, 4} and V2 = {5, 6, 7}. We have for instance Ext(7) = {7, 37, 237, 347}
which corresponds to the ideal {∅, 3, 23, 24} of F1 illustrated on the left of Figure
2 representing F1.

Now we are interested in the characterization of meet-irreducible elements M
of F. The strategy is to identify for each F2 ∈ F2, which closed sets of Ext(F2)
are meet-irreducible elements of F.

Proposition 2. Let F = F1 ∪ F2 ∈ F. Let F ′2 ∈ F2 such that F2 ≺ F ′2. Then
F ′2 ∪ F1 is closed in F and F ≺ F ′2 ∪ F1 in F.

Proof. Let F = F1 ∪ F2 ∈ F. Let F ′2 ∈ F2 such that F2 ≺ F ′2. As F1 ∪ F2 is an
extension of F2, for every arc (B, h) of H[V1,V2] such that B ⊆ F1, we have
h ∈ F2 ⊆ F ′2 by Lemma 1. Therefore, F1 ∪ F ′2 is an extension of F ′2.

Now we show that F1 ∪ F ′2 is a cover of F . Let F ′′ ∈ F such that F ⊆ F ′′ ⊆
F1 ∪ F ′2. As F ∩ V1 = F1 = (F1 ∪ F ′2) ∩ V1, we have that F ′′ ∩ V1 = F1. Recall
from Theorem 1 that F ⊆ F1×F2. Therefore F ′′ ∩ V2 is a closed set of F2

and F2 ⊆ F ′′ ∩ V2 ⊆ F ′2. As F2 ≺ F ′2 in F2, we have either F2 = F ′′ ∩ V2 or
F ′2 = F ′′∩V2. Consequently, F ′′ = F or F ′′ = F1∪F ′2 which entails F ≺ F1∪F ′2
in F, concluding the proof. ut

A consequence of this proposition is that for any F2, F
′
2 ∈ F2 such that

F2 ⊆ F ′2, one has Ext(F2) : V1 ⊆ Ext(F ′2) : V1. In particular, if F2 ≺ F ′2 in F2,
then each extension F of F2 is covered by the unique extension F ′ of F ′2 such
that F ∩V1 = F ′ ∩V1. This leads us to the following lemmas.



Lemma 3. Let F2 ∈ F2, F2 6= V2 and F1 ∈ F1 such that F1 ∪ F2 is a non-
maximal extension of F2. Then F1 ∪ F2 /∈M.

Proof. Let F2 ∈ F2, F2 6= V2 and F1 ∈ F1 such that F1 ∪ F2 is a non-maximal
extension of F2. As F2 6= V2, there exists at least one closed set F ′2 ∈ F2 such
that F2 ≺ F ′2. By Proposition 2 we have that F1∪F2 ≺ F1∪F ′2 in F. Furthermore,
F1 ∪F2 is not a maximal extension of F2. Therefore, there exists a closed set F ′1
in F1 such that F1 ≺ F ′1 and F ′1 ∪ F2 ∈ F. As F ⊆ F1×F2 by Theorem 1 and
extension is hereditary by Lemma 2, it follows that F1 ∪F2 ≺ F ′1 ∪F2 in F with
F1 ∪F ′2 6= F ′1 ∪F2. Therefore F1 ∪F2 is not a meet-irreducible element of F. ut

Lemma 4. Let F2 ∈ F2 such that F2 6= V2 and F2 /∈M2. Then F /∈M for any
F ∈ Ext(F2).

Proof. Let F2 ∈ F2 such that F2 6= V2 and F2 /∈ M2. Let F ∈ Ext(F2) and
F1 = F ∩V1. As F2 /∈M2, it has at least two covers F ′2, F ′′2 in F2. By Proposition
2, it follows that both F ′2∪F1 and F ′′2 ∪F1 are covers of F in F. Hence F /∈M. ut

These lemmas suggest that meet-irreducible elements of F arise from maximal
extensions of meet-irreducible elements of F2. They might also come from meet-
irreducible extensions of V2 since Ext(V2) : V1 = F1. As V2 has no cover in
F2, Proposition 2 cannot apply. These ideas are proved in the following theorem
which characterize meet-irreducible elements M of F.

Theorem 2. Let H = (V,E) be a dihypergraph with an acyclic split (V1,V2).
Meet-irreducible elements M of F are given by the following equality:

M = {M1 ∪V2 |M1 ∈M1} ∪ {F ∈ max⊆(Ext(M2)) |M2 ∈M2}

Proof. First we show that {M1∪V2 |M1 ∈M1} ⊆M. Let M1 ∈M1. By Lemma
1, we have that M1 ∪V2 ∈ F, as h ∈ V2 for any (B, h) in H[V1,V2]. Let F ′, F ′′
be two covers of M1∪V2 in F. First, observe that F ′ and F ′′ differ from M1∪V2

only in V1 as they both contain V2. By Theorem 1, F ⊆ F1×F2, so F ′ ∩ V1

and F ′′ ∩ V1 are closed sets of F1. Furthermore Ext(V2) : V1 = F1 by Lemmas
2 and 1. Therefore, both F ′ ∩ V1 and F ′′ ∩ V1 cover M1 in F1. Since M1 is a
meet-irreducible element of F1, we conclude that F ′ = F ′′ and M1 ∪V2 ∈M.

Next, we prove that {F ∈ max⊆(Ext(M2)) | M2 ∈ M2} ⊆ M. Let M2 ∈ M2

and F ∈ max⊆(Ext(M2)) with F = F1 ∪M2. Since M2 ∈ F2, it has a unique
cover M ′2 in F2. By Proposition 2, we get F ≺ M ′2 ∪ F1 in F. Let F ′′ ∈ F such
that F ⊂ F ′′. Recall that F ⊆ F1×F2 by Theorem 1, so that F ′′ ∩V1 ∈ F1 and
F ′′∩V2 ∈ F2. Furthermore, F ∈ max⊆(Ext(M2)), therefore F ⊂ F ′′ implies that
M2 ⊂ F ′′ ∩V2 and hence that M ′2 ⊆ F ′′ ∩V2 as M2 ∈ F2. Since F1 ⊆ F ′′ ∩V1,
we get F ≺M ′2 ∪ F1 ⊆ F ′′ and F ∈M as it has a unique cover.

Now we prove the other side of the equation. Let M ∈ M. As F ⊆ F1×F2,
M ∩V2 ∈ F2 and we can distinguish two cases. Either M ∩V2 = V2 or M ∩V2 ⊂
V2. Let us study the first case and let M1 = M ∩V1. Let M ′ be the unique cover
of M in F. We show that M ′1 = M ′ ∩ V1 is the unique cover of M1 in F1. By
Theorem 1 and Lemma 2, we have that M1 ≺M ′1 in F1. Let F1 be any closed set
of F1 with M1 ⊂ F1. Recall that Ext(V2) : V1 = F1 by Lemmas 1 and 2. Hence



F1 ∪V2 is closed and M ⊆ F1 ∪V2. As M ∈M , we also deduce M ′ ⊆ F1 ∪V2.
Therefore,M ′1 ⊆ F1, andM ′1 must be the unique cover ofM1 in F1. So,M1 ∈M1

and for any M ∈M such that V2 ⊆M , we have M ∈ {M1 ∪V2 |M1 ∈M1}.
Now assume that M ∩V2 ⊂ V2. Let M1 = M ∩V1 and M2 = M ∩V2. Then

by contrapositive of Lemma 3 we have that M ∈ max⊆(Ext(M2)) as M2 6= V2.
Similarly we get M2 ∈M2 by Lemma 4. ut

This theorem hints a strategy to compute meet-irreducible elements in a
recursive manner, using a hierarchical decomposition of H with acyclic splits, as
proposed in the next section.

5 Recursive application of acyclic splits

In this section, we discuss an algorithm to compute M from a dihypergraph H

based on Theorem 2. First, note that we have both |M | ≥ |M1 | and |M | ≥
|M2 |. Furthermore, each M ∈M arise from a unique element of M ′ ∈M1 ∪M2,
and each M ′ ∈ M1 ∪M2 is used to construct at least one new meet-irreducible
element M ∈ M. Therefore, we deduce an algorithm whose output is precisely
M, where eachM ∈M is given only once. Furthermore, the space needed to store
intermediate solutions is bounded by the size of the output M which prevents
an exponential blow up during the execution. The algorithm proceeds as follows.
For c-factors of H, we use algorithms such as in [19] to compute M. When c-
factors are singletons, the unique meet-irreducible to find is ∅ and hence no call
to other algorithm is required. Otherwise, we find an acyclic split (V1,V2) of H
and we recursively call the algorithm on H[V1] and H[V2]. Then, we compute
M using M1,M2 and Theorem 2.

Computing M from M1, M2 requires to find maximal extensions of every
meet-irreducible element M2 ∈ M2. We will show that finding maximal exten-
sions of a closed set is equivalent to a dualization problem in closure systems.
First, we state the extension problem:

Problem: Find Maximal Extensions with Acyclic Split (FMEAS)
Input: A triple H[V1], H[V2], H[V1,V2] given by an acyclic split of a di-
hypergraph H, meet-irreducible elements M1,M2, and a closed set F2 of
H[V2].
Output: The maximal extensions of F2 in F, i.e., max⊆(Ext(F2)).

Let B+, B− be two antichains of F. The dualization in lattices asks if two
antichains B−, B+ are dual in F, that is if

#B+ ∪ "B− = F and "B− ∩ #B+ = ∅.

Note that B− and B+ are dual if either B+ = max⊆{F ∈ F | F /∈ "B−} or
B− = min⊆{F ∈ F | F /∈ #B+}. If F is given, the question can be answered in
polynomial time. In our case however, F is implicitly given by M and H. More
precisely we use the next generation problem:

Problem: Dualization with Dihypergraph and meet-irreducible
(DMDual)



Input: A dihypergraph H = (V,E), the meet-irreducible elements M of F,
and an antichain B− of F.
Output: The dual antichain B+ of B−.

This problem has been introduced in [3] in its decision version, where authors
show that it is not harder than finding a (minimum) dihypergraph from a set
of meet-irreducible elements. In general however, the problem is open. When H

has no arcs, DMDual is equivalent to hypergraph dualization as there are |V |
meet-irreducible elements which can easily be computed by taking V \{x} for
any x ∈ V. This latter problem can be solved in output quasi-polynomial time
using the algorithm of Fredman and Khachiyan [10].

We show that FMEAS and DMDual are equivalent under polynomial re-
duction. First, we relate maximal extensions of a closed set with dualization.
Let F2 ∈ F2. Recall that Ext(F2) : V1 is an ideal of F1. Hence, the antichain
max⊆(Ext(F2) : V1) has a dual antichainB−(F2) in F1, i.e.,B−(F2) = min⊆{F1 ∈
F1 | F1 /∈ Ext(F2) : V1}.

Proposition 3. Let F2 ∈ F2, and F1 ∈ F1. Then, F1 ∈ B−(F2) if and only if
F1 ∈ min⊆{BH[V1] | (B, h) ∈ H[V1,V2], h /∈ F2}.

Proof. We show the if part. Let F1 ∈ min⊆{BH[V1] | (B, h) ∈ H[V1,V2], h /∈
F2}. We show that for any closed set F ′1 ⊆ F1 in F1, F ′1 contributes to an
extension of F2. It is sufficient to show this property to the case where F ′1 ≺ F1

as Ext(F2) : V1 is an ideal of F1. Hence consider a closed set F ′1 in F1 such
that F ′1 ≺ F1. Note that such F ′1 exists since ∅ ∈ F1 and no arc (B, h) in
H has B = ∅ so that ∅ ⊂ BH[V1] for any arc (B, h) of H[V1,V2] such that
h /∈ F2. Then, by construction of F ′1, for any (B, h) in H[V1,V2] such that
h /∈ F2, we have BH[V1] * F ′1. As (.)H[V1] is a closure operator, it is monotone
and BH[V1] * F

′H[V1]
1 = F ′1 entails B * F ′1 for any such arc (B, h). Therefore

F ′1 ∈ Ext(F2) : V1 and F1 ∈ B−(F2).
We prove the only if part. We use contrapositive. Assume F1 /∈ min⊆{BH[V1]

| (B, h) ∈ H[V1,V2], h /∈ F2}. Then we have two cases. First, for any arc
(B, h) in H[V1,V2] such that h /∈ F2, BH[V1] * F1. As (.)H[V1] is a clo-
sure operator, it is monotone, and since F1 is closed in F1, we have B * F1

and F1 ∈ Ext(F2) : V1 by Lemma 1. Hence F1 /∈ B−(F2). In the second case,
there is an arc (B, h) with h /∈ F2 in H[V1,V2] such that BH[V1] ⊆ F1 which
implies F1 /∈ Ext(F2) : V1. If BH[V1] ⊂ F1, then clearly F1 /∈ B−(F2) as
BH[V1] ∈ F1 and BH[V1] /∈ Ext(F2) : V1. Hence, assume that F = BH[V1].
Since F1 /∈ min⊆{BH[V1] | (B, h) ∈ H[V1,V2], h /∈ F2} by hypothesis, there
exists another arc (B′, h′) ∈ E(H[V1,V2]) such that h /∈ F2 and B′H[V1] ⊂ F1.
Hence B′H[V1] /∈ Ext(F2) : V1 and F1 /∈ B−(F2) as it is not an inclusion-wise
minimum closed set which does not belong to Ext(F2) : V1. ut

Observe that for any F2 ∈ F2, B−(F2) can easily be computed using H[V1,
V2] and Lemma 1. Therefore we prove the following theorem.

Theorem 3. FMEAS and DMDual are polynomially equivalent.



Proof. First we show that DMDual is harder than FMEAS. Let H = (V,E)
be a dihypergraph, and (H[V1],H[V2],H[V1,V2],M1,M2, F2) be an instance of
FMEAS. By Proposition 3, finding max⊆(Ext(F2)) amounts to find the dual
antichain of B−(F2) = min⊆{BH[V1] | (B, h) ∈ H[V1,V2], h /∈ F2} in F1. Note
that B−(F2) can be computed in polynomial time in the size of H[V1] and
|B−(F2)| ≤ |E(H[V1,V2])|. Therefore, the instance of FMEAS reduces to the
instance (H[V1],M1,B

−(F2)) of DMDual.
Now we show that FMEAS is harder than DMDual. Let (H,M,B−) be

an instance of DMDual. Let z be a new gadget vertex and consider the bi-
partite dihypergraph H[V, {z}] = (V∪{z}, {(B, z) | B ∈ B−}). Let Hnew =
H∪H[V, {z}]. Clearly, Hnew has an acyclic split (V, {z}) such that Hnew[V] =
H, Hnew[{z}] = ({z}, ∅) and Hnew[V, {z}] = H[V, {z}]. The closure system as-
sociated to Hnew[{z}] has only 2 elements: its unique meet-irreducible element
∅ and {z}. We obtain an instance FMEAS where the input is H, Hnew[{z}],
H[V, {z}], M, {∅} and where the closed set of interest is ∅. Moreover this reduc-
tion is polynomial in the size of (H,M,B−) as we create a unique new element
and |B− | arcs. According to Proposition 3, maximal extensions of ∅ are given
by the antichain dual to B−(∅) = min⊆{BH | (B, z) ∈ H[V, {z}]}. However, we
have B−(∅) = B−, so that maximal extensions of ∅ are precisely elements of the
dual antichain B+ of B−. ut

We can deduce a class of dihypergraphs where our strategy can be applied to
obtain meet-irreducible elements in output quasi-polynomial time. Let us assume
that H can be decomposed as follows. Its c-factors are singletons. If H is not
itself a singleton, it has an acyclic split (V1,V2) with H[V1] = (V1, ∅). Hence,
DMDual reduces to hypergraph dualization and can be solved in output-quasi
polynomial time using the algorithm of [10]. Recursively applying hypergraph
dualization, we get M for H in output-quasi polynomial time. This class of
dihypergraph generalizes ranked convex geometries of [8].

The closure system represented by a dihypergraph H is a ranked convex
geometry if there exists a full partition V1, . . . ,Vn, of V such that H[Vi] =
(Vi, ∅) for any 1 ≤ i ≤ n and for any arc (B, h) in H there is a j < k such that
B ⊆ Vj and h ∈ Vj+1. All c-factors of H are singletons. Choosing the acyclic
split (Vi,

⋃n
j=i+1 Vj) at the i-th step of the algorithm yields a decomposition

which satisfies conditions of the previous paragraph.

6 Conclusion
In this paper we investigated the problem of finding meet-irreducible elements
of a closure system represented by a dihypergraph. In general, the complexity
of this problem is unknown and harder than hypergraph dualization. Using a
partitioning operation called an acyclic split on the dihypergraph, we gave a
characterization of its associated meet-irreducible elements. Acyclic splits lead
to a recursive algorithm to find meet-irreducible elements from a dihypergraph.

With our algorithm, we reach new classes of dihypergraphs for which meet-
irreducible elements can now be computed in output quasi-polynomial time. In
particular, we improve previous results on ranked convex geometries [8].
Acknowledgment Authors are thankful to reviewers for their helpful remarks.
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