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Abstract. Renal compartment segmentation on CT images targets on
extracting the 3D structure of renal compartments from abdominal CTA
images and is of great significance to the diagnosis and treatment for
kidney diseases. However, due to the unclear compartment boundary,
thin compartment structure and large anatomy variation of 3D kidney
CT images, deep-learning based renal compartment segmentation is a
challenging task. We propose a novel weakly supervised learning frame-
work, Cycle Prototype Network, for 3D renal compartment segmenta-
tion. It has three innovations: 1) A Cycle Prototype Learning (CPL) is
proposed to learn consistency for generalization. It learns from pseudo
labels through the forward process and learns consistency regularization
through the reverse process. The two processes make the model robust
to noise and label-efficient. 2) We propose a Bayes Weakly Supervised
Module (BWSM) based on cross-period prior knowledge. It learns prior
knowledge from cross-period unlabeled data and perform error correc-
tion automatically, thus generates accurate pseudo labels. 3) We present
a fine Decoding Feature Extractor (FDFE) for fine-grained feature ex-
traction. It combines global morphology information and local detail in-
formation to obtain feature maps with sharp detail, so the model will
achieve fine segmentation on thin structures. Our extensive experiments
demonstrated our great performance. Our model achieves Dice of 79.1%
and 78.7% with only four labeled images, achieving a significant improve-
ment by about 20% than typical prototype model PANet [16].
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1 Introduction

3D renal compartment segmentation is the process of extracting the 3D struc-
ture of renal cortex and medulla from abdominal CTA images, which has great
significance on laparoscopic partial nephrectomy [12, 2, 13, 18]. During operation,
correct segmentation of renal compartments helps doctors control the propor-
tion of nephrectomy [14], reduce the loss of renal function. Post-operatively, it
assists in monitoring the recovery of renal function [7, 3], ultimately achieve the
goal of reducing the cost of surgery, increasing the success rate of surgery, and
providing patients with higher quality medical services.

Deep learning has achieved remarkable success in medical image segmenta-
tion [10, 15] and have made some progress in renal tumors [9, 5] and renal artery
[4] segmentation, but deep-learning based renal compartment segmentation on
CT images is a challenging task owing to the particularity of renal compart-
ments: 1) The boundary of renal compartments is not clear. As shown
in fig. 1(a), the CT values are similar between cortex, medulla and extra-renal
tissues. Model will lose the ability to extract distinguishable features for com-
partment anatomy, therefore it is prone to over segment or under segment. 2)
The structure of renal compartments is thin. As is shown in fig. 1(b), the
cortex extends into the kidney structure, entangles with the medulla to form
several thin structures with unstable morphology. This makes feature extractors
with large receptive fields easy to lose fine-grained features. The model trained
with these features is not sensitive to small structures, thus be unable to seg-
ment the small part of renal compartments. 3) The large anatomy variation
and small dataset scale. As is shown in fig. 1(c), the renal medulla is divided
into a number of random shapes. This anatomy varies between different kidneys,
so fine annotation requires a lot of time for professional doctors, which limits
the scale of the labeled dataset. Therefore, the labeled dataset cannot cover all
compartment morphologies. Model is unable to learn generalized knowledge, will
be sensitive to singular structures, and have poor segmentation capabilities for
unseen morphological structures.

There is no automatic, label-efficient and high-accuracy renal compartment
segmentation works on CT images being reported. Some semi-automatic works
design image operation combined with manual annotation to achieve renal com-
partment segmentation [17], requiring a lot of labor costs. Deep-learning based
renal compartment segmentation methods perform segmentation automatically,
but the small scale of labeled dataset seriously limits their performance [6, 8].

Therefore, we proposed an automatic and label-efficient renal compartment
segmentation framework Cycle Prototype Network (CPNet), which efficiently
extracts renal compartments with only a few labels. It has three innovations:

1) We proposed a Cycle Prototype Learning framework (CPL) to learn consis-
tency for generalization. It uses labels as guidance to extract features accurately
and forms regularization through a reverse process to improve the generaliza-
tion of the model. Feature maps are extracted under the guidance of the support
label, the obtained feature vectors of the same compartment have smaller differ-
ences, and those of different compartments are more distinguishable. Prototype



Cycle Prototype Network 3

Fig. 1. Challenges of our renal compartment segmentation. a) Unclear boundaries be-
tween renal compartments and extra-renal tissues which make model lose the ability
to extract distinguishable features. b) Thin structures of renal compartments which
make feature extractor lose fine-grained features. c) Anatomy variation between im-
ages which make model sensitive to singular structures.

vectors that represent the features of compartments will be obtained by com-
bining feature vectors of the same compartment. Prototypes are then used as
templates to segment query images and train the network, forcing the feature
vector extracted by the network to aggregate to the prototype vector. The fea-
ture vector of the unclear boundary deviates further from the cluster center,
thus a higher penalty will be imposed. Therefore, the network will extract more
discriminative boundary features. After that, the framework uses query predic-
tion to reversely segment support images in the reverse process. This process
uses the same feature extractor and prototype space to encourage the network
to extract consistent class features on different images, forming a regularization
thus improves the generalization ability of the model.

2) We proposed a Bayes Weakly Supervised Module (BWSM) based on cross-
period prior knowledge to embed prior for pseudo label generation. Different
renal compartments have different reactions on contrast agents, resulting in dif-
ferent performances on images of different periods. We take use of this prior to
use CTA and CTU images, combined with network prediction, to obtain pseudo
labels through Bayes optimization. The module first obtains noisy pseudo-labels
from CTA and CTU images, which contain accurate location information, but
noisy morphological information. Then it includes the network prediction as
likelihood, which has relatively smooth morphological information but inaccurate
location information. It uses prior knowledge Bayes theory to synthesize the two,
and the obtained posterior probability weakens the error components in the two
and forms a more accurate pseudo-label. Embed the posterior pseudo-label into
the model indirectly expands the size of the training set. A larger training set
can cover more possible compartment anatomy variations, forcing the model to
reduce its attention to unstable spatial distribution features, thus improving the
generalization ability of the model.

3) We proposed a Fine Decoding Feature Extractor (FDFE) that combines
location information and detail information to extract fine-grained features. In
the encoder-decoder stream, the decoder restores high-resolution image with the
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Fig. 2. The structure of our CPNet framework a) CPL learns consistency for gener-
alization. It forms regularization through forward and reverse processes thus enhance
robustness. b) Bayes Weakly Supervised Module. It embeds prior knowledge for pseudo
label generation to enhance generalization. c) Fine Decoding Feature Extractor. It fo-
cuses on fine-grained detail information thus extract feature maps with sharp detail.

coordinate information recorded in the encoder, thus restores the global mor-
phological information of the high-level feature maps. The cross-layer connection
directly transmits the local detail information to the decoder, adds the detail
feature lost in the encoder-decoder stream. Such structure combines global and
local features, has better performance for segmentation tasks of renal compart-
ments that focus on small volumes.

2 Methodology

As shown in Fig. 2, our CPNet uses a cycle prototype learning paradigm to
efficiently implement weakly supervised segmentation of renal compartments.
It has three related modules: a) The main CPL framework learns consistency
with two processes. The forward process learns knowledge from pseudo labels to
improve the robustness of the model. The reverse process achieves regularization
and improves the generalization of the model. b) Our BWSM extracts prior
knowledge and embeds pseudo-label into learning, thus improves the robustness
of the model on images with large anatomy variation. c) Our FDFE combines
the global morphological features recovered by the decoder and the local detail
features passed by cross-connection transmission, thus make the resulting feature
maps have sharper detail information.

2.1 CPL for consistency generalization

Advantages of CPL: 1) Stronger generalization ability. The reverse process in
the framework forms regularization, forcing the extracted features to meet the
consistency principle, making the network robust to the noise in labels. 2) Pay
more attention to the boundary area. Our framework extracts class prototypes
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under the guidance of label, and then imposes high penalties on boundary feature
vectors that deviate from the prototype vector so that more distinguishable
boundary features can be extracted.

CPL structure for consistency regularization: As shown in Fig. 2, our
framework trains an efficient feature extraction network on weakly supervised
dataset, and consists of two processes: forward process and reverse process. It
first uses FDFE to extract support feature xs and query feature xq from the
support image is and query image iq. In the forward process, it uses the support
label ys to perform masked average pooling M( · ) to obtain the support pro-
totype ts = M(ys ·xs). Feature vectors in xq is classified by calculating cosine
similarity CS( · ) with ts to obtain query prediction y′q = CS(ts ·xq). Similarly,
in the reverse process, it uses y′q as query label, extracts the query prototype
tq = M(y′q ·xq) and predicts the support image to obtain the support prediction
y′s = CS(tq ·xs).

Forward and reverse learning process: We train our model through for-
ward and reverse process. In the forward process, our model learns from query
pseudo labels, so we set query loss Lquery to optimize the performance of our
model. It is calculated between query prediction y′q and query pseudo-label ŷq,
and is used to measure the robustness of the model on various query images. In
reverse process, our model learns consistency regularization. If the query predic-
tion we get in forward process is accurate, reverse process will recover the correct
support label with it. Therefore, the support loss Lsupport calculated between
support prediction y′s and support label ys is set to measure the generalization
of the model on recovering support label. Both losses are cross-entropy loss [4],
the total loss of our learning process is as follows:

Ltotal = θLquery + Lsupport (1)

where θ is the query loss weight hyperparameter used to balance these losses.

2.2 BWSM for prior embedding

Advantages of BWSM: 1) Enlarges training dataset. It extracts prior knowl-
edge from unlabeled data and embeds it into learning, which indirectly expands
the scale of the training set and improves generalization. 2) Extracts accurate
pseudo-labels. Prior pseudo-labels are optimized by network prediction, thus
reduces the influence of noise and obtains more accurate pseudo-labels.

BWSM process of pseudo label generation: As shown in Fig. 3, our
BWSM has a prior knowledge extraction process and a Bayes correction pro-
cess. The prior knowledge extraction process uses the different appearance of
compartments in CTA and CTU images to produce a prior prediction of renal
compartments. It first filters the CTA and CTU images and then subtracts them
to obtain the prior feature map fq, which multiplies the kidney mask fq gener-
ated from network prediction y′q to obtain the prior probability for correct and
wrong predictions pcorrect and pwrong. The Bayes correction process combines
network prediction to correct the prior pseudo-label to obtain a more accurate
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Fig. 3. BWSM for prior embedding. Our BWSM combines prior knowledge and net-
work prediction to generate precise pseudo label.

posterior pseudo-label. The softmax probability is used as the likelihood proba-
bility lcorrect and lwrong, then it is used to modify pcorrect and pwrong to obtain
the posterior pseudo-label fcorrect and fwrong. The process of Bayes correction
process is as follows:

pcorrect=1/3 + ω
pwrong =(1 − pcorrect)/2

fcorrect=
pcorrect∗lcorrect

pcorrect∗lcorrect+pwrong∗lwrong

fwrong =
pwrong∗lwrong

pcorrect∗lcorrect+pwrong∗lwrong

(2)

where ω is the prior probability difference hyperparameter to balance the
influence of prior pseudo label.

2.3 FDFE for fine-grained feature extracting

Advantages of FDFE: 1) Emphasizes global morphology restoration. The de-
coder inherits the position information saved by the encoder thus performs spa-
tial restoration more accurately. 2) Emphasizes the extraction of local detail
features. The cross-layer connection transmits high-resolution features without
downsampling, so the output of the network has sharper details. 3) Enhances
segmentation on thin structures. A combination of morphology and detail infor-
mation makes the output feature maps have sharp detail features. Such feature
maps will make the model able to segment thin renal compartment structures.

Structure of FDFE: As shown in Fig. 2 (c), our FDFE combines global
information and detail information to extract fine-grained features. Global in-
formation is restored by up-pooling in the encoder-decoder stream. Detail infor-
mation is retained by skip connection between convolution blocks of the same
dimension. Specifically, the encoder consists of several repeated blocks. Each
block contains two 3 × 3 × 3 convolutional layers and a 2 × 2 × 2 pooling layer,
each convolutional layer is followed by a group norm layer. The decoder consists
of several convolutional blocks corresponding to the decoder.
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3 Experiments and Results

Experiment settings: Our dataset is obtained by preprocessing the abdominal
enhanced CT images of patients undergoing LPN surgery. The pixel size of these
CT images is between 0.59 mm2 to 0.74 mm2. The slice thickness is fixed at
0.75 mm, and the z-direction spacing is fixed at 0.5 mm. 60 kidney ROIs of
size 160 × 160 × 200 were used in the research, half of which were used as the
training set and the other half as the test set. 4 images in the training set and
all 30 images in the test set are fine labeled. We trained our model for 20, 000
iterations. In each iteration, we randomly select two supporting images for two
prototypes representing two renal compartments and one query image from the
corresponding data set to form an episode for training. The support and query
sets in the first 2, 000 iterations are all from 4 labeled training images. The source
of the support set in the last 18, 000 iterations remains unchanged. The query
set is taken from the remaining 26 unlabeled training images. During the test
process, the support set is still extracted from 4 labeled training images, while
30 test images work as the query set aimed to be segmented.

We use the SGD optimizer with learning rate lr = 0.001, momentum of 0.9,
and batchsize of 1. When using the Bayes algorithm to optimize pseudo-labels,
we assign the prior probability difference hyperpatameter ω = 0.05. When using
the fully-supervised data set to initialize the network, the query loss weight
hyperparameter is set at θ = 1, and when the pseudo-label is introduced for
training, the θ is changed to 0.1. We use mean Dice for medulla and cortex
(Dice-M and Dice-C), and Average Hausdorff Distance (AHD-M, AHD-C) [4] to
parametrically measure model performance.

Table 1. Our method achieves best result on AHD and Dice. Methods with (P) are
prototypical methods.

Network DICE-M(%) DICE-C(%) Avg DICE(%) AHD-M AHD-C Avg AHD

SegNet [1] 62.5 ± 5.6 Unable - 6.1 ± 1.3 Unable -
U-Net [11] 72.7 ± 8.6 2.2 ± 14.0 37.4 ± 35.4 4.1 ± 1.5 9.4 ± 2.4 6.8 ± 3.4
(P)PANet [16] 55.9 ± 9.2 56.7 ± 8.8 56.3 ± 9.0 3.7 ± 1.0 3.5 ± 1.1 3.6 ± 1.1

(P)CPNet-BWSM 58.1 ± 7.6 59.6 ± 6.8 58.9 ± 7.2 3.3 ± 0.9 3.1 ± 0.8 3.2 ± 0.9
(P)CPNet-FDFE 76.5 ± 9.0 77.0 ± 9.2 76.8 ± 9.1 2.6 ± 1.1 2.6 ± 1.1 2.6 ± 1.1
(P)CPNet-toal 78.4± 9.2 79.1± 7.9 78.7± 8.6 1.8± 0.8 1.7± 0.7 1.7± 0.8

Comparative analysis: Our framework has the best performance compared
to other methods. As shown in Tab. 1, given four labeled images, our mean
Dice of cortex segmentation is 78.4, and 79.1 for medulla segmentation. Some
methods achieve very low performance. SegNet and U-Net did not learn enough
knowledge from the given four labeled images, so they cannot correctly segment
renal compartments. Prototypical method PANet achieves Dice of 55.9 and 56.7.
As shown in Fig. 4. SegNet and U-Net judge the entire kidney structure as
medulla and cannot correctly segment the cortex. PANet roughly segments renal
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Fig. 4. The visual superiority of our CPNet. Segnet and Unet only obtain the rough
boundary of the whole kidney. Prototypical method PANet can roughly segment renal
compartments but have serious detail loss. Our CPNet learns detail information on the
four labeled images better and achieves fine segmentation. but there is serious detail
loss. Our CPNet retains detail better and achieves fine segmentation.

Fig. 5. Our hyperparameter analysis. a) Model performance increases then decreases
as ω increases, achieving the best performance at ω = 0.01. b) Model performance
increases as the number of labeled images increases. The increase speed gradually
decreases and finally stabilizes.

compartments, but there is serious detail loss. Our CPNet retains detail better
and achieves fine segmentation.

Hyperparameter analysis: Prior probability difference ω: As shown in Fig.
5 (a), Model performance increases then decreases as ω increases and achieves
the best outcome at ω = 0.01. ω = 0 means BWSM directly takes network
prediction as the pseudo label, and high ω means BWSM directly takes prior
probability as the pseudo label. Both of them are biased and need correction, so
we set ω at a balanced point.

Data amount analysis: As shown in Fig. 5 (b), model performance in-
creases with the increase of the number of labels. More labels contain more
information, so it is obviously better for training. In order to prove our superi-
ority under weak supervision, we set the number of labels at a relatively small
amount.
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4 Conclusion

In this article, we propose a new automatic renal compartment segmentation
framework Cycle Prototype Network on 3D CT images. The main Cycle Proto-
type Learning framework uses labels as guidance to extract features accurately
and forms regularization through a reverse process to improve generalization. In
addition, by embedding the Bayes Weakly Supervised Module into the frame-
work, it can learn from unlabeled data autonomously, which improves the gener-
alization of the framework. A unique Fine Decoding Feature Extractor is adopted
to further strengthen the framework’s capability to extract fine-grained detail
features. The experiment results show that this method has obtained satisfactory
segmentation accuracy and has potential for clinical application.
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