N

N
N

HAL

open science

Belief function combination and conflict management

Eric Lefevre, Olivier Colot, Patrick Vannoorenberghe

» To cite this version:

Eric Lefevre, Olivier Colot, Patrick Vannoorenberghe.

management. Information Fusion, 2002, 3 (2), pp.149-162. 10.1016/S1566-2535(02)00053-2 .

03354198

HAL Id: hal-03354198
https://hal.science/hal-03354198

Submitted on 24 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Belief function combination and conflict


https://hal.science/hal-03354198
https://hal.archives-ouvertes.fr

Belief Functions Combination
and
Conflict Management

E. Lefevre!, O. Colot! and P. Vannoorenberghe?

U Laboratoire Perception Systémes Information (PSI), UPRES EA 2120
Université € INSA de Rouen
Place Emile Blondel, 76131 Mont-Saint-Aignan Cedex
Tél: +33.(0)2.35.52.84.05, Fax:+33.(0)2.35.52.84.83

2 Laboratoire HEUDIASYC, UMR 6599 CNRS
Université de Technologie de Compiégne
BP 20529, 60205 Compiégne Cedex
Tél: +33.(0)3.44.23.49.53, Fax:+33.(0)3.44.23.44.77
{Eric.Lefevre, Olivier.Colot}@insa-rouen.fr; Patrick. Vannoorenberghe@hds.utc.fr

Abstract

Within the framework of evidence theory, data fusion consists in obtaining a single
belief function by the combination of several belief functions resulting from distinct
information sources. The most popular rule of combination, called Dempster’s rule
of combination (or the orthogonal sum), has several interesting mathematical prop-
erties such as commutativity or associativity. However, combining belief functions
with this operator implies normalizing the results by scaling them proportionally
to the conflicting mass in order to keep some basic properties. Although this nor-
malization seems logical, several authors have criticized it and some have proposed
other solutions. In particular, Dempster’s combination operator is a poor solution
for the management of the conflict between the various information sources at the
normalization step. Conflict management is a major problem especially during the
fusion of many information sources. Indeed, the conflict increases with the number
of information sources. That is why a strategy for re-assigning the conflicting mass
is essential. In this paper, we define a formalism to describe a family of combination
operators. So, we propose to develop a generic framework in order to unify several
classical rules of combination. We also propose other combination rules allowing an
arbitrary or adapted assignment of the conflicting mass to subsets.
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1 Introduction

Information fusion has been the object of much research over the last few
years [1-11]. Generally, it is based on the confidence measure theory (possibil-
ity theory, evidence theory, probability theory and fuzzy set theory) and has
the advantage of:

using redundant information,

using the complementarity of the available information,
achieving more reliable information,

improving the decision making.

Data fusion is used in many application fields, such as multi sensor fusion [12,13],
image processing and analysis [4-7,11,14,15|, classification [16-18| or target
tracking [19]. It takes into account heterogeneous information (numerical or
symbolic) which is often imperfect (imprecise, uncertain and incomplete) and
modeled by means of sources which have to be combined or aggregated. In
the framework of evidence theory, information fusion relies on the use of a
combination rule allowing the belief functions for the different propositions to
be combined. The basic rule of combination is Dempster’s rule of combination
(orthogonal sum). It needs a normalization step in order to preserve the ba-
sic properties of the belief functions. In [20], Zadeh has underlined that this
normalization involves counter-intuitive behaviours. In order to solve the prob-
lem of conflict management, R. Yager [21], D. Dubois [22] and Ph. Smets [23]
and more recently C. Murphy [24] have proposed other combination rules.
However, these rules have more or less satisfactory behaviours. In particular,
Dubois’ rule or Yager’s rule of combination hold that the conflicting mass must
be distributed over all all subsets. Smets proposes that the conflicting mass
results from the non-exhaustivity of the frame of discernment. We propose an-
other approach, in which we define a generalized framework for the fusion of
information sources by means of a generic axiomatic. This framework enables
a large family of combination rules to be obtained.

This paper is organized as follows. The basic concepts of evidence theory
are first briefly introduced (Section 2) including the problem of conflict in
Dempster’s rule of combination. In section 3, we define the generic framework
allowing classical combination operators to be unified and we propose a family
of new combination rules. Finally, some methods to determine weighting fac-
tors for the conflicting mass distribution process for each proposition implied
in the conflict are proposed (section 3.3.2). Tests are given in section 4.



2 Background

Evidence theory is initially based on Dempster’s work [25] concerning lower
and upper probability distribution families. From these mathematical foun-
dations, Shafer [26] has shown the ability of the belief functions to modelize
uncertain knowledge. The usefulness of belief functions, as an alternative to
subjective probabilities, was later demonstrated axiomatically by Smets [27,28|
with the Transferable Belief Model (TBM) giving a clear and coherent inter-
pretation of the underlying concept of the theory.

2.1 Knowledge model

Evidence theory first supposes the definition of a set of hypotheses © called
the frame of discernment, defined as follows:

@:{Hl,...,Hn,...,HN}. (].)

It is composed of N exhaustive and exclusive hypotheses. From the frame
of discernment O, let us denote 2°, the power set composed with the 2V
propositions A of O:

2° = {0, {H\},{H,},...,{Hxy}, {H, UH},{H UHs},...,0}. (2

A key point of evidence theory is the basic belief assignment (bba). The mass
of belief in an element of O is quite similar to a probability distribution, but
differs by the fact that the unit mass is distributed among the elements of 2°,
that is to say not only on the singletons H,, in © but on composite hypotheses
too. The belief m; assigned to an information source S; is thus defined by:

m; : 29 —[0,1]. (3)

This function verifies the following properties:

m;(0) =0, (4)
;amj(A) =1 (5)

The mass m;(A) represents how strongly the evidence supports A which, in
the case of a disjunction of hypotheses, has not been assigned to a subset
of A because of insufficient information. This mass can be re-assigned more
precisely to the subsets of A if additional information is available. Each subset
A C O such as m;j(A) > 0 is called a focal element of m. Let us denote F; the
set of the focal elements associated to a belief function m;. From this bba, a



belief function Bel; and a plausibility function PI; are defined, respectively,
as:

Belj(A) = > m;(B) (6)

and

Pli(A) = > m;(B). (7)

The quantity Bel;(A) can be interpreted as a measure of one’s belief that
hypothesis A is true. The plausibility Pl;(A) can be viewed as the total amount
of belief that could be potentially placed in A. Note that functions m;, Bel;
and Pl; are in one-to-one correspondence [26], and can be seen as three facets
of the same piece of information.

In evidence theory, one of the main difficulties lies in modelling the knowl-
edge of the problem by initializing the belief functions m; as well as possible.
Generally, the model depends on the application. In [29], A. Appriou pro-
poses two models in order to manage the uncertain learning in the framework
of evidence theory. These models are consistent with the Bayesian approach
when the belief mass is only allocated to singletons. Other models, also based
on likelihood functions, have been proposed [30-32|. Another method based
on the use of a a neighbourhood information was introduced by T. Denceux
[17,18,33,34].

2.2 Dempster’s rule of combination

In the case of imperfect data (uncertain, imprecise and incomplete), fusion is
an interesting solution to obtain more relevant information. Evidence theory
offers appropriate aggregation tools. From the basic belief assignment denoted
m; obtained for each information source S}, it is possible to use a combination
rule in order to provide combined masses synthesizing the knowledge of the
different sources. These belief masses can then be used by a decision process
with the benefit of the whole knowledge contained in the belief functions given
by each source.

Dempster’s rule of combination [26] is the first one defined within the frame-
work of evidence theory. Using the rule implies that the independence con-
dition for the sources to be combined must be respected. Dempster’s rule of
combination, the so called orthogonal sum, is commutative and associative.
Let us denote mg, the belief function resulting from the combination of .J
information sources S; defined as:

Mg =m @...0m;...Hmy (8)

where @ represents the operator of combination. With two information sources



S1 and Ss, the combination rule is defined as:

mn(A)
A= ———— AC
where mn corresponds to the conjunctive rule of combination defined by:
mn(A) = Z my(B).my(C) VACO (10)
BNC=A

and where the mass m(()) assigned to the empty set is defined by:

m@0) = Y my(B).ma(C). (11)

BNC=0

In equations (9) and (11), the coefficient m(0)) reflects the conflict between
the two sources S; and S,. Assuming the normality of the bba’s (m(()) = 0),
the use of this rule is possible only if m; and ms are not totally conflicting, i.e.,
if there exist two focal elements B and C of m, and my satisfying BN C # 0.
This rule verifies some interesting properties and its use has been justified
theoretically by several authors [35-37] according to specific axioms. However,
in some situations, this operator cannot be used. It is the case when:

e the independence constraint [38-41]| of the information sources is not re-
spected. Indeed, the combination is not idempotent and its use would rein-
force abusively the propositions supported by the bba,

e the sources are not perfectly reliable and when the mass function model
is also imprecise, a conflict m(()) appears. The normalization coefficient
depends on this conflict and so induces a combination rule sensitivity to
small imprecisions of the mass functions as Zadeh proved [20]. We give
some illustrations of such a behaviour in the subsection 4.1.

2.3  Conflict origins and solutions

Conflict management in belief functions has been already studied in the past.
But why does the evidence conflict? In 2.3.1, we present the main origins of
the conflict. Some classical solutions are given in 2.3.2.

2.3.1 Origins: why evidence conflicts.

There are three main reasons why a conflict appears when combining evidence.
The first one corresponds to an aberrant measurement given by a sensor. In
fact, an abnormal measurement (denoted by outliers in pattern recognition
applications) can generate a conflicting mass m()) during the combination
step. This is often due to:



e a sensor defect during the acquisition step,

e a poor calibration of the sensor during the learning phase. If the sensor has a
correct behaviour, this situation can correspond to a non-exhaustive frame
of discernment (an unknown class for example).

A second reason relies on the belief function model. Thus, imprecise model
of the belief functions may provide a conflict. In fact, most of the models
for determining basic belief assignments are derived from neighbourhood in-
formation according to a distance [33] or to likelihood functions [26,29]. An
inappropriate choice of the metric in the distance-based approaches or a poor
estimation of the likelihood functions for the likelihood-based methods can in-
duce variations in the belief functions. Consequently, these variations provide
a conflicting mass during the combination.

Finally, when the information sources to be aggregated are numerous, a con-
flicting mass can be induced even if these sources agree. For example, let us
consider a set of .JJ information sources with the following basic belief assign-
ments:

According to these belief assignments, we can note that the majority of the
belief supports the hypothesis H;. Figure Fig.1 shows the conflicting mass
evolution according to the number of information sources to be aggregated.
This figure shows that the conflicting mass is approximately 25% when 2
sources (J = 2) are combined and this mass is close to 80% for 10 aggregated
sources (J = 10)! These three main reasons plead for an adaptive distribution
or assignment of the conflicting mass provided by the combining process.

2.8.2 Solutions

Several rules of combination have been introduced in order to manage the
conflict problem. These solutions can be divided into two main categories
corresponding to two strategies for the conflict distribution. The first one
includes rules of combination which require reliable information sources (see
2.3.2.1), conjunctive operators are used [25,30]. The second family states that
one information source tells the truth but without knowing exactly which of
them it is (see 2.3.2.2). For this second category, the operators have conjunctive
and disjunctive behaviours [21,22].

2.3.2.1 Combination of reliable sources - As Dempster postulates,
Smets supposes that all the information sources are reliable. The idea is that
the conflict can only come from a bad definition of the frame of discernment
(ill-conditioned frame of discernment). In this case, Smets keeps the conflicting
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Fig. 1. Conflict vs. number of sources to combine.

mass m() and does not use it for normalization. Thus, () can be interpreted as
one or several hypotheses which are not taken into account in the initial frame
of discernment. The rule of combination proposed by Smets is thus defined
by:

mg(A) = mn(A) VAC®O

ms(0) = m(0).

Note that a similar approach is proposed by Yager in [21] which rests on the
introduction of a new hypothesis in the frame of discernment. The conflicting
mass is then given to this new hypothesis. These operators have conjunctive
behaviours.

(12)

2.3.2.2 Combination of non-reliable sources - The conflicting mass
can be provided by non-reliable information sources. This point of view has
been introduced by Yager [21] and by Dubois and Prade [22]. Yager postulates
that the frame of discernment is exhaustive (closed-world assumption). Yager’s
idea consists in assigning the conflicting mass m(()) to the whole set ©. The
resulting mass, denoted my, for the combination of two information sources
S1 and S5 is obtained with the following equations:

my (A) = mn(A) VACO

(13)
my (0) = mn(0) + m(().

The combination operator proposed by Dubois and Prade [22] can be explained
as follows. Assume the source S; supports the subset B with a mass of belief



my (B) and the source Sy supports C' with a mass of belief my(C). When the
intersection of subsets B and C' is empty, the minimum specificity principle
can be applied. According to this principle, the resulting mass mq(B).my(C)
is then assigned to the subset B U C. The rule of combination proposed by
Dubois and Prade is then defined by:

mp(A) =ma(A)+ > mi(B).my(C) VACO. (14)

This rule of combination is better adapted and more specific than Yager’s rule
of combination concerning the assignment of the conflicting mass.

Another way to solve the conflict in the case of non reliable sources is to use
discounting coefficients in the model. So, let m; be a belief mass given by the
source S; and let «; be a coefficient which represents the confidence degree
one has in source S;. Let us denote m,,; ; the belief mass m; discounted by a
coefficient (1 — ;) and defined as:

ma].,j(A) = ajm](A) VACO
mam(@) =1—a;+a;m;iO).

(15)

What does it mean? The value assigned to «;; leads to different interpretations:

e a; = 0 means a complete calling in question of the reliability of the source
Sj
e o; = 1 means a total confidence in S;.

When we are full confident in the reliability of S;, the information provided
by this source is not supposed to generate any conflict when combined with
the information given by the other sources. The coefficient «; is then equal
to 1 and the belief function is thus not modified. Conversely, if one supposes
that one source S; is not reliable, it may provide conflicting information when
it is combined with other sources. By introducing a coefficient o;; = 0, the be-
lief function m; associated to the source S; becomes a belief function of total
ignorance (mq,,;(©) = 1) and so a neutral element for Dempster’s rule of com-
bination. So, discounting is useful for managing the source influences according
to their reliability before aggregation. Several methods have been developed in
order to define the discounting coefficients [42,43]. The main problem with this
kind of solution in conflict management is finding an appropriate technique
for tuning the discounting coefficients properly.

2.3.8  What to do with the conflict?

There are several strategies for solving or managing the conflict. In practice,
the main question is: "What to do with the conflict?". There is no single



answer to this question. Different solutions are at our disposal:

e the information sources to be combined are perfectly reliable, so we can use
either Dempster’s rule of combination or Smets’ rule of combination if we
are not sure that the frame of discernment is exhaustive,

e the information sources to be combined are not reliable, so we must apply
discounting if possible, or use one of the disjunctive rules of combination.

Are these combination rules the only ones possible? In the next section, we
propose a generic formalism for the combination allowing the rules of combi-
nation cited previously to be retrieved and allowing others to be derived.

3 Generic framework

We propose a generic framework in order to unify the classical combination
operators. Furthermore, this framework allows others rules of combination
for the assignment of the conflicting mass to be defined. The idea defended
here, is to assign the conflicting mass with weighting factors on the non-
concordant hypotheses or possibly on the composite hypotheses (disjunctions).
These weighting factors can be defined by means of expert knowledge or by
means of cost functions. We focus on the problem of looking for a relevant
weighted assignment of the conflicting mass on subsets A.

3.1 Presentation

The aim of these combination rules is to distribute the conflicting mass m(()
on a set of propositions denoted P. Part of the mass m(() is assigned to
each subset A C P according to a weighting factor called w(A, m) with
m = {my,...,m,,...,my}. This weighting factor can be a function of the
considered subset A and subsets which have caused the conflict. So, the total
mass after aggregation for a subset A is the sum of two masses and is expressed
as follows:

m(A) = mn(A) + m°(4)  VACO. (16)

In equation (16), the first term, mn(A), corresponds to the conjunctive rule
of combination. The second one, denoted m¢(A), is the part of the conflicting
mass assigned to the subset A. It can be written as follows:

me(A) = w(A, m).m(0) VACP

(17)
m(A) =0 otherwise



with the following constraint:

3 w(4d,m) =1 (18)

ACP

so as to respect the property that the sum of mass functions must be equal to
1 (see equation (5)).

This generic framework allows Dempster’s rule of combination and other pro-
posed by Smets [23], Yager [21] and Dubois and Prade [22| to be rewritten.
For each operator, we need only to define the set P on which the conflicting
mass must be distributed and the weighting factors w(A, m) associated to
each subset A C P. Three ways to obtain the weighting factors are possible:

e fixing the values of the weighting factors,
e computing the weighting factors,
e learning the weighting factors.

The first way allows Smets’ rule of combination and Yager’s rule of combi-
nation to be retrieved (see 3.2). The second one allows Dempster’s rule of
combination and Dubois and Prade’s rule of combination to be retrieved (see
3.3). Finally, the third approach is new and allows an adapted conflicting mass
assignment to be achieved (see 3.4).

3.2 Weighting factors with fized values

3.2.1 Classical rules of combination

According to the equations presented in 2.3.2.1, Smets’ rule can be defined as
follows. The set on which the conflicting mass is distributed is the empty set
and so we obtain:

P = {0} (19)

and the weighting factor associated to the empty set is equal to 1:
w(p, m) = 1. (20)

The empty set can be viewed as a reject class. A similar approach based on the
introduction of a new hypothesis in the frame of discernment was proposed
in [44]. The aggregation operator proposed by Smets verifies the properties of
commutativity and associativity. Finally, let us emphasize that in [45], Smets
defines the a-junctions as a unified framework for purely conjunctive combi-
nation operators and for disjunctive combination operators.

The method proposed by Yager [21] can be defined as follows. Indeed, consid-
ering that at least one of the sources concerned by the fusion process is reliable

10



but without knowing which one, Yager proposes to assign the mass of conflict
to the set ©. According to the generic framework previously presented, we
obtain a set P given by:

P = {O}. (21)

The weighting factor w(©,m) associated to this set is equal to 1. The con-
flicting mass is thus placed on ©. This method involves the separation of the
whole conflicting mass and furthermore, implies that it participates in the de-
cision process for distinguishing the hypotheses. This rule of combination is
commutative but not associative. It is therefore necessary to define an order
for the fusion process.

3.2.2  Conflict distribution based on an expert valuation

The proposed formalism can be useful in the case of additional knowledge
given by an expert specialized in the application. In medical fields, target
tracking or obstacle detection, non-detection can have important consequences
in decision making. In these kinds of application, the conflicting mass can be
assigned to the most cautious hypothesis. As an example, let us consider an
obstacle detection system equipped with two distance sensors placed at the
front of a car. Suppose a measurement is taken and that the information from
the 2 sensors is in conflict (the first sensor says that an obstacle is 1 metre from
the car and the second one says it is 10 metres away). It is advisable in this
case to single out the information which gives the smaller distance in order to
avoid putting the driver’s life at risk. Thus, the expert can decide to allocate,
by fixing the weighting factors, most of the conflicting mass to one of the
subsets. When no additional information can be provided by an expert, one
can adopt a cautious strategy consisting in distributing the conflict uniformly
or by learning the weighting factors as in the subsection 3.4.

3.3  Computed weighting factors

3.3.1 Classical rules of combination

Within the proposed generic framework, Dempster’s rule of combination is
defined as follows. The set on which the conflicting mass is distributed is O,
so:

P=0 (22)
and the associated weighting factors are defined as follows:

w(A, m) = ma(4)

= TAce (23)

11



So, the rule of combination is then expressed as follows:

ma(A).m(()

meg(A) = ma(A) + T — m(0)

VA CO. (24)

It can easily be seen that it is similar to equation (9).

The distribution of the conflicting mass proposed by Dubois and Prade can be
considered in the proposed formalism. In order to describe this rule of combi-
nation, we introduce the notion of partial conflicting mass. Each information
source S;, with j € {1,...,J}, gives a degree of belief to each focal element
belonging to F;. When the focal elements are compatible, that is to say when
the intersections between these subsets in F; are not empty, the mass product
assigned to these sets is assigned to the intersection. If the propositions are
incompatible, that is to say when their intersection is equal to the empty set,
a partial conflict denoted m* appears. It is expressed as follows:

m*:ml(Al)XmQ(Ag)XmJ(AJ) with AlﬂAQHHAJ:(Z) (25)
The total conflict m() is the sum of the partial conflicts and is expressed as

follows:

m(0) =3 "m’ (26)
where " is a countable sum which depends on the focal elements of F;. So,
with this formalism, we are able to write the combination principle for two
sources as it follows.

Let S; be a source which supports subset A; C © with the belief mass m;(A;)
and let Sy be a source which supports the subset A, C © with a belief mass
mo(As). If the proposition A; is in contradiction with As, that is to say if
AN A, =, although it is impossible to decide between the sources, then one
of the two propositions must be true. The partial conflicting mass m* defined
by:

m* =my(A;).ma(Ay) (27)

is then assigned to the proposition A; U As. In the general case of this kind of
combination, we have a proposition A on which the partial conflicting masses
are assigned. The set of all the subsets on which the conflicting mass is dis-
tributed is defined by:

P:{Ag@\aAlEfl,HAQEfQ,A:AlLJAQ and AlmAQZQ)}. (28)

Part of the conflicting mass is assigned to the subset A C P by means of a
weighting factor w(A, m) with m = {my, mo}. This weighting factor, in the
case of the operator of combination considered, is expressed as follows:

*

m
A1, Ap\AjUAs=A
ANAy=0D

VACP w4 m)= m(0)

(29)

12



We can observe that the computation of the weighting factors does not depend
exclusively on propositions with which they are associated, but depends on
belief mass functions which have cause the partial conflicts. The belief mass
functions leading to the conflict allow us to compute that part of the conflicting
mass which must be assigned to the subsets in P. We can note that this rule
of combination uses a conjunctive approach when the sources agree and a
disjunctive approach when evidence conflicts. Like Yager’s rule of combination,
Dubois and Prade’s rule of combination is commutative but is not associative.

3.3.2  Other solutions for weighting factor computation

We have seen that the proposed formalism allowed some of the classical op-
erators of the literature to be retrieved. On the basis of P and the associated
weighting factors w(A4, m) for A C P, we can derive other operators. In [46],
two particular operators have been presented. We have seen above (cf. 2.3.2)
that we can manage the conflict by means of discounting. We can also obtain
relationships between the weighting factors w(., m) and the discounting factors
(see the appendix). This demonstrates that conflict management by means of
discounting is just a particular case of the redistribution of the conflicting
mass by means of computed weighting factors.

3.4 Automatic learning of the weighting factors

We propose here another way to manage conflicting mass distribution. It is
based on an automatic learning of the weighting factors involved in the as-
signment of the conflicting mass. Before dealing with this approach, let us
underline a function defined by Smets for decision making in the framework
of evidence theory.

Smets [28,47| defines a particular probability distribution function, called
the pignistic probability. It is obtained by distributing the belief mass m(A)
equally between the different elements of A. So, we have:

|H, N A|
— 0 .m

VH,€©  BetP(H,) =Y I

ACO

(4) (30)

where |.| represents the cardinal of the considered set.

We propose a learning of the weighting factors based on the use of training
set, and the minimization of an error criterion. This error criterion is defined
by the mean square error between the pignistic probability BetP computed
according to both equation (30) and the membership indicator. The mean

13



square error F)y;s of the training set vectors is defined as follows:

I N

Eys =Y. Y [BetPY(H,) — ul)? (31)

i=1n=1

where I is the number of elements, BetP*) represents the pignistic probability
of a vector X; in the learning set and u}, € {0, 1} is the membership indicator
of the vector X; to the hypothesis H,. For example, u! = 1 if the vector X;
belongs to the class Hy, and u’ = 0 for all n # s. We then determine each
weighting factor w(A, m) for A C P by minimizing the criterion given in
equation (31).

In other words, one has I cases in the training set for which one knows the class
and the basic belief assignments provided by .J sources. For each case, one can
combine the J basic belief assignments with re-assignment of the conflicting
mass m()) by means of weighting factors w(.,m) to obtain a new mass m.
Having obtained the belief assignment after combination, one computes the
pignistic probability BetP. The final step consists in comparing BetP to the
truth. The weighting factors w(.,m) can be obtained by using a technique
such as the gradient descent.

4 Results

We present here several results which describe the behaviour of the weighted
combination strategies for the conflicting mass distribution relative to the clas-
sical rules of combination. First, a comparison between these rules and our
strategy in terms of the resulting belief mass interpretation is proposed (sub-
section 4.1). Finally, results in the field of pattern recognition with weighting
factor learning are presented in subsection 4.2.

4.1  Combination rules and conflicting mass assignment

Let us consider the following well-known example. Suppose a murder case with
three suspects Hy, Hy and Hj3 and such that © = {H;, Hy, H3} is the frame of
discernment. Let S; and Sy be two witnesses who are two information sources
each providing two basic belief assignments m; and msy defined respectively
as:

mi({H1})=¢  ma({H1})=1-k—e¢
mi({Hz}) =k mo({H,}) =k (32)
mi({Hz}) =1—k—e mo({H3}) =€

14



with 0 < k£ < 1. These masses represent the degrees of belief of each witness
about who might be the murderer. We present below some results given by
the rules of combination according to the value of € (see Table 1 up to Table
3). In this test, & is equal to 0.1. The weighting factors associated to each rule
of combination are also specified.

Consider, first, that the information sources are totally reliable. Table 1 gives
the results obtained with Dempster’s rule of combination and Smets’ rule of
combination for different values for e. For Dempster’s rule of combination,
the belief mass assigned to H, increases when e decreases. If the conflicting
mass m(() is not analyzed, H; is chosen by the decision making process. With
Smets’ rule of combination, the belief masses are weak and do not allow reliable
decision making.

Consider now that the information sources are not reliable. The results ob-
tained for the different strategies are presented in Table 2 and Table 3.

The first strategy consists in discounting the two sources S; and S, according
to the following discounting factor ay; = 0.2 and as = 0.8, and then using
Dempster’s rule of combination. In this case, the source Ss is supposed to be
telling the truth and part of the unit mass is assigned to © which represents
the amount of uncertainty. The two other strategies are Yager’s rule of com-
bination and Dubois and Prade’s rule of combination.

For the first strategy, the belief mass is a little modified according to € because
the reliability coefficient of the source S} is weak, so the decision relies mainly
on the source S;. The weighting factors corresponding to this strategy are
little modified with respect to the evolution of ¢ and show that most of the
conflicting mass is assigned to H.

For Yager’s rule of combination, the belief mass assigned to © increases when
€ decreases. This is illustrated by the fact that the credibilities are weak and
the plausibilities are high. The belief function is weakly specific leading to
unreliable decision making.

For Dubois and Prade’s rule of combination, the plausibility for H; and the
plausibility for H; increase when e decreases such that one cannot decide be-
tween H; or Hs. The weighting factors corresponding to this strategy are quite
stable with respect to € and show that most of the conflicting mass is assigned
to H1 U H3.

To summarize, it appears that the classical rules of combination are designed
for conflicts with different origins. All these classical rules of combination
are perfectly retrieved with the proposed generic framework according to the
values of w presented in the third row of Table 1, Table 2 and Table 3.
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4.2 Pattern classification

We consider hereafter a pattern recognition problem. Basically, this is a prob-
lem of decision making under uncertainty. Different classical rules of combi-
nation are compared with the strategy based on weighting factors learning
in order to illustrate how the classical rules behave in pattern recognition
problems.

4.2.1 Pattern recognition problem

A pattern recognition problem consists in assigning an input pattern x to
a class H,, given a learning set £ composed of n patterns x’ with known
classification. Each pattern in L is represented by a p-dimensional feature
vector x* and its corresponding class label H*. In the last ten years, several
solutions to this problem have been proposed, based on the Dempster-Shafer
theory of evidence. Let us assume that the belief functions are derived from the
evidential k-NN classifier proposed by Denceux [48]. In this method, a bba is
constructed directly, using as a source of information the training patterns x*
situated in the neighborhood of the pattern x to be classified. If the £ nearest
neighbors (according to a distance measure) are considered, we thus obtain
k bba’s that are combined using Dempster’s rule of combination. The initial
method was later refined to allow parameter optimization [17]. Each neighbor
can be viewed as a piece of evidence that influences the belief concerning the
membership class of x. A belief function m’ associated to each neighbor i is
then defined for all n € {1,---, N} as:

m'({H,}) =ag(d) (33)
m'(©)=1— a¢(d') (34)
m'(A)=0 V Aec2°\ {{H,}, 0} (35)

where d* is the Euclidean distance to the i-th neighbor, « is a discounting
parameter and ¢(.) is a decreasing function defined as ¢(d’) = exp[—(d*)?].
In this expression, v is a positive parameter. The focal elements of each belief
function m® are singletons of © and © itself. The belief functions m’ for each
neighbor are then aggregated using Dempster’s combination rule.

4.2.2  Decision rules
The decision to classify x as class H,, depends on a decision rule generally

based on the plausibility function as defined in equation (7) or the pignistic
probability as defined in equation (30).
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Let A be a finite set of actions defined as A = {ay,---,ar}. If we choose
action a; whereas the pattern is of class H;, we incur a loss A(a; | H;). For
a basic belief assignment m, we obtain the following expressions for the risk
associated with each possible action a € A:

Rufa|X) = 5 m(4) pin Ao | H). (30)

Moreover, the risk with respect to the pignistic probability BetP derived from
m is equal to:

1

Rpep(a | x) = Z m(A) A

ACO

> Ma | H). (37)

HeA

The above considerations lead to different decision rules relying on the prin-
ciple of the minimization of the expected loss. Thus, according to the above
equations, we obtain the following two decision rules:

D,(x) =a, with R.(a,) = Hé‘}? R.(a | x) (38)
and:
Dpeip(x) = apet With  Rpep(aper) = lgéijtl Rpeip(a | x). (39)

Details are available in [16]. Assume that the learning set is such that it
contains patterns from all classes H,, with n € {1,---, N}. In the case of a
decision rule with rejection, the typical actions are the assignment a, to each
class H, and rejection ay. By considering only the plausibility function and
the pignistic probability which are the most useful, the conditions for rejection
are expressed as follows [16]:

D,=ay & max PI({H,}) <1—= X, (40)

Dpet = ap & max BetP({H,}) <1— ) (41)

where Ag > 0 is the rejection cost. The classification rate depends on the value
Ao and on either the plausibility function or the pignistic probability. Because
the plausibility and the pignistic probability depend on the belief mass m, the
classification rate clearly depends on the chosen combination as demonstrated
in the following example.

4.2.8  Application
For the following simulations, a learning set £ was generated using 3 classes,

each containing 100 bidimensional vectors. Each vector from class H, was
generated using Gaussian distributions. The means of the 3 distributions were
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taken as: p1 = (0,0), ue = (2,2)', ug = (10,10)" and the variance matrices
were of the form:

20 20 10
21: y 22: y 23: . (42)
02 02 01

Let T be the test database made of 250 vectors for each hypothesis H,, gen-
erated as for the learning set. In order to compare the different rules of com-
bination, we show the results obtained on the mean of 10 trials. Figure Fig.2
shows the error according to the rejection rate in the case of a decision based
on the plausibility function. Figure Fig.3 shows the error rate according to
the rejection rate in the case of a decision based on the pignistic probability.
The basic belief assignment is carried out according to the equation (35) with
k =15, a = 0.99 and where v, is the intra-class distance.

Let us suppose that three rules of combination are considered respectively:

e Dempster’s combination rule,
e Yager’s combination rule,
e and a combination rule based on the learning of the weighting factors®.

Thus, the results show that the weighted combination is more accurate than
Dempster’s combination rule whatever the decision rule. In the case of a de-
cision rule based on the pignistic probability, Yager’s rule of combination and
the weighted combination have similar behaviours. This is coherent because
the decision rule distributes the mass assigned to © among the singletons.

5 Conclusion

In this paper, we have presented a generic framework for the fusion of informa-
tion sources modeled by means of belief mass functions. From this framework,
we retrieve the classical combination operators used in evidence theory. Fur-
thermore, this generic framework allows a family of combination operators to
be defined, so it is possible to derive different operators based on:

e the definition of a set P collecting the subsets A where the conflicting mass
will be distributed,
e weighting factors denoted w(A, m) assigned to each subset A C P.

LA validation database is built in the same way as the test database. It enables
the values of the weighting factors w(A C P,m) with m = {m,...,mi5} to be
learnt. The weighting factor w(A C P, m) is obtained according to the methodology
described in subsection 3.4.
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Fig. 2. Error rate vs. rejection rate for decision making based on the plausibility.

0.12
—<— Weight
—— Yager
\ - =" Dempster
0.1 N
0.08 4
Q
s
5 0.06 -
T
0.04 N
0.02 R -
0 I I I I I I I I - ¢
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rejection rate

Fig. 3. Error rate vs. rejection rate for decision making based on the pignistic prob-
ability.

The relationship between the discounting and the weighted combination has
been emphasized (see the appendix). Several methods are possible in order to
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obtain the weighting factors. One of these methods determines the weighting
factor by minimizing a mean square error and this is possible for pattern recog-
nition problems. The method has been checked and compared with Dempster’s
classical combination rule. The tests also show that our approach, as well as
being particularly well-suited to pattern recognition, is also valid for the inter-
pretation of the resulting mass. With this formalism the most suitable solution
will always be applied in each different conflict management strategy. The ap-
plication of the proposed formalism to the case of partially known labeling is
under study.
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Appendix: discounting vs. combination

This appendix is devoted to the detailed calculus allowing to emphasize the
link between the conflict management based on a discounting (case of not
reliable sources) and a management based on an adapted assignment of the
conflicting mass by means of weighting factors associated to each subset.
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Let m; a belief mass function issued from an information source S;. The
commonality function g¢; associated to m; is defined as:

ACB

Furthermore, the inverse Mobius transform allows to retrieve the mass func-
tions from the commonality function g; by means of the following equation:

my(4) = > (-1)Fg(B)  vACe. (44)

ACB
Results of the combination of discounted belief mass functions

Let {mi,...,mj,...,ms} be a set of belief functions. We denote m,, ; the
belief function m; discounted by a coefficient a;. Then, the function m,; ; can
be written as it follows:

(45)
Mo, §(0) = 1= aj + a;m;(©).
The commonality function g, j, associated to mg, j, can be written as:
VACO  qo,i(4) = X ma,,;(B)
ACB
= 2 (aymy(B)) +1—a; + a;m;(0)
o (46)

= Oéj ZAgij(B) —+ 1— aj
= ;g (A) +1—q;
Ga;,i(A) = a;(g;(A) — 1) +1

Belief functions resulting from the combination

One can express the combination of the J information sources by means of
commonality functions. The result of this fusion is denoted ¢, and can be
written as follows:

Ga(A) = Ko X Gay 1 (A) X ... X o, 5 (A) X ... Gay s (A) VAC®O

J a (47)
= Ka X H Qaj,j(A) VA - ©
j=1
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where K, is the normalization coefficient of the combination. This coefficient

is as follows: .

— = 074, (B)
25

K, =

(48)

The mass resulting from Dempster’s rule of combination (normalized combi-
nation) can be written as follows:

VACO me(A4) = — S (7})\B|qa(3) AEC:B(_WB*A'%(B)
BCO =
B0
J
= — AgB(—l)“i’*A' -H1 Ga;,i(B)
_ —1)IBI s - J=
2, D L aea () (49)
B#0
S (—1)lB-Al H a;(g;(B)=1)+1]
me(A) = =2 7 :
- > (-n=l H [ (g; (B)=1)+1]
BCO j=1
B#0

Belief mass function resulting from the proposed rule of combination

Let m. be the belief function resulting from the proposed combination of the
J belief functions m;. This one can be written as follows:

me(A) = mn(A) + w(A, m)m(0) VACO (50)

where mn(.) is the mass resulting of the conjunctive combination and where
w(A,m), with m = {my,...,my}, is the weighting factor associated to the
assignment of the conflicting mass m()) to the subset A. This equation (50)
can be written by means of the commonality function. Indeed, the result of
the conjunctive combination can be written:

ma(A) = Y (=1)E-A H q;( VA C©O. (51)

ACB

The conflicting mass generated by this conjunctive combination can be written
as:

m@) =1+ > (—=1)!Bl I_][qj(B). (52)

The resulting belief function of the proposed combination is defined VA C O:

me(4) = 3 (- '“'Hq )+ ulam+ Y ()" g0

ACB BCO
B#£D
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Taking into account the equations (49) and (53), we obtain the weighting factor
values for the assignment of the conflicting mass according to the discounting
coefficients a; and the belief masses m;:

S (=14 T [y (g;(B) — 1) + 1]

w(A,m) = ¢ |28 jjl - > ()P ¢(B)
X (1P oyl (B) )+ 1] AP
. (54)
with: .
(= (55)
b LU L 4(B)
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