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Abstract

In this article, the contextual discounting of a belief function, a classical dis-
counting generalization, is extended and its particular link with the canoni-
cal disjunctive decomposition is highlighted. A general family of correction
mechanisms allowing one to weaken the information provided by a source is
then introduced, as well as the dual of this family allowing one to strengthen
a belief function.

Keywords: Belief Functions, Discounting, Reinforcement, Canonical
Decompositions.

1. Introduction

In the Dempster-Shafer theory of belief functions [3, 21], the reliability
of a source of information is classically taken into account by the discounting
operation [21, page 252], which transforms a belief function into a weaker,
less informative one. This operation is usually important in uncertain infor-
mation management [1, 2, 7, 8, 9, 11, 14, 18, 17, 19, 27].

Introduced in [13], the contextual discounting is a refinement of the
discounting operation. It takes into account the fact that the reliability of a
source of information can be expected to depend on the true answer of the
question of interest.

For instance, in medical diagnosis, depending on his/her speciality, ex-
perience or training, a physician may be more or less competent to diagnose
some types of diseases. Likewise, in target recognition, a sensor may be
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more capable of recognizing some types of targets while being less effective
for other types.

In this contextual model, the agent in charge of the fusion process or
the decision making can hold knowledge regarding the reliability of a source
of information in different contexts, which forms a partition of the universe
of discourse. For example, a sensor in charge of recognizing targets can be
more or less reliable depending on the fact that the target is a helicopter (ℎ),
an airplane (a) or a rocket(r), subsets {ℎ}, {r} and {a} forming the finest
partition of the universe Ω = {a, b, c}). However, this previous model can
not handle a reliability knowing that the target is a helicopter or a rocket
({ℎ, r}) as well as a reliability knowing that the target is an airplane or a
helicopter ({a, ℎ}). Sets {a, ℎ} and {ℎ, r} do not form a partition of Ω.

This last step is reached in this article. It is then shown that the con-
textual discounting exposed previously in [13] is a particular case of a more
general correction process [15, 12] allowing the discounting of a belief func-
tion in a finer way. In particular, a simple expression of this mechanism is
given in the form of disjunctive combinations. At last, the dual version of
the contextual discounting, allowing one to reinforce a belief function, is also
introduced. This article extends deeply a first version of this work presented
in [16].

To develop the justifications of these mechanisms, belief functions are
interpreted as expressing weighted opinions, irrespective of any underlying
probability distributions, and the Transferable Belief Model [23, 24, 26] is
adopted.

This article is organized as follows. Background material needed on be-
lief functions is recalled in Section 2. Contextual discounting is extended
in Section 3. A discussion is next launched in Section 4. A dual reinforce-
ment process is introduced in Section 5, and finally, Section 6 concludes this
article.

2. Belief functions: basic concepts

2.1. Representing information

Let us consider an agent Ag in charge of making a decision regarding
the answer to a given question Q of interest.

Let Ω = {!1, . . . , !K}, called the frame of discernment, be the finite set
containing the possible answers to question Q.

The information held by agent Ag regarding the answer to question Q
can be quantified by a basic belief assignment (BBA) or a mass function
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mΩ
Ag, defined as a function from 2Ω to [0, 1], and verifying:

∑

A⊆Ω

mΩ
Ag(A) = 1 . (1)

Function mΩ
Ag describes the state of knowledge of agent Ag regarding the

answer to questionQ belonging to Ω. By extension, it also represents an item
of evidence that induces such a state of knowledge. The quantity mΩ

Ag(A)
is interpreted as the part of the unit mass allocated to the hypothesis: “the
answer to question Q is in the subset A of Ω”.

When there is no ambiguity, the full notation mΩ
Ag will be simplified to

mΩ, or even m.
The following definitions and notations are considered.

Definition 1 (Focal element). A subset A of Ω such that m(A) > 0 is
called a focal element of m.

Definition 2 (Categorical BBA). A BBA m with only one focal element
A is said to be categorical and is denoted mA; we thus have mA(A) = 1.

Definition 3 (Vacuous mass function). Total ignorance is represented
by the BBA mΩ, called the vacuous mass function.

Definition 4. A BBA m is said to be:

∙ dogmatic if m(Ω) = 0;

∙ non-dogmatic if m(Ω) > 0;

∙ normal if m(∅) = 0;

∙ subnormal if m(∅) > 0;

∙ simple if m has no more than two focal sets, Ω being included.

Definition 5 (Negation of a BBA). Function m denotes the negation of
m [6], defined by m(A) = m(A), for all A ⊆ Ω such that A is the complement
of A in Ω.

Definition 6. The belief, plausibility, implicability and commonality func-
tions associated with a mass function m are defined, respectively, as:

bel(A) =
∑

∅∕=B⊆A

m(B), (2)
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pl(A) =
∑

B∩A ∕=∅

m(B), (3)

b(A) = bel(A) +m(∅) = 1− pl(A), (4)

and
q(A) =

∑

B⊇A

m(B), (5)

for all A ⊆ Ω.

Functions bel, pl, b and q are all in one-to-one correspondence [28], and
represent then the same information.

2.2. Combining pieces of information

Two BBAs m1 and m2 induced by distinct and reliable sources of infor-
mation can be combined using the conjunctive rule of combination (CRC),
also referred to as the unnormalized Dempster’s rule of combination, defined
for all A ⊆ Ω by:

m1 ∩⃝m2(A) =
∑

B∩C=A

m1(B)m2(C) . (6)

Alternatively, if we only know that at least one of the sources is reliable,
BBAs m1 and m2 can be combined using the disjunctive rule of combination
(DRC), defined for all A ⊆ Ω by:

m1 ∪⃝m2(A) =
∑

B∪C=A

m1(B)m2(C) . (7)

2.3. Marginalization and vacuous extension on a product space

A mass function defined on a product space Ω×Θ may be marginalized
on Ω by transferring each mass mΩ×Θ(B) for B ⊆ Ω × Θ to its projection
on Ω:

mΩ×Θ↓Ω(A) =
∑

B⊆Ω×Θ,

Proj(B↓Ω)=A

mΩ×Θ(B), (8)

for all A ⊆ Ω where Proj(B ↓ Ω) denotes the projection of B onto Ω.
Conversely, it is usually not possible to retrieve the original BBA mΩ×Θ

from its marginal mΩ×Θ↓Ω on Ω. However, the least committed, or least
informative BBA [22] such that its projection on Ω is mΩ×Θ↓Ω may be
computed. This defines the vacuous extension of mΩ in the product space
Ω×Θ, noted mΩ↑Ω×Θ, and given by:

mΩ↑Ω×Θ(B) =

{

mΩ(A) if B = A×Θ, A ⊆ Ω,
0 otherwise.

(9)
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2.4. Conditioning and ballooning extension on a product space

Conditional beliefs represent knowledge that is valid provided that an
hypothesis is satisfied. Let m be a mass function and B ⊆ Ω an hypothesis;
the conditional belief function m[B] is given by:

m[B] = m ∩⃝mB. (10)

If mΩ×Θ is defined on the product space Ω×Θ, and � is a subset of Θ, the
conditional BBA mΩ[�] is defined by combining mΩ×Θ with mΘ↑Ω×Θ

� , and
marginalizing the result on Ω:

mΩ[�] =
(

mΩ×Θ
∩⃝mΘ↑Ω×Θ

�

)↓Ω
. (11)

Assume now that mΩ[�] represents the agent’s beliefs on Ω conditionally
on �, i.e., in a context where � holds. There are usually many BBAs on Ω×Θ,
whose conditioning on � yields mΩ[�]. Among these, the least committed
one is defined for all A ⊆ Ω by:

mΩ[�]⇑Ω×Θ(A× � ∪ Ω× �) = mΩ[�](A). (12)

This operation is referred to as the deconditioning or ballooning extension
[22] of mΩ[�] on Ω×Θ.

2.5. Discounting

When receiving a piece of information represented by a mass function m,
agent Ag may have some doubts regarding the reliability of the source that
provided this information. Such metaknowledge can be taken into account
using the discounting operation introduced by Shafer [21, page 252], and
defined by:

�m = (1− �)m+ � mΩ , (13)

where � ∈ [0, 1].
A discount rate � equal to 1, means that the source is not reliable and

the piece of information it provides cannot be taken into account, so Ag’s
knowledge remains vacuous: mΩ

Ag = 1m = mΩ. On the contrary, a null
discount rate indicates that the source is fully reliable and the piece of
information is entirely accepted: mΩ

Ag = 0m = m. In practice, however,
agent Ag usually does not know for sure whether the source is reliable or
not, but has some degree of belief expressed by:

{

mℛ
Ag({R}) = 1− �

mℛ
Ag(ℛ) = �,

(14)
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where ℛ = {R,NR}, R and NR standing, respectively, for “the source is re-
liable” and “the source is not reliable”. This formalization yields expression
(13), as demonstrated by Smets in [22, Section 5.7].

The discounting operation (13) of a BBA m is also equivalent to the
disjunctive combination (7) of m with the mass function mΩ

0 defined by:

mΩ
0 (A) =

⎧



⎨



⎩

� if A = ∅

� if A = Ω

0 otherwise,

(15)

with � ∈ [0, 1] and � = 1− �.
Indeed:

m ∪⃝mΩ
0 (A) = m(A)mΩ

0 (∅) = �m(A) = �m(A), ∀A ⊂ Ω , (16)

and
m ∪⃝mΩ

0 (Ω) = m(Ω)mΩ
0 (∅) +mΩ

0 (Ω)
∑

A⊆Ωm(A)

= �m(Ω) + � = �m(Ω) .
(17)

2.6. Contextual Discounting based on a coarsening

Let Θ = {�1, . . . , �L} be a coarsening of Ω, which means that �1, . . . , �L
form a partition of Ω [21, chapter 6].

Unlike (14), in the contextual model, agent Ag is assumed to hold beliefs
on the reliability of the source of information conditionally on each �ℓ, ℓ ∈
{1, . . . , L}:

{

mℛ
Ag[�ℓ]({R}) = 1− �ℓ = �ℓ

mℛ
Ag[�ℓ](ℛ) = �ℓ .

(18)

For all ℓ ∈ {1, . . . , L}, �ℓ + �ℓ = 1, and �ℓ represents the degree of belief
that the source is reliable knowing that the true answer of the question of
interest belongs to �ℓ.

In the same way as in the discounting operation (13), agent Ag considers
that the source can be in two states: reliable or not reliable [22, 13]:

∙ If the source is reliable (state R), the information mΩ
S it provides be-

comes Ag’s knowledge. Formally, mΩ
Ag[{R}] = mΩ

S .

∙ If the source is not reliable (state NR), the information mΩ
S it provides

is discarded, and Ag remains in a state of ignorance: mΩ
Ag[{NR}] =

mΩ.
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The knowledge held by agent Ag, based on the information mΩ
S from

a source S as well as metaknowledge mℛ
Ag concerning the reliability of the

source can then be computed by:

∙ Deconditioning the L BBAs mℛ
Ag[�ℓ] on the product space Ω×ℛ using

(12);

∙ Deconditioning mΩ
Ag[{R}] on the same product space Ω×ℛ using (12)

as well;

∙ Combining them using the CRC (6);

∙ Marginalizing the result on Ω using (8).

Formally:

mΩ
Ag[m

Ω
S ,m

ℛ
Ag] =

(

∩⃝
L
ℓ=1m

ℛ
Ag[�ℓ]

⇑Ω×ℛ
∩⃝mΩ

Ag[{R}]⇑Ω×ℛ
)↓Ω

. (19)

As shown in [13], the resulting BBA mΩ
Ag , only depends on mS and on

the vector � = (�1, . . . , �L) of discount rates. It is then denoted by �

Θm.

Proposition 1 ([13, Proposition 8]). Contextual discounting �

Θm of a BBA
m is equal to the disjunctive combination of m with a BBA mΩ

0 such that:

mΩ
0 = mΩ

1 ∪⃝mΩ
2 ∪⃝ . . . ∪⃝mΩ

L , (20)

where each mΩ
ℓ , ℓ ∈ {1, . . . , L}, is defined by:

mΩ
ℓ (A) =

⎧



⎨



⎩

�ℓ if A = ∅

�ℓ if A = �ℓ

0 otherwise.

(21)

Remark 1. Two special cases of this discounting operation can be consid-
ered.

∙ If Θ = {Ω} denotes the trivial partition of Ω in one class, combining m
with m0 defined by (15) is equivalent to combining m with m0 defined
by (20), so this contextual discounting operation is identical to the
classical discounting operation.

∙ If Θ = Ω, the finest partition of Ω, this discounting is simply called
contextual discounting and denoted �m. It is defined by the disjunctive
combination of m with the BBA mΩ

1 ∪⃝mΩ
2 ∪⃝ . . . ∪⃝mΩ

K , where each mΩ
k ,

k ∈ {1, . . . ,K} is defined by mΩ
k (∅) = �k and mΩ

k ({!k}) = �k.
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2.7. Canonical conjunctive and disjunctive decompositions

In [25], extending the notion of separable BBA introduced by Shafer [21,
chapter 4], Smets shows that each non-dogmatic BBA m can be uniquely
decomposed into a conjunctive combination of generalized simple BBAs (GS-
BBAs), denoted Aw(A) with A ⊂ Ω, and defined from 2Ω to ℝ by:

Aw(A) : Ω 7→ w(A)
A 7→ 1− w(A)
B 7→ 0 , ∀B ∈ 2Ω ∖ {A,Ω} ,

(22)

with w(A) ∈ (0,∞).
The function w: 2Ω ∖ {Ω} → (0,∞) is yet another representation of a

non-dogmatic mass function and is called the conjunctive weight function.
Let us note that the higher is the weight w(A), the higher is the incer-

titude on A.
The canonical conjunctive decomposition of a non-dogmatic BBA m is

then given by:
m = ∩⃝A⊂ΩA

w(A) . (23)

In [4], Denœux introduces another decomposition: the canonical disjunc-
tive decomposition of a subnormal BBA into negative GSBBAs (NGSBBAs),
denoted Av(A) with A ⊃ ∅, and defined from 2Ω to ℝ by:

Av(A) : ∅ 7→ v(A)

A 7→ 1− v(A)
B 7→ 0 , ∀B ∈ 2Ω ∖ {∅, A} ,

(24)

with v(A) ∈ (0,∞).
Every subnormal BBA m can be canonically decomposed into a disjunc-

tive combination of NGSBBAs:

m = ∪⃝A⊃∅Av(A) . (25)

Indeed, as remarked in [4], the negation of a BBA m can also be con-
junctively decomposed as soon as m is subnormal:

m = ∩⃝A⊂ΩA
w(A) (as m is non-dogmatic)

⇒ m = ∩⃝A⊂ΩA
w(A) = ∪⃝A⊂ΩA

w(A) = ∪⃝A⊃∅Aw(A) .
(26)

The relation between functions v and w is then v(A) = w(A) for all
A ∕= ∅, and function v: 2Ω ∖ {∅} → (0,∞), called the disjunctive weight
function, is another representation of a subnormal mass function.

Practically, functions w and v have the following properties [4]:
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∙ for all w:
∏

A⊂Ω

w(A) = m(Ω) , (27)

∙ for all v:
∏

A⊃∅

v(A) = m(∅) , (28)

∙ for all subset A ⊂ Ω: Aw1(A)
∩⃝Aw2(A) = Aw1(A)w2(A) ,

∙ for all subset A ⊃ ∅: Av1(A) ∪⃝Av2(A) = Av1(A)v2(A) ,

∙ function w can be conveniently obtained from the commonality func-
tion q as follows:

∀A ⊂ Ω, w(A) =

∏

B⊇A,Parity(∣A∣) ∕=Parity(∣B∣) q(B)
∏

B⊇A,Parity(∣A∣)=Parity(∣B∣) q(B)
, (29)

where Parity(n) means the parity of an integer n (Parity(n) = 0 if n
is even, 1 otherwise),

∙ likewise, function v can be computed from the implicability function
b as follows:

∀A ⊃ ∅, v(A) =

∏

B⊆A,Parity(∣A∣) ∕=Parity(∣B∣) b(B)
∏

B⊆A,Parity(∣A∣)=Parity(∣B∣) b(B)
, (30)

For “quasi-Bayesian” BBAs, another convenient way to compute w is
given by the following property.

Proposition 2 ([4, Proposition 1]). Let m be a BBA which focal sets
are Ω, A1, A2, . . . , An, and possibly ∅, such that the n subsets Ak verifies
Ai ∩ Aj = ∅ for all i, j ∈ {1, . . . , n}. The conjunctive weight function w
associated with m is then defined by:

w(A) =

⎧



⎨



⎩

m(Ω)
m(Ak)+m(Ω) if A = Ak ,

m(Ω)
∏n

k=1(1 +
m(Ak)
m(Ω) ) if A = ∅ ,

1 otherwise.

(31)

Remark 2. If m has only one focal element in addition to ∅ and Ω, Propo-
sition 2 holds as well.
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The dual version of this property to compute disjunctive weights can be
obtained as follows.

Proposition 3. Let m be a BBA which focal sets are ∅, A1, A2, . . . , An,
and possibly Ω, such that the n subsets Ak verifies Ai ∪ Aj = Ω for all
i, j ∈ {1, . . . , n}. The disjunctive weight function v associated with m is
then defined by:

v(A) =

⎧



⎨



⎩

m(∅)
m(Ak)+m(∅) if A = Ak ,

m(∅)
∏n

k=1(1 +
m(Ak)
m(∅) ) if A = Ω ,

1 otherwise.

(32)

Proof 1. Focal sets of m are Ω, A1, A2, . . . , An, and possibly ∅, such that
Ai ∩ Aj = ∅ for all i, j ∈ {1, . . . , n}. Consequently, from Proposition 2, the
conjunctive weight function w associated with m is given by:

w(A) =

⎧



⎨



⎩

m(Ω)

m(Ak)+m(Ω)
if A = Ak ,

m(Ω)
∏n

k=1(1 +
m(Ak)
m(Ω) ) if A = ∅ ,

1 otherwise.

(33)

Then:

v(A) = w(A) =

⎧



⎨



⎩

m(Ω)

m(Ak)+m(Ω)
if A = Ak ,

m(Ω)
∏n

k=1(1 +
m(Ak)
m(Ω) ) if A = ∅ ,

1 otherwise,

(34)

and, as m(A) = m(A) ∀A, Equation (32) is obtained.

□

Remark 3. Proof 1 also implies, from Remark 2, that if m has only one
focal element in addition to ∅ and Ω, Equation (32) is still valid.

3. Extending the contextual discounting

In this section, the contextual discounting operation on a coarsening is
extended to any subsets of the frame of discernment, and a general for-
mulation linked with the canonical disjunctive decomposition of a BBA is
developed.
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According to the previous definitions (22) and (24), BBAs mℓ, ℓ ∈
{1, . . . , L}, defined in (21) by mℓ(∅) = �ℓ and mℓ(�ℓ) = �ℓ, can be denoted
�ℓ�ℓ or ��ℓ

in a simple way.
From (20) and (25), the contextual discounting on a coarsening Θ =

{�1, . . . , �L} of Ω of a subnormal BBA m is thus defined by:

�

Θm = m ∪⃝��1
∪⃝ . . . ∪⃝��L

= ∪⃝A⊃∅Av(A) ∪⃝��1
∪⃝ . . . ∪⃝��L

.

In particular:

∙ The classical discounting (15) of a subnormal BBA m = ∪⃝A⊃∅Av(A)

is defined by:
�m = Ω�v(Ω) ∪⃝Ω⊃A⊃∅Av(A) ; (35)

∙ The contextual discounting (Remark 1) of a subnormal BBA m =
∪⃝A⊃∅Av(A) is defined by:

�m = ∪⃝!k∈Ω
{!k}�kv({!k}) ∪⃝A⊂Ω,∣A∣>1Av(A) . (36)

These discounting operations can then be viewed as particular cases of
a more general correction mechanism defined by:

�∪m = ∪⃝A⊃∅A�Av(A), (37)

where �A ∈ [0, 1] for all A ∕= ∅ and � is the vector {�A}A ∕=∅.
In [13], the interpretation of each �A has been given only in the case

where the union of the subsets A forms a partition of Ω, �A being interpreted
as the degree of belief held by the agent regarding the fact that the source
is reliable, knowing that the value searched belongs to A.

Instead of considering (18), let us now suppose that agent Ag holds
beliefs regarding the reliability of the source, conditionally on each subset
A of Ω:

{

mℛ
Ag[A]({R}) = 1− �A = �A

mℛ
Ag[A](ℛ) = �A ,

(38)

where �A ∈ [0, 1].
In the same way as in Section 2.6, the knowledge held by agent Ag,

based on the information mΩ
S from a source and on metaknowledge mℛ

Ag

(38) regarding the reliability of this source, can be computed as follows:

mΩ
Ag[m

Ω
S ,m

ℛ
Ag] =

(

∩⃝A⊆Ωm
ℛ
Ag[A]

⇑Ω×ℛ
∩⃝mΩ

Ag[{R}]⇑Ω×ℛ
)↓Ω

. (39)
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Proposition 4. The BBA mΩ
Ag resulting from (39) only depends on mΩ

S

and the vector � = {�A}A⊆Ω. It is equal to the disjunctive combination of
mΩ

S with a BBA mΩ
0 defined by:

mΩ
0 (C) =

∏

∪A=C

�A

∏

∪B=C

�B, ∀C ⊆ Ω. (40)

Proof 2. See Appendix A.1. □

Like in the case of contextual discounting operations considered in Sec-
tion 2.6, BBA mΩ

0 defined in Proposition 4 admits a simple decomposition
described in the following proposition.

Proposition 5. The BBA mΩ
0 defined in Proposition 4 can be rewritten as:

mΩ
0 = ∪⃝A⊃∅A�A

. (41)

Proof 3. Directly from (40) and the definition (7) of the DRC. □

From (41), the contextual discounting resulting from (39) of a subnormal
BBA m = ∪⃝A⊃∅Av(A) is then defined by:

∪⃝A⊃∅Av(A) ∪⃝A⊃∅A�A
= ∪⃝A⊃∅A�Av(A) =

�∪m . (42)

Correction mechanism �∪m is then the general formulation for a contex-
tual discounting on any subsets of Ω.

The following theorem sums up the contextual discounting operation in
its general formulation.

Theorem 1. On the one hand, agent Ag receives an information m from
a source S.

On the other hand, agent Ag knows that this source is reliable with a
degree �A in different contexts A of Ω, which means that the source is reliable
with a degree �A knowing that the true answer to the question Q of interest
belongs to A. Let us note A the set containing these contexts.

Then, agent Ag’s mass function is given by the contextual discounting
�m of m defined by:

�m = m ∪⃝A∈AA�A
. (43)

Moreover, if m is subnormal then:

�m = ∪⃝A⊃∅Av(A) ∪⃝A∈AA�A
,

= ∪⃝A/∈AAv(A) ∪⃝A∈AA�Av(A) .
(44)
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Example 1. Let us consider a two-lane road section, the question of interest
concerning the number of lanes where the traffic is flowing freely. Frame of
discernment Ω is equal to {!0, !1, !2} with:

∙ !0 standing for “0 lane is free”: both are blocked,

∙ !1 meaning “1 lane is free”: one is blocked,

∙ !2 signifying “2 lanes are free”: traffic is flowing freely on both lanes.

A source S provides information regarding the traffic on this road section.
For instance:

⎧

⎨

⎩

m(∅) = .1 ,
m({!0}) = .8 ,
m(Ω) = .1 .

(45)

On the other side, you know that the source is very reliable in case of
heavy traffic (situation {!0, !1}), and less reliable when the traffic is rather
light (situation {!1, !2}). Formally, let us suppose that �{!0,!1} = .8 and
�{!1,!2} = .6.

Contextual discounting of m is then given by:

�m = m ∪⃝ {!0, !1}.8 ∪⃝ {!1, !2}.6 . (46)

From Remark 3, the disjunctive weight function v associated with m can
be computed in the following manner:

{

v({!0}) = m(∅)
m(∅)+m({!0})

= 1
9 ,

v(Ω) = m(∅)(1 + m({!0})
m(∅) ) = .1(1 + .8

.1) = .9 .
(47)

Contextual discounting of m knowing �{!0,!1} = .8 and �{!1,!2} = .6 is
then given by:

�m = m ∪⃝ {!0, !1}.8 ∪⃝ {!1, !2}.6
= {!0} 1

9
∪⃝ Ω.9 ∪⃝ {!0, !1}.8 ∪⃝ {!1, !2}.6 ,

(48)

which can be also written by definition from (24) in the following manner:

�m =

{

∅ 7→1/9
{!0}7→8/9

∪⃝

{

∅ 7→.9
Ω 7→.1

∪⃝

{

∅ 7→.8
{!0, !1}7→.2

∪⃝

{

∅ 7→.6
{!1, !2}7→.4

=

⎧









⎨









⎩

∅ 7→.048
{!0} 7→.384
{!0, !1}7→.108
{!1, !2}7→.032
Ω 7→.428

(49)
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4. Discussion

4.1. About the mass transfer during a contextual discounting

As it can be observed in the previous example, the contextual discounting
allows the transfer of masses on intermediate subsets between focal sets and
the frame of discernment Ω. More precisely (cf Equation (43)), contextual
discounting consists in transferring each mass to its union with subsets not
precisely known by the source.

The following example illustrates a case where a sensor is totally reliable
if an object is of a certain type, and not reliable for another type.

Example 2. Let us consider a sensor in charge of the recognition of two
types of objects: Ω = {a, b}.

The sensor knows very well how to recognize objects of type a, whereas
it is not the case for objects of type b. Which means that:

∙ if an object is of type a, the sensor will recognize it;

∙ if an object is of type b, the sensor will hesitate and make mistakes.

For instance, a possible confusion matrix for such a sensor is represented
in Table 1.

Table 1: Confusion matrix associated with source S.

truth ∖ decision a b

a 10 0

b 5 5

A contextual discounting knowing that �{a} = 1 and �{b} = 0 (S totally
reliable in context {a}, not reliable in context {b}) applied on a mass function
m provided by S is given by:

�m = m ∪⃝ {a}1 ∪⃝ {b}0 = m ∪⃝ {b}0 . (50)

In particular:

∙ if m({a}) = 1 then �m({a, b}) = 1,

∙ if m({b}) = 1 then �m({b}) = 1.

14



In other words, if the source says it is an object of type a: it is an object
of type a or an object the source does not recognize. And, in the particular
case where the source says it is an object of type b, and the source knows
very well the other types of object: it remains that the object is of type b. If
it had been an object of type a, the source would have said it, because objects
of type a are very well recognized by the source.

4.2. On the notion of reliability

In the simple Example 2, we have a situation where when the source
decides b: it is indeed b, and when the source decides a: the truth is a or
b. However, the source is totally reliable for a and not for b. The notion of
reliability introduced in this article has then to be clearly distinguished from
a different notion of reliability which would be linked with the reliability of
the decision made by a source.

In the contextual discounting, the definition of the reliability (38) is given
conditionally on Ω by:

mℛ
Ag[A]({R}) = �A , (51)

and not conditionally on results of a decision-making process:

mℛ
Ag[“The source decides A”]({R}) = �A . (52)

Let us remark that this second definition will imply to define the notion
of conditioning on processes (even belief functions?) which is not known at
present by the authors.

4.3. To be subnormal and non-dogmatic

In order to exploit simple expressions obtained with both conjunctive and
disjunctive canonical decompositions, should each mass function be subnor-
mal and non-dogmatic?

As already mentioned in [4], it may be argued that most (if not all) pieces
of information provided in real-life applications are imperfect, and then the
mass on the frame of discernment should be always strictly positive.

For instance, let us consider a coin tossing and a universe equal to
{ℎead, tail}. As remarked by Denœux, it is absolutely not certain in prac-
tice that the coin is perfectly balanced. An appropriate BBA may then be
m(Heads) = 0.5(1− �), m(Tails) = 0.5(1− �) and m(Ω) = � for some small
� > 0.

However, we can also add that when we are trying to model a complex
real life problem, there are always some approximations, and then some
doubts on the model are always possible, so the mass on the conflict should
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also be strictly positive: in real life, the coin can fall against a book and
lands on edge, which may not have been considered.

Consequently, a more appropriate BBA may be m(Heads) = 0.5(1 −
�1)(1− �2), m(Tails) = 0.5(1− �1)(1− �2), m(Ω) = �1(1− �2) and m(∅) = �2
for some small �1, �2 > 0.

4.4. An other approach: combining discountings

Let us consider a separable BBA m, which means that m = ∩⃝A⊂ΩA
w(A)

with w(A) ∈ [0, 1] for all A ⊂ Ω.
As recently exposed in [10], a classical discounting on each simple BBA

Aw(A) can be undertaken with a discount rate �A ∈ [0, 1], the result being
A�Aw(A)+�A .

The discounted simple BBAs can then be conjunctively combined which
yields to the following discounting operation ∩⃝A⊂ΩA

�Aw(A)+�A . This oper-
ation, restricted to separable BBAs, is different from a contextual operation.
The conjunctive combination of discounted BBAs is not a discounting of the
BBAs combination in general.

However, as developed in the next section, we can remark that the dual of
the contextual discounting operation, which is nevertheless a reinforcement,
has a close formulation.

5. A new reinforcement process

In a similar way, a correction mechanism for a non-dogmatic BBA m
can be defined from the conjunctive decomposition of m as follows:

�∩m = ∩⃝A⊂ΩA
�Aw(A) ; (53)

where ∀A ⊂ Ω, �A ∈ [0, 1], and � is the vector {�A}A⊂Ω.
The smaller is the uncertain weight, the higher is the mass on A. This

process allows then the reinforcement of a BBA m.
Correction mechanisms �∩m (37) and �∪m (53) are related in the fol-

lowing way.
Let us consider a subnormal BBA m, m is then non-dogmatic:

�∩m = ∩⃝A⊂ΩA
�Aw(A) . (54)

Then:
�∩m = ∩⃝A⊂ΩA

�Aw(A)

= ∪⃝A⊂ΩA
�Aw(A)

= ∪⃝A⊃∅A�Aw(A)

= ∪⃝A⊃∅A�Av(A)

= �∪m

(55)
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These two correction mechanisms can thus be seen as belonging to a
general family of correction mechanisms.

In a nutshell, if m is subnormal, a contextual discounting of m is given
by:

�m = ∪⃝A⊃∅A�Av(A) , (56)

and, the negation of a contextual discounting of m defines a dual reinforce-
ment process:

�m = ∪⃝A⊃∅A�Av(A) = ∩⃝A⊂ΩA
�Aw(A) . (57)

The application of this reinforcement process as well as its comparison
with other correction mechanisms [5, 15] has been left for future researches.

6. Conclusion and future work

In this article, the contextual discounting operation of a belief function
has been extended to any subsets, and a simple and practical expression,
based on disjunctive combinations, to compute it has been given. This
expression has highlighted the close relationship between contextual dis-
counting and canonical disjunctive decomposition. The dual expression of
this discounting, allowing one to strengthen a belief function, has also been
exposed.

Future work will aim at testing it on real data. Likewise, it would also be
interesting to automatically learn the coefficients of these correction mech-
anisms from data, as done for the classical and the contextual discounting
operations [7, 13].
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Appendix A. Proofs

Appendix A.1. Proofs of Proposition 4

For each A ⊆ Ω, the deconditioning of mℛ
Ag[A] on Ω×ℛ is given by:

mℛ
Ag[A]

⇑Ω×ℛ(A× {R} ∪A×ℛ) = �A, (A.1)

mℛ
Ag[A]

⇑Ω×ℛ(Ω×ℛ) = �A. (A.2)

With A ∕= B:

(A× {R} ∪A×ℛ) ∩ (B × {R} ∪B ×ℛ)

= (A ∪B)× {R} ∪ (A ∪B)×ℛ .

Then:

∩⃝A⊆Ωm
ℛ
Ag[A]

⇑Ω×ℛ(C × {R} ∪ C ×ℛ)

=
∏

∪D=C

�D

∏

∪E=C

�E , ∀C ⊆ Ω ,

or, by exchanging the roles of C and C:

∩⃝A⊆Ωm
ℛ
Ag[A]

⇑Ω×ℛ(C × {R} ∪ C ×ℛ)

=
∏

∪D=C

�D

∏

∪E=C

�E , ∀C ⊆ Ω .

It remains to combine conjunctively mΩ
Ag[{R}]⇑Ω×ℛ and ∩⃝A⊆Ωm

ℛ
Ag[A]

⇑Ω×ℛ

which have focal sets of the form B×{R}∪Ω×{NR} and C×{R}∪C×ℛ,
respectively, with B,C ⊆ Ω. The intersection of two such focal sets is:

(C × {R} ∪ C ×ℛ) ∩ (B × {R} ∪ Ω× {NR})

= B × {R} ∪ C × {NR} ,

and it can be obtained only for a particular choice of B and C. Then:

∩⃝A⊆Ωm
ℛ
Ag[A]

⇑Ω×ℛ
∩⃝mΩ

Ag[{R}]⇑Ω×ℛ(B × {R} ∪ C × {NR})

=

⎡

⎣

∏

∪D=C

�D

∏

∪E=C

�E

⎤

⎦mΩ
S (B) . (A.3)
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Finally, the marginalization of this BBA on Ω is given for all subsets A of
Ω, by:

�m(A) =
∑

B∪C=A

⎡

⎣

∏

∪D=C

�D

∏

∪E=C

�E

⎤

⎦mΩ
S (B) . (A.4)

Let us note that the above proof has many similarities with proofs pre-
sented in [13, Sections A.1 and A.3].
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