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CosySlam: investigating object-level SLAM
for detecting locomotion surfaces

César Debeunnet’, Médéric FourmyT, Yann Labbé®,
Pierre-Alexandre Léziart", Guilhem Saurelf, Joan Sola™ and Nicolas Mansardf*

Abstract— While blindfolded legged locomotion has demon-
strated impressive capabilities in the last few years, further
progresses are expected from using exteroceptive perception
to better adapt the robot behavior to the available surfaces of
contact. In this paper, we investigate whether mono cameras are
suitable sensors for that aim. We propose to rely on object-level
SLAM, fusing RGB images and inertial measurements, to si-
multaneously estimate the robot balance state (orientation in the
gravity field and velocity), the robot position, and the location
of candidate contact surfaces. We used CosyPose, a learning-
based object pose estimator for which we propose an empirical
uncertainty model, as the sole front-end of our visual inertial
SLAM. We then combine it with inertial measurements which
ideally complete the system observability, although extending
the proposed approach would be straightforward (e.g. kinematic
information about the contact, or a feature based visual front
end). We demonstrate the interest of object-based SLAM on
several locomotion sequences, by some absolute metrics and in
comparison with other mono SLAM.

I. INTRODUCTION

State estimation is a central aspect of the design of legged
robots systems. Using estimates of the base velocity and
gravity direction, modern locomotion controllers [1], [2] can
achieve remarkable robustness without precise knowledge of
their environment. In these cases, the state estimation relies
simply on inertial, kinematic, and contact measurements to
achieve balance [3]-[5]. However, to accomplish reactive
contact planning over uneven surfaces [6], we need to go
beyond a blindfolded system by using exteroceptive sensors.

Most of the current approaches exploit depth sensors
which can be used to build local elevation maps of the
robot surroundings [7] later processed to extract the contact
surfaces needed by locomotion planners [8]. Current methods
loosely couple the elevation mapping with the estimation of
the robot state. Other approaches strive to extend reconstruc-
tion capabilities by using 3D voxels [9], dense surfaces [10],
or meshes representations of the environment [11].
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Fig. 1: Experimental setup: a RealSense D435i is mounted on the
Solo robot which localizes itself with respect to stairs. A motion
capture system provides ground truth of the robot pose.

On the opposite, recent legged estimators, based on the
tight coupling of exteroceptive inertial SLAM system with
leg kinematics, have been shown to provide accurate and
robust source odometry [12], [13]. The use of sparse features
in these approaches is however not intended for contact
surfaces extractions. Yet they tend to show the importance
of tightly coupling all locomotion estimators, to which we
also intend to contribute.

In indoor environments, a localization system may benefit
from the presence of known objects. SLAM++ [14] showed
that object-level semantic SLAM could be achieved in office
environments using depth sensors and scanned models of
objects such as chairs and tables. More recent works on the
matter rely mainly on deep-learning-based object segmenta-
tion to detect objects in RGB images [15]. This information
is used along with depth measurements to perform semantic
SLAM with static [16] or moving [17]-[19] objects. Us-
ing solely monocular cameras, object SLAM can also be
achieved without object shape priors by directly integrating
segmentation bounding box in classical feature-based SLAM
frameworks [20], [21]. Aside from the camera trajectory and
object poses, object shapes may also be optimized using a
differentiable rendering engine [22].

Object-level SLAM has not been explored in the context
of legged robot locomotion yet. In this paper, we propose
to build a visual-inertial object-level SLAM by merging
an object pose estimator based on shape priors with pre-
integrated inertial measurements. We rely on the open-source
pose estimator CosyPose [23], for which we first propose
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Fig. 2: Progressive convergence of a stair step estimated pose over
successive iterations of CosyPose

in Section II-A a uncertainty model and an outlier rejection
procedure. We then set up a factor graph encompassing Cosy-
Pose information and IMU measurements in Section III. A
large part of the paper is devoted to the experimental analysis
of the performance in the locomotion context, on quadruped
scenarios where the system can accurately estimate the robot
state and the location of some stair steps either aligned or
randomly spaced.

II. Cosy SLAM

The visual front end used for this project includes image
object detection and object pose estimation. These function-
alities are provided by CosyPose [23], a framework that
reaches state-of-the-art performances for 6D object pose
estimation [24]. In the original paper, a single-view pose
estimator and a multi-view algorithm based on object level
Bundle Adjustment were introduced. In our context, only the
single-view module is used, object tracking and multi-view
reconstruction being handled by our factor graph estimation
framework WOLF [25].

A. CosyPose

CosyPose takes as input a single image I and a set of 3D
models, each associated with an object label [. The camera
C is assumed to be calibrated. A set of object detections
is performed using the object detector Mask-RCNN [15].
Then, each 2D candidate detection in view [ is identified by
an index « and associated with an object candidate O, and
its 6D pose “To, € SE(3) with respect to the camera C.

The single-view pose estimation procedure of CosyPose is
an improvement over the one proposed in DeepIm [26]. The
general idea is to iteratively refine an object pose estimation
using a render-and-compare approach (Fig. 2). The network
takes as input a cropped image obtained from the detection
bounding box and a rendered image based on the current
object pose solution CToa’k,l at iteration k£ — 1. It outputs
a transformation update Oask 71T0a,k that refines the pose
estimation. In practice, two neural networks with the same
structure are trained independently: one for a coarse pose
estimation, i.e., the first iteration of the iterative process, and
one for the refinement of the pose. The coarse network gives
the first transformation CTOWO, and the prediction of the

pose of the object is obtained by composing the N successive
transformations:

N
“To, =“To,0 [[ 7" ' To.n ()
k=1

CosyPose reuses the neural network architecture of
Deeplm with a new backbone for feature extraction: Effi-
cientNet [27] with a spatial average pooling layer added after
it. Among other technical improvements in the architecture
and training, a special care is given to object symmetries
that are taken into account during training thanks to the
symmetric distance. Each 3D model [ is associated with a
set of symmetries S([), that is the set of transformations
that leave the aspect of the object unchanged:

S() = {S € SE(3)|VT € SE(3),R(I,T) = R(, TS)} (2)

where R(l, T) is the rendered image of the object ! captured
in pose M. Given a set of symmetries S(I), the symmetric
distance D; which measures the distance between two 6D
poses represented by transformation T; and T is defined.
Given an object [ associated to a set X} of 3D points x € A,
we have:

1
Dy(Ty, T2) Z IT:8x — Tox|[*  (3)
€X;

= min ——

ses) | A 2
Equation (3) measures the average distance between the
points of the object model transformed by T; and T.o
according to the symmetry that best aligns the transformed
points.

B. Covariance model

Probabilistic fusion with other sensors requires a metric
covariance of the output of CosyPose, which is not available
out of the box. Two main methods for neural network
predictions uncertainty quantification include Monte Carlo
(MC) dropout [28] or Bayesian Neural Network (BNN) [29].
Using BNNs would require to change the architecture of
CosyPose and to retrain it. MC dropout would require several
forward passes through the network at evaluation time, which
would be computationally expensive for a SLAM system.

In this work, we strive to compute this covariance without
changing the architecture of the network and at an affordable
cost. We propose to make an empirical error model based on
polynomial regression in order to compute the covariance
matrix. The idea is to parametrize the average error on
each se(3) component returned by CosyPose. We conduct an
empirical study on several video sequences that explore the
variations of the parameter set for several object types. The
error is computed by comparing the SE(3) transformations
between the camera C' and an object O returned by CosyPose
©T with the same transformation given by a motion capture
system. We then use the error predictions of our parametric
model as a proxy to the true 6 covariances during model
fitting. A different model is fit for each object type due to
their diversity of shapes, sizes and textures.



The parameters to compute the error need to represent as
much as possible the error sources of CosyPose. To cover
the error due to the configuration of the object in space,
we need to include the 3D coordinates of the camera in
the object frame. We also want to take into account some
invariance that can occur by rotating around the object if it is
textureless for example. For this reason, we choose spherical
coordinates of the camera origin with respect to the object
frame to parametrize the model. Another source of error can
be the occlusion of the object in the scene, as well as the
motion blur, or any inherent noise in the image. This can
affect the quality of the detection and of the pose estimation.
Having an idea of the quality of the object detection informs
us on the quality of the object representation that may be
occluded or blurry. The Mask-RCNN object detector returns
a confidence score s for each detection that we will include in
our model. This score is the output of the final softmax layer
of the detector, which is designed to represent a probability
distribution.

To sum up, our model is parametrized by four values:
r - distance, ¢ - azimuth, 6 - elevation, s - Mask-RCNN
softmax output. We can then compute the error of CosyPose
with respect to the motion capture data:

e=[e, e = [ 9bc — °pe, Log (Oﬁ51 Oﬁc) } “4)

where © and ~ denote quantities obtained from the motion
capture system and CosyPose respectively. Log denotes the
logarithm application mapping elements of SO(3) to the R3
representation of its Lie algebra so(3).

We want to find a polynomial function f(r, ¢, 6, s) € RS
that returns the error given the set of training data {X, E'}.
For each object, we capture a set of video sequences and
we compute the error with the motion capture data for each
measurement. We then perform polynomial regression with a
pipeline in Scikit Learn [30]. A simple linear regression leads
to a high root-mean-square error (RMSE) on a test dataset.
Over degree 3, the model overfits and the high curvature
of the polynomial returned high error values outside of the
training data range. Thus, a degree 2 polynomial regression
seemed to offer a good compromise. Quantitative results are
given in the experimental validation section (see Fig. 6 for
a few examples of fitted polynomials).

In the SLAM system, we use this error model to compute
the covariance matrix. To do so, we make the assumption
that the cross-correlations between the 6 DOF are negligible,
building a diagonal covariance matrix:

¥V = diag(e’e) € R6*6 (5)

C. Data association and Outlier rejection

A key part of our SLAM system is the association of
landmarks with the rejection of erroneous pose estimates.
First of all, each object is associated with a label « so that
a detection can only match a landmark with the same label.
Then, the position of the robot is propagated by integrating
the IMU measurements with the current estimated biases.

Fig. 3: On the left, a picture of our climbing module at LAAS
and on the right the 3D model of the stair projected according to
CosyPose measurements on the same picture

Thus we can then have the pose of a detection in the world
frame at each keyframe. We check if this pose is similar to
the one of a landmark with the same label with a threshold
on the distance between the pose in SE(3). If a detection
does not match any landmark then a new one is created.

CosyPose can return poses of objects that are not included
in the scene because of false detections, of Mask-RCNN, or
wrong pose estimations. To handle these outlier detections,
each landmark is associated with a score c that corresponds
to its repeatability over time:

ny
¢= 5 (6)

At is the time since the landmark initialization and nj is
the number of factors associated to it. The lowest scores
are filtered with a threshold determined empirically and the
associated landmarks are removed from the map.

D. Retraining with stairs

In order to produce a realistic SLAM scenario in the
context of walking legged robots, we retrained CosyPose
with staircases present in our lab. We made a textured mesh
of a stair step used in our experimental platform. This
textured mesh was used both for training and using the
trained model. The generation of photorealistic synthetic data
was handled by BlenderProc [31]. The render and compare
loop uses PyBullet [32].

We generate 10,000 synthetic images that are labeled with
the pose ground truth by design of the scene in Blender. We
retrain the three modalities of CosyPose: the Mask-RCNN
detector, the coarse pose estimator and the pose refiner. We
slightly tune the training parameters used for the object from
the BOP challenge as the scale is different: the stair is 1m x
0.3m x 0.07m whereas a T-LESS object is never wider than
10cm. Thus, we generate training data on 10m x 10m scenes,
and we increase the noise used to train the refiner.

An illustration of the performances of CosyPose on a set
of 3 stair steps is given on Fig. 3: the pose of each step is
here independently estimated which leads to local accuracy
but global inconsistency.

III. FACTOR GRAPH FORMULATION

In our factor graph SLAM, the problem is represented
as a bipartite graph where nodes represent either variables



Fig. 4: The problem factor graph involves state blocks corre-
sponding to keyframes x; = (pi, vi, Ri), biases b; and objects
O**_IMU factors relate consecutive keyframes and the IMU bias
whose drift is represented on the lower branch. Visual factors relate
landmarks poses and keyframes from which the landmark has been
observed.

of the problem or geometrical constraints between sets of
variables: the factors. The state x is modeled as a multi-
variate Gaussian distribution that includes robot poses and
velocities at a given keyframe i, x; = (p;, vs, R;), the
sensor bias b; and the object poses ¥ Tpar € SE(3) in
the world frame W. Thus, we can formulate finding the
Maximum A Posteriori as the following non-linear-least-

squares problem:
x*:argminZHrf( I—&-ZHr
x i

with {r!, 27} and {r", XV} being the residuals and covari-
ances of the inertial and visual factors respectively. A typical
fraction of our factor graph is represented on Fig. 4.

Mgy D

A. Visual factor

As seen previously, CosyPose returns the pose of an object
labeled o expressed in the camera frame. At a keyframe time

i, it is noted CZ'FIV‘OQ € SE(3). In our SLAM framework,
an object can be considered as a landmark whose pose in
the world frame can be simp M;/ obtalned é)y applying the
composition chain TOM = Tp TC T pa.x, as seen
in Fig. 5. We indexed the object with k as several objects
of the same label « can be present in the scene. The frame
B is the IMU frame that we consider being the robot base
frame of our problem. The transformation between the robot

B~
frame and the camera frame T, is assumed to be known.

The factor’s residual r"(x;, O“*) € RS is defined as
the logarithmic difference between the expected pose of

. Ci ~, ~_ ~_ 1 W~
the object Tpa,r = Tc,-l TB1 T a,x and CosyPose
Ci ~ ‘
measurement Tpa:
Ci; ~_ W ~ W ~
rV(xi,Oa’k):Log( T s Ve TOM) ®)

This residual is weighted in (7) by its covariance ZV  that
is computed with the empirical error model detalled in the
previous section.

Fig. 5: Kinematic chain of the visual observation of a landmark.

CosyPose measurements may be erroneous if the single
view iterative pose estimation converges to a local minimum,
which often happen for objects presenting strong symmetries.
Ideally, we would like to take this phenomenon into account
in the estimator, as is done during the training of Cosy-
Pose. However, this would require to model a multi-modal
behaviour which is not handled by MAP based estimator.
Instead, we remove outlier factors and landmarks by the
procedure described in Section II-C. This method might
also be complemented by the use of RANSAC [33] or M-
estimators [34].

B. IMU pre-integration factor

As it is shown in [35], [36], IMU measurements can be
pre-integrated between two keyframes to avoid re-integration
at each iteration of the solver. We obtain delta quantities
A = [Ap,Av,AR] that are independent of the initial
conditions for position, orientation and velocity and depend
only on IMU data and bias. The effect of changes in the bias
estimates is linearized so that the deltas can be corrected us-
ing precomputed Jacobians. This delta pre-integration theory
is implemented in WOLF, our factor graph framework, and
every detail about Jacobians and deltas computation is given
in [37].

We can then exhibit the residuals for the IMU delta factors
between keyframes ¢ and j. It requires the states estimates
x; and x;, the current bias estimates b;, the bias used during
pre-integration b;, the pre-integrated Jacobian J “ and the
pre-integrated delta A” A corrected delta A;; is computed
with the bias and its Jacobian with a linearized update:

Aij = Ay @ J59 (b; — by) ©)

We compute the predicted delta 31 ; from the state estimates
using the increments introduced in [36]. Finally, the residuals
are given by:

Apy; - Apm

eR’
Av;j — AVU Log(A R; 1AR”)

r!(xi,%;,b;) =
(10)

IV. EXPERIMENTAL VALIDATION

We have produced a dataset of trajectories in the robotic
experimental arena at LAAS-CNRS in Toulouse. The robot
environment was augmented with objects of the datasets
(YCBV [38] and T-LESS [39]) that were used to train
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Fig. 6: The norm of the translation error returned by the models of
three different objects with respect to r, the distance between the
camera and the object. The other parameters 6, ¢ and s are fixed
to the average values of our training data.

CosyPose!. Each of our trajectories is composed of three
sequences:

o A sequence of RGB images captured at 30 Hz

o A sequence of IMU measurements captured at 200 Hz

« A sequence of motion capture (MoCap) measurements
at 200 Hz used as ground truth

We recorded two types of datasets: one for the uncertainty
models and one for the SLAM. For the uncertainty models,
reflective MoCap markers were attached to the object to
obtain ground truth of their pose. For the SLAM, only the
camera was tracked. We used the monocular RGB camera
and the Bosh BMIO85 IMU of an Intel RealSense L515
Camera for handheld trajectories. The Intel RealSense d435i
was used with the same modalities for the experiments on
the quadruped robot Solo [40] as shown in Fig. 1. The
extrinsic calibration between the IMU and the camera was
provided by Intel and the delays observed between IMU and
Camera measurements were negligible. Links to our code and
datasets are publicly available at https://gepettoweb.
laas.fr/articles/cosyslam.html.

A. Empirical covariance

As explained in Section II-B, we have trained empirical
models to evaluate the covariance of the estimation of
CosyPose. To validate these models, we propose to exhibit
a few intuitive observations and a quantitative statistical
analysis. One of the parameter involved in our model is the
absolute distance between the camera and the object, noted
7. Our trained models show an expected behavior regarding
this parameter: the global error increases when the camera
moves away from the object. Fig. 6 sheds light on these

'YCBV is composed of daily life objects, many of them presenting rich
textures such as inscriptions. T-LESS features small Czech electric devices,
whose symmetries and lack of texture makes them a challenging benchmark.

TABLE I: A quantitative evaluation of our models, these values are
computed on test samples that were not used for training.

Object R? RMSE ang. err. (°) RMSE trans. err. (cm)

YCBV-4 0.55 5.1 0.6
T-LESS-23 0.5 11.7 1.5
T-LESS-26 | 0.68 22 0.6

phenomena and gives an explicit comparison between the
models of different objects. The error of the object from the
YCBYV dataset seems more stable and smaller than the one of
the objects from the T-LESS dataset. This can be explained
by the texture of the object and the absence of symmetries:
T-LESS objects are known to be more challenging for pose
estimation and this is confirmed by our model.

A more quantitative evaluation can be deduced from
Table 1. The translation error seems to be captured pretty
well, as the RMSE is around the centimeter. However, the
angular error seems a little less predictable, especially for T-
LESS objects which orientation estimation can suffer from
an important measurement noise due to the lack of textures.
The R? € [0,1] score is the coefficient of determination and
is often used to evaluate statistical models. Its interpretation
is subject to debate and cannot conclude to a “good” or a
”bad” model. However, a score higher than 0 demonstrates
that our model is more accurate than a simple average model.

Like our pose model, our covariance model is driven
by data. This leads to practical limitations to this method.
This empirical model is adapted to our experimental setup,
but can’t be generalized easily without fitting the model
again. However we tried to minimize the feature number
of the model as well as its complexity to alleviate this
phenomenon. Moreover, one of our future research directions
is to investigate more general models that could be trained
in simulation, taking advantage of domain randomization.

B. Object level VI-SLAM

In order to validate the performances of the fusion of
CosyPose estimates and inertial measurements, we evaluated
two scenarios with the camera held by hand and T-LESS
objects in the scene. The first one is a slow circular trajectory,
in which the system is in a comfort zone. The second one
is a highly dynamic scenario with a lot of motion that
can blur some frames and where the camera loses sight of
objects for more extend period of times. Moreover, T-LESS
objects being the most difficult objects for pose estimation
with CosyPose, they may return many outliers and noisy
measurements. This is therefore a challenging dataset to test
the robustness of our algorithm. Keyframes are selected at
10 Hz, only if objects are detected in the images.

It is interesting to analyse the gains brought by the IMU
fusion. The most evident observation is that the output
trajectory is smoother, which gives more consistency to the
result (Fig. 7). But we can notice that the Mean Translation
Error (MTE) is also reduced (Table II). Indeed, the motion
model is more precise thanks to IMU data. This makes the
outlier rejection more efficient in the VI CosySLAM: the
vision only CosySLAM relies on a zero velocity assumption.
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TABLE II: Comparison of CosySLAM with ORBSLAMS3 (as a purely visual SLAM system) and VINS-Mono based on the Mean
Translation Error metric in cm. For visual inertial system, it is computed by aligning the estimation with motion capture data using a

rigid transformation. For purely visual system, a similarity transformation is used to obtain the scale factor.

Visual only Visual Inertial
Scenario Distance (m)  Duration (s) | CosySLAM  ORBSLAM3 | CosySLAM  VINS-Mono
Hand circular 3.7 23.7 3.8 33 3.1 3.7
Hand dynamic 3.5 17.8 7.8 6.0 1.5 -
Solo approach 1.3 18.7 2.6 23 2.0 3.1
Solo modules 1.3 15.5 1.9 1.7 1.4 2.6
Stairs on floor 10.5 43.5 13.7 15.8 6.5 13.0

12
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0.8
_ —— mocap
E06 —— CosySLAM IMU
- —— CosySLAM
0.4
0.2
0.0
0.2 0.4 0.6 0.8 10 12

%(m)

Fig. 7: Comparison between the MoCap, the output of CosySLAM
with visual factors only and the output of CosySLAM with IMU
fusion on the circular trajectory.

We also ran two open source mono SLAM system, ORB-
SLAM3 [41] and VINS-MONO [42], on these sequences
to compare our performances. On these two scenarios, our
visual-inertial SLAM is the more accurate according to
the MTE. VINS-MONO was not able to initialize in the
dynamic scenario in which IMU fusion offers significant
improvement.

C. Localization and Mapping of stairs by Solo

With our retrained model we were able to perform SLAM
in our experimental area, without augmenting it with fake
objects. We recorded video sequences including stairs with
a camera fixed on a Solo robot (Fig. 8). A stair has three
discrete symmetries that are hard to handle for an object
pose estimator and the images provided by Solo were noisy
because of the walk. These scenarios are challenging for our
SLAM system, but it maps successfully the stairs and the
error on the position of the base of Solo remains reasonable
(Table 1II).

Stairs objects allowed us to make a longer scenario as
they are larger than T-LESS object. We recorded a longer
trajectory with a hand held camera with stair cases on
the floor. It was a particularly challenging scenarios as the
images contained not many features apart from the stairs.

VINS-MONO and ORBSLAM3 performed poorly on this
sequence whereas our system was able to localize itself
precisely using high level features.

Fig. 8: This trajectory was recorded on Solo walking along a
climbing module made of three stairs using Leziart’s [2] controller.
The green dots represent the trajectory of Solo provided by the
MoCap, and the red dots the one produced by our visual-inertial
SLAM. The blue rectangles represent the map of the SLAM made
of stairs.

D. Implementation details and performance

We used a CPU node (Core i5 2.3GHz) for optimizing
the factor graph under Wolf, and a GPU node (NVIDIA
Quadro RTX 6000) to run CosyPose. Our implementation
is a python-based prototype, yet the performance of each
solver provides a proper scaling of the SLAM efficiency for
real-time purpose. Timings of CosyPose are reported on Ta-
ble III. CosyPose is used both for detecting new objects and
for tracking known landmarks. Following classical parallel
tracking and mapping separation, detection of new landmarks
(that are not yet in the map) can be done asynchronously and
requires about 0.2 sec per detected object. As explained in
Sec. II.A, we can discard the detection stage of CosyPose and
reduce the number of iterations by warm-starting it with the
prediction from the SLAM for tracking landmarks that are
already in the map. In that case, each iteration of CosyPose
requires 0.06 sec and must be run synchronously, enabling
it to produce visual factor at 10Hz (we used a maximum



TABLE III: Mean timings (in seconds) of the different elements
of the CosyPose framework on one frame. Total timing include the
timing of Mask-RCNN detection, 2 iterations of the pose refinement
as used in the experiments (which includes rendering and an
Efficientnet forward pass) as well as surrounding data manipulation.

Detections  Rendering  Neural network | Total
Hand circular 0.038 0.041 0.021 0.208
Hand dynamic 0.038 0.041 022 0.211
Solo approach 0.032 0.023 0.017 0.138
Solo modules 0.035 0.028 0.020 0.167
Stairs on floor 0.033 0.027 0.02 0.165

TABLE IV: MTE in cm when a feature is discarded with a
probability p, on the last column the solver was not able to converge

p \ 00 03 05 06 065 0.7
Hand circular \ 31 32 32 32 3.2 -

of 2 iterations). CosyPose can process several landmarks in
parallel although we have not fully investigated the resulting
performances.

E. Robustness

We push our method to its limit on the hand-held circular
trajectory, by artificially preventing visual factors to be added
in the graph, in order to evaluate the robustness to potential
errors of the pose estimator. Firstly, we randomly discarded
CosyPose detection with a probability p to check the robust-
ness to a lack of repetition in feature detection. On Table IV,
we reported that the performances are not affected by a loss
of feature until a feature is rejected with a probability of 0.7.
This empirically validates the ability to deal with punctual
loss of information. Then we simulated blind navigation by
cutting the image flow during A; = 5 s in the middle of
the sequence. During the black-out, localization only relies
on inertial measurements. While open-loop integration may
diverge quickly, the proper estimation of the IMU intrinsic
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Fig. 9: Comparison between the MoCap and CosySLAM visual
inertial on the hand-held circular scenario with blind navigation
during various A:, starting at 10s (around 1.2 m on the x axis).
We purposely hide the state estimate to highlight the parts where
no CosyPose measurements are integrated.

parameter by the visual SLAM provides a good estimates
in the meantime. When the image flow is starting again, the
system 1is able to relocalize itself properly in this case, as
shown in Fig. 9.

V. CONCLUSION AND DISCUSSION

In this paper, we have proposed a complete experimental
setup to evaluate the interest of object-level SLAM to tightly-
coupled legged robot state estimation, navigation-level lo-
calization and localization of surrounding candidate contact
surfaces. To that end, we have proposed a visual-inertial
SLAM implementation. The visual front-end relies on a
state-of-the-art pose estimator, CosyPose, which processes
separated frames to evaluate the object-camera relative trans-
formation. As reported in the experiments, the estimates are
accurate yet noisy, and may be locally inconsistent due to
object symmetries. We have proposed a confidence model,
which is needed to insert the measurement in a factor-graph
estimator. The inertial measurements are handled through
pre-integrated factors, enabling the observation of the robot
velocity and orientation in the gravity field, along with
IMU biases in real-time. We have then reported a complete
experimental evaluation of the proposed SLAM system, on
new visual-inertial datasets tailored to investigate locomotion
scenarios. We have reported the validity and interest of the
approach, which provides accurate and robust estimates of
both the robot state and the location of candidate contact
surfaces in real-time.

The main limitation of the proposed method is due to the
need to off-line train the pose estimator on known objects,
which, for the time being, limits its application to laboratory
scenarios. Yet several recent works [43], [44] show the
possibility to extend such a pose estimator to classes of
objects (i.e. estimating any kind of stairs, or tables, or stair
steps, without needing to fine-tune the training for each
new instance of the class), which would open the possibility
to extend our system to classical indoor environments. We
have limited our study to only two types of factors, yet it
immediately extends to other factors, for example merging
a classical visual front end based on 2D landmarks [41], or
to kinematic information coming from the robot legs [45].
We have reported a prototype implementation that cannot
yet run in real-time onboard our quadruped robot, but we
will now work on a complete C++ implementation that we
intend to use for closing the loop and controlling the robot
locomotion.
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