
HAL Id: hal-03351139
https://hal.science/hal-03351139

Submitted on 22 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AliceVision Meshroom: An open-source 3D
reconstruction pipeline

Carsten Griwodz, Simone Gasparini, Lilian Calvet, Pierre Gurdjos, Fabien
Castan, Benoit Maujean, Yann Lanthony, Gregoire de Lillo

To cite this version:
Carsten Griwodz, Simone Gasparini, Lilian Calvet, Pierre Gurdjos, Fabien Castan, et al.. AliceVision
Meshroom: An open-source 3D reconstruction pipeline. 12th ACM Multimedia Systems Conference
(MMSys 2021), Sep 2021, Istanbul, Turkey. pp.241-247, �10.1145/3458305.3478443�. �hal-03351139�

https://hal.science/hal-03351139
https://hal.archives-ouvertes.fr


AliceVision Meshroom: An open-source 3D reconstruction
pipeline

Carsten Griwodz
griff@uio.no

University of Oslo
Norway

SimulaMet
Norway

Simone Gasparini
Lilian Calvet
Pierre Gurdjos

{name.surname}@irit.fr
University of Toulouse, IRIT

France

Fabien Castan
Benoit Maujean
Yann Lanthony
Gregoire De Lillo

{name.surname}@mikrosimage.com
Mikros, Technicolor Creative Studios

France

Figure 1: A 3D reconstruction pipeline in Meshroom. The pipeline is shown at the bottom left, the input images on the top
left, the output of the highlighted pipeline node (in this case the Structure-from-Motion node along with the camera poses)
are shown on the top right, info about this node at the bottom right.

ABSTRACT
This paper introduces the Meshroom software and its underlying
3D computer vision framework AliceVision. This solution provides
a photogrammetry pipeline to reconstruct 3D scenes from a set
of unordered images. It also features other pipelines for fusing
multi-bracketing low dynamic range images into high dynamic
range, stitching multiple images into a panorama and estimating
the motion of a moving camera. Meshroom’s nodal architecture
allows the user to customize the different pipelines to adjust them
to their domain specific needs. The user can interactively add other
processing nodes to modify a pipeline, export intermediate data
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to analyze the result of the algorithms and easily compare the
outputs given by different sets of parameters. The software package
is released in open source and relies on open file formats. These
features enable researchers to conveniently run the pipelines, access
and visualize the data at each step, thus promoting the sharing and
the reproducibility of the results.

CCS CONCEPTS
• Information systems → Multimedia content creation; • Com-
puting methodologies→ Reconstruction.
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1 INTRODUCTION
Multimedia systems research is increasingly dealing with 3-dimen-
sional content in its many facets. Researchers’ interests include
such widely different applications as the streaming of 360-degree
video that allows free movement of the viewer in 3 rotational and
3 translational dimensions (6DOF) [1, 2] and adaptive point cloud
streaming [3]. They study issues of latency during the interaction
in virtual worlds [4] or the compression of meshes [5]. Due to the
wide range of interests and the difficulty in creating content, there
is little exchange in terms of content and tools that could help more
researchers to join these investigations.

3D Computer Vision is used in many industries and research
domains for various use cases with very different acquisition setups.
It is challenging to address all the needs in a single solution, but
there is also a great convergence of the needs regarding the low
level building blocks that can be used for these different pipelines.
We are therefore proposing the Meshroom1 software with its un-
derlying 3D Computer Vision framework, AliceVision2. It provides
a photogrammetry pipeline to reconstruct 3D scenes from still im-
ages taken with any type of cameras, from professional cameras to
smartphones and can deal with an arbitrary number of input im-
ages, ranging from a handful to several thousands. Meshroom also
provides other pipelines, for example for fusing multi-bracketing
low dynamic range (LDR) images into high dynamic range (HDR)
images, stitching multiple images into a panorama and estimat-
ing the motion of a moving camera. To fulfil such a variety of
tasks, Meshroom is designed around a nodal engine. This enables
end-users to customize the pipeline to their specific needs, even
allowing them to extend it by adding their own nodes. The exten-
sibility is supported by Meshroom’s reliance of standardized and
open-source formats, which has helped to integrate other tools into
the Meshroom pipeline.

Meshroom and AliceVision are released in open source under the
Mozilla Public License v2 (MPLv2). The license does not limit the
use of either the software itself or its products. Meshroom can be
used to generate content for a wide variety of multimedia research
topics and hopefully share it with the community. With its modular
architecture, it can also be extended with domain specific features
by the different communities using dedicated nodes.

In this paper, we refer to release 2021.1.0 of Meshroom. It can
be found on Github at https://git.io/JZkxK. The project is un-
der active development and newer releases can be expected. The
manual for Meshroom can be found on readthedocs.io at https:
//meshroom-manual.readthedocs.io. On YouTube, you can find
videos that explain how to use Meshroom for 3D reconstruction
at https://youtu.be/1U0g_zxVDdg and for HDR 360 panorama cre-
ation at https://youtu.be/WLrB1eiw3Cc. Meshroom is developed
in Python and it uses Qt/PySide for the graphical interface. The
AliceVision framework is developed in C++ and the depth map tool
is implemented in C++/Cuda3. Meshroom can run on both Linux
and Windows4.

1http://meshroom.alicevision.org
2https://alicevision.org
3The latest release is compiled for CUDA SDK 10.2.
4It can also run on MacOS, but this is currently not officially supported because of the
lack of CUDA support on MacOS in recent releases.

Figure 2: In the node editor the user can edit the pipeline
and add new nodes

2 BACKGROUND
The history of AliceVision lies with a series of research projects
and teams that joined forces. AliceVision’s SfM stage has its origin
in a collaboration of IMAGINE (a joint research group between
Ecole des Ponts ParisTech and Centre Scientifique et Technique
du Bâtiment) and the post-production company Mikros Image that
led to the creation of the open-source project OpenMVG [6]. The
MVS stage has its origin in the closed-source tool CMPMVS that
was created at the Czech Technical University in Prague (CTU) [7].
The accurate marker-based tracking system CCTag [8] was created
in a collaboration of the University of Toulouse (INP), INRIA and
the company DuranDuboi. Simula implemented a real-time GPU
implementations of CCTag and SIFT (PopSift [9]) in the EU project
#644874 POPART.

Meshroom has been used since 2014 in digital environment cre-
ation for the Visual Effects industry and now in many other indus-
tries including manufacturing, medical [10], cultural heritage [11],
tourism , archaeology [12, 13], biology [14], surveillance [15] and
3D printing.

Several other open source solutions for 3D reconstruction with
a GUI are available. To the best of our knowledge we can men-
tion COLMAP [16], MicMac [17], MVE [18], OpenDroneMap [19],
Regard3D [20] (based on openMVG and openMVS).

Many commercial solutions exist for 3D reconstruction: Ar-
cGIS by ESRI, ContextCapture by Bentley Systems, Correla-
tor3d by Simactive, Inpho by Trimble, iWitnessPRO by Pho-
tometrix, Metashape by Agisoft, Pix4DMapper by Pix4D, PF-
Track by ThePixelFarm, RealityCapture by Epic Games, ReCap
by Autodesk and Zephyr by 3DFlow.

AliceVision has been conceived as a complete open source pho-
togrammetry framework that bridges the gap between academic
research and professional demands. To ensure long-term gover-
nance of AliceVision as an open source project, the AliceVision
Association5 was founded in 2020.

3 MESHROOM SOFTWARE
Meshroom provides a nodal environment to perform various com-
puter vision tasks. The individual tasks are represented by nodes
combined into directed acyclic dependency graphs that are named
pipelines. Each node represents a tool implemented in AliceVision.

5https://alicevision.org/association

https://git.io/JZkxK
https://meshroom-manual.readthedocs.io
https://meshroom-manual.readthedocs.io
https://youtu.be/1U0g_zxVDdg
https://youtu.be/WLrB1eiw3Cc
http://meshroom.alicevision.org
https://alicevision.org
https://alicevision.org/association


AliceVision Meshroom: An open-source 3D reconstruction pipeline MMSys ’21, Sept 28–Oct 01, 2021, Istanbul, Turkey

(a) Attributes for DepthMap node

(b) Command line string for DepthMap node

Figure 3: Example configuration for configuring a node

Unlike pipelines that are meant for real-time processing of data
streams, the nodes in Meshroom are logical steps in the directed
graph that are revisited when inputs or parameters change or when
the graph itself is modified. The changes invalidate intermediate
results cached in nodes only on the downstream side of the node
where the change happened. Each node may represent an operation
on hundreds or thousands of input files, and hide parallel processing
operations. Meshroom is designed to optionally run the pipeline
on a computer cluster and is for instance used with the commercial
Tractor render farm system by Pixar. The multi-machine paral-
lelization can be done between nodes but also the work of a single
node can be split into multiple parallelizable sub-tasks. Final and
intermediate file formats rely on popular open formats such as OBJ,
EXR and Alembic to facilitate interoperability. Multiple plugins
have been contributed for the integration in production tools, such
as Maya (Autodesk), Houdini (SideFX) and Blender (Blender Foun-
dation). The importance of the nodal architecture for Meshroom
is reflected in the GUI, where the node editor (Figure 2) allows
users to monitor progress, inspect parameters, visualize outputs
and change the pipeline interactively.

While Meshroom provides preconfigured pipelines, users can
change it arbitrarily and store their configuration as the new de-
fault pipeline. It is possible to add or remove nodes in the pipeline,
or to connect several downstream nodes to the output of a stage.
The latter allows, for example, to experiment with the settings of a
critical node in the pipeline by executing it with several parame-
ter sets within a single workflow. The workflow can furthermore
be interrupted and combined with exporter and importer nodes.
This enables the manual inspection of intermediate results or the
modification with specialized external tools by the end-user. Steps
where this is frequently exploited by graphic artists so far are the
later stages of the pipeline (mesh post-processing steps and textur-
ing), but it is possible in arbitrary steps and pipeline configurations.
Users can inspect the parameters of each tool in the pipeline and
modify them interactively, or retrieve the string to run the indi-
vidual task from the command line for even more detailed control.
Examples for this are shown in Figures 3a and 3b, respectively.

Meshroom pipelines can also be computed from the command
line without the graphical interface, which makes it completely

scriptable. For instance, the end-user can run the following com-
mand line:
> ./ meshroom_batch \

--input ./ my_dataset \

--pipeline ./ my_custom_pipeline.mg \

--save ./scene/my_scene.mg \

--output ./ my_folder

4 PHOTOGRAMMETRY PIPELINE
The main purpose of AliceVision is to allow photogrammetric 3D
reconstruction from an arbitrary number of images. The two main
stages of its default pipeline are “Structure-from-Motion” (SfM)
and “Multi View Stereo” (MVS) although it is also possible to cre-
ate textured meshes directly from the SfM stage. These stages are
composed of a variety of nodes. It comprises the steps of camera
initialization, feature extraction, image matching, feature matching,
Structure-from-Motion, depth mapping (consisting of preparation,
mapping and filtering), meshing followed by mesh filtering, and
texturing.

4.1 Feature extraction
Feature extraction forms the basis for finding the relative pose of
cameras in space by detecting distinctive points in every image that
can be described by properties that are invariant to scale, rotation in
2D and 3D and several other properties such as lighting. AliceVision
supports both natural feature extractors (SIFT [22], DSP-SIFT [23]
and AKAZE [24]) and marker-based features (CCTag [25], April-
Tag [26]), and can use a combination of them in later stages to
benefit from their different properties. Markers can help the re-
construction process in textureless environments by providing a
reliable detection accuracy and improving the matching process.
They can be also used to bring the reconstructed 3D model to the
metric scale if the relative distances of the markers are known (see
Section 5.1).

The user can display the extracted features, possibly for each
type if multiple types of features were extracted, along with their
photometric properties like the scale and the orientation. Features
that were extracted but not used in the reconstruction process
are identified with a different color and the user can select which
visualization to display and which type(s) of feature to display
(Figure 4a).

4.2 Image matching
In principle, to find corresponding points among the images, the
features of each pair of images must be compared and matched. As
the number of input images increases such comparison does not
scale due to the quadratic complexity of the task, In order to reduce
the computational complexity for large datasets, a vocabulary tree
(VocTree) [27] is used to find subsets of images sharing some similar
content and limit the matching only to those images. By default,
AliceVision uses VocTrees when the number of images is larger
than 200 images.

4.3 Feature matching
In this step, features are matched between pairs of images, which
will subsequently allow to determine a 3D structure from the corre-
sponding 2D positions. This step is trivial for marker based features



MMSys ’21, Sept 28–Oct 01, 2021, Istanbul, Turkey Griwodz, et al.

(a) (b) (c) (d) (e) (f) (g)

Figure 4: Meshroom provides several tools to help verify and understand the intermediate results, such as visualizing the
extracted features (a), reconstruction statistics (b,c), the depth maps as images (d) or back-projected in 3D (e), the final mesh
mesh with (g) and without the texture (f). Fountain dataset [21].

where only their unique IDs must be matched. For natural features,
the task is more computationally expensive, due to the large number
of features typically extracted from an image.

First, a matching between the feature descriptors is performed.
For each descriptor in one image, we select the closest descriptor
in the other image. As each descriptor should match with a single
point in the other image, repetitive structures are discarded at
this step. AliceVision implements multiple methods: brute force
matching, Cascade Hashing [28] and a KD-tree-based approach
using FLANN [29] used by default. Other approaches exist in the
litterature, like Locality-Sensitive Hashing [30]. The cross-matching
option performs the matching from the first image to the second
and vice-versa, and keeps the match if it gives the same result. This
is more strict and requires more computation time but improves the
inliers/outliers ratio. For each pair of images, the descriptor matches
are validated and filtered by checkingwhether the 2D location of the
corresponding feature points are geometrically consistent regarding
the epipolar geometry in a robust RANSAC [31] framework.

A guided-matching option allows recomputing the descriptor
matches using the estimated relative poses. Also if a prior on the
camera poses is provided, the guided matching can be used directly
to help matching repetitive structures.

4.4 Structure from Motion
In the following Structure from Motion (SfM) step, the computed
matches are fused together into tracks: each track is a candidate to
represent a point in space, visible frommultiple cameras. The tracks
are used to solve the camera calibration and the 3D structure of the
scene, thus generating a sparse 3D representation. The SfM stage
can be addressed in several ways. The positions can be computed
by incrementally adding new cameras from an initial solution [32],
solving for all the relative poses of the cameras at once in a global
solution [33], or taking a hierarchical [34, 35] or multi-stage [36]
approach. AliceVision implements an incremental approach [6, 16]
that is better suited for large numbers of images than the other
approaches. AliceVision does also support camera rigs that consist
of several cameras that are mounted in fixed relative positions to
each other to add additional constraints to the pose estimation.

At the end of the SfM computation the statistics for the reprojec-
tion error, the number of reconstructed 3d points and the number
of tracks are shown for each view (Figure 4c) or globally, for the
entire reconstruction (Figure 4b).

4.5 Depth map estimation
This step attempts to estimate a depth value for each input pixel.
The region needs to be seen by at least 2 cameras that have been val-
idated by the SfM. AliceVision implements a Semi-Global Matching
(SGM) [37] approach. The classical alternative methods are block
matching and ADCensus [38]. The SGM method is a volumetric
approach that estimates a global similarity score (ZNCC) over mul-
tiple images for each cell of a voxel grid. An optimization of the
score volume is performed using cost aggregation to retrieve a first
low resolution version of the depth map. Then the result is upscaled
and refined with a brute force method. Finally a noise filtering is
performed to align depth discontinuities with color variations. To
increase the scalability of the depth mapping stage, AliceVision re-
lies on GPU-based computation that depends on the NVidia CUDA
SDK.

The depth maps estimated for each image can be visualized with
a colormap for the depth both in the 2D viewer (Figure 4b) and in
3D viewer (Figure 4c) to visually assess the quality of the depth
map projected onto the reconstructed scene.

4.6 Meshing
To create a dense 3D surface, the Meshing step will merge all depth
maps into a single dense point cloud and then extract a surface
in it. For each input image, we select the most interesting depth
values (repartition in the image and good similarity score) and back-
project them as 3D points. We use a KDTree approach [39] to fuse
the 3D points together in an iterative way to reduce the density of
the point cloud to fit in RAM.

3D Delaunay triangulation [40] is used to create a space filled by
tetrahedra. Then a voting strategy is used to label each tetrahedron
as full or empty. Theweights of the tetrahedra and their connections
are computed according to the work of Jancosek et al. [41, 42], then
a graph cut max-flow step [43] is applied to extract the mesh surface.
Local mesh artifacts are filtered and the surface is finally smoothed
with a bilateral filtering.

4.7 Texturing
The final step of the 3D reconstruction pipeline projects the textures
onto the mesh. AliceVision uses a basic UV mapping approach [44].
To select the cameras that provide the best texture of a particular
cell of the mesh, AliceVision computes the resolution of the trian-
gle in all images seeing it. The texture fusion uses a multi-band
blending [45] using more images in the low frequencies than in
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(a) (b) (c) (d) (e)

Figure 5: Bypassing dense mapping saves time and works
without CUDA, at the price of quality. Example from 18
pictures of [48]. (a) SfM output; (b) Mesh after dense map;
(c) Texturedmesh after densemap; (d)Meshwhen bypassing
dense map; (e) Textured mesh when bypassing dense map.

Figure 6: Pipeline with and without GPU bypass, Texturing
andTexturing2 producing the results shown in Figure 5c and
Figure 5e, respectively.

Figure 7: New images can be added through the augmenta-
tion pipeline (blue nodes).

the high frequencies to ensure the global color coherence while
keeping the pixel precision of the fine texture details, in the same
spirit as [46, 47].

5 PIPELINE CUSTOMIZATIONS
The variety of use cases results in a wide range of capturing devices,
settings and environment constraints. This can include anything
from a professional DSLR to a smartphone camera, from a single
camera moving freely in a static scene to multiple synced cameras,
mixed with projected light patterns, infrared light, light polarisation
or controlled lighting variations, shooting in indoor or outdoor con-
ditions, etc. This section describes several common customizations
of the 3D reconstruction pipeline.

5.1 Scale to metric values
The result of the photogrammetry is metric up to a scale factor that
cannot be solved without additional information in the scene. Using
multiple markers (like CCtags) with a known distance in the scene,
we can redefine the scale of the Structure-from-Motion result to a
real-world metric. The same markers can also be used to define the
orientation of the scene.

5.2 Light pattern projection
One of the major weaknesses of photogrammetry is the inability
to reconstruct uniform surfaces. One solution is therefore to use
a synchronized multi-camera system and take two shots with and

without a projected light pattern (see Figure 8). The geometry can
be estimated from the images with the projected pattern and the
texturing can be done from the other set of images without any
light pattern. If we reconstruct an object that is not static like a
person, it is important that the 2 shots are fast enough to ensure
that the person has not moved between the 2 acquisitions.

5.3 Quick rough Reconstruction
Many parameters could be adjusted to speedup the process at the
cost of quality and robustness. As the most compute intensive step
is the depth map estimation, we can get a quick preview of the mesh
by skipping the depth maps computation and directly connecting
the SfM to the Meshing node. Figure 5 illustrates the difference. A
configuration with and without bypass is shown in Figure 6.

5.4 SfM Augmentation
Given a computed SfM node it is possible to augment the recon-
struction by adding new images without recomputing the previous
steps. Figure 7 shows that the output of the node can be used as
input of another reconstruction pipeline as base to add the new
images to further complete the model with new parts or improve
some details.

5.5 Live reconstruction
Instead of processing all the images as a batch, it is possible to
“watch” a given folder and perform the 3D reconstruction on the
fly as soon as new images are transferred from the camera into
the watched folder - using the SfM augmentation. This allows the
user to view the reconstruction during the acquisition, so he can
ensure that an object is fully covered without missing parts and
avoid uneven camera coverage.

5.6 Camera tracking
The camera pose estimation provided by the SfM pipeline can be
used for camera tracking. A photogrammetry of the location can be
used as a reference structure. As described in Section 5.4, the Live
Action camera images can be added to the images of the shooting
set location. A dedicated pipeline using the SfM nodes is currently
in development.

The result of the SfM can be exported as an animated camera in
an Alembic file plus the corresponding undistorted images (using
the ExportAnimatedCamera node).

6 HDR 360° PANORAMA PIPELINE
A classical example of HDR 360° images usage is the lighting of
virtual scenes with Image Based lighting techniques (Figure 9).
These 360° images cannot be captured directly and are the result of
the assembly of different shots of the scene. The process of creating
an HDR 360° panorama is done in three steps: (i) the HDR fusion
by assembling, for each angle of view, the images taken at different
exposure time values - called "multi-bracketing", (ii) the estimation
of the internal and external parameters of the cameras and (iii) the
stitching by assembling the different resulting HDR images into a
panorama covering 360 degrees along the horizon line.
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(a) (b) (c)

Figure 8: (a) Geometry and texturing estimated without (b) and with light pattern projection; (c) Geometry estimated with
light pattern projection and texturing estimated without light pattern (dataset from [49]).

Figure 9: Example of the HDR 360° panorama pipeline.

6.1 LDR to HDR fusion
To fuse the LDR images into HDR images, we first select reliable
pixels6 and then calibrate the Camera Response Function (CRF) with
2 state-of-the-art methods: [50] and [51]. The merge step applies
the CRF and fuses the LDR colors using a weighting function to
favor stable values from the camera sensor.

6.2 Panorama estimation
In the context of the panorama, the camera motion is a pure ro-
tation around the camera center. Similarly to the photogramme-
try pipeline, feature points are extracted for each image and then
matched to estimate the rotation matrices relating to the images.
In a final optimization step, the internal parameters of the cameras
and the rotations are refined with a Bundle Adjustment. Meshroom
can also take advantage of motorized-head files to initialize camera
poses before the final optimization.

6.3 Panorama stitching
The panorama can be created from fisheye optics. In that case, the
image contains useless black pixels that should not become part of
the final panorama. So first, it automatically estimates the fisheye
circle (which can also be adjusted interactively) to select the useful
part of the input images. The stitching implements a graph-cut
algorithm [52] to optimize seams location. Then to create seamless

6Instead of selecting the pixels in a regular way on the whole image (1 pixel out of 𝑁 ),
this step keeps the pixels carrying the most valuable information: low noise, increasing
values with the exposure, no saturated value.

transitions, the fusion is done with a multi-band blending [53] to en-
sure the color consistency between images (low-frequencies) while
keeping all the details (high-frequencies). The stitching implements
a tiling strategy to generate large panoramas like 70K resolution.

7 SAMPLE RESULTS
Table 1 presents some sample results from a selection of datasets of
different sizes taken from the literature. For each dataset it shows
the number of images, the processing time and the number of ver-
tices and faces of the final model. The results are obtained on a sin-
gle machine sporting an Intel® Core™ i9-10900K CPU @ 3.70GHz
with 20 cores, 32 GB RAM and equipped with a GeForce RTX 3080
with 10GB of memory. The relevant 3D models can be found at the
following link https://skfb.ly/o6LLp.

dataset images time vertices / faces
Fountain [21] 10 2m 19s 242517 / 484383
Buddha [48] 67 28m 25s 15557379 / 3109710
Citywall [18] 564 1h 50m 20s 1875571 / 3744703

Table 1: Results obtained with the datasets.

8 CONCLUSION
The technologies for 3D digitization are becoming increasingly
essential for many industries and are a key-enabler in many ap-
plications, including the commons like healthcare, cultural preser-
vation and creation. This paper introduced a free 3D computer
vision software, that adheres to open standards and can be freely
used, analyzed and modified by everyone. This project ambition
is to foster interactions between research and industry, as well as
with education. There is room for researchers, developers and 3d
scanning experts to implement complementary features such as
georeferencing, multi-focus or depth sensors integration. A lot of
ambitious research remains to be done to process moving objects,
to reconstruct the lighting of the scene and recover the material
properties of the surfaces.

https://skfb.ly/o6LLp
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