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Abstract Within a 3D concrete printing process, the

fresh concrete is aging due to hydration. One of the

consequences from the purely mechanical point of view

is that its constitutive relation must be defined in rate
form. This restriction is taken into account in this con-

tribution and, besides on the incremental elasticity, we

moreover introduce the relaxation of the internal stresses
in order to describe the creep at early age. On another

hand, due to the soft nature of the material, the fi-

nite strain range is herein a priori assumed. Eventual
structural instabilities during the printing process can

therefore be predicted as well. On another hand, with

regards to the incremental formulation of the bound-

ary value problem, the kinematics must be adapted as
well. We use for this the multiplicative decomposition

of the actual deformation gradient into its known part

at an earlier time and the relative deformation gradient
with respect to the configuration at that time. Within

a Lagrangian formulation, the incremental constitutive

relations and evolution equations can then be ideally
defined on the above mentioned intermediate configu-

ration prior to be transported back to the reference con-

figuration. In particular, the early age creep is here de-

scribed through an internal variable approach the evo-
lution of which is motivated by the generalized Maxwell

model. In this work, this latter is adapted for incremen-

tal viscoelasticity. Model examples are proposed and
the numerical efficiency of the proposed framework is

illustrated through a set of representative simulations.
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1 Introduction

Nowadays, the challenging 3D concrete printing is re-
ceiving considerable attention in the civil engineering

industry; the ’Construction 4.0’ as termed in [3]. In gen-

eral, a concrete mixing is pumped into a pipe connected
to a nozzle, and with the help of a robotic mechanism,

precise positioning control and deposition path can be

achieved. Potential applications of this promising new

production process include, for instance, connection el-
ements, structural elements, up to complete buildings,

see for example [10,9,25] to mention a few.

The 3D printing technology is mostly based on addi-

tive manufacturing, i.e. the extrusion technique consists
on the successive addition of material layer-by-layer. Af-

ter several layers have been deposited onto each other,

the fresh concrete must be able to retain its shape. Its

buildability is then largely influenced by its early age
mechanical properties and rheology, e.g. see for exam-

ple [17,8,12]. Mathematical models must then take into

account these properties for efficient predictive simula-
tions and numerical design. Recently, numerical models

have been proposed in the literature; continuum meth-

ods [21,22,26], as well as the pioneering work in [26]
with discrete methods. For the former, finite element

analyses have been conducted with time-dependent lin-

ear elasticity in combination with time-dependent plas-

tic failure criteria. The authors reported promising re-
sults that seem in close agreement with the experimen-

tal results. However, the particularity of an aging con-

crete is its maturation as a result of hydration, e.g. [4].
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As was shown in [1], one of the consequences is that

the only possible way to express the constitutive rela-
tion would be in incremental form and not in direct

form, see also [5,2] among others. Unlike the modelling

framework adopted in the above references, this restric-
tion will be taken into account in this work as in [14].

With the lack of confining formwork, the fresh con-

crete must carry its self-weight, especially when layers
are being deposited one-by-one. However, as the resis-

tance is initially low, possible collapse during the print-

ing process can occur, e.g. [20,23]. A predictive the-

ory must therefore be etablished within a geometrically
nonlinear framework to be able to predict such insta-

bilities. From the purely mechanical point of view, an

incremental formulation has recently been developed in
[14] where the kinematical choice has been based on the

natural multiplicative decomposition of the actual de-

formation gradient, say at time t, into its known part
at an earlier time, say at time tn, and the relative de-

formation gradient with respect to the configuration

at that time, i.e. within the time interval [tn, t]. In-

cremental elastic constitutive relations have been pro-
posed that were inspired by nowadays classical models

of the Saint-Venant and neoHooke types, e.g. see for

instance [6,24,13]. These models are first ideally de-
fined on the above known intermediate configuration

prior to be pull-back to the reference (initial) config-

uration when a Lagrangian formulation is adopted for
the boundary value problem.

The above framework is pursued in this contribu-

tion by furthermore taking into account creep at early

age that is essential to predict the stress relaxation.
Herein we postulate an incremental viscoelasticity mod-

elling that is phenomenologically based on the concept

of internal variables. It is analogous to a similar ap-
proach developed in the last decades within the finite

strain range, e.g. see for example [6,7,19]. More pre-

cisely, suitable evolution equations are defined within
the formalism of incremental constitutive relations, the

whole motivated by the generalized Maxwell rheological

model. The stress-like internal variables consist on over-

stresses that have the same structure as the thermo-
dynamically equilibrated second Piola-Kirchhoff stress

tensor increments. Even if the material properties of an

aging concrete basically depend upon time-dependent
hydration and temperature, herein focus is made on the

purely mechanical aspects. The topic of thermo-hydric

coupling will be addressed in a future contribution.

A further goal of this paper is the formulation of a
numerical treatment to furnish computational tools for

structural simulations which could help the optimiza-

tion of the printing process, limiting then the number

of costly physical experiments. The most relevant par-

ticularities of the proposed algorithmic design are high-
lighted for an easy implementation within the context of

the finite element method. In addition to its conceptual

simplicity, the numerical effort is of the order of that
devoted for classical finite strain computations. Only a

single local resolution procedure for the internal vari-

able is appended at the integration points level, which
renders the whole numerical procedure very efficient.

An outline of the paper is as follows. In Section 2,

we recall the basic equations that are adapted for an in-
cremental formulation together with the corresponding

kinematical choices. The early age creep is then devel-

oped in Section 3 that is motivated by the generalized
Maxwell rheological model and that is adapted to this

framework. Then, in Section 4, the most relevant details

of an implementation within the finite element method
are given. Next, and for illustrative purposes, two sets

of numerical simulations are given in Section 5. Finally,

conclusions with perspectives are drawn in Section 6.

1.1 Notations

Throughout the paper, bold face characters refer to

second- and fourth-order tensorial quantities. The no-

tation (�)T is used for the transpose operator, and the

double dot symbol ’:’ is used for double tensor con-
traction, i.e. for any second-order tensors A and B,

A : B ≡ tr[ABT ] = AijBij where, unless specified,

summation over repeated indices is always assumed.
The notation ⊗ stands for the tensorial product, i.e.

in components, one has (A⊗B)ijkl = AijBkl. Further-

more, the dot operator ˙( � ) always refers to the material

time derivative of the quantity ( � ).

2 Boundary value problem and kinematics

The formulation is a priori developed within the finite
strain range because of the soft nature of the fresh

printed concrete. In this section, we recall the balance

equation that is adapted to the incremental form of the

constitutive relations. We discuss then the kinematics
that best matches this particularity. Model examples

will be addressed next in Section 3, see [14] for further

details.

2.1 Mechanical balance

When undeformed and unstressed, the body occupies

the reference configuration B0 with boundary ∂B0. We

identify a material particle by its position vector X ∈
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B0 and we trace its motion by its current position in the

spatial configuration Bt at time t as x = ϕt(X) ∈ Bt

where ϕt(�) ≡ ϕ(�, t) denotes the deformation map at

time t within a time interval [0, T ]. The deformation

gradient is defined as F ≡ Ft = ∇Xϕ, where ∇X(�) is
the material gradient operator with respect to X. The

Jacobian of the transformation is given by the determi-

nant J = detF with the standard convention J > 0.

Within a Lagrangian formulation, the mechanical
equilibrium with respect to the initial configuration is

equivalently given by the following weak form in terms

of the second Piola-Kirchhoff stress tensor S ≡ St:
∫

B0

S : F T∇X(δϕ) dV =

∫

B0

ρ0b̄.δϕ dV , (1)

which must hold for any admissible variation of de-
formation δϕ. Here the vector ρ0b̄ defines the body

force due to gravitation, i.e. the self-weight, where ρ0 is

the initial density. Unlike classical constitutive relations
where the stress is directly linked to strain measures,

i.e. for instance as this would be the case for a hyperlas-

tic material through a strain energy function, the stress
tensor is restricted to be solely defined in incremental

form in our case. Herein, within a typical time interval

[tn, tn+1], we make the following choice for the second

Piola-Kirchhoff stress tensor:

S = Sn +∆S , (2)

where Sn is the known second-Piola Kirchhoff stress
tensor at time tn, and ∆S ≡ ∆St is the second Piola-

Kirchhoff stress tensor increment at the actual time t ∈

[tn, tn+1]. Thus, when replacing (2) into (1), we end

up with the basic balance equation to be solved in our
formulation:
∫

B0

(Sn +∆S) : F T∇X(δϕ) dV =

∫

B0

ρ0b̄.δϕ dV . (3)

This latter equation is valid for all classes of in-

cremental constitutive relations through the definition

of model-dependent stress increment ∆S including, for
instance, creep and/or plasticity. Notice that the defor-

mation gradient F in (3) is the actual one Ft at time t.

Furthermore, the gravitation force does not need to be
incremented, which is crucial for the modelling of the

3D concrete printing process.

2.2 Linearization of the mechanical balance

The incremental form (3) is highly nonlinear. In the one

hand because of the geometrical nonlinearities, and on

the other hand because of nonlinearities stemming from

the incremental constitutive relations. Its linearization

is then necessary as the problem needs to be solved
numerically by the use of an iterative solution strategy

of Newton’s type within the finite element method.

Denoting as customary by u(X) the displacement

of a particle X ∈ B0 such that ϕ(X) = X + u(X),

the linearization of Eq. (3) is computed at a deforma-
tion map ϕ = ϕn + ∆u where ϕn = X + un(X)

is the known deformation at time tn, and ∆u is the

iteratively updated displacement increment. Following

standard procedures, e.g. for instance [18,6,24,15], one
obtains,

∫

B0

{

∇X(∆u) (Sn+∆S) : ∇X(δϕ) + δE : Ξ
algo

: ∆E
}

dV

=

∫

B0

{

ρ0b̄.δϕ− (Sn+∆S) : δE
}

dV ,

(4)

where δE and ∆E are respectively the variation and

the linearization of the Green-Lagrange strain tensor1

given by,

δE =
1

2

{

F T∇X(δϕ) +∇T
X(δϕ)F

}

,

∆E =
1

2

{

F T∇X(∆u) +∇T
X(∆u)F

}

,

(5)

and where Ξ
algo

is the fourth-order (algorithmic) tan-

gent modulus that depends on the incremental consti-

tutive relation, see below in Section 3. The first term

in the left hand-side of Eq. (4) is the so-called geomet-
rical part and the second term is the material part.

The right-hand of (4) is the residual. Notice that the

stress tensor increment ∆S and the tangent modulus

Ξ
algo

have to be evaluated at ϕ. Equation (4) is to be

solved together with the local evolution equation ap-
pended: the over-stress evolution due to the incremental

viscoelasticity, see below as well.

2.3 Kinematic assumption and structure of the
incremental constitutive relations

The kinematical choice must be adapted for a sound

definition of an incremental constitutive relation. We
choose for this the nowadays well-known multiplica-

tive decomposition of the deformation gradient into its

known part at an earlier time and the relative deforma-
tion gradient, e.g. [19,18,14] among others. Let Fn be

1 We recall the definition of the Green-Lagrange strain ten-
sor: E = 1

2
{C − 1}, where C = FTF is the right Cauchy-

Green tensor and 1 is the second-order identity tensor.
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the deformation gradient at time tn, the actual defor-

mation gradient F at time t ∈ [tn, tn+1] is given by,

F = f̃Fn , (6)

where f̃ ≡ f̃t is the relative deformation gradient, see

the sketch of Fig. 1 for an illustration. With this latter
one can define the relative right Cauchy-Green tensor

c̃ with respect to the intermediate configuration ϕn as,

c̃ = f̃T f̃ . (7)

X

xn

xtB0

Bn

Bt

Fn

f̃t = FtF
−1
n

F
t

ϕn

ϕ
t

ϕt ◦ϕ
−1
n

Fig. 1 Relative deformation gradient f̃t connecting config-
urations Bn and Bt. Fn is the total deformation gradient at
time tn, and Ft is its update at time t ∈ [tn, tn+1].

For later use, one has moreover the following useful

kinematical relation connecting c̃ with the (total) right

Cauchy-Green tensor C = F TF :

c̃ = F−T
n CF−1

n . (8)

Formally, the incremental stress is first defined on

the intermediate configuration ϕn where one can define

the second Piola-Kirchhoff-type stress tensor increment
that we denote by s̃ with the form,

s̃ ≡ s̃(c̃, . . .) , (9)

in terms of the relative right Cauchy-Green tensor, and
the dots refering to eventual internal variable. This stress

increment is then transformed back to the reference

configuration with the help of the appropriate tenso-
rial procedure,

∆S = F−1
n s̃ F−T

n . (10)

The result of Eq. (10) is to be replaced in the bal-
ance equation (3), and hence in the linearized form (4).

In a geometric context, we refer to (10) as a pull-back,

e.g. [11]. The procedure (9)-(10) is well adapted for in-

cremental models inspired by many classical hyperelas-
tic ones, for instance, neoHooke, Mooney-Rivlin, classi-

cal Hencky, exponentiated Henchy, or even Ogden like

models, e.g. [6,24,16,15] to mention a few.

3 Incremental viscoelastic constitutive relation

In this section we give a modeling example motivated

by the generalized Maxwell rheological model, see Fig.

2. The second Piola-Kirchhoff stress S is additively split
as,

S = S∞ +Q , (11)

where S∞ is the equilibrium part, and the introduced

internal tensor variable Q may be interpreted as a non-

equilibrium over-stress, e.g. [7,6,19]. Hence, within the
time interval [tn, tn+1], Eq. (2) becomes,

S = S∞

n +Qn
︸ ︷︷ ︸

= Sn

+ ∆S∞ +∆Q
︸ ︷︷ ︸

= ∆S

. (12)

E∞ > 0

E = fE∞ > 0 η > 0

γ̇

ε̇

σ̇ = σ̇∞ + q̇

Fig. 2 Motivation: generalized Maxwell model.

In the following, we first define an incremental con-

stitutive relation for the equilibrium part ∆S∞, and

hence the update of S∞. Then we define a local evo-
lution equation for the internal variable Q, and hence

the over-stress increment ∆Q.

3.1 A model example for the equilibrium part

Within the finite srain range, many model examples
can be proposed. In this contribution, we choose per-

haps one of the most popular model in its hyperelastic

version. Indeed, let us stress that one cannot invoque a
strain energy function because of the hypoelastic char-

acter of the constitutive relation, i.e. given here in incre-

mental form. Hence, inspired by a compressible version

of the neoHooke model, we postulate the following re-
lation for the equilibrated second Piola-Kirchhoff-type

stress tensor increment s̃∞ with respect to the config-

uration ϕn, and in terms of the relative right Cauchy-
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Green tensor2:

s̃∞ = λ∞(t) log[j̃] c̃−1 + µ∞(t)
(
1− c̃−1

)
, (13)

where log[�] is the natural logarithm function and j̃ is
the jacobian of the relative deformation gradient:

j̃ = det[f̃ ] . (14)

Here and in all what follows, 1 is the second-order
identity tensor with components δij (δij being the Kro-

necker delta). The time-dependent parameters λ∞(t)

and µ∞(t) are Lamé-like coefficients within the asymp-
totic infinitesimal limit. They are related to the time-

dependent Young’s modulus E∞(t) and Poisson’s ratio

ν(t) of the equilibrium part as:

λ∞(t) =
ν(t)E∞(t)

(1 + ν(t))(1− 2ν(t))
,

µ∞(t) =
E∞(t)

2(1 + ν(t))
.

(15)

Then, the pull-back relation (10) applied to (13)

gives the following expression for the equilibrium sec-

ond Piola-Kirchhoff stress increment:

∆S∞ = λ∞(t) log

[
J

Jn

]

C−1 + µ∞(t)
(

C−1
n −C−1

)

,

(16)

where Jn = detFn, Cn = F T
n Fn, and use has been

made of the kinematic relation J = j̃Jn.

Useful for the linearized form (4), the fourth-order

tangent modulus relative to the equilibrium part is ob-

tained by the derivation with respect to the right Cauchy-
Green tensor as,

Ξ
∞

=
∂∆S∞

∂E
≡ 2

∂∆S∞

∂C

= λ∞(t) C−1 ⊗C−1

+ 2
(

µ∞(t)− λ∞(t) log

[
J

Jn

])

IC−1 ,

(17)

where the fourth-order tensor IC−1 is such that IC−1 :

A = C−1AC−1 for any second-order tensor A, in com-
ponents, e.g. [6,19,24]:

IABCD =
1

2

{

C−1
AC C−1

BD + C−1
AD C−1

BC

}

. (18)

2 For the hyperelastic version of the model of Eq. (13),
the strain energy function would be W∞ = 1

2
λ∞ log2[J ] −

µ∞ log[J ] + 1

2
µ∞(C : 1 − 3) in terms of the (total) right

Cauchy-Green tensor C. With the state law S∞ = ∂W
∞

∂C
,

this gives S∞ = λ∞ log[J ]C−1 + µ∞(1−C−1).

3.2 Evolution equation for the internal variable

To describe the incremental viscoelasticity, it is nec-

essary to specify a complementary equation of evolu-

tion that governs the internal variable Q. At first, this
is motivated by the following geometrically linear one-

dimensional analyzis.

3.2.1 Motivation. One-dimensional linear geometry

The model of Fig. 2 consists of a spring with constant

E∞ ≡ E∞(t) representing the equilibrium part, in par-
allel with a Maxwell element. This latter consisting of a

dashpot with contant η(t) in series with a spring of con-

stant E(t) = fE∞(t), where f is an adimensional factor
chosen here to be constant. The incremental relations

in each element are given by,

σ̇∞ = E∞ ε̇ ,

q = η γ̇ ⇒ q̇ = η γ̈ + η̇ γ̇ ,
(19)

where ε̇ and γ̇ are respectively the total and viscous
strain rates, i.e. strain increment quantities. Analyzing

the Maxwell element, the incremental stresses in the

dasphot and the spring are equal:

η γ̈ + η̇ γ̇ = fE∞(ε̇− γ̇) . (20)

Let us now define the characteristic time τ of the
dashpot as:

τ =
η

fE∞

=
η̇

fĖ∞

. (21)

Replacing this latter into (20), one obtains the fol-

lowing important second-order evolution equation for

the strain-like internal variable γ,

γ̈ +
( Ė∞

E∞

+
1

τ
︸ ︷︷ ︸

= ω

)

γ̇ =
1

τ
ε̇ . (22)

Within a time interval [tn, tn+1], an exponential ap-

proximation to Eq. (22) can be used to solve for γ̇n+1

at time tn+1. This leads to the following first-order ac-
curate equation:

γ̇n+1 =
1− e−ω∆t

ωτ
ε̇ + e−ω∆t γ̇n , (23)

where ∆t = tn+1 − tn, γ̇n is the initial solution at time

tn, and where ω is supposed to be constant within the

time interval [tn, tn+1].

To go further, instead of solving for the strain-like

rate of internal variable, it is best suited to solve for
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the stress-like internal variable q. Hence, by using the

relation (19)2, i.e. q = η γ̇, we end up with the following
internal over-stress update equation:

qn+1 = e−ω∆t qn +
(
1− e−ω∆t

) f

ω∆t
E∞∆ε
︸ ︷︷ ︸

= ∆σ∞

, (24)

where qn ≡ η γ̇n is the initial solution at time tn, and

use has been made of the relation (21)1 together with
the approximation ε̇ ≈ ∆ε/∆t.

3.2.2 Evolution equation in the finite strain range

By reference to (24), we motivate the evolution equa-
tion for the three-dimensional and nonlinear deforma-

tion. Having this in mind, an obvious choice of appro-

priate evolution equation for the internal stress-like in-
ternal variable Q within the time interval [tn, tn+1] has

the form,

Qn+1 = e−ω∆t Qn + f
1− e−ω∆t

ω∆t
∆S∞ , (25)

where Qn is the known (stored) value of Q at time

tn, and ∆S∞ is the equilibrium second Piola-Kirchhoff

stress increment that has been evaluated by Eq. (16).
The quantity ω is given by,

ω =
Ė∞

E∞

+
1

τ
. (26)

and is considered as constant within the time interval.

Once Qn+1 is updated with the help of Eq. (25),

the difference ∆Q = Qn+1−Qn is to be evaluated and
replaced into Eq. (12) for the stress increment ∆S.

Useful for the linearization (4), the fourth-order tan-

gent modulus relative to the non-equilibrium part is
simply given by,

Ξ
neq

≡
∂∆Q

∂E
= f

1− e−ω∆t

ω∆t
Ξ

∞

, (27)

where Ξ
∞

is the tangent modulus of the equilibrium

part, Eq. (17). Hence, the algorithmic tangent modulus

that is used in the linearized form (4) is simply given
by,

Ξ
algo

=
(

1 + f
1− e−ω∆t

ω∆t

)

Ξ
∞

. (28)

4 Finite element outlines

In a finite element context, the interpolations of the

reference geometry and displacements are completely

standard, see e.g. [24] for the exposition of these ideas.
Over a typical finite element Be they take the form,

Xe(ζ) =

ne

node∑

A=1

NA(ζ)Xe
A ,

ue(ζ) =

ne

node∑

A=1

NA(ζ)ue
A ,

(29)

where XA ∈ R
ndim , uA ∈ R

ndim denote the reference
position and the displacement vector associated with

the element node A, ndim = 2 or 3 is the space di-

mension, ne
node is the node number within the element,

and NA(ζ) are the classical isoparametric shape func-
tions. The interpolation of the deformation gradient

then takes the form,

Fe(ζ) =

ne

node∑

A=1

(Xe
A + ue

A)⊗∇X [NA] ,

with ∇X [NA] = J(ζ)−T∇ζ [N
A] ,

(30)

where ∇ζ [�] is the gradient relative to the isoparamet-

ric coordinates, and J(ζ) = ∂Xe(ζ)/∂ζ denotes the

Jacobian of the isoparametric map ζ → X.







ueA
veA
we

A





 





ueB
veB
we

B







(Sn,Qn)

Fig. 3 Typical finite element with nodal dofs and integra-
tion points.

Equation (30)1 is used for the discrete variation and

increment of the Green-Lagrange strain tensor, Eq. (5),
for instance for the latter:

∆E =
1

2

ne

node∑

A=1

[

F T
e (∆ue

A ⊗∇XNA) + (∇XNA ⊗∆ue
A)Fe

]

=

ne

node∑

A=1

B[NA]∆ue
A ,

(31)

in terms of the nodal displacement increments ∆ue
A,

and where B[�] is the discrete Green-Lagrange strain
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operator. The element contribution to the global tan-

gent stiffness matrix and residual associated with the
element nodes are written from (4) as,

K
AB

e =

∫

Be

B
T [NA]Ξ

algo
B[NB ] dVe

+

{
∫

Be

(∇X [NA])T (Sn+∆S)∇X [NB ] dVe

}

Indim
,

R
A

e =

∫

Be

[

NAρ0b̄− B
T [NA] (Sn+∆S)

]

dVe ,

(32)

for A,B = 1, . . . ne
node, see Fig. 3 for an illustration, and

Indim
is the ndim × ndim identity matrix.

At the end of the global resolution, the stress field
Sn+1 and the updated stress-like internal variableQn+1

via the evolution equation (25) are stored at the inte-

gration points level during the whole iterative process.

5 Numerical simulations

For illustrative purposes, we give in this section two

sets of numerical simulations inspired by some exam-

ples found in the very recent litterature. The first one is
for a printed cylinder held as a 2D-axisymmetric prob-

lem, and the second is a three-dimensional straight wall.

Among others, we show that taking into account the
early age creep can have a non negligeable influence on

the final printed shapes.

5.1 A printed cylindrical geometry

We consider a cylindrical sample of external radius 270

mm, manufactured layer-by-layer, each layer with cross-

sectional dimensions of 40 mm width and 10 mm height.
The layers are added one-by-one at a speed of 0.31 min-

utes per layer until a maximum of 40 layers.

For the finite element simulations, each layer is dis-
cretized with axisymmetric 4-node quadrilateral ele-

ments with four elements through the layer thickness,

and 16 elements along its width, i.e. a total of 64 el-
ements per layer. Fig. 4 illustrates the initial mesh of

the cylinder with 40 layers. Notice that only meridional

buckling modes can be captured within this example.

For the fresh concrete, we choose the following time-

dependent equilibrium Young’s modulus and a constant

Poisson ratio:

E∞(t) = 0.035 + 0.001 t [MPa] , ν = 0.3 , (33)

40 mm

10 mm

270 mm

40 layers

Fig. 4 Finite element mesh of a cylinder with 40 layers : a
total of 2560 elements. The nodes of the bottom are fixed.
The layers are activated one-by-one starting from the bottom
during the printing process.

with the time t expressed in minutes. This modulus is

calculated and updated for each layer during the anal-
ysis based on its age in the printing process. It enters

into the definition of the Lamé-like coefficients given by

Eq. (15). Finally, for the gravity loading the density is
taken as

ρ0 = 2070 kg/m3 . (34)

For the sake of comparison, a first simulation is con-

ducted with no viscoelasticity activated in the model,

i.e by taking f = 0. Fig. 5 shows selected deformed
configurations with the radial displacement field u af-

ter 20 layers where the maximum obtained radial dis-

placement is umax = 9mm, Fig. 5(a), after 28 layers

where umax = 19.2mm, Fig. 5(b), and at the maxi-
mum reached by the computation after 31 layers where

umax = 33.64mm, Fig. 5(c).

Further computations are now performed, this time

with the activation of the incremental viscoelasticity. In

addition to the parameters given by (33), two cases are
considered here for the parameters f and τ :

case 1: f = 0.5 and τ = 1min ,

case 2: f = 0.5 and τ = 10min ,
(35)

that is, with the same over-stress levels but with differ-

ent characteristic times.

For the first case, Fig. 6 shows the deformed config-

urations after 20, 30, and 40 layers. This time the com-
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(a) 20 layers (b) 28 layers (c) 31 layers

Fig. 5 Simulation with no viscoelasticity. Deformed config-
urations at scale 1 and radial displacement field u for the
printed cylinder: (a) after 20 layers, (b) after 28 layers and, (c)
at the maximum of 31 layers. The printing speed is 0.31min
per layer.

putation has reached all the modelled layers and, com-

pared to the case without viscoelasticity, more struc-
tural stability is to be noticed due to the over-stresses.

The maximum radial displacement is umax = 6.25mm

after 20 layers, 15.4mm after 30 layers, and 62.35mm
after 40 layers.

(a) 20 layers (b) 30 layers (c) 40 layers

Fig. 6 Simulation with viscoelasticity, case 1: f = 0.5 and
τ = 1min. Deformed configurations and radial displacement
field u for the printed cylinder after: (a) 20 layers, (b) 30
layers and, (c) 40 layers. The printing speed is 0.31min per
layer.

For the second case, Fig. 7 shows similarly the de-

formed configurations after 20, 30, and 40 layers. As ex-
pected, the displacements are this time of lower ampli-

tudes than with the characteristic time τ = 1min. Here

the maximum radial displacement is umax = 4.85mm
after 20 layers, 10.6mm after 30 layers, and 24mm after

40 layers.

(a) 20 layers (b) 30 layers (c) 40 layers

Fig. 7 Simulation with viscoelasticity, case 2: f = 0.5 and
τ = 10min. Deformed configurations and radial displacement
field u for the printed cylinder after: (a) 20 layers, (b) 30 layers
and, (c) 40 layers. The printing speed is 0.31min per layer.

5.2 A 1m printed concrete wall

We consider a 1m straight wall manufactured layer-

by-layer, each layer with cross-sectional dimensions of
60mm width and 9.5 mm height. The layers are added

step-by-step until divergence of the computational pro-

cedure due to structural buckling is observed. To trigger
this latter, we a priori perform a geometrical imper-

fection by slightly tilting the cross-section of the wall:

each layer is tilted 10−3 times the width of one layer,

i.e. about 0.06 mm. This example has been studied in
[14] under incremental elastic modelling.

For the finite element simulations, each layer is dis-

cretized with isoparametric 8-node hexahedral elements

with two elements through the layer thickness, ten ele-
ments through its width, and 25 elements along the 1m

length, i.e. a total of 500 elements for each layer. Fig. 8

illustrates the initial mesh with 25 layers.
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Z

Y
X

Fig. 8 Finite element mesh of a 1m straight wall with 25
layers. The nodes of the bottom are fixed. The layers are
activated one by one starting from the bottom during the
printing process.

For the fresh concrete in the simulations below, we

choose the following time-dependent equilibrium Young’s
modulus and constant Poisson ratio:

E∞(t) = 25.023 + 2.94 t [kPa] , ν = 0.3 , (36)

with [t] = min. Here again, this modulus is updated for
each layer based on its age in the printing process. For

the gravity loading, the density is taken as

ρ0 = 2020 kg/m3 . (37)

In addition to the parameters given by (36), two

cases are considered here for remaining ones:

case 1: f = 0.2 and τ = 10min ,

case 2: f = 1 and τ = 10min ,
(38)

that is, this time with the same characteristic times,
but with different over-stress levels. A printing speed

of 0.3min per layer is adopted in both simulations.

As buckling is expected, let us make the following

indicative assumption: we consider that buckling occurs

when the maximum out of plane deformations exceeds
half layer-width, i.e. that is when the displacement com-

ponent v in the Y -direction (see Fig. 8) is such that

vmax ≥ 30mm.

For the first case, the simulation shows that the al-
most buckling occurs at layer 19 where the maximum

out-of-plane displacement is vmax = 28.74mm, see Fig.

9(b). We show in Fig. 9(a) the deformed configuration

just before buckling: after 18 layers, and where the max-
imum displacement is vmax = 7.15mm. And for illus-

trative purposes, Fig. 9(c) shows the post-buckling con-

figuration after 20 layers where vmax = 158mm.

−.838935

−.0392966

.760342

1.55998

2.35962

3.15926

3.15926

3.9589

4.75854

5.55817

6.35781

7.15745

−.710148

2.23544

5.18104

8.12663

11.0722

14.0178

14.0178

16.9634

19.909

22.8546

25.8002

28.7458

−1.17193

14.745

30.6618

46.5787

62.4956

78.4125

78.4125

94.3294

110.246

126.163

142.08

157.997

(a) 18 layers

(b) 19 layers

(c) 20 layers

v

v

v

Fig. 9 Case 1 with f = 0.2 and τ = 10min: deformed con-
figurations and displacement field v for the 1m wall after: (a)
18 layers, (b) 19 layers and, (c) 20 layers. Here the printing
speed is 0.3min per layer.
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For case 2, Fig. 10(b) shows that this time buckling

occurs after 23 layers with vmax = 46.8mm. Here again,
for illustrative purposes, Fig. 10(a) shows the deformed

configurations after 22 layers just before buckling where

vmax = 13.5mm, and Fig. 10(c) after 25 layers where
vmax = 222mm, i.e. two layers after buckling criterion

has been reached.

Last, the tentative curves shown in Fig. 11 summa-

rize a comparative evolution of the maximum out-of-
plane displacement with the number of printed layers.

6 Conclusions and perspectives

In this paper we have presented an extension to vis-

coelasticity of a recent theory for the modelling of the

3D concrete printing problem. Focusing on purely me-
chanical aspects, the fresh concrete has been described

through time-dependent incremental constitutive rela-

tions in the finite strain range, and with the mechanical
balance that is adapted so as to take into account this

particularity. As a principal ingredient, the kinematical

choice is based on the natural multiplicative decompo-
sition of the deformation gradient into its known part at

a precedent time and the relative deformation gradient.

The early age creep has been motivated by the clas-

sical generalized Maxwell model. This latter has been
adapted to the present kinematical choice. Among oth-

ers, only two parameters are newly introduced in ad-

dition to the incremental equilibrium elasticity: a char-

acteristic time, and an adimensional factor represent-
ing the amplitude of the over-stress with respect to

the equilibrium incremental elasticity. A model example

has been detailed where the equilibrium part is based
on a neoHooke-type incremental elasticity.

The main particularities of the algorithmic treat-

ment have been proposed for an easy implementation

within the context of the finite element method. The ef-
fort is of the order of that devoted to incremental finite

strain elastic computations. The additional over-stress

contribution reduces to the resolution of the discrete
local evolution equation at the level of the integration

points, together with the corresponding contribution to

the algorithmic tangent moduli. The numerical exam-
ples have shown the efficiency of the whole numerical

procedure. In particular, eventual structural buckling

can be captured. This feature could certainly help the

optimization of the printing process through simula-
tions that could limit the number of costly physical ex-

periments. More complex structures will be considered

in the near future.

−.681437

.739291

2.16002

3.58075

5.00147

6.4222

6.4222

7.84293

9.26366

10.6844

12.1051

13.5258

−.557387

4.17784

8.91307

13.6483

18.3835

23.1188

23.1188

27.854

32.5892

37.3244

42.0597

46.7949

−1.23048

21.1382

43.5069

65.8756

88.2443

110.613

110.613

132.982

155.35

177.719

200.088

222.457

(a) 22 layers

(b) 23 layers

(c) 25 layers

v

v

v

Fig. 10 Case 2 with f = 1 and τ = 10min: deformed config-
urations and displacement field v for the 1m wall after: (a)
22 layers, (b) 23 layers and, (c) 25 layers. Here the printing
speed is 0.3min per layer.
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Fig. 11 Comparative evolution of the maximum out-of-plane
displacement versus the number of the printed layers for the
two simulations of the 1m straight wall.

We believe that the modelling framework developped

in this paper can trigger deeper research. For instance,

a future step can be the coupling with the hydration

of concrete that, in turn, is strongly coupled to the
exothermy of the hydration reaction, i.e. through the

Arrhenius law. And last but not least, it goes without

saying that the present framework can easily be applied
to the manufacturing of classical 3D printed polymers.
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