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Thermomechanical effects accompanying the localized necking
of semi-crystalline polymers

Effets thermomécaniques accompagnant la striction localisée
de polymères semi-cristallins

Bertrand Wattrisse, Jean-Michel Muracciole, André Chrysochoos∗

Université Montpellier II, Laboratoire de Mécanique et de Génie Civil, Place E. Bataillon, C.C. 081, Bât. 13, 34095 Montpellier cedex 5, France

Abstract

This paper presents an application of quantitative infrared thermography to the analysis of the mechanical behavior of materials. We
particularly focus on the thermomechanical behavior of a semi-crystalline polymer below its glass transition temperature. During a quasi-
static tensile test, the temperature distribution at the surface of a thin flat sample is recorded by an infrared camera. Using a local expression
of the heat balance, the distribution of heat sources is derived from thermal measurements. These calorimetric data are then correlated with
strain and stress fields. Indeed, a second optical device gives displacement fields using correlation methods on speckle images. Strain and
strain-rate are derived from displacement data by numerical differentiation. The load-displacement curve shows three stages: first the load
increases with the stretching, then a significant softening of the sample occurs until it flows at constant load. Both calorimetric and kinematic
measurements indicate that the sample softening is associated with a progressive localization of heat sources and strain-rates, while the
loading plateau corresponds with a regular expansion of the neck. A local construction of stress-strain diagram is then proposed. Several
stress-strain curves are finally analyzed taking into account the loading stage characteristics and the expansion mode of the necking region.

Keywords: Quantitative infrared thermography; Material behavior; Thermomechanical couplings; Localization; Necking

1. Introduction

This paper deals with the behavior of a semi-crystalline
thermoplastic polymer submitted to a quasi-static monotone
tensile test. A classical way for describing the macroscopic
behavior of material consists in considering it not only as
a continuous medium but also as a thermodynamic system.
Thermomechanics of Solid Materials aims at presenting the
constitutive equations within a framework which adopts at
the same time the tools of Mechanics, while seeking to
translate the macroscopic consequences of the microstruc-
tural phenomena through state variables [1,2]. In such a
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context, the choice of the temperature and of a strain ten-
sor as state variables seems to be legitimate. It is then of
great importance to determine their evolutions during partic-
ular tests to establish and/or identify the constitutive equa-
tions.

To get this thermomechanical information, we developed
two independent complementary imaging techniques.

As other authors [3–6], infrared techniques were used to
monitor the temperature at the surface of the sample. The
originality of our approach was to use the infrared data to
estimate the heat sources involved in the strainingvia a
locally depth-wise averaged heat equation [7,8]. The left-
hand member of this equation was consequently written
as a partial derivative operator applied to the temperature
while the different heat sources due to energy dissipation and
to thermomechanical couplings were grouped in the right-
hand member. Information on the nature of the heat sources



Nomenclature

C specific heat . . . . . . . . . . . . . . . . . . . . J·kg−1·K−1

d dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . W·m−3

D strain-rate tensor . . . . . . . . . . . . . . . . . . . . . . . . s−1

d1 intrinsic dissipation . . . . . . . . . . . . . . . . . . W·m−3

d2 thermal dissipation . . . . . . . . . . . . . . . . . . W·m−3

E Green–Lagrange strain tensor
F deformation gradient tensor
f loading force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N
(i, j)(k, l) couples of pixel indexes
L,L0 current length, initial length . . . . . . . . . . . . . . . m
k isotropic conduction coefficient . . W·m−1·K−1

q heat influx vector . . . . . . . . . . . . . . . . . . . . W·m−2

R rotation tensor
re external heat supply . . . . . . . . . . . . . . . . . W·m−3

S0 initial cross-section . . . . . . . . . . . . . . . . . . . . . . m2

t time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
U right stretch tensor
T absolute temperature . . . . . . . . . . . . . . . . . . . . . . K

v velocity vector . . . . . . . . . . . . . . . . . . . . . . . m·s−1

wch evolved heat . . . . . . . . . . . . . . . . . . . . . . . . . J·m−3

wd deformation energy . . . . . . . . . . . . . . . . . . . J·m−3

we elastic energy . . . . . . . . . . . . . . . . . . . . . . . . J·m−3

ws stored energy. . . . . . . . . . . . . . . . . . . . . . . . . J·m−3

x longitudinal coordinate. . . . . . . . . . . . . . . . . . . . m

Greek symbols

α vector of internal state variables
ε Hencky strain tensor
εc conventional tension strain
σ Cauchy stress tensor. . . . . . . . . . . . . . . . . . . . MPa
σc conventional tension stress . . . . . . . . . . . . . . MPa
ψ Helmholtzt J·kg−1 free energy
ρ mass density . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

θ temperature variation. . . . . . . . . . . . . . . . . . . . .◦C
ϕ inter-correlation function

induced by the deformation process is very important for
modeling the material behavior. Indeed, the coupling sources
are linked to the state equations while the intrinsic dissipa-
tion is related to the evolution equations, both groups repre-
senting the set of constitutive equations.

The second imaging method was based on digital image
correlation. The surface of the sample being speckled with
white paint, these speckles play the role of local optical
signatures that can be tracked during the deformation by
using correlation methods. These techniques have been
used for a long time and provide whole-field in-plane
displacement data for plane structure [9,10]. To calculate
the third displacement component, we assumed material
incompressibility and depth-wise homogeneity of the strain
field [11]. The strain and strain-rate tensors were then
derived by differentiation. The tensile stress distribution was
also computed assuming its uniformity within each cross-
section of the sample.

This paper is composed as follows: in Section 2, the ener-
gy balance form and the heat equation are briefly reviewed.
The Section 3 mentions the main characteristics of the ex-
perimental set-up and gives an outline of the numerical tools
developed for image processing. The Section 4 focuses on
the most representative results obtained on a semi-crystalline
thermoplastic polymer stretched at room temperature. In par-
ticular, the similarity of the localization effects, in terms of
heat source and strain-rate, is underlined and put forward to
interpret the non-monotone mechanical response of the sam-
ple during the tensile test.

2. Thermomechanical background

The framework of Irreversible Thermodynamics is used.
It assumes the local state axiom [12,13]. Classically, we
characterize the equilibrium of a volume element by the ab-
solute temperatureT , a strain tensorε, and an scalar com-
ponents vectorα complete the description of the equilibrium
state.

If ψ and s denote respectively the specific Helmholtz
free energy and the specific entropy, the Clausius–Duhem
inequality, derived form of the second principle of thermo-
dynamics, defines the dissipationd as

d = σ :D− ρψε : ε̇− ρψα · α̇ − q

T
· gradT � 0 (1)

whereσ is the Cauchy stress tensor,D the Eulerian strain
rate tensor,ρ the mass density,q the heat influx vector.
The dot on letter stands for the material time derivative. The
equalityd = 0 then characterizes reversible thermodynamic
processes. Classically, [1,2],d is split into two termsd1 and
d2 whered1 is the intrinsic (mechanical) dissipation while
d2 symbolizes the thermal dissipation—both supposed to be
separately positive. They are, respectively, defined by

d1 = σ :D − ρψε : ε̇− ρψα · α̇ � 0 (2)

d2 = − q

T
· gradT � 0 (3)

Per unit volume, the intrinsic dissipationd1 is the difference
between the rate of deformation workw•

def = σ :D and the
rates of elastic (w•

e) and stored (w•
s) energy. The symbol( )•

means that the time variation of( ) is path-dependent.
Deduced from both principles of thermodynamics, the

local heat conduction equation reads



ρCṪ + divq

= d1 + ρTψT ε : ε̇+ ρTψTα · α̇ + re =w•
ch (4)

whereC denotes the specific heat capacity whilere sym-
bolizes the external heat supply. The intrinsic dissipationd1
and the thermomechanical coupling termsρTψT ε : ε̇ and
ρT ψT α · α̇ have been grouped in the right-hand member of
Eq. (4). For some materials, the termρTψT ε : ε̇ may repre-
sent the volume heat source due to thermoelastic couplings.

Taking into account a homogeneous isotropic conduction
of heat(q = −k gradT ), we underline that the left side of
Eq. (4) is a partial derivative operator applied to temperature.
Its estimate leads to a local determination of the overall heat
source.

3. Experimental arrangement

The experimental set-up involves a 100 kN tension-
compression, servo-mechanic testing machine. The cameras
are placed in the front of the testing machine, the axis of
the lenses being perpendicular to the sample surface. In this
work, we used separately either the infrared camera or the
CCD video camera. In other words, thermography analysis
and digital image correlation were performed by using a
same testing machine in the same testing conditions but on
different samples.

3.1. Infrared image processing

The heat equation (4) offers, under certain conditions, a
direct link between the temperature variations and volume
heat sources. In the framework of our experiments this
equation can be simplified as follows [3]:

ρC

(
∂θ

∂t
+ v · gradθ + θ

τth

)
− k

∂2θ

∂x2 =w•
ch (5)

wherev is the velocity vector,τth is a time constant charac-
terizing the lateral heat losses and−k∂2θ/∂x2 represents the
longitudinal heat losses,Ox being the pulling direction. The
variableθ denotes the temperature variation between current
and initial states. If the convective termsv · gradθ are neg-
ligible, the volume heat sourcew•

ch is directly derived from
an estimate of the left-hand member of Eq. (5). Naturally,
this approximation can be disputable for polymers having a
weak diffusivity and for deformation processes giving rise to
localization.

To estimate the left-hand side of Eq. (5), the thermal noise
is to be reduced before any differentiation. In this work,
this estimate was performed by using a local least-squares
fitting. The noisy discrete temperature field was locally fitted
by parabolic function, corresponding to piecewise constant
heat losses on a chosen neighborhood of each pixel of the
thermal image. Of course, the size of the approximation
zone affects the data smoothing, and thus influences the
efficiency of the filtering. Tests were necessary to get a

good compromise between speed and accuracy. We chose
15× 15 square pixels as approximation zone; this size takes
into account the signal-to-noise ratio, the space resolution of
data and the degree of heterogeneity we wish to detect. We
chose to implement a centered numerical scheme to fit the
temperature data. To avoid zero-padding at the boundary of
images, an image extension was made before the data fitting
step. The parabolic approximation function was adjusted
by using the temperature data available on one side of the
boundary. The image extension was then computed by using
this function.

3.2. Kinematic measurements

The digital speckle images were recorded by a C.C.D.
camera. The lens axis of the camera was kept fixed with ref-
erence to the frame of the testing machine and perpendicular
to the surface of the sample. The image processing was re-
alized after the test itself and was split into two steps. First,
the displacement field was estimated at pointsM of a cho-
sen virtual grid defined in the reference configuration. The
displacement atM is naturally decomposed into 2 in-plane
components and 1 out of plane component. The two first can
be computed by a correlation technique. Between two im-
agesI1 and I2, separated by a small strain increment, the
displacement (in pixels) atM located at pixel(i, j) in the
initial image, is given by the couple(k, l) maximizing the
intercorrelation functionϕ defined by [9]:

ϕ(k, l)
(k,l)∈[−RZ

2 , RZ2
]

=
∑CZ/2
i=−CZ/2

∑CZ/2
j=−CZ/2 I1(i, j) · I2(i + k, j + l)√∑CZ/2

i=−CZ/2
∑CZ/2
j=−CZ/2 I2

1 (i, j)

× 1√∑CZ/2
i=−CZ/2

∑CZ/2
j=−CZ/2 I2

2 (i + k, j + l)

(6)

where:

• CZ is the number of pixels defining the correlation zone
(i.e.,M ’s neighborhood corresponding to a local optical
signature of pointM);

• RZ is the number of pixels defining the research zone.

To reach a sub-pixel resolution, a local quadratic interpola-
tion was performed in the vicinity of the discrete maximum
of ϕ as proposed in [10]. The third displacement component
could be computed by assuming material incompressibility.

The strain (or strain-rate) field was then derived from the
displacements by space (and time) differentiation. To get
a good accuracy, the displacement field had to be filtered
too. Once again, we adopted a local least-squares fitting
to process the displacement data: a linear regression was
applied to each component of the displacement.



3.3. Checking of image processing

The performances of both image processing were tested
on analytic and experimental cases corresponding to various
heat source distributions and different strain patterns [8,
11]. The validity check of the out of plane displacement
computation was performed by comparing the thickness
evolution of a steel sample after a tensile test, given by a
three-axis measurement machine with the one given by the
computation [11]. Using standard parameters, the accuracy
on temperature variations was around 10−2 ◦C, while for
displacement calculations, the resolution was about 5×10−2

pixel, which corresponds with 5× 10−4 in terms of strain.

4. Results

The thermomechanical behavior of a semi-crystalline
thermoplastic polymer (polyamide) was studied for uniaxial
monotone loading tests performed on ISO R527 samples.

4.1. Presentation mode

Imaging techniques use and provide a lot of information.
In this work, they give access to time evolution of scalar
fields (kinetic energy, temperature, heat source), but also
fields of vectorial nature (displacement, velocity, accelera-
tion) and even tensor fields (strain, strain-rate). Because heat
source distributions and the strain-rate fields were found to
be rather homogeneous along the sample width, we were led
to propose the following representation of data: for conci-
sion’s sake we plotted temporal evolution of scalar profiles
captured along the longitudinal axis of the sample. Further
to simplify the data interpretation, contour plots were chosen
for quick visualization of the phenomenon patterns. Space-
time charts were then constructed with the abscissa axis (top)
representing the time and the ordinate axis (right) being the
longitudinal sample axis. The conventional stress-strain di-
agram was superimposed to give the reader a familiar land-
mark to link the local pattern of the measurements to the
loading state of the sample (left, bottom). For such a dia-
gram we used the conventional stress and strain which are
classically defined by:

σc = f

S0
(7)

εc = L−L0

L0
(8)

wheref is the loading force,S0, L0 andL being the ini-
tial cross-section, the initial and current lengths of the test
section, respectively. Of course, classical strain and strain-
rate tensors defined in the framework of finite transformation
were also used. To quantify volume variations, it is conve-
nient to use the logarithmic Hencky tensor because its trace
equals zero for any incompressible material. This strain mea-

surement, very often used in the one-dimensional processing
of tensile tests, is classically defined by

ε= ln(U ), (9)

where U is the symmetric and positive definite tensor
coming from the polar decomposition ofF ,

F =R ·U
R being a rotation tensor. As strain-rate measure, we used
the time derivative of the Green–Lagrange strain tensorE

defined by:

E = 1

2

(
F T · F − 1

)
(10)

4.2. A heterogeneous tensile test

Fig. 1 shows the time evolution of the longitudinal
distribution of heat sourcesw•

ch(x,0, t) while Fig. 2 shows,
in the same way, the profile of the longitudinal strain-rate
componentĖxx(x,0, t). Although results were not obtained
on a same sample, the calorimetric and kinematic fields show
strong similarities:

• the softening part of the conventional stress-strain curve
corresponds, at the same time, with a progressive con-
centration of heat sources and with a strain localization
characterized by high strain-rates;

• these localization mechanisms lead to the inception of
a neck which then spreads regularly throughout the test
section. The image processing shows that the material
is almost exclusively strained in the necking lips where
heat sources of high intensity develop. Note that during
the expansion of the necking region, the conventional
stress remains approximately constant, even when one
of both lips is stopped in the connection zone of the
sample.

Fig. 1. Time evolution of the longitudinal heat source profilew•
ch(x,0, t).

The test is velocity-controlled= 0.05 mm·s−1).



Fig. 2. Time evolution of the longitudinal strain-rate profilėExx(x,0, t).
The test is velocity-controlled= 0.05 mm·s−1).

4.3. A local construction of stress-strain diagram

When necking appears, it is legitimate to wonder about
the uniformity of the stress distribution within the gauge part
of the sample. An analysis based on the properties of the
strain fields was developed in [14] to construct a complete
stress pattern by integrating the equilibrium equations. In
this work, the plane-stress hypothesis for thin flat samples
was adopted, assuming that the tensile stress distribution
remains uniform within each cross-section of the gauge part.
Consequently, the mass balance and the incompressibility
hypothesis lead to:

σxx(x, t)= σc(t) · exp
(
εxx(x, t)

)
(11)

whereεxx(x, t) is the longitudinal Hencky strain. Remember
that speckle image processing gave weak strain gradients in
the width-direction, hence they-independence ofεxx .

Fig. 3 shows the time-evolution of the longitudinal
Cauchy stress profileσxx(x, t). In accordance with Eq. (11),
a progressive development of the stress concentration oc-
cured during the softening part of the conventional stress-
strain curve. Then, the expansion of the necking region gave
rise to important stress gradients in the necking lips.

It is interesting to illustrate the mechanical behavior of the
material by plotting correspondences between Cauchy stress
and Hencky strain. Fig. 4 shows the responses (σxx , εxx)
for five for cross-sections. The virual extensometers drawn
on the sketch of the sample spot the location of the chosen
cross-sections.

In this figure, we first notice that the stress-strain curves
are not the same from one section to another. Necking
inception takes place in sectionA. The expansion of the
necking region is then due to the propagation of two lips.
The upper one is rapidly blocked in the connection zone of
the sample.

The stress-strain curve atA presents a positive harden-
ing modulus (dσxx/dεxx > 0) and, after a “yield” stress, a
positive curvature (d2σxx/dε2

xx > 0). This exponential hard-

Fig. 3. Time evolution of the tensile stress profileσxx (x,0, t). The test is
velocity-controlled= 0.05 mm·s−1).

Fig. 4. Local stress–strain curves (σxx , εxx ) for five cross-sections regularly
chosen in the sample gauge part.

ening may explain the mechanism of expansion at constant
load of the necking region, contrary to some metallic materi-
als where the necking region narrows for positive hardening
modulus but negative curvature [14].

For sectionsB , C andD, the stress decreases during
the sample softening and remains constant until the second
necking lip arrives. For each curve, the turning point
indicates the passage of the lip. From then on, the stress
increases again and the stress-strain curve joins the one
of section A gradually. Until the end of the test, the
necking never reached the sectionE and no turning point
occurred.

5. Concluding comments

We developed two independent complementary imaging
techniques providing whole-field calorimetric and kinematic
data during mechanical tests. This information is useful to



distinguish the material behavior from the structure effects.
Indeed, in the particular case of tensile tests on polyamide,
the precocity of heterogeneity inception led us to consider
the sample as a structure. The image processing showed
narrow zones (the necking lips) where strain-rates, heat
sources and thus temperature gradients were very important.
These lips marked the boundary of the necking region which
expanded during the loading. Effects of this expansion mode
were also translated by a turning point in the local stress-
strain curves.

To go further in the establishment of the local energy bal-
ance and in the determination of the constitutive equations,
it is now necessary to combine thermal and kinematic data.
Indeed, when convective terms are no longer negligible, a
proper computation of the particular time derivative requires
the knowledge of the temperature distribution and the veloc-
ity field. This combination was already tested for metallic
materials [15] and should be transposed in a near future to
polymers that may overcome very large strains.
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