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Abstract. We survey some foundational results on querying graph-
structured data. We focus on general-purpose navigational query lan-
guages, such as regular path queries and its extensions with conjunc-
tions, inverses, and path comparisons. We study complexity, expressive
power, and static analysis. The course material should be useful to any-
one with an interest in query languages for graph structured data, and
more broadly in foundational aspects of database theory.

A graph database is an umbrella term for describing semi-structured
data organized by means of entities (i.e., nodes) and relations (i.e., edges)
between these entities. In other words, as a finite graph, which emphasizes
the holistic, topological aspect of the model, where there is no order be-
tween nodes or edges. This is a flexible format, usually with no ‘schemas’,
where adding or deleting data (or even integrating different data sources)
does not imply rethinking the modeling of data. Data can be typically
stored both in nodes and edges, but the shape of the graph itself is an
essential part of the data. Querying mechanisms on this kind of data
focus on the topology of the underlying graph as well as in the data con-
tained inside the edges and nodes. This flexibility comes at a cost, since
relations between entities have to be found in a possibly complex topol-
ogy, most notably as paths or sets of paths in some specific configuration.
Indeed a path in a graph database can be then seen as a first-order citi-
zen. The most basic querying mechanism is then the problem of finding a
“pattern” in the database, given as nodes and paths relating them with
certain properties. This is, precisely, the kind of languages we will survey
here, sometimes called “path query languages”.

Example 1. Consider, for example, a very basic database of academic
staff. This can be seen as a graph database, as shown in Figure 1. The
kind of queries we’re interested in are those which exploit the topology of
graph, such as “are there two persons with the same supervisor at friend
distance at most 5?” or “find all pairs of co-authors with a common
ancestor in the supervisor-relation”. C
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Fig. 1. A simple bibliometric graph database.

Graph databases are relevant to a growing number of applications
in areas such as the Semantic Web, knowledge representation, analysis of
Social Networks, biological and scientific databases, and others. This data
model encompasses formats such as RDF [38], or property graphs. This
is why in the last years there has been many theoretical and practical
developments for querying graph databases (see [6,45,2,1] for surveys).

One of the most important research trends has hinged on the develop-
ment of graph query languages that can reason about topological aspects
of the graph. They are also known as path query languages, because topo-
logical information in the database typically amounts to querying the
existence of paths satisfying certain constraints. The most basic form of
navigation consists of querying whether there is a path with a certain
property between two nodes. This type of queries have been introduced
as Regular Path Queries, or RPQ [40], and it has laid the foundations
of many more expressive query languages, including Conjunctive Regular
Path Queries (CRPQ) [28] or Extended CRPQ (ECRPQ) [9].

Outline This brief survey concerns the computational task of querying
graph databases via navigational query languages. We focus on the lan-
guage of regular path queries and its standard extensions. We study the
complexity of evaluation and static analysis tasks, and its expressive
power.

1 Preliminaries

We will assume familiarity with some basic automata theory notions such
as non-deterministic finite automata (NFA), regular languages, regular
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expressions and its paradigmatic problems of containment, emptiness and
equivalence. We use A,B to denote finite alphabets. In our examples, we
use the standard syntax for regular expressions over a finite alphabet A

regexp ::= ∅ | ε | a | regexp·regexp | regexp+regexp | regexp∗ | regexp+ a ∈ A

with the semantics [[ ]] : regexp→ 2A
∗

[[∅]] = ∅, [[ε]] = {ε}, [[a]] = {a}, [[e1 + e2]] = [[e1]] ∪ [[e2]],

[[e+]] = {u1 · · ·un : n ≥ 1 and ui ∈ [[e]] for every i},
[[e∗]] = {ε} ∪ [[e+]], [[e1 · e2]] = {u · v : u ∈ [[e1]], v ∈ [[e2]]}.

We use the word orderings of

– prefix: u is a prefix of v if v = u · w for some w;
– suffix: u is a suffix of v if v = w · u for some w;
– factor (a.k.a. infix, subword): u is a factor of v if v = w · u · w′ for

some w,w′;
– subsequence (a.k.a. scattered subword): u is a subsequence of v if u

is the result of removing some (possibly none) positions from v.

We also use its “proper” versions: u is a proper prefix of v if it is a
prefix of v and u 6= v; and similarly for the other orderings.

We also assume an elementary understanding of some fundamental
complexity classes such as PTime, NL, PSpace, ExpSpace, the poly-
nomial hierarchy, etc.

We often blur the distinction between an NFA A over A and the
language L(A) ⊆ A∗ it recognizes; and we do similarly for regular expres-
sions. In the sequel we may hence write w ∈ c∗ · (a + b)∗ or w ∈ A. We
denote by ε the empty word. We also assume some familiarity with the
query language of Conjunctive Queries (CQ) and Unions of CQ (UCQ).

Graph databases We consider a graph database over a finite alphabet
A to be a finite edge-labelled directed graph G = (V,E) over a finite set
of labels A, where V is a finite set of vertices and E ⊆ V × A× V is the
set of labelled edges. We write u

a−→ v to denote an edge (u, a, v) ∈ E. It
should be stressed that this is often an abstraction for formats such as
RDF [38] or property graphs (adopted, e.g., by Neo4j). For example, the
patterns used in SPARQL [32] (the W3C query language for RDF) are
triplets rather than edges, but this can often be abstracted away by means
of extra vertices and edges, without much loss of generality. Also, for most
graph database formats, A may be from a complex infinite domain, and
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further nodes may be labelled also with data. Graph databases, as defined
here, are then a basic abstraction of these models which allows us to focus
on querying the topology of the graph.

A (directed) path π of length n ≥ 0 in G is a (possibly empty) se-
quence of edges of G of the form (v0, a1, v1), (v1, a2, v2), . . . , (vn−1, an, vn).
There is always an empty path starting and ending at the same node. The
label label(π) of π is the word a1 · · · an ∈ A∗ . When n = 0 the label of π
is the empty word ε.

2 Conjunctive Regular Path Queries

In graph databases, a fundamental querying mechanism is based on the
existence of some paths in the database with certain properties. These
properties include that the label of a path must belong to a certain lan-
guage, or that the starting or terminal vertices of some paths must be
equal. This gives rise to the much studied class of Regular Path Queries
(RPQ) and Conjunctive Regular Path Queries (CRPQ) [21].

Example 2. An example of a CRPQ query is

Q1(x) = x
a∗b−−→ y ∧ x (a+b)∗c−−−−−→ y.

It outputs all vertices v having one outgoing path with label in a∗b and
one outgoing path with label in (a+ b)∗c. Further these paths must end
at the same vertex. C

Conjunctive Regular Path Queries (CRPQ) can be understood as the gen-
eralization of conjunctive queries with a very simple form of recursion.
CRPQ are part of SPARQL, the W3C standard for querying RDF data
[38], including well known knowledge bases such as DBpedia and Wiki-
data. In particular, RPQs are quite popular for querying Wikidata. They
are used in over 24% of the queries (and over 38% of the unique queries),
according to recent studies [37,16]. More generally, CRPQ constitute a
basic building block for query languages on graph-structured data [6].

A Regular Path Query (RPQ) over the alphabet A is a query of
the form

Q(x, y) = x
L−→ y (1)

where L is a regular language over A, specified either as an NFA or a
regular expression (we will not make a distinction here). Given a graph
database G and a pair of node (v, v′) therein, we say that the pair (v, v′)
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satisfies Q if there exists a path π from v to v′ such that label(π) ∈ L.
The result of evaluating Q on G is then the set of all pairs (v, v′) of G
satisfying Q.

Example 3. Consider the RPQ

Q(x, y) = x
coauthor∗−−−−−−→ y.

It retrieves all pairs persons related by a coauthorship. In particular on
the graph database defined in Example 1 it retrieves (Anna,Lise), among
other pairs. C

A conjunctive regular path query (CRPQ) is the closure under pro-
jection (i.e., existential quantification) and conjunction of RPQ queries.
That is, CRPQ is to RPQ what Conjunctive Queries is to first-order
atoms. Concretely, a Conjunctive Regular Path Query (CRPQ) is
a query of the form

Q(x1, . . . , xn) = A1 ∧ · · · ∧Am

where the atoms A1, . . . , Am are RPQ. We call the variables x1, . . . , xn
occurring on the left-hand side the free variables. Each free variable
xj has to occur also in some atom on the right-hand side, but not every
variable on the right-hand side needs to be free.

A homomorphism from a CRPQ Q as above to a graph database
G = (V,E) is a mapping µ from the variables of Q (free and non-free)
to V . Such a homomorphism satisfies an RPQ A(x, y) if (µ(x), µ(y))
satisfies A; and it satisfies Q if it satisfies every RPQ atom of Q. The set
of answers Q(G) of a CRPQQ(x1, . . . , xn) over a graph databaseG is the
set of tuples (v1, . . . , vn) of nodes of G such that there exists a satisfying
homomorphism for Q on G that maps xi to vi for every 1 ≤ i ≤ n. We
say that a CRPQ is Boolean if it has no free variables, in which case
Q(G) = {()} (where () denotes the empty tuple) if there exists a satisfying
homomorphism or Q(G) = {} otherwise. We often write G |= Q instead of
Q(G) = {()}. Most of the results we will present hold also for expressive
extensions of CRPQ with finite unions and two-way navigation, known
as UC2RPQ [18]. However, for simplicity of presentation, we will focus
on CRPQ.

Example 4. Consider the (Boolean) CRPQ

Q1() = x
supervise+−−−−−−→ x
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It checks if the supervisor relation has cycles (i.e., it is true whenever
there are). Another CRPQ could be

Q2(x) = x
supervise+−−−−−−→ y ∧ x friend−−−→ y

retrieving all persons being friends with some descendant in the supervisor
genealogy. C

It is worth observing that in the context of graph databases, a Con-
junctive Query (CQ) is a CRPQ whose every regular expression de-
notes a language of the form {a} for some a ∈ A. Thus, CQ is included
in CRPQ in terms of expressive power.

Alternative semantics For some applications such as transportation prob-
lems or DNA matching (see [5] for a more complete list of application
scenarios) there is a need to require that the considered paths have no
repeated nodes or no repeated edges. In this way, alternative semantics

arise if we change the definition of “satisfaction” of an RPQ atom x
L−→ y

for a given homomorphism µ. In the default (a.k.a. arbitrary path) se-
mantics, we ask for the existence of any (directed) path from µ(x) to µ(y)
with label(π) ∈ L. In the trail semantics, we demand that the path has
also no repeated edges, and in the simple path semantics, we further
enforce that the path must be simple (i.e., no repeating vertices). It then
follows that if x̄ ∈ Q(G) under simple path semantics, then x̄ ∈ Q(G) un-
der trail semantics; and if x̄ ∈ Q(G) under trail semantics then x̄ ∈ Q(G)
under arbitrary path semantics. But the converse directions do not hold
in general. In the sequel we assume that we work with the default (i.e.,
arbitrary path) semantics unless otherwise stated.

Structural fragments of CRPQ A standard way to define fragments of
conjunctive queries is via their underlying graph (a.k.a. Gaifman graph).
In a similar way, one can define fragments of CRPQ via its underlying
multi-graph. Concretely, for any set X, let ℘2(X) denote the set of non-
empty subsets of X of size at most 2. The underlying multi-graph of
a CRPQ Q is the directed multi-graph (V,E, ν) where: V is the set of
variables of Q, E is the set of atoms of Q, and ν : E → ℘2(V ) is defined

as ν(x
L−→ y) = {x, y} for every RPQ atom x

L−→ y in Q. For a given class
C of multi-graphs, let CRPQ(C) be the set of CRPQ whose underlying
multi-graph is in C.1 In the sequel we will rather use the term graph to
denote the underlying multi-graph of a CRPQ.

1 Why multi-graphs and not just graphs? It turns out that, contrary to what happens
to Conjunctive Queries, the multiplicity of edges makes a difference for some prob-
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Example 5. Consider, for example, the CRPQ

Q(x, z) = x
a∗−→ y ∧ y a+b∗−−−→ y ∧ x b∗−→ z ∧ z (b+c)∗−−−−→ x

In Figure 2 there is its graphic representation and its underlying graph.
C

x y

z
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Fig. 2. Underlying graph of a CRPQ.

3 Evaluation of CRPQ

The evaluation problem is the most fundamental decision problem on
databases: the problem of whether a given data is retrieved by a query
on a database.

Problem Evaluation problem for a class Q of (graph database)
queries (Eval-Q)

Given Q ∈ Q, a graph database G, a tuple x̄ of nodes
Question Is x̄ ∈ Q(G)?

Observe that the evaluation problem has two kind of inputs of very
different nature: the query and the database. In terms of size, one should
expect the query to be several orders of magnitude smaller than the
database, which raises the question of, for example, whether different
algorithms running in time O(2|Q| · |D|), O(|Q| · 2|D|) or O(|D||Q|) should
be justly placed in the same “complexity class”. This is the reason why
several complexity variants are often considered, useful to understanding
the various aspects of the complexity for the evaluation problem. The
default one is the combined complexity, where one considers both the

lems, such as the containment problem. We need, hence, to have a more fine-grained
notion than a simple graph.
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query and database as being part of the input. The complexity when one
considers the input query Q to be of constant size it is the data com-
plexity [44]. Hence, an algorithm running in O(2|Q| · |D|) would have
exponential combined complexity but linear data complexity. If, on the
other hand, one considers the database D to be of constant size we obtain
the query complexity. There is, on the other hand, the parameter-
ized complexity version of this problem in which the ‘parameter’ is the
query, we will not give details here about parameterized complexity, and
we refer the interested reader to [29]. On the parameterized complexity,
the classes ‘FPT’ (for Fixed Parameter Tractable) and ‘W[1]’ are often
considered as the PTime and NP analog of classical non-parameterized
complexity classes, respectively. The idea is that an algorithm is FPT if it
runs in time O(f(|Q|) · |D|c) for any computable f and constant c. Thus,
an algorithm running in time O(|D||Q|) is not (in principle) FPT, but an
algorithm running in time O(2|Q| · |D|) is FPT.

Theorem 1 (Folklore). Eval-CRPQ is

– NP-complete in combined complexity,
– NL-complete is data complexity,
– NP-complete in query complexity,
– W[1]-complete in parameterized complexity.

Eval-RPQ is

– NL-complete in combined complexity,
– NL-complete in data complexity,
– NL-complete in query complexity,
– FPT in parameterized complexity.

That is, the combined complexity follows the same behavior as that of
Conjunctive Queries, with the exception that evaluating the ‘atoms’ is an
NL-complete task —essentially, the classical graph problem of existence
of a source to target path. In other words, the lower bounds for combined
and parameterized complexities follow from the following classical result
for CQ.

Theorem 2. [19] Eval-CQ is

– NP-complete in combined complexity,
– in LogSpace (and in AC0) in data complexity,
– NP-complete in query complexity,
– W[1]-complete in parameterized complexity.
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As discussed before, a standard way to define subclasses of CRPQ is
by means of its underlying graphs. In the light of the results of Theo-
rem 1 above, one natural concern is whether the combined and param-
eterized complexities can be improved by considering queries of some
‘simple’ structure. The question is then: given a class C of graphs, is
Eval-CRPQ(C) tractable? Or rather: For which C is Eval-CRPQ(C)
tractable?

As it turns out, by straightforward reductions to and from the Con-
junctive Query case, we obtain that the RPQ complexity extends to any
class of CRPQ defined by a bounded treewidth class.2 This notion, in
fact, characterizes the tractable complexity classes.

Theorem 3 (consequence of [31]). Assuming W[1] 6= FPT, for any
class C of graphs the following are equivalent:

– Eval-CRPQ(C) is in polynomial time in combined complexity,
– Eval-CRPQ(C) is FPT in parameterized complexity,
– C has bounded treewidth.

The tractable cases of evaluation has been also extended to larger classes,
in which either queries need to be equivalent to queries of bounded tree-
width (obtaining FPT tractability) or they have to be homomorphically
equivalent3 to queries of bounded treewidth (obtaining polynomial time
tractability) [42].

Alternative semantics Under alternative semantics, things are more com-
plex, since Eval-RPQ is already an NP-complete problem.

Theorem 4. Eval-RPQ is NP-complete both under trail and simple
path semantics. Both in data and in combined complexity.

In fact, NP-completeness under simple path or trail semantics already

holds if we fix the query to be x
(aa)∗−−−→ y or x

a∗ba∗−−−→ y [40]. Interestingly,
both these semantics enjoy a trichotomy characterization in terms of data

complexity: for any fixed query Q = x
L−→ y the evaluation problem for Q

is either NP-complete, NL-complete, or in LogSpace (even in AC0, the
data complexity of evaluating first-order formulas). What is more, given
a query Q, one can effectively decide in which of these three cases falls
(for each semantics).

2 Intuitively, a graph with small treewidth resembles a tree (e.g., trees have treewidth
1 and cacti have treewidth 2). Many results for trees can be generalized to bounded
treewidth classes.

3 For some suitable notion of homomorphism between queries.
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Theorem 5 ([5,39]). For each fixed regular language L ⊆ A∗ and for

each ? ∈ {simple-path, trail}, the data complexity of Eval-RPQ for x
L−→

x under ?-semantics is either NP-complete, NL-complete or in AC0. Fur-
ther, these characterizations are effective (and different for each seman-
tics).

4 Containment for CRPQ

As databases become larger, reasoning about queries (e.g., for optimiza-
tion) becomes increasingly important. One of the most basic static analy-
sis problems on monotone query languages is that of query containment:
is every result returned by query Q1 also returned by query Q2, for every
database? This can be a means for query optimization, as it may avoid
evaluating parts of a query, or reduce and simplify the query with an
equivalent one. It falls in what is commonly known as query reasoning
or static analysis, since it involves reasoning only about the query, and
it may give rise to optimization tasks that can be carried out at com-
pile time (rather than at running time). Furthermore, query containment
has proven useful in knowledge base verification, information integration,
integrity checking, and cooperative answering [18].

Concretely, given two CRPQ Q1, Q2, we say that Q1 is contained in
Q2, denoted by Q1 ⊆ Q2, if Q1(G) ⊆ Q2(G) for every graph database G,
which raises the following decision problem for any fragment Q of CRPQ.

Problem Containment problem for a class Q of (graph
database) queries (Cont-Q)

Given Q1, Q2 ∈ Q
Question Is Q1(G) ⊆ Q2(G) for every graph database G?

We say Q1 is equivalent to Q2, denoted by Q1 ≡ Q2, if Q1 ⊆ Q2 and
Q2 ⊆ Q1.

The containment problem for RPQ and CRPQ are decidable in PSpace
and ExpSpace respectively.

Theorem 6 (Folklore). Cont-RPQ is PSpace-complete.

In fact, for any two RPQ Q1 = x
L1−→ y and Q2 = x

L2−→ y it is easy
to see that Q1 ⊆ Q2 if, and only if, L1 ⊆ L2. Hence RPQ containment
is reducible from and to language containment. Since regular language
containment is a PSpace-complete problem, it follows that Cont-RPQ
is PSpace-complete. On the other hand, the bounds for CRPQ are some-
what more involved.
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Theorem 7 ([18,28]). Cont-CRPQ is ExpSpace-complete.

It is interesting to remark that the above hardness result holds even for

containment of CRPQ Q1 ⊆ Q2 where Q1 is of the form Q1 = x
L−→ y

and Q2 is of the form Q2 =
∧
i x

L1−→ y. In other words, Cont-CRPQ(C)
is already ExpSpace-hard for the class C of multigraphs having exactly
two nodes, and even for Boolean queries.

However, in certain circumstances, the ExpSpace-hardness of the
containment problem can be avoided. That is, there are fragments F of
CRPQ whose containment problem is in PSpace or even in lower classes.
Which are these fragments? There are two natural systematic ways to de-
fine fragments of CRPQ, namely

1. as discussed before, by restricting the “shape” of the query, as in the
underlying multigraph when regular expressions are abstracted away;
or

2. by restricting the class of regular expressions that may occur in the
queries RPQ atoms.

1. Restricting the shape Here we ask the same question as we did for the
evaluation problem: given a class of multigraphs C, is Cont-CRPQ(C)
tractable? Of course here ‘tractable’ cannot be any better than PSpace,
since it is the complexity of Cont-RPQ, corresponding to the graph
having two vertices and one edge. It turns out that, just as in the case
for Eval-CRPQ(C), one can characterize the classes of graphs C under
which Cont-CRPQ(C) is in PSpace. However, the graph measure is not
treewidth but bridgewidth, which we define next.

A bridge of a (multi)graph is a minimal set of edges (in the sense of
inclusion) whose removal increases the number of connected components
(see Figure 3 for some examples). The bridge-width of a graph is the
maximum size of a bridge therein. Bridge-width is more restrictive than
treewidth, in the sense that if a graph has bridge-width at most k then
it also has treewidth at most k, but the converse does not necessarily
hold. Let us define a class C of graphs to be non-trivial if it contains at
least one graph with at least one edge; and let us call it bridge-tame if
either C has bounded bridge-width or there is a polynomial time function
f : N→ C such that f(n) has bridgewidth ≥ n for every n.

Theorem 8 ([25]). For every non-trivial bridge-tame class C of graphs,

– if C has bounded bridge-width, then the containment problem for CRPQ(C)
is PSpace-complete;

– otherwise, the containment problem for CRPQ(C) is ExpSpace-complete.
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not a bridge
(not a separator)

<latexit sha1_base64="2Kz9jL2m/JW+2bayU2VoDZOdBB4=">AAACJXicbVBNSwMxEJ312/Wr6tFLsAj1UnbrQQ+CBS8eFawK3VKy2WkbzCZLkhXK0j/jxb/ixYMigif/gj/BtFXQ1geBN2/mMZkXZ4IbGwTv3szs3PzC4tKyv7K6tr5R2ty6MirXDBtMCaVvYmpQcIkNy63Am0wjTWOB1/Ht6bB/fYfacCUvbT/DVkq7knc4o9ZJ7dJxFGOXy4KhtKgHvlSWUBJrnnQxivzKuDaYUU2t0vt+hDL5mW6XykE1GIFMk/CblE8+YYTzduklShTLU2dnghrTDIPMtgqqLWcCB36UDzexW9rFpqOSpmhaxejKAdlzSkI6SrsnLRmpvx0FTY3pp7GbTKntmcneUPyv18xt56hVcJnlFiUbL+rkglhFhpGRhGtkVvQdoUxz91fCei4P5jIwvgshnDx5mlzVquFBtXZRK9d3x2nAEuzALlQghEOowxmcQwMY3MMjPMOL9+A9ea/e23h0xvv2bMMfeB9f+9emQw==</latexit>

not a bridge
(not minimal)

<latexit sha1_base64="v45nB5g+9nhkqjUxanUrMtXJXhQ=">AAACIXicbVDLSgMxFL3j2/FVdekmtAh1U2bqQncKblwqWBU6pWQyt20wyQxJRihDf8WNv+LGhSLdiT/hJ5g+BLUeCJyccw/JPXEmuLFB8O7NzS8sLi2vrPpr6xubW6XtnWuT5pphg6Ui1bcxNSi4woblVuBtppHKWOBNfHc28m/uURueqivbz7AlaVfxDmfUOqldOo5i7HJVMFQW9cBXqSWUxJonXYwivzq6S664pOLAj1Al35PtUiWoBWOQWRJOSeXkE8a4aJeGUZKyXLo4E9SYZhhktlVQbTkTOPCj3GBG2R3tYtNRRSWaVjHecED2nZKQTqrdUZaM1Z+Jgkpj+jJ2k5LanvnrjcT/vGZuO8etgqsst6jY5KFOLohNyaguknCNzIq+I5Rp7v5KWI9qylwHxnclhH9XniXX9Vp4WKtf1iun5UkbsAJ7UIYqhHAEp3AOF9AABg/wBC/w6j16z96bN5yMznnTzC78gvfxBe4ZpLA=</latexit>
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Fig. 3. Examples and non-examples of bridges.

2. Restricting the regular expressions As we have remarked before, the
lower bound construction of Theorems 7 and 8 make use of CRPQ which
have a simple and regular shape (if seen as the underlying graph) but
contain rather involved regular expressions, which do not correspond to
CRPQ how they typically occur in practice. In fact, a large majority of
regular expressions of queries used in practice are of a very simple form
[16,17]. This motivates the study of CRPQ containment on fragments
having commonly used kinds of regular expressions. The goal here is to
identify restricted fragments of CRPQ that are both common in practice
and have a reasonable complexity for query containment.

For a class of regular expressions L, let CRPQ(L) be the set of CRPQ
whose every RPQ atom uses an expression from L.

Let Ls be the set of regular expressions of the form ‘s’ for each symbol
s of the finite alphabet. Let LS be the set of expressions of the form
‘a1 + · · · + an’ for a1, . . . , an ∈ A (i.e., it corresponds to unions of Ls).
Finally, for α ∈ {s, S}, let Lα∗ be the set of regular expressions of the
form ‘r∗’ where r ∈ Lα. We next write Lα,β as shorthand for Lα ∪ Lβ.4

Following this notation, observe that CRPQ(Ls) corresponds to the class
of CQ (on graph databases), and that CRPQ(LS) is contained in UCQ
in terms of expressive power.

Theorem 9 ([26,23]).

1. The containment problem for CRPQ(LS,S∗) and CRPQ(Ls,S∗) are
ExpSpace-complete.

2. The containment problem for CRPQ(Ls,s∗), CRPQ(LS,s∗), and for
CRPQ(LS) are all Πp

2 -complete.

4 The choice of the fragments Ls, LS , Ls∗ , and LS∗ is based on recent studies on
SPARQL queries on Wikidata and DBpedia [17,16,13].



Foundations of Graph Path Query Languages (Course Notes) 13

Observe that CRPQ(L) is closed under concatenation in the following
sense: Let Lconc be the closure under concatenation5 of L, then CRPQ(L)
and CRPQ(Lconc) are equi-expressive (and there is a linear time transla-
tion from one to the other). This means that, for example, the Πp

2 upper
bound for CRPQ(LS,s∗) also holds for CRPQ having concatenations of

expressions of LS,s∗ in the RPQ atoms, like x
(a+b)·b∗·(b+c)−−−−−−−−−→ y. Notice also

that, in light of the previous Theorem 8, the ExpSpace lower bound of
Theorem 9 uses —necessarily— queries of arbitrarily large bridge-width.

5 Boundedness of CRPQ

Boundedness is another important static analysis task of queries with a
fixed-point feature. At an intuitive level, a query Q in any such logic is
bounded if its fixed-point depth, i.e., the number of iterations that are
needed to evaluate Q on a database D, is bounded (and thus it is inde-
pendent of the database D). In databases and knowledge representation,
boundedness is regarded as an interesting theoretical phenomenon with
relevant practical implications [35,14]. In fact, while several applications
in these areas require the use of recursive features, actual real-world sys-
tems are either not designed or not optimized to cope with the compu-
tational demands that such features impose. Bounded formulas, in turn,
can be reformulated in ‘non-recursive’ logics, such as first-order logic, or
even as a union of conjunctive queries (UCQ) when Q itself is positive.
Since UCQs form the core of most systems for data management and
ontological query answering, it is relevant to understand when a query
can be equivalently translated to a UCQ as an optimization task. It has
also been experimentally verified in some contexts that recursive features
encountered in practice are often used in a somewhat ‘harmless’ way, and
that many of such queries are in fact bounded [33]. We say that a CRPQ
query is bounded if it is equivalent to some UCQ.

Example 6. Consider the following three Boolean CRPQ Q1, Q2, Q3 over
the alphabet A = {a, b, c, d} such that

Q1 = (x
Lb−→ y ∧ x

Lb,d−−→ y),

Q2 = (x
Ld−→ y ∧ x

Lb,d−−→ y),

Q3 = (x
Lb+Ld−−−−→ y ∧ x

Lb,d−−→ y),

5 That is, Lconc = {s1 · · · sn : for n ∈ N and s1, . . . , sn expressions from L}.
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where Lb = a+b+c, Ld = ad+c+, and Lb,d = a+(b+ d)c+. As it turns out,
Q1 and Q2 are unbounded. However, Q3 is bounded, and in particular, it
is equivalent to the UCQ ϕ1 ∨ ϕ2, where

ϕ1 = ∃x0, x1, x2, x3 (x0
a−→ x1) ∧ (x1

b−→ x2) ∧ (x2
c−→ x3)

ϕ2 = ∃x0, x1, x2, x3 (x0
a−→ x1) ∧ (x1

d−→ x2) ∧ (x2
c−→ x3).

C

Problem Boundedness problem for a class Q of (graph
database) queries (Bound-Q)

Given Q ∈ Q
Question Is there a UCQ Q′ such that Q ≡ Q′?

For an RPQ Q(x, y) = x
L−→ y it is easy to see that the boundedness

problem is really the finiteness problem of L: Q is bounded if, and only
if, L is finite (i.e., an NL-complete problem). However, if some of the
variables are existentially quantified the problem is not as trivial. For

example, a CRPQ of the form ∃y x L−→ y is bounded if, and only if, the
language

Lprefix = {w ∈ L : there is no proper prefix of w in L}

is finite [8]. Likewise a CRPQ of the form ∃x, y x L−→ y is bounded iff

Lfactor = {w ∈ L : there is no proper factor of w in L}

is finite. Both these problems are already PSpace-complete [8]. For gen-
eral CRPQ it turns out that the problem is related to the bounded-
ness problem for an extension of finite automata which associate to each
word in the language a natural number or ‘cost’, called Distance Au-
tomata [34] (a.k.a. weighted automata over the (min,+)-semiring [24],
min-automata [15], or {ε, ic}-B-automata [20]). The resulting complexity
for the boundedness problem for CRPQ is, just as for the containment
problem, ExpSpace-complete.

Theorem 10 ([8]). Bound-CRPQ is ExpSpace-complete. If a CRPQ
is bounded, then it is equivalent to a UCQ of triple exponential size; and
this bound is optimal.

Contrary to the containment problem, very little is known when re-
stricting either the shape or the languages of the CRPQ with regards to
the boundedness problem.
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6 Semantic membership for CRPQ

As we have seen before, natural classes of CRPQ with tractable evaluation
arise from considering bounded treewidth classes C. However, this is a
syntactic property, which begs the following question for any fixed class
C of bounded treewidth: given a CRPQ Q, is it equivalent to some query
Q′ from CRPQ(C)? If so, we can replace the costly query Q with Q′, or
adapt the strategy for the (polynomial) evaluation of Q′ to Q. The idea
behind this optimization task is —as for boundedness— that the time
needed to compute Q′ may be comparatively small to the gain of having
a polynomial time algorithm for the evaluation problem. Let Tk be the
set of all multigraphs of treewidth at most k. We can then consider the
following family of decision problems.

Problem Treewidth-k semantic membership (Mem-twk)

Given a CRPQ Q
Question Is there a query Q′ in CRPQ(Tk) such that Q ≡ Q′?

For the case where the input query turns out to be a Conjunctive
Query his is a studied problem which is decidable, NP-complete [22] (ba-
sically, it reduces to testing treewidth of the core of a graph). However, for
CRPQ this problem turns out to be more challenging. It has been shown
to be decidable only for k = 1, that is, for ‘trees’, where trees should
be understood as the class of multigraphs whose every simple cycle is of
length 1 (i.e., a self-loop) or 2 (i.e., a cycle between a parent and a child).

Theorem 11 ([11]). Mem-tw1 is decidable, ExpSpace-complete.

It is however unknown if Mem-twk is decidable for any other k.

7 Extending CRPQ with union and two-wayness

Two-wayness. Observe that semantics of RPQ and CRPQ are based on
the notion of directed path. This means that the query cannot “freely”
move around the graph edges, but it has to comply with the direction
of edges. Remark that not even the reachability query “x and y belong
to the same connected component in the underlying undirected graph” is
expressible as a CRPQ. A standard extension of CRPQ and RPQ that
palliates this lack of expressive power, consists in adding the ability to
navigate the graph database with inverse relations, and it is known as
C2RPQ and 2RPQ, respectively (2 for “two-way navigation”).
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For any alphabet A, let us define the alphabet A± := A ∪̇A−1 that
extends A with the set A−1 := {a−1 | a ∈ A} of “inverse” symbols.
For a graph database G over A, let G± be the result of adding an edge
(v, a−1, v′) for every (v′, a, v) ∈ E.

Now the regular expressions of a (C)2RPQ are defined over the ex-
tended alphabet A±. The semantics of a 2RPQ is extended as expected:

a pair (v, v′) of vertices of G satisfies a 2RPQ x
L−→ y if there is a path π

in G± from v to v′ such that label(π) ∈ L (remember, now L is a regular
subset of (A±)∗). The semantics of C2RPQ follows the same definition
based on 2RPQ.

Example 7. Consider the following 2RPQ

Q(x, y) = x
(supervise · supervise−1)∗−−−−−−−−−−−−−−−−→ y.

On a graph database as the one of Example 1, Q returns pairs of people
related by a “co-supervision” chain. C

Union. A CRPQ, contrary to a CQ, has some restricted built-in union by
the simple fact that regular languages are closed under union. However,
the general structure of the query is fixed.

Example 8. Consider the following two Boolean CQs

Q1 = x
a−→ y

Q2 = x
b−→ x

It can be shown that there is no CRPQ expressing Q1 ∨Q2. C

As for Conjunctive Query, it is a rather standard extension to add the
possibility to have finite unions of queries, and it is known as UCRPQ.
A UCRPQ is thus a query of the form Q = Q1∨ · · · ∨Qn, where every Qi
has the same set of free variables. We then define x̄ ∈ Q(G) for a graph
database G if x̄ ∈ Qi(G) for some i.

Finally, the extension including both possibilities of having two-way
navigation as well as unions is denoted by UC2RPQ, and its semantics
is as expected.

As it turns out, most known results extend to UC2RPQ in a seam-
less way: it just turns out that upper bound techniques (involving invari-
ably some classes of automata) can extend to handle UC2RPQ (involving
classes of two-way automata). In particular, the results on the contain-
ment and evaluation problems of Theorems 1, 3, 6, 7, 8, 10, and 11 extend
to UC2RPQ while preserving the stated upper bounds.
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8 Extending CRPQ with path comparison

Another studied extension of CRPQ conveys the ability to compare paths
for certain relations on the labels. In comparison, one can think of CRPQ
as testing for unary relations.

Example 9. Observe that the query Q1 from Example 2 could be equiv-
alently written as

Q1(x) = ∃y ∃π1, π2 x
π1−→ y ∧ x π2−→ y ∧

label(π1) ∈ La∗b ∧ label(π2) ∈ L(a+b)∗c

Where L? is the language given by the expression ?. With this notation
in mind, consider the following query

Q2(x) = ∃y ∃π1, π2 x
π1−→ y ∧ y π2−→ x ∧

(label(π1), label(π2)) ∈ R

where R ⊆ A∗ × A∗ is now a word relation such as, for example, the
equality relation R = {(u, v) ∈ A∗ × A∗ : u = v}. Such query Q2 would
then output all vertices v having one cycling path with label ww for some
w ∈ A∗. C

Indeed, some scenarios require the ability to “compare paths”, i.e., to re-
late the words given by the labels corresponding to the existentially quan-
tified paths in CRPQ. For example, when handling biological sequences,
querying paths constrained under some similarity measure between paths
is of great importance. See [9] for a more detailed discussion on the ap-
plicability of these features. The extension of CRPQ with non-monadic
word relations gives rise to several expressive extensions which have been
studied lately [43,9,7,10,3,4]. For a class of finite word relations K one
can consider “CRPQ+K”, the result of extending CRPQ with testing of
K relations on path labels.

Concretely, for any class K of finite word relations, the query language
of conjunctive regular path query with K-relations (CRPQ+K)
is a pair (Q,R) where R ⊆ K is a finite set of relations, each R ∈ R
having arity arity(R) ≥ 1. A CRPQ+K query Q, possibly having some
free variables x̄, is a query of the form

Q(x̄) = ∃ȳ ∃π̄ γ(x̄ȳπ̄) ∧ ρ(π̄). (2)

It is a query over two sorts of (infinite, disjoint) sets of variables: node
variables (denoting nodes of the graph database) and path variables
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(denoting paths). In (2), x̄, ȳ span over node variables and π̄ over path
variables. The idea is that γ tells how node variables are connected
through path variables, while ρ describes the properties and relations
between path variables in terms of the regular languages and relations of
R. Concretely, the subformula γ(x̄ȳπ̄), which we may call the reachabil-
ity subquery, is a finite conjunction of reachability atoms of the form
z

π−→ z′, where z, z′ are from x̄ȳ and π is from π̄, with the restriction that
every path variable π from π̄ appears in exactly one reachability atom.
That is, node variables may repeat in γ, but path variables may not. Let
us call the subformula ρ(π̄) the relation subquery, which is a finite con-
junction of atoms of the form R(π1, . . . , πr), were R ∈ R, r = arity(R)
and π1, . . . , πr are pairwise distinct path variables from π̄.

For the classes of relations K we will consider here, we can think of
each relation R ∈ K of arity k ≥ 1 over an alphabet A as being de-
scribed by an NFA over the alphabet of k-tuples (A ∪̇{⊥})k. The un-
derlying idea is that a word w ∈ ((A ∪̇{⊥})k)∗ describes the k-tuple
(w1, . . . , wk) ∈ (A∗)k, where each wi is obtained from w by (1) projecting
onto the i-th component and (2) replacing each ⊥ with the empty word ε.
Thus, for example (a,⊥,⊥)(b, b,⊥)(⊥,⊥, a)(c,⊥,⊥) describes (abc, b, a).
In this way, any such NFA A denotes the k-ary relation R consisting of
all tuples described by the words in the language of A. Among the most
basic classes of finite word relations are the classes of Recognizable, Syn-
chronous (a.k.a. Automatic or Regular), and Rational relations [12]. The
class of Rational relations is the set of all relations which are recognized
by such automata, and it includes relations such as factor or subsequence.
Synchronous relations are those that can be recognized by automata
whose every word satisfies that, for every i ≤ k, if a position has a ⊥-
symbol in its i-th component, then the next position (if it exists) must
also have ⊥ in its i-th component. For example, prefix or equal-length
are synchronous relations. Finally, Recognizable relations are equiv-
alent to finite unions of products of regular languages, i.e., relations of
the form R =

⋃
i∈I Li,1 × · · · × Li,k for a finite I, where the Li,j ’s are all

regular languages over A. They can also be defined in terms of NFA over
(A ∪̇{⊥})k restricted to only accepting words such that: (1) no position
contains more than one symbol from A and (2) every component projects
onto a word from ⊥∗ · A∗ · ⊥∗. An instance of a recognizable relation is
{(u, v) : u, v start with the same letter} or {(u, v) : |u|+ |v| = 3 mod 7}.
These three classes form a proper hierarchy: Recognizable ( Synchronous
( Rational. Observe that any of the three classes of word relations con-
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tains the class of regular languages as (unary) relations. We refer the
reader to [12] for more details on these classes.

Given a graph database D = (V,E) over an alphabet A and an as-
signment fn of x̄ȳ to V and an assignment fp of π̄ to paths of D, we say
that (fn, fp) is a satisfying assignment if

1. for every reachability atom z
π−→ z′ of γ, fp(π) is a directed path from

fn(z) to fn(z′) in D; and

2. for every r-ary atom R(π1, . . . , πr) of ρ the tuple

(label(fp(π1)), . . . , label(fp(πr))) ∈ (A∗)r

is in the relation R ∈ R.

Assuming x̄ = (x1, . . . , x`), the answers Q(D) of the CRPQ+K query
Q to the database D is the set of all (fn(x1), . . . , fn(x`)) ∈ V ` for every
satisfying assignment (fn, fp).

It is plain to see that CRPQ+Recognizable is not more expressive than
UCRPQ. On the other hand, the evaluation of CRPQ+Rational queries
is undecidable, even for very simple rational relations. On the contrary,
CRPQ+Synchronous seems to enjoy a good tradeoff of complexity and
expressive power. This is partly because Synchronous relations constitute
a very robust class, closed under Boolean operations and enjoying most
of the decidability and algorithmic properties inherited from regular lan-
guages. CRPQ+Synchronous, commonly known as ECRPQ (‘Extended’
CRPQ).

Theorem 12.

– (Folklore) CRPQ+Recognizable is contained in UCRPQ in terms of
expressive power.

– [9] Eval-CRPQ+Recognizable and Eval-CRPQ+Synchronous (a.k.a.
ECRPQ) are both PSpace-complete [resp. NL-complete] in combined
[resp. data] complexity.

– [9] Eval-CRPQ+Rational is undecidable.

– [7] Eval-CRPQ+(Synchronous ∪ {R}) is undecidable, for any R ∈
{suffix, factor}; Eval-CRPQ+(Synchronous ∪ {subsequence}) is de-
cidable and non-multiply-recursive hard.6

6 In particular, this means that the time or space required by any algorithm decid-
ing Eval-CRPQ+(Synchronous ∪ {subsequence}) grows faster than the Ackermann
function.
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– [10] Eval-CRPQ+{factor} is PSpace-complete (both in data and
combined complexity); Eval-CRPQ+{subsequence} is NExpTime-
complete [resp. NP-complete] in combined [resp. data] complexity.

Observe that the data complexity for the evaluation of ECRPQ queries
is the same as for CRPQ (i.e., NL), but the combined complexity jumps
from NP to PSpace. In the same spirit as done for CRPQ in Theorem 3,
there exists a characterization of the underlying structures C for which
Eval-ECRPQ(C) has better complexity. While the underlying structure
of a CRPQ is the result of abstracting away its languages, the underlying
structure of an ECRPQ is the result of abstracting away its relations. In
contrast to the evaluation problem for CRPQ, the complexity of Eval-
ECRPQ(C) can be, depending on C, either PTime, NP, or PSpace in
combined complexity, and either XNL, W[1], or FPT in parameterized
complexity [27]. Further, the FPT and PTime cases do not coincide.

While the evaluation problem for ECRPQ remains decidable, the con-
tainment and equivalence problems turn out to be (roubstly) undecidable.

Theorem 13. Cont-ECRPQ is undecidable [9]. Further, undecidability
holds even for the fragment CRPQ+(RL ∪ {eq-len}), where eq-len is the
equal length binary relation and RL is the class of regular languages (seen
as unary relations). In fact, this undecidability results even holds when
one of the two inputs is a plain CRPQ (which is the same as CRPQ +
RL) [30].

Other extensions

A different extension to CRPQ with an expanded ability for path re-
lational querying, consists in having “xregex” regular expressions with
string variables (a.k.a. backreferences) [43], which is incomparable, in
terms of expressive power, to ECRPQ.

As we remarked before, these graph query languages we have covered
operate on an abstraction over a finite alphabet A of graph databases.
However, graph databases carry so called “data values” in the nodes
and/or edges, that is, values with concrete domains, such as strings or
numbers, and practical query languages can of course make tests on these
data values, not only for equality but also using some domain-specific
functions and relations. There have been proposals for querying mecha-
nisms combining the ability to test for data values and query the topology
[36]. In particular, one can explore different forms of querying paths while
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constraining the way data in paths changes. However, the theory of query-
ing “data graphs” (i.e., graph databases carrying elements from infinite
domains) remains insofar a largely unexplored terrain.

The graph pattern languages here are based on a very simple form of
recursion, namely applying regular expressions on paths. Another possible
extension is by allowing a more complex form of recursion, such as nested
regular expressions or Datalog-like rules, which increases the expressive
power while often preserving complexities of CRPQ (see, e.g., [41] and
references therein).

9 Conclusions

We have explored some fundamental ways of querying graph databases via
the concept of ‘paths’ on a simple abstractions of graph databases, that
of edge-labelled graphs. One can draw a parallel between formalisms of
CRPQ and its extensions and Conjunctive Queries, in the sense that these
corresponds to the most basic form of querying, using existentially quan-
tified “patterns”, by means of languages closed under homomorphisms.
However, in this scenario, one deals with two-sorted languages dealing
with nodes and paths, inheriting from the theory of words (or word rela-
tions) and of testing patterns (i.e., Conjunctive Queries).
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