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Abstract—The paper studies distributed binary hypothesis test-
ing over a two-hop relay network where both the relay and the
receiver decide on the hypothesis. Both communication links are
subject to expected rate constraints, which differs from the classical
assumption of maximum rate constraints. We exactly characterize
the set of type-II error exponent pairs at the relay and the receiver
when both type-I error probabilities are constrained by the same
value ε > 0. No tradeoff is observed between the two exponents, i.e.,
one can simultaneously attain maximum type-II error exponents
both at the relay and at the receiver. For ε1 6= ε2, we present
an achievable exponents region, which we obtain with a scheme
that applies different versions of a basic two-hop scheme that is
optimal under maximum rate constraints. We use the basic two-
hop scheme with two choices of parameters and rates, depending
on the transmitter’s observed sequence. For ε1 = ε2, a single
choice is shown to be sufficient. Numerical simulations indicate that
extending to three or more parameter choices is never beneficial.

Index Terms—Multi-hop, distributed hypothesis testing, error
exponents, expected rate constraints, variable-length coding.

I. INTRODUCTION

In many Internet of things (IoT) and sensor networks, the
sensors may not communicate directly with the decision center
due to limited resources or environmental effects. This moti-
vates us to consider multi-hop networks where the sensor can
communicate to the decision center only via a relay. In certain
scenarios, the relays also wish to decide on the hypothesis, for
example to faster raise alarms. In such distributed hypothesis
testing problems, the relays and the receiver have to decide on a
binary hypothesis to determine the joint distributions underlying
all terminals’ observations including their own. In particular,
maximizing the accuracy of any taken decision under imposed
communication rate constraints is an important concern in many
applications related to security, health monitoring, or incident-
detection. In these applications, the error under the alternative
hypothesis corresponding to a missed detection often is more
critical than the error under the null hypothesis corresponding
to a false alarm. We thus aim at maximizing the exponential de-
cays of the missed detection probabilities under given thresholds
on the false alarm probabilities. As we shall see, a particular
challenge arises when the relay and the decision center have
different thresholds on the tolerable false-alarm probabilities.

Most information-theoretic works on distributed hypothesis
testing focus on maximum rate constraints [1]–[6]. Expected
rate constraints were introduced in [7], [8], which also charac-
terized the maximum error exponents for single-sensor single-

decision center setups in the special case of testing-against
independence. The optimal coding and decision scheme in [7],
[8] chooses an event Sn of probability close to the permissible
type-I error probability ε. Under this event, the transmitter sends
a single flag bit to the decision center, which then decides on the
hypothesis H = 1. Otherwise, the transmitter and the receiver
run the optimal scheme under the maximum rate constraints
[1], [2]. The described scheme achieves same type-II error
exponent as in [1], [2], but with a communication rate reduced
by the factor of (1− ε). Similar conclusions also hold for more
complicated networks with multiple communication links, as we
showed in [9] at hand of the partially-cooperating multi-access
network with two sensors.

In this paper, we consider the two-hop network, where the
observations at the transmitter Xn, the relay Y n, and the
receiver Zn form a Markov chain Xn → Y n → Zn. Such
a Markov chain often occurs simply because the transmitter is
closer to the relay than to the receiver. Under maximum rate-
constraints, the optimal exponents at the relay and the receiver
were characterized in [10], [11]. We show that when both
the transmitter and the relay have same ε1 = ε2, then under
expected rate constraints, one can boost both rates by a factor
(1− ε)−1 as compared to maximum rate-constraints. The case
ε1 6= ε2 differs in various ways. Firstly, our set of achievable
exponent pairs indicates a tradeoff between the relay’s and the
receiver’s exponents. Secondly, a more complicated coding and
decision scheme is required. Specifically, we propose a strategy
where the transmitter chooses three events, and depending on
the event, applies either a degenerate single-flagbit strategy or
the scheme in [10] with one of two different choices of pa-
rameters and rates, depending on the transmitter’s observation.
Extending to more than three events (i.e., to more than two
parameter and rate choices for the scheme in [10]) however
does not seem to yield further improvements.

Notation: We follow the notation in [12], [8]. In particular,
we use sans serif font for bit-strings: e.g., m for a deterministic
and M for a random bit-string. We let string(m) denote the
shortest bit-string representation of a positive integer m, and
for any bit-string m we let len(m) and dec(m) denote its length
and its corresponding positive integer. In addition, T (n)

µ denotes
the strongly typical set given by [13, Definition 2.8].



II. SYSTEM MODEL

Consider the distributed hypothesis testing problem in Fig-
ure 1 under the Markov chain

Xn → Y n → Zn (1)

and in the special case of testing against independence, i.e.,
depending on the binary hypothesis H ∈ {0, 1}, the tuple
(Xn, Y n, Zn) is distributed as:

under H = 0 : (Xn, Y n, Zn) i.i.d. ∼ PXY · PZ|Y ; (2a)
under H = 1 : (Xn, Y n, Zn) i.i.d. ∼ PX · PY · PZ (2b)

for given probability mass functions (pmfs) PXY and PZ|Y .

Fig. 1: Cascaded two-hop setup with two decision centers.

The system consists of a transmitter TX , a relay RY , and a
receiver RZ . The transmitter TX observes the source sequence
Xn and sends its bit-string message M1 = φ

(n)
1 (Xn) to RY ,

where the encoding function is of the form φ
(n)
1 : Xn → {0, 1}?

and satisfies the expected rate constraint

E [len (M1)] ≤ nR1. (3)

The relay RY observes the source sequence Y n and with the
message M1 received from TX , it produces a guess ĤY of the
hypothesis H using a decision function g(n)1 : Yn × {0, 1}? →
{0, 1}:

ĤY = g
(n)
1 (Y n,M1) ∈ {0, 1}. (4)

Relay RY also computes a bit-string message M2 =

φ
(n)
2 (Y n,M1) using some encoding function φ

(n)
2 : Yn ×

{0, 1}? → {0, 1}? that satisfies the expected rate constraint

E [len (M2)] ≤ nR2. (5)

Then it sends M2 to the receiver RZ , which guesses hypothesis
H using its observation Zn and the received message M2, i.e.,
using a decision function g

(n)
2 : Zn × {0, 1}? → {0, 1}, it

produces the guess:

ĤZ = g
(n)
2 (Zn,M2) ∈ {0, 1}. (6)

The goal is to design encoding and decision functions such
that their type-I error probabilities

α1,n , Pr[ĤY = 1|H = 0] (7)

α2,n , Pr[ĤZ = 1|H = 0] (8)

stay below given thresholds ε1 > 0, ε2 > 0, and the type-II
error probabilities

β1,n , Pr[ĤY = 0|H = 1] (9)

β2,n , Pr[ĤZ = 0|H = 1] (10)

decay to 0 with largest possible exponential decay.
Definition 1: Fix maximum type-I error probabilities ε1, ε2 ∈

[0, 1] and rates R1, R2 ≥ 0. The exponent pair (θ1, θ2) is called
(ε1, ε2)-achievable if there exists a sequence of encoding and
decision functions {φ(n)1 , φ

(n)
2 , g

(n)
1 , g

(n)
2 }n≥1 satisfying ∀i ∈

{1, 2}:

E[len(Mi)] ≤ nRi, (11)
lim
n→∞

αi,n ≤ εi, (12)

lim
n→∞

1

n
log

1

βi,n
≥ θi. (13)

Definition 2: The closure of the set of all (ε1, ε2)-achievable
exponent pairs (θ1, θ2) is called the (ε1, ε2)-exponents region
and is denoted by E∗(R1, R2, ε1, ε2).

The maximum exponents that are achievable at each of the
two decision centers are also of interest:

θ∗1,ε1(R1) := max{θ1 : (θ1, θ2) ∈ E∗(R1, R2, ε1, ε2)

for some ε2 > 0, θ2 ≥ 0} (14)
θ∗2,ε2(R1, R2) := max{θ2 : (θ1, θ2) ∈ E∗(R1, R2, ε1, ε2)

for some ε1 > 0, θ1 ≥ 0}. (15)

Remark 1: The multi-hop hypothesis testing setup of Figure 1
and Equations (2) was also considered in [10] and [11], but
under maximum rate constraints:

len(Mi) ≤ nRi, i ∈ {1, 2}, (16)

instead of the expected rate constraints (3) and (5).
As shown in [11], for any rates R1, R2 ≥ 0 and permissible

type-I error probabilities ε1, ε2 ∈ [0, 1/2], the exponents region
under the maximum-rate constraints (16) is:

E∗max(R1, R2, ε1, ε2) = {(θ1, θ2) : θ1 ≤ θ∗1,ε1,max (R1) , (17)
θ2 ≤ θ∗2,ε2,max (R1, R2)}, (18)

where

θ∗1,ε1,max (R1) = max
PU1|X :

R1≥I(U1;X)

I (U1;Y ) (19)

θ∗2,ε2,max (R1, R2) = θ∗1,ε1,max (R1) + max
PU2|Y :

R2≥I(U2;Y )

I (U2;Z) (20)

and the mutual information quantities are calculated using the
joint pmfs PU1XY , PU1|XPXY and PU2Y Z , PU2|Y PY Z .

In the following subsection III-A we present a coding and
decision scheme that achieves E∗max(R1, R2, ε1, ε2). It is a sim-
plification of the scheme in [10].

III. CODING AND DECISION SCHEMES

In Subsection III-A, we present a basic two-hop hypothesis
testing scheme, which we obtain by simplifying the general
scheme in [10] and which suffices to achieve the exponents
region E∗max under maximum rate constraints.

For the setup with expected rate constraints studied in this
paper, we propose in Subsections III-B–III-D to use different
versions of this two-hop scheme (with different parameters and



different communication rates) depending on the transmitter’s
observation xn. For certain sequences xn, we even apply
degenerate versions of the scheme where only zero-rate flag-
bits are sent over one or both communication links. Notice that
in principle, we could apply a different set of parameters for
each observation xn ∈ Xn. Our numerical examples however
indicate that without loss in optimality, one can restrict to only
one or two parameter choices and an additional degenerate ver-
sion of the scheme with zero communication rates on both links.
As proved by the scheme in Subsection III-B and Theorem 1, a
single parameter choice suffices when ε1 = ε2. For ε1 6= ε2, two
parameter choices are strictly better as we show in our numerical
simulations in Section IV-A. More choices seem unnecessary.

A. A basic two-hop coding and decision scheme [10]

We revisit a simplified version of the scheme in [10], which
achieves the exponents region under maximum rate constraints
E∗max(R1, R2, ε1, ε2) for any ε1, ε2.

Fix a blocklength n and choose the following parame-
ters: a small positive number µ > 0, and conditional pmfs
PU1|X and PU2|Y . In the following, all mutual informations
will be evaluated according to the joint pmf PXY ZU1U2

:=
PXPY |XPZ|Y PU1|XPU2|Y .

Randomly generate the codebooks

CU1
,

{
un1 (m1) : m1 ∈

{
1, · · · , 2n(I(U1;X)+µ)

}}
(21)

CU2
,

{
un2 (m2) : m2 ∈

{
1, · · · , 2n(I(U2;Y )+µ)

}}
, (22)

by drawing all entries i.i.d. according to the marginal pmfs
PU1

and PU2
.

TX : Assume it observes Xn = xn. If xn ∈ T (n)
µ (PX), it

looks for indices m1 satisfying (un1 (m1), x
n) ∈ T (n)

µ (PU1X),
randomly picks one of these indices, and sends its corresponding
bit-string

M1 = [string(m1)]. (23)

If no such index exists or if xn /∈ T (n)
µ (PX), then TX sends

M1 = [0]. (24)

RY : Assume it observes Y n = yn and receives the bit-string
message M1 = m1.

If m1 = [0], then

ĤY = 1 and M2 = [0]. (25)

Else, it checks if (un1 (m1), y
n) ∈ T (n)

µ (PU1Y ). If the check is
successful, RY declares ĤY = 0; otherwise it declares ĤY = 1
and sends M2 = [0].

If ĤY = 0, RY next looks for indices m2 satisfying
(un2 (m2), y

n) ∈ T (n)
µ (PU2Y ), randomly picks one of them and

sends
M2 = string(m2) (26)

to the receiver.
If no such index m2 exists, RY directly sends string

M2 = [0]. (27)

RZ : Assume it observes the sequence Zn = zn and receives
message M2 = m2.

If m2 = [0], it declares ĤZ = 1.
Else, it sets m2 = dec(m2), and checks if (un2 (m2), z

n) ∈
T (n)
µ (PU2Z). It declares ĤZ = 0 if the check succeeds, and
ĤZ = 1 otherwise.

In the following subsections, we explain how to employ this
basic scheme in a variable-length coding framework.

B. Variable-length coding for ε1 = ε2

We employ only a single version of the two-hop scheme, and
combine it with a degenerate scheme that has zero communica-
tion rates over both links. Specifically, as for the point-to-point
setup in [8], we choose a subset Sn ⊆ T (n)

µ (PX) of probability

Pr [Xn ∈ Sn] = ε2 − µ = ε1 − µ, (28)

for some small number µ > 0.
Whenever Xn ∈ Sn, TX and RY both send

M1 = M2 = [0] (29)

and RY and RZ decide on

ĤY = ĤZ = 1. (30)

Whenever Xn /∈ Sn, the terminals TX , RY , and RZ all follow
the basic two-hop scheme in Subsection III-A for parameters
µ, PU1|X , PU2|Y satisfying

R1 = (1− ε1 + µ) (I(U1;X) + 2µ) (31)
R2 = (1− ε2 + µ) (I(U2;Y ) + 2µ) . (32)

The factors (1− ε1+µ) and (1− ε2+µ) in front of the mutual
information terms represent the gain obtained by expected rate
constraints because with probability ε1 − µ = ε2 − µ in our
scheme, both messages M1 and M2 are of zero rate, see (29).

It can be shown that the presented scheme achieves the error
exponents claimed in Equations (48) of Theorem 1 when n→
∞ and µ ↓ 0. The proof is similar to Appendix A; the details
are omitted for brevity.

C. Variable-length coding for ε2 > ε1

We employ two versions of the basic two-hop scheme as
we will explain shortly. Moreover, we again choose a subset
Sn ⊆ T (n)

µ (PX) of probability

Pr [Xn ∈ Sn] = ε1 − µ, (33)

and all terminals TX , RY , and RZ apply the degenerate scheme
in (29)–(30) whenever Xn ∈ Sn.

We now partition the remaining set Xn\Sn into two disjoint
sets D′n and D′′n

D′n ∪ D′′n = Xn\Sn and D′n ∩ D′′n = ∅ (34)

such that
Pr [Xn ∈ D′n] = 1− ε2 + µ (35)
Pr [Xn ∈ D′′n] = ε2 − ε1. (36)

We further split R1 = R′1 +R′′1 for R′1, R
′′
1 > 0.



Then, whenever xn ∈ D′n, all terminals TX , RY , RZ
follow the basic two-hop scheme for a set of parameters
µ, PU ′

1|X , PU ′
2|Y satisfying

R′1 = (1− ε2 + µ)(I(U ′1;X) + 2µ) (37)
R2 = (1− ε2 + µ)(I(U ′2;Y ) + 2µ). (38)

To inform the relay and the receiver about the event xn ∈ D′n,
both TX and RY add [1, 0]-flag bits at the beginning of their
communication to RY and RZ , respectively. (Notice that two
additional bits do not change the rate of communication.)

For xn ∈ D′′n, the transmitter and the relay still follow
the basic two-hop scheme in Subsection III-A but now for a
different parameter choice µ, PU ′′

1 |X satisfying

R′′1 = (ε2 − ε1)(I(U ′′1 ;X) + 2µ), (39)

and where TX additionally sends the [1, 1]-flag as part of M1

to RY , which simply relays this flag M2 = [1, 1] without
adding additional information. Upon observing M2 = [1, 1],
RZ immediately declares ĤZ = 1.

It can be shown that the presented scheme achieves the error
exponents claimed in Equations (49) of Theorem 1 when n→
∞ and µ ↓ 0. The proof is similar to Appendix A; the details
are omitted for brevity.

D. Variable-length coding for ε1 > ε2

In this case, we employ two full versions of the basic two-hop
scheme. Moreover, we again choose a subset Sn ⊆ T (n)

µ (PX)
of probability

Pr [Xn ∈ Sn] = ε2 − µ, (40)

and partition the remaining subset of Xn into two disjoint sets
D′n and D′′n

D′n ∪ D′′n = Xn\Sn and D′n ∩ D′′n = ∅ (41)

such that

Pr [Xn ∈ D′n] = 1− ε1 + µ (42)
Pr [Xn ∈ D′′n] = ε1 − ε2. (43)

We further split R1 = R′1 + R′′1 and R2 = R′2 + R′′2 for
R′1, R

′′
1 , R

′
2, R

′′
2 > 0.

Whenever Xn ∈ Sn, TX , RY , and RZ , all apply the
degenerate scheme in (29)–(30).

Whenever Xn ∈ D′n, all terminals TX , RY , and RZ fol-
low the basic two-hop scheme for a choice of parameters
µ, PU ′

1|X , PU ′
2|Y satisfying

R′1 = (1− ε1 + µ)(I(U ′1;X) + 2µ) (44)
R′2 = (1− ε1 + µ)(I(U ′2;Y ) + 2µ). (45)

Additionally, TX and RY add [1, 0]-flag bits to their messages
M1 and M2 to indicate to RY and RZ that Xn ∈ D′n.

Whenever Xn ∈ D′′n, all terminals TX , RY , and RZ mostly
follow the basic two-hop scheme but now for parameters
µ, PU ′′

1 |X , PU ′′
2 |Y satisfying

R′′1 = (ε1 − ε2)(I(U ′′1 ;X) + 2µ) (46)

R′′2 = (ε1 − ε2)(I(U ′′2 ;Y ) + 2µ). (47)

The only exceptions are that TX and RY add a [1, 1]-flag to their
messages M1 and M2 to indicate to RY and RZ that Xn ∈
D′′n, and that RY always declares ĤY = 1 upon observing this
[1, 1]-flag in M1, irrespective of the remaining bits of M1 or its
observation Y n. Besides this decision, RY however follows the
protocol of the basic two-hop scheme which forces it to compute
a tentative decision Ĥ′′Y , which determines its communication
to RZ . (In particular, if Ĥ′′Y = 1, RY sends only the [1, 1]-flag
to RZ so that RZ immediately declares ĤZ = 1.) Notice that
while RY can ignore the tentative decision Ĥ′′Y because of its
larger permissible type-I error probability ε1 > ε2, this decision
is important for RZ so that this latter can satisfy its constraint
on the type-I probability ε2.

In Appendix A, we prove that the presented scheme achieves
the error exponents in Eq. (50) of Theorem 1 when n → ∞
and µ ↓ 0.

IV. RESULTS ON THE EXPONENTS REGION

Our main result provides inner bounds to the exponent region
E∗(R1, R2, ε1, ε2) achieved by the schemes presented in the
preceding Section III. The theorem further provides an exact
characterization of exponents region E∗(R1, R2, ε1, ε2) when
ε1 = ε2.

Theorem 1: If ε1 = ε2, the (ε1, ε2)-exponents region
E∗(R1, R2, ε1, ε2) is the set of all (θ1, θ2) pairs satisfying

θ1 ≤ I(U1;Y ), (48a)
θ2 ≤ I(U1;Y ) + I(U2;Z), (48b)

for some conditional pmfs PU1|X , PU2|Y so that

R1 ≥ (1− ε1)I(U1;X), (48c)
R2 ≥ (1− ε2)I(U2;Y ), (48d)

and where the mutual information quantities are calculated
using the joint pmfs PU1XY , PU1|XPXY and PU2Y Z ,
PU2|Y PY Z .

If ε1 < ε2, the (ε1, ε2)-exponents region E∗(R1, R2, ε1, ε2)
contains all (θ1, θ2) pairs that satisfy

θ1 ≤ min{I(U ′1;Y ), I(U ′′1 ;Y )}, (49a)
θ2 ≤ I(U ′1;Y ) + I(U ′2;Z), (49b)

for some conditional pmfs PU ′
1|X , PU ′′

1 |X , PU ′
2|Y so that

R1 ≥ (1− ε2)I(U ′1;X) + (ε2 − ε1)I(U ′′1 ;X), (49c)
R2 ≥ (1− ε2)I(U ′2;Y ), (49d)

and where the mutual information quantities are calculated
using the joint pmfs PU ′

1XY
, PU ′

1|XPXY , PU ′′
1 XY

,
PU ′′

1 |XPXY , and PU ′
2Y Z

, PU ′
2|Y PY Z .

If ε1 > ε2, the (ε1, ε2)-exponents region E∗(R1, R2, ε1, ε2)
contains all (θ1, θ2) pairs that satisfy

θ1 ≤ I(U ′1;Y ), (50a)
θ2 ≤ min{I(U ′1;Y ) + I(U ′2;Z), I(U

′′
1 ;Y ) + I(U ′′2 ;Z)}, (50b)



for some conditional pmfs PU ′
1|X , PU ′′

1 |X , PU ′
2|Y , PU ′′

2 |Y so that

R1 ≥ (1− ε1)I(U ′1;X) + (ε1 − ε2)I(U ′′1 ;X), (50c)
R2 ≥ (1− ε1)I(U ′2;Y ) + (ε1 − ε2)I(U ′′2 ;Y ), (50d)

and where the mutual information quantities are calculated
using the joint pmfs PU ′

1XY
, PU ′

1|XPXY , PU ′′
1 XY

,
PU ′′

1 |XPXY , PU ′
2Y Z

, PU ′
2|Y PY Z , and PU ′′

2 Y Z
, PU ′′

2 |Y PY Z .
Proof: Achievability results are based on the schemes in

Section III, see Appendix A and [14] for the analyses. For ε1 =
ε2, the converse is proved in [14].

A. Numerical Simulations

In this section, we illustrate the benefits of variable-length
coding as opposed to fixed-length coding (or the benefits of
having the relaxed expected rate constraints in (3) and (5)
instead of the more stringent maximum rate-constraints (16)).
We also show for ε2 6= ε1, the benefits of having two auxiliary
random variables U ′1 and U ′′1 in (49)–(50) instead of only a
single random variable, which is equivalent to applying the
basic two-hop scheme for two parameter choices (depending
on Xn) and not just one. And finally, for ε2 < ε1, we illustrate
the benefits of having both U ′2 and U ′′2 in (50), which stems
from applying two full versions of the basic two-hop scheme
in Subsection III-A.

Throughout this section, we consider the following example.
Let X,S, T be independent Bernoulli random variables of
parameters pX = 0.4, pS = 0.8, pT = 0.8 and set Y = X ⊕ T
and Z = Y ⊕ S.

We first consider the case of equal permissible type-I error
exponents ε1 = ε2. By Theorem 1, in this case the optimal
exponents region E∗ is given by the rectangle determined by
θ∗1,ε1(R1) and θ∗2,ε2(R1, R2). Under maximum rate-constraints,
the optimal exponents region Emax is also a rectangle, but now
determined by θ∗1,ε1,max(R1) and θ∗2,ε2,max(R1, R2). Figure 2
plots these optimal error exponents for ε1 = ε2 = 0.05 and
in function of R1 = R2. It thus illustrates the gain of having
expected rate constraints instead of maximum rate-constraints.
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0.4

0.5

R1 = R2 = R

θ

θ∗2,ε
θ∗2,ε,max
θ∗1,ε
θ∗1,ε,max

Fig. 2: Optimal error exponents under expected and maximum
rate constraints for ε := ε1 = ε2 = 0.05.

We now consider the case ε1 = 0.05 < ε2 = 0.15, and plot
our inner bound to E∗ in Figure 3 for rates R1 = R2 = 0.5.
We note a tradeoff between the two exponents θ1, θ2, which
was not present for ε1 = ε2. (This tradeoff occurs because
both exponents have to be optimized over the same choices
of random variables U ′1, U

′′
1 .) The figure also shows a sub-

optimal version of the inner bound in Theorem 1, where we set
U ′1 = U ′′1 but still optimize over all choices of U ′1. We observe
that using two different auxiliary random variables U ′1 and U ′′1
(i.e., two different versions of the basic two-hop scheme) allows
to obtain a better tradeoff between the two exponents. Finally,
for comparison, Figure 3 also shows the exponents region E∗
under maximum rate-constraints, so as to illustrate the gain
provided by having the weaker expected rate constraints instead
of maximum rate constraints.
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0.3
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θ1

θ 2

Eq. (49)
Eq. (49) with U ′1 = U ′′1
E∗max

Fig. 3: Exponents regions for ε1 = 0.05 < ε2 = 0.15 and
R1 = R2 = 0.5.

We finally consider the case ε1 = 0.15 > ε2 = 0.05. Figure 4
shows our inner bound in Theorem 1 together with sub-optimal
versions of this inner bound where we either set U ′2 = U ′′2
or U ′1 = U ′′1 . Similarly to the previous figure we observe that
having multiple auxiliary random variables (i.e., two versions
of the basic two-hop scheme) allows to improve the tradeoff
between the two exponents.

V. CONCLUSION

In this work, distributed hypothesis testing over a two-hop
network with two decision centers is studied under expected
rate constraints. Different coding and decision schemes are
proposed for different cases of permissible type-I error prob-
abilities. These schemes are designed to choose different set
of parameters and rates based on the transmitter’s observation,
aiming to maximize the achievable type-II error exponents at
both decision centers. Optimal error exponents are obtained
when the decision centers share equal type-I error constraints.
Otherwise, a tradeoff between the exponents at the two decision
centers occur. Supported by numerical simulations, the benefits
of the proposed schemes are shown in this work, where the gain
induced by expected rate constraints instead of maximum rate
constraints is highlighted too.
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Fig. 4: Exponents regions under expected and maximum rate
constraints for ε1 = 0.15 > ε2 = 0.05 and R1 = R2 = 0.5.
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APPENDIX A
ANALYSIS OF THE CODING SCHEME IN SUBSECTION III-D

FOR ε1 > ε2

Let H̃′Y and H̃′Z denote the hypotheses guessed by RY and
RZ for the basic two-hop scheme with the first parameter

choices µ, PU ′
1|X , PU ′

2|Y . Similarly, let H̃′′Z be the hypothesis
produced by RZ for the basic two-hop scheme with the param-
eter choices µ, PU ′′

1 |X , PU ′′
2 |Y . We then obtain for the type-I

error probabilities:

α1,n = Pr[ĤY = 1, Xn ∈ (Sn ∪ D′′n)|H = 0]

+Pr[ĤY = 1, Xn ∈ D′n|H = 0] (51)
= Pr[Xn ∈ (Sn ∪ D′′n)|H = 0]

+Pr[H̃′Y = 1, Xn ∈ D′n|H = 0] (52)
≤ ε1 − µ+ Pr[H̃′Y = 1|H = 0] (53)

and
α2,n = Pr[ĤZ = 1, Xn ∈ Sn|H = 0]

+Pr[ĤZ = 1, Xn ∈ D′n|H = 0]

+Pr[ĤZ = 1, Xn ∈ D′′n|H = 0] (54)
= Pr[Xn ∈ Sn|H = 0]

+Pr[H̃′Z = 1, Xn ∈ D′n|H = 0]

+Pr[H̃′′Z = 1, Xn ∈ D′′n|H = 0] (55)
≤ ε2 − µ+ Pr[H̃′Z = 1|H = 0] + Pr[H̃′′Z = 1|H = 0](56)

Since by [10], Pr[H̃′Y = 1|H = 0], Pr[H̃′Z = 1|H =
0], andPr[H̃′′Z = 1|H = 0] all tend to 0 as n→∞, we conclude
that for the scheme in Subsection III-D limn→∞ α1,n ≤ ε1 and
limn→∞ α2,n ≤ ε2.

For the type-II error probabilities we obtain

β1,n = Pr[H̃′Y = 0, Xn ∈ D′n|H = 1] (57)

≤ Pr[H̃′Y = 0|H = 1] (58)

≤ 2−n(I(U
′
1;Y )+δ(µ)), (59)

and
β2,n = Pr[H̃′Z = 0, Xn ∈ D′n|H = 1]

+Pr[H̃′′Z = 0, Xn ∈ D′′n|H = 1] (60)
≤ Pr[H̃′Z = 0|H = 1] + Pr[H̃′′Z = 0|H = 1] (61)

≤ 2−n(I(U
′
1;Y )+I(U ′

2;Z)+δ(µ))

+2−n(I(U
′′
1 ;Y )+I(U ′′

2 ;Z)+δ(µ)), (62)

where (59) and (62) are proved in [10], and δ(µ) ↓ 0 as µ ↓ 0.
The described scheme satisfies the rate constraints for all

blocklengths n that are sufficiently large so that (1−ε2+µ)nµ ≥
(2− ε2 + µ) holds:

E[len(M1)] ≤ (ε2 − µ)
+(1− ε1 + µ) · (n(I(U ′1;X) + µ) + 2)

+(ε1 − ε2) · (n(I(U ′′1 ;X) + µ) + 2) (63)
≤ n(R′1 +R′′1 ) = nR1 (64)

and
E[len(M2)] ≤ (ε2 − µ)

+(1− ε1 + µ) · (n(I(U ′2;Y ) + µ) + 2)

+(ε1 − ε2) · (n(I(U ′′2 ;Y ) + µ) + 2) (65)
≤ n(R′2 +R′′2 ) = nR2. (66)

Letting first n → ∞ and then µ ↓ 0, establishes the desired
result in (50).


