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ABSTRACT 
 
The segmentation of the retinal vascular tree presents a major step for detecting ocular pathologies. The clinical context expects higher 
segmentation performance with a reduced processing time. For higher accurate segmentation, several automated methods have been based on 
Deep Learning (DL) networks. However, the used convolutional layers bring to a higher computational complexity and so for execution times. 
For such need, this work presents a new DL based method for retinal vessel tree segmentation. Our main contribution consists in suggesting a 
new U-form DL architecture using lightweight convolution blocks in order to preserve a higher segmentation performance while reducing the 
computational complexity. As a second main contribution, preprocessing and data augmentation steps are proposed with respect to the retinal 
image and blood vessel characteristics. The proposed method is tested on DRIVE and STARE databases, which can achieve a better trade-off 

between the retinal blood vessel detection rate and the detection time with average accuracy of 0.978 and 0.98 in 0.59s and 0.48s per fundus 
image on GPU NVIDIA GTX 980 platforms, respectively for DRIVE and STARE database fundus images. 

 

1.  Introduction 

 The retina is the eye sensory membrane which is responsible for 
vision. It contains the mainly anatomical components which are the 
Optic Disc (OD), the macula and the blood vessels, as shown in Fig.1. 
The retinal blood vessels converge to the center of the OD and spread 
into the whole retina, except the macula, with a thickness reduction. 
Several ocular pathologies alter the morphology of the vascular tree. 
The proliferative stage of diabetic retinopathy [1, 2], or the wet stage of 
Age-related Macular Generation (AMD) [3] lead to adding new vessels 
with a lower thickness, tortured form and lower contrast with respect to 
the predecessor ones. In the non-proliferative stage of diabetic 
retinopathy and hypertensive retinopathy [4], vessel blood leakage 
cause the appearance of  numerous lesions close to vessel tree such as 
micro-aneurysms [5, 6]. For this purpose, the retinal vessel tree is 
considered as a principle biomarker of several ocular diseases where 
screening and severity grading have been always predicted by referring 
to the modification of vessel morphology. 

The main challenge is to perform a precise and accurate 
segmentation of the retinal vascular tree, to be useful for the 
ophthalmological diagnostic. In this context, several automatic methods 
for retinal vessel segmentation have been put forward, which are 
reported in several reviews [7, 8, 9]. Those studies have proposed to 
classify methods based on their processing principles. The image 
processing based methods can be based on thresholding [10, 11, 12, 13, 
14, 15, 16], filtering [17] [18] or vessel tracking techniques [23, 24]. 

Several recent methods have been based on Machine Learning (ML) 
which consists in training models in order to provide classification as 
vessel and non-vessel pixels [21, 22, 23, 24, 25]. Other methods based 
on Convolution Neural Networks (CNNs) architectures are 
introduced. Those methods consist either to applying well-defined 
networks such as AlexNet [26] and U-Net [27], or extending existing 
networks with the aim of enhancing segmentation performance such 
as [27, 28, 29, 30, 31].  Those segmentation vessel tree methods have 
achieved a higher segmentation performance where the accuracy rate 
is in the order of 0.91 and 0.98, the sensitivity rate in the order of 
0.64 and 0.83 and the specificity rate in the order of 0.93 and 0.98. 

Additionally, the speed of the retinal tree segmentation is an 
important criterion for the ophthalmological diagnostic, which is 
constrained by the large number of people to diagnosis, the 
permanent increase in the filed-of-view and in the resolution of 
fundus images, both caused by the imaging technologies progress. 
However, several methods have not addressed the computational 
criteria, such as the methods suggested in  [32, 21] where their 
computation times were expressed in terms of minutes, as shown in 
Table 1. Despite their higher segmentation performance, a raised 
execution time is a limiting factor to implement those segmentation 
methods on a CAD system for ocular pathology detection. Numerous 
methods have aimed to optimize the processing complexity [33],  
[34], where the segmentation is reached into reduced execution 
times, as reported in the first two rows of Table 1. However, the fast 
segmentation has been associated to lower detection rates 
respectively in the range of 0.918 and 0.938. Otherwise, several 
methods have aimed at insuring efficient detection rates with lower 
time consumption such as the work of [17, 35, 36], where their 
computation times above one second, reached respectively in a quad 
cores, single core and on multi-GPU architectures.  

Particularly, the DL-based methods have been always 
belonged to the studies providing higher segmentation performances 
[37, 27, 38]. Their architectures are based on convolution blocks that 
have ensured extracting vessel features even with the complicated 
details of retinal vascular tree into the retinal texture. They have 
provided higher accuracy rates that exceed 0.95 when performed 
with the well-used DRIVE database fundus images. Moreover, the 
permanent rise of fundus image resolution allows illustrating a large 
gap of vessels details. Hence, DL networks will be heavily needed 
with the aim of guaranteeing accurate results.  

 

Fig. 1. Anatomy of retina: (left) retinal image; (right) segmented image. 



However, the expended convolution blocks correspond to a filter 
processing where convolution kernels are combined into one procedure. 
Each kernel is performed through a wide amount of arithmetic 
processing. Hence, those blocks are discriminated by a higher 
computational complexity which is proportional to the number of 
parameters. The networks used in [39, 40] have produced respectively 
31 and 48 million parameters. Consequently, the rise on the complexity 
and on the parameter number leads a similar rise on their computation 
times. As the case of the networks expended in the studies [27, 40], the 
segmentation has been produced respectively in 15.3s and 96s, despite 
that have been both executed into recent multi-GPU architectures. with 
respect to the accurately and computational constraints, several 
segmentation methods suggest extending well-known networks such as 
U-net in the works [27, 28, 29], Alexnet [26], VGG [41] and Z-Fnet[42] 
[94]. However, these network extensions still unable to reach the 
targeted trade-off. They are always discriminated either by inaccurately 
segmentation results which is inappropriate for pathologies diagnosis, 
either by a high execution time which does not respect clinical 
requirements. In addition, these segmentation networks suffering from 
high computation time, caused by the higher computational complexity 
of the convolution layers exposed in their proposed networks. 

In this work, our challenge is to put forward a new deep neural 
network that ensures an accurate segmentation of the retinal vessel tree 
into a reduced computation time. Within this objective, we propound a 
novel DL architecture by expending Lightweight Convolution Modules 
(LCMs) characterized by lower complexity with respect to standard 
convolution. In addition, a preprocessing is performed in order to 
improve the quality of images and enhance the contrast of vessels in the 
retina. Thereafter, data augmentation is proposed to transform and crop 
images, in order to guarantee training robustness. Next, these patches of 
images are resized to be adapted to our suggested DL architecture. The 
segmented patches are then merged to generate the segmented blood 
vessel image. 

The remainder of this paper is organized into three sections. In 
section 2, the principle and processing pipeline of the proposed method 
are described. Section 3 presents the experimentation results where the 
segmentation is evaluated in terms of performance and execution time 
and compared to existing methods. The last section is dedicated for 
conclusion. 

2. DL architecture for retinal vessel tree segmentation 

2.1. Principle of our proposed method 
 

 In this work, an adequate tradeoff between segmentation 
performance and execution time is our important intention. An accurate 
segmentation of retinal vascular tree is indispensable for a reliable 

diagnosis of ocular pathologies. Additional, performing efficient 
segmentation while saving computation performances is 
indispensible to be suitable for clinical practice.  

Recently, several Convolution Neural Networks (CNN) have 
been proposed for the segmentation issues such as Alexnet [43], U-
net [39], VGG [44], where various have been extended with the aim 
of performing such clinical needs. Those networks still unable to 
reach the trade-off performances, discriminated by an expensive 
convolution blocks having the effect of increasing computation 
requirements. In fact, the CNNs have been continuously made 
development, where several networks aimed to reducing 
computational complexity. Their main contributions consist at 
suggesting new convolution blocks that ensures the same 
convolution processing with reduced complexity.  

Our main idea consists at proposing a new DL network which 
performs retinal vessel segmentation using LCMs, as explicitly 
detailed in section 2.4. The suggested network guarantees a higher 
segmentation performance of the retinal vascular tree within a 
decreased computation time, which allows reaching the aimed 
tradeoff. Accordingly, our method for retinal vessel segmentation is 
based on the trained model of the proposed network, where its 
processing pipeline is put forward as presented in the diagram of 
Fig.2.  

The retinal blood vessels are presented in the retina as thin, 
elongated and dark structures [24, 34] which spread into the retina 
with thickness variation [45]. In contrast, the fundus image is 
characterized by an imbalanced contrast between blood vessels and 
retinal background, where the color of thin vessels may be close to 
the color of the background [45, 46]. For this, the fundus images will 
be preprocessed in order to improve the quality of images and 
enhance the contrast of vessels, as described in section 2.2. Further, 
the retinal blood vessels have a wide variety of configurations in 
terms of thickness, direction, tortuosity, etc. The vessel shape 
varieties are represented inadequately, where thick vessels are 
always illustrated in horizontal direction. Furthermore, they have 

 

Table 1 
Performances results of state of the art works 

plateform 
[33] Quad CPU cores 

[34] SIMD parallel processor
[44] Quad CPU cores 

[35] CPU 
[17]  16 GB RAM

[23] CPU 
[27]

[32] 512 MB RAM

[21]

[40]

 



 

vertical direction in the OD where bifurcations are well distinguished. 
Therefore, a data augmentation process is developed throw applying 
fundus images transformation in order to generate additional examples 
with the aim of improving method robustness, as depicted in section 
2.3.1. It should be noted that inaccurate results might be provided when 
segmenting an entire image through the DL network. Thus, a cropping 
step is required to crop images into patches, to be used for training the 
suggested neural network, as described in 2.3.2. This step will be 
reproduced in testing stage to generate patches that are segmented 
through the trained model. Subsequently, the segmented patches are 
merged through the post processing step to provide the segmented 
vessel tree, as illustrated in the testing stage of Fig.2.  

 
2.2.  Preprocessing 

This step aims to improve the fundus image quality and 
differentiate vessels from the background in order to achieve accurate 
segmentation. In fact, the retina is encircled by a black area. Since the 
background intensity is close to the blood vessel one, it leads to distort 
the segmentation. Therefore, we firstly replace the black area by the 
average color of the retina [17, 26], where the result is shown in Fig.3 
(b). Subsequently, the “L” channel provides better contrast compared to 
the A and B channels, where the L channel represents the luminosity 
layer and the A and B channels represent the chromaticity ones [47]. 
Therefore, the RGB image is converted to a LAB color space. After 
that, Contrast Limited Adaptive Histogram Equalization (CLAHE) is 
applied on the L channel [47, 48], in order to enhance contrast. 
Thereafter, the adjusted L channel is merged with the A and B 
channels, as depicted in Fig.3 (e), and then reconverted to an RGB 
format with the superposition of a mask [26], where the final result is 
given in Fig.3 (f).  

2.3. Data augmentation 

2.3.1. Image transformation  

The configuration of the retinal vascular tree is too varied in terms 
of thickness, direction, tortuosity, etc. In this context, a data 
augmentation process is proposed, which consists in providing fundus 
images by modifying the existing ones. This step leads to raise the data 
set size to increase the robustness of the suggested DL model. As 
regards vessel orientation and thickness, each fundus image is rotated 
four times, where the rotation angles are 30◦, 60◦, 120◦ and 150◦, as 
presented in Fig.4 (e, e’)-(h, h’). Furthermore, the fundus image is 
flipped respectively in horizontal, vertical, and both horizontal and 
vertical directions. These transformations are performed for all fundus 
images in the same dataset, either for preprocessed input images or 
segmented output ones to avoid distorting training, as provided in Fig.4 
(a, a’)-(d, d). 

2.3.2. Cropping 

Retinal fundus images are characterized by an important number 
of blood vessels which are represented with different thicknesses, 
orientations and tortuosities. As a result, the segmentation of an entire 
image through a DL network remains a hard task, where inaccurate 
results might be generated. Therefore, a squaring process is proposed as 
in [40, 37, 26], which consists in cropping the fundus image into patches 
containing a partial blood vessel tree, to be segmented separately, as 
shown in Fig.5. The patch size “µ” is identified to enhance the 

segmentation performance in a reduced computation time. In fact, 
fundus image databases are diverged in terms of size and resolution. 
Hence, the patch size “µ” must be selected for each dataset 
separately, which are identified experimentally. For that purpose, the 
fundus images of the same database are cropped into several patches 
with a reduced “µ” size to be used for training. This step is 
performed iteratively while increasing the cropping size and keeping 
the other training parameters. Thereafter, we choose the “µ” value 
leading to the highest segmentation performance. 

2.4. RV-Net: Proposed network for retinal blood vessel segmentation 

2.4.1. Network description 

With the aim of guaranteeing accurate segmentation results 
and improving the inference efficiency, we propose a new 
architecture untitled “RV-Net” for retinal vessel tree segmentation. 
The proposed network should have a U-form with downsampling 
and upsamling paths. This form is widely adopted for the 
segmentation issue and reached higher performances. Further, this 
form encourages the model to learn more features through gradually 
reducing feature maps and making connection of the both sides. 
Within this context, we suggest extending the well-known network 
U-net, that ensured a higher performance segmentation in several 
biomedical issues [49, 50, 38]. Their blocks are mainly based on 
standard convolution layers. Each layer consists at performing 
filtering and combining convolutional kernels into one step, which 
leads to an augmented processing complexity and so for the whole 
architecture. Recently, LCMs have been propounded which ensure 

(a) (b) 
 

(c) (d) 
 

(e) (f) 

Preprocessing steps: (a) original fundus image; (b) Black ring removed; (c) L channel; (d) L channel after CLAHE processing; (e) merged fundus image; (f) preprocessed fundus 
image. 
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the same convolution through split processing into two successive 
operations. Such modification reduces significantly the computation 
requirements, where the computation times might be reduced nine times 
with respect to standard convolution layers [51].   

Hence, our main contribution consists of extending the well-
known network U-net through consuming LCMs proposed by [51] 
instead of standard convolution layers, with the aim of guaranteeing 
accurate performance by adopting the U-form and reduce computing by 
using LCM. The used LCM consists of a "3x3 depthwise convolution 
layer" followed by the "1x1 convolution layer”. The 3x3 depthwise 
convolution layer takes as an input M feature maps having the size 
of W × H, where W and H represent respectively the width and the 
height of feature maps. Each feature map is extracted separately in 
order to apply iteratively a K × K × 1 convolution kernel, where K 
represents the kernel width and height. Hence, M feature maps are 
provided through the first layer, having the dimension of W × H × 1. 
For the second layer, the M feature maps are superimposed, on which a 
1 × 1 × N  kernel is iteratively applied to provide N feature maps.  

The downsampling path of the suggested network is composed by 
six blocks, which are represented with red frames in Fig.6. The first 
block is composed by a convolution layer using a 3x3 kernel to produce 
64 feature maps. Then, a LCM is applied where his first layer has 
convolved 64 feature maps separately, using 3x3 kernels. Then, a 
convolution layer with 1x1 kernels, are applied to produce 128 feature 
maps. Those three convolution layers are characterized by a stride equal 
to 1 and an activation function RELU. This module is followed by a 
“max pooling” layer parameterized with a 2x2 kernel and a stride of 2, 
as shown in red in Fig.6.  

For the other downsampling blocks, each one is composed by two 
LCMs followed by a " max pooling" layer parametrized by a � × � 
kernel and a stride equal to 2 as illustrated in Fig.6, except the last 

block which contains only two LCMs.  The number of output feature 
maps is doubled and their output sizes are reduced by half on the 
length, as well as on the width, providing N feature maps having the 
size of W/2 × H/2 , as noted above each blocks in Fig.6.  

For the case of the second block of the downsampling path, M 
feature maps matching 128 channels with W=H=64 have been 
convolved through the first LCM to produce 128 feature maps 
having the same dimensions, as shown in Fig.7. The output is fed to 
the second LCM in order to generate N feature maps matching 256 
channels with W=H=64. Thereafter, the produced output is provided 
to a max-pooling processing generating the same input feature maps 
number equal to 256 having the size of 64/2 × 64/2 .  

Similarly, the upsampling path is composed by five blocks. 
Each block contains an upsampling layer parameterized with a 2x2 
kernel and a stride of 2, as shown with green in Fig.6. For each 
block, the upsampling layers are followed by two LCMs. Their first 
depthwise convolution layers are parameterized with a 3x3 kernel, 
where their second convolution layers are parameterized with 1x1 
kernels. These convolution layers are parameterized with an 
activation function RELU and a stride equal to 1. Contrary to the 
downsampling path, the number of output feature map is reduced in 
each block by half and the output size of the feature map is doubled 
on the length, as well as on the width. The network is concluded by 
adding a convolution layer with two kernels of size 1 × 1 and a 
standard softmax activation layer, which performs 64 feature maps 
of the vessel and background classes. Furthermore, each block of the 
upsampling path is concatenated with its corresponding of the 
downsampling path which has the same size and the same feature 
map numbers.  

2.4.2. Parameter setting 

The training of the proposed network is done using a set of 
parameters chosen experimentally or by referring to recent studies 
with the aim of providing accurate segmentation performance. The 
learning rate, the optimizer algorithm, the weight initialization 
technique and the epoch number are determined experimentally. For 
each parameter, we perform some training experience for a single 
model while modifying only the parameter value. Thereafter, we 
choose the value offering the higher segmentation rates. As the case 
of the learning rate and the optimizer algorithm, the experimentation 
consists at varying the parameter value and evaluated the results as 
shown in Fig.8(a) and Fig.8(b), where the suitable parameter 
providing the higher performances are respectively the ADAM 
optimizer with 0.0001 value of learning rate. Furthermore, we 
propound initializing the weight using Xavier technique and 
minimizing the loss between predicted images and the ground truth 
using cross entropy function and setting the dropout ratio to 0.5 for 
regularizing training experiments. All the selected parameters are 
summarized in Table 2.  

 

 

 
Fig. 6. RV-Net proposed DL network for retinal blood vessel segmentation. 



 

.  

2.4.3. Computation complexity of the pro posed network:   

We propose in this section to study the complexity of the 
proposed network, with the aim of evaluating the computation 
efficiency throw using the LCMs instead to convolution layers. For a 
standard convolution layer, a single filter having a size of K × K × M is 

convolved to an input map-extracted square having the same size, 
where K present the width and the height of the used kernel and M 
the number of feature maps. The aim is to provide a single value in 
the output feature map. Hence, the filter computational complexity is 
about K × K × M. The filter application is performed iteratively 
W × H × N  times to provide all the values of the output feature map, 
where W and H corresponds respectively to the width and the height 
of the feature maps and N the number of output feature maps. 
Therefore, the computation complexity of one convolution layer is 
indicated in Equation (1).  

In contrast, the LCM is convolved into two steps. For the 
depthwise convolution layer, each feature maps is extracted 
separately, as outlined in Fig.7. For each feature maps, a single filter 
having size K × K × 1 is convolved to an input-extracted square 
having the same size as the used filter in order to provide a single 
value. The filter processing is performed iteratively W × H × 1 times 
in respect of each square of a single feature maps of the input feature 
map. Thus the computation complexity in the order of K × K × W ×
H . Taking into account the M feature maps, the computation 
complexity of the depthwise convolution layer is about M × K × K ×
W × H. For the second layer of the LCM illustrated in Fig.7, the M 
feature maps are superimposed, on which a filter having size 
1 × 1 × N is applied to provide a single value of the output feature 
map. This filter is applied iteratively W × H × N times as regards the 
output feature map size. As a consequence, the computation 
complexity of the pointwise convolution layer is in the order of 
N × M × W × H. Accordingly, the computation cost of the LCM is 
defined in Equation (2).  
 

 

C����������� ����� =  O(M × N × W × H × K²) (1) 

C��� = O(M × H × W × K² + M × N × W × H) (2) 

 

 
Fig. 7. Structure of the second Downsampling block of the proposed network: LCM 1 and LCM 2 represent respectively the both modules of the second Downsampling block. 

0.01 0.001 0.0001 0.00001 

Table2. 
Training parameters 
Parameter Value 
Optimizer Adam optimizer 
Learning rate 0.0001 
initialization technique Xavier 
Regularization dropout technique(0.5) 
Epoch number 40 
Loss function cross entropy 

 



Consequently, the LCM is considerably more computationally 
efficient than the convolution layer where complexity is decreased by 
O(max(N, K²)). As the proposed network is composed by L blocks 
and each block contains 2 LCMs, the utilization of LCMs instead of 
convolution layers allows reaching a gain of computational complexity 
in the order of O(2 × L × (max(N, K²))). 

 
2.5.   Post processing 

The goal of post processing is to merge all the segmented patches 
in order to generate a single segmented blood vessel image, as depicted 
in Fig.9. Therefore, the provided patches are collected and resized to 
their cropping size. Afterwards, these patches are copied in the order to 
perform the cropping, with respect to the image size. Subsequently, the 
mask of the used image is superimposed on the merged one in order to 
eliminate the white pixels around the retina. Then, the morphological 
transformation “erosion” is applied to eliminate noise by using an 
ellipse structuring element with size 2 × 2.  

3. Experiments and analysis 

The method is configured and implemented where the training 
parameters and the execution platform are described in section 3.1. To 
evaluate the proposed method with respect to its background, the 
experiment is performed using well-known retinal image databases to 
provide the evaluation metrics described in section 3.2. The experiment 
is carried out by distinctly evaluating the segmentation performance, 
the computation requirements and the tradeoff. These evaluation 
performances are presented respectively in section 3.3, section 3.4 and 
section 3.5, in which a comparative assessment with respect to the 
state-of-the-art methods is suggested.  

 
3.1. Experiment setup 

The validation of the proposed method is performed using the two 
publicly retinal image databases DRIVE and STARE. Both databases 
contain respectively 40 and 20 images having sizes of 565×584 and 
700×605. These databases contain respectively seven and ten 
pathological fundus images affected by the diabetic retinopathy [8]. For 
these databases, each retinal image is joined with its manual blood 
vessel segmentation. The Field Of View (FOV) mask is provided for the 
DRIVE database, while the one corresponding to the STARE database is 
created by applying a simple threshold to the gray channel. The 
implementation is conducted on Intel core i7 with a 3.67 GHZ frequency 
processor, 8Go RAM and a NVIDIA GTX 980 GPU. The suggested 
method is implemented using Python 3.5.2 as a programing language, 
with OpenCV library 3.4 and Tensorflow framework 1.12. Tensorflow 
and OpenCV are open source libraries used respectively for image 
processing and computer vision applications [52] and for expressing 
machine learning algorithms [53]. The GPU execution is performed 
using CUDA 9.0 with CUDNN 7.6.3. 

 
3.2. Evaluation principle and  metrics 

 In order to efficiently evaluate the suggested method, we put 
forward a 4-fold cross validation approach, which consists in 
partitioning the retinal images of each database into four subsets in 
order to perform four experiments for each database. The goal of these 

experiments is to evaluate the robustness of the suggested method. 
For each experiment, three subsets are conducted for the training 
process and one subset for testing. Fig.10 shows the dispatching of 
subsets between training and testing of each experiment. For each 
experiment, a DL segmentation model is generated, where examples 
of segmentation results of DRIVE and STARE retinal images are 
shown in Fig.11.  

Additional, we suggest evaluating the segmentation results 
with respect to manual segmentation performed by an expert 
clinician. The evaluation is based on the classification of each pixel 
into True Positive (TP), True Negative (TN), False Positive (FP) and 
False Negative (FN). The TP and TN are respectively the number of 
pixels which are correctly classified as vessels and background, 
whereas the FP and FN are respectively the number of pixels 
misclassified as vessels and background.  

The segmentation performance measures are summarized in 
Accuracy (Acc), Sensitivity (Se), Specificity (Sp), DICE coefficient, 
Precision. These metrics are the most frequently adopted measures 
for the evaluation of segmentation results. The ACC represents the 
ability to correctly classify pixels as background and vessels, while 
the SE and SP reflect respectively the capacity to correctly 
classifying pixels as vessels and the capability of correctly 
classifying pixels as background. The DICE coefficient represents 
the similarity between the ground truth and the segmented image, 
where the Precision indicates the proportion of correctly classifying 
pixels as vessels among all the correctly classified pixels as vessels 
as well as background. Further, we propound computing the 
statistical test P-Values with a confidence level of 95%. This test is 
used to determine whether there is a related significant performance 
between the 4 fold cross validation of two databases [54]. Table 3 
summaries the performance metrics used by the proposed method. 

 
3.3.  Segmentation performances 

In this section, we evaluate the segmentation performance of 
the proposed method using the 4-fold cross validation approach for 

Performance metrics for the evaluation of retinal vessel segmentation. 

Metrics Description 

Sensitivity (SE) TP / (TP+FN) 

Specificity (SP) TN / (TN+FP) 

Accuracy (ACC) TN+TP/TP+FP+TN+FN 

DICE 2*TP/ 2 * TP + F N + FP 

Precision TP/(TP+FP) 

 

 

 
Fig. 10. Dispatching of subsets for 4-fold cross validation. 



 

each database based on ACC, SE, SP, DICE and Precision. The 
performance results are computed by referring to the manual 
segmentation provided by the expert. The performances measure of the 
4-fold cross validation experiments are provided in Table 4. These 
experiments achieve a higher performance, where the average ACC, 
SE, SP, DICE and Precision are respectively in the order of 0.978, 
0.8125, 0.9901, 0.8363 and 0.8680 for the DRIVE database and in the 
order of 0.98, 0.7913, 0.9905, 0.8156 and 0.8462 for the STARE 
database. 

Moreover, the accuracy values provided by the 4-fold cross 
validation are very close to their average where the variation is in the 
order of 0.0024 and 0.0015 respectively for the DRIVE and STARE 
databases. Reduced gaps are also deduced between values for SE, SP, 
DICE and precision with variation values respectively in the order of 
0.029, 0.0022, 0.0253 and 0.037 for the DRIVE database and in the 
order of 0.042, 0.023, 0.0259 and 0.02 for the STARE database. 
Consequently, the proposed method confirms a higher segmentation 
performance whatever the image used for the training or testing 
procedure. Additional, we suggest evaluating the correlation between 
the 4 fold-cross validation results of the two databases with the aim of 
testing the method robustness with respect to the used images.  Thus, 
we propose computing the statistical tests P-values with the hypothesis 
that the results of the 4-fold cross validation are correlated. Therefore, 
we have applied the statistical inference test “Analysis Of 
Variance (ANOVA)” [55] basing on the accuracy values of the 4 fold 
cross validation.  The Test return a P-values in the range of 0.077 for 
DRIVE and 0.36 for STARE, greater than the significant level 

(α=0.05). Hence, interpreting that 4-fold cross validation has related 
distribution. 

Subsequently to evaluate the suggested method, we propose to 
compare our segmentation performance with the state-of-the-art 
methods for both DRIVE and STARE databases, where the ACC, SE 
and SP values are presented in Table 5. We deduce that our method 
achieves better accuracy than numerous methods such as [38] [26] 
[24] [42], [28] [56] and related sensitivity and specificity rates with 
respect to several works for both databases DRIVE and STARE 
databases.  

3.4. Execution time performance  

In this section, we examine the processing execution time of 
the suggested method. Accordingly, we propose to compute the 
execution time of each processing step for a single fundus image 
respectively from the DRIVE and STARE databases, as given in 
Table 6. We conclude that the computation times for the 
preprocessing, cropping and post-processing steps are too low 
despite the size of the used image. Besides, the segmentation step is 
performed in a short time, which is in the order of 0.6s and 0.48s 
respectively for the DRIVE and STARE images. This processing 
time is computed for all patches, where the elapsed times to segment 
a single patch is in the order of 0.0017±0.0003. To confirm the 
computation time behavior, we choose randomly 10 images 
respectively from both databases, in order to compute their whole 
execution times for vessel tree segmentation, as depicted in Fig.12. 
We deduce that the execution time is varied between 0.53 and 0.65 
for the DRIVE images and between 0.42 and 0.57 for the STARE 
images, where the average computation times are respectively 0.59s 
and 0.5s, as shown in Fig.12 with red lines. Consequently, the 
computation times are considered as stationary whatever the used 
image is. This shorter computation time is explained by the suitable 
choice of the size of patches used for each size of image, which 
allows generating a limited number of patches, hence keeping the 
computation burden low. 

Thereafter, we propose to evaluate the execution time in term 
of accuracy, in relation to the existing methods. The evaluation is 
performed with methods providing timing data. Both metrics 

 
Fig. 11. Segmentation results: First row: DRIVE retinal image; Second row: STARE retinal image; First column: Preprocessed retinal images; Second column: Ground truth; Third 
column: Segmentation result. 

 

Table 4 
 Average performance measure for 4-fold cross validation for both DRIVE and STARE 
database. 
Database Experiments Metrics 

Accuracy Sensitivity Specificity DICE Precision 
DRIVE 1 0.98 0.8586 0.989 0.8583 0.859 

2 0.975 0.815 0.987 0.813 0.8173 
3 0.9819 0.8448 0.99 0.865 0.889 
4 0.977 0.7318 0.9946 0.8091 0.907 

STARE 1 0.9784 0.7072 0.99 0.7638 0.83227 
2 0.9787 0.8523 0.987 0.8353 0.82 
3 0.9816 0.806 0.9928 0.839 0.8764 
4 0.9815 0.80 0.9924 0.8243 0.8563 



correspond to the DRIVE database since it is the most used, where 
values are provided in Table 7. For that purpose, we investigate to split 
segmentation methods into two groups based on their execution time. 
These two groups correspond respectively to methods reaching an 
execution time below and above 1 second, as separated in Table 6 with 
bold line.  

We deduce that first group put forward segmentation methods 
suggested by [33, 34, 57] which aim insuring fast computation time 
respectively in the range of 0.037s, 0.193s and 0.421s. In particular, our 
suggested method takes part of this group by providing segmentation 
results in 0.59s. In contrast, second group put forward studies suggested 
by [21, 23, 32] which suffer from higher computation times respectively 
in the range of 12.16, 1200 and 167 seconds. Additionally, while the 
suggested studies [33, 34, 57] reach the fast execution time, however, 
their accuracy rates were under 0.943. Meanwhile, our method is 
executed in 0.59s, while significantly achieving better accuracy in the 
order of 0.9819. 

3.5. tradeoff evaluation  

In this section, we suggest firstly to study the tradeoff between 
computation requirement and segmentation results of U-Net based 
methods. We suggest investigating about the evolution of 
segmentation results according to computation requirement which 
consists of trainable parameters and execution time.  

Table 5 

 Comparison of segmentation performances for DRIVE and STARE databases. 

Works Year DRIVE STARE 

ACC SE SP ACC SE SP 

Condurache et al. [55] 2012 0.9516 0.9094 0.9591 0.9595 0.8902 0.9673 

Roychowdhyry et al.[24]  2015 0.9519 0.7249 0.983 0.9515 0.7719 0.9726 

Roychowdhury et al. [11] 2015 0.949 0.739 0.978 0.956 0.732 0.984 

Imani et al.[18] 2015 0.9523 0.7524 0.9753 0.9590 0.7502 0.9745 

Jiang et al.[17] 2017 0.9597 0.8375 0.9694 0.9579 0.7767 0.9705 

Biswal et al.[19] 2018 0.95 0.71 0.97 0.95 0.70 0.97 

Arguelo et al.[56] 2018 0.943 0.721 0.976 0.959 0.730 0.978 

Sumathi et al.[57] 2018 0.9606 0.8014 0.9753 0.9435 0.8339 0.9536 

Jiang et al.[26] 2018 0.9624 0.7540 0.9825 0.9734 0.8352 0.9846 

Yan et al. [58] 2018 0.9538 0.7631 0.9820 0.9638 0.7735 0.9857 

Wang et al.[28] 2019 0.9483 0.7886 0.9736 0.9475 0.7896 0.9734 

Tang et al. [59] 2019 0.9574 0.8564 0.9710 0.9695 0.8162 0.9869 

Jin et al.[27] U-Net 2019 0.9554 0.7849 0.9804 0.9637 0.76 0.9867 

Jin et al.[27] D-U-Net 2019 0.9566 0.7963 0.98 0.9641 0.7595 0.9878 

Tian et al.[38] 2020 0.958 0.8639 0.9690 - - - 

Wu et al. [60] 2020 0.9582 0.7996 0.9813 0.9672 0.7963 0.9863 

Nasser et al. [61] 2020 0.9607 0.7542 0.9843 0.9632 0.7806 0.9825 

Proposed method 2020 0.9819 0.8448 0.99 0.9816 0.806 0.9928 

 

(�� × ����_���_����ℎ�) (�� × ����_���_����ℎ�)

 

Table 7 
 Comparison of execution time and accuracy for DRIVE database.

[34] SIMD parallel processor
[57] Quad CPU cores 

[33] Quad CPU cores 
CPU GeForce

[56] Dual CPU cores 2.66GHz,2GBRAM 
[35] CPU 
[36]

[58] Dual CPU cores 2.4 GHz, 2 GB RAM 
[24] Dual CPU cores, 2.6GHz and 2GB RAM
[11] Dual CPU cores 2.6GHz and 2GB RAM 

[32] 512 MB RAM
[21] CPU 

[17]  16 GB RAM
[23] CPU 

[29] NIVIDIA GEFORCE GTX-980 Ti, 56G RAM, 
[58] CPU 3.60 GHz, GPU GeForce GTX 1080TI  

[27]
[27]

[59] E5-2690 V3, 2.6GHz, 128 GB RAM, GPU GeForce RTX 2080Ti 

 

 
(a) 

 
(b) 

Fig. 12. Whole execution time for 10 images for each database: (a) DRIVE database; (b) 
STARE database. 



 

For this purpose, these computation requirements and 
segmentation results of U-Net based methods are identified, as 
presented in Table 8. Comparing to the U-Net network [39], our 
proposed model incurs a less parameter cost due to the LCMs used in 
the downsampling and upsamling blocks. Compared to U-Net extension 
based methods [42, 31], their DL models require lower parameter 
numbers with respect to ours, which are designed with only 128 filters 
and with specific convolution layers such as deformable layers and a 
residual layer. However, they are discriminated by an important 
execution time. Even so, our model is much faster reaching a 
computation time under 1 second, while performing better accuracy 
rate. Accordingly, our method offer the best tradeoff among the other 
methods  through reaching lower parameter costs with respect to U-net, 
shorter execution time among those U-Net based methods and higher 
accuracy rate.  

Additionally, we suggest studying the trade-off between the 
segmentation performance and the execution time of all retinal 
segmentation methods.  For that purpose, we propose to investigate 
about the evolution of accuracy according to the execution time. For 
that, the retinal vessel segmentation methods are depicted into a 2D 
Cartesian space where horizontal and vertical coordinates correspond to 
the execution time and the accuracy rate, respectively. 

We deduce that the studies [17, 29 29] aim enhancing segmentation 
accuracy while reducing the execution time have followed the same 
stability trend, as illustrated by the green slop in Fig.13. Particularly, 
our method reaches the shorter computation time with the highest 
accuracy rate among those methods, as represented by the blue point. 
For other work, the growth of the accuracy rate has been always 
associated with the rise in the execution time. Those methods can be 
partitioned into two trends, which are clustered around the red and 
orange slopes in Fig.13. Accordingly, an accuracy rate of 97% cannot 
be reached in less than 6s and 9s, respectively for the case of the orange 
and red slopes. 

4. Conclusion 

The segmentation of the retinal vessel tree is an indispensable step 
for the detection and diagnosis of various ocular pathologies such as 
diabetic retinopathy, age-related macular degeneration and glaucoma. 

This clinical context expects a higher segmentation performance on a 
reduced processing time. Within this objective, we have put forward 
a novel deep neural network architecture for the efficient 
segmentation of retinal blood vessels into reduced computation time. 
The suggested network consists of an extension of well-known 
network through expanding LCMs. 

The proposed method is evaluated on both databases, DRIVE 
and STARE, with a 4-fold cross validation method. Thus, the 
suggested method has achieved high accuracy equal to 0.9819 and 
0.9816 in 0.59s and 0.48s for the DRIVE and STARE databases, 
respectively. Our method has been evaluated with respect to the 
existing work, where it has ensured a better trade-off between 
accuracy and the execution time.  

Otherwise, several automatic ophthalmological diagnostic 
systems such as [2, 59] are based on the segmentation of retinal 
vascular tree. However, they are discriminated by a higher execution 
time respectively in the range of 8.74s and 134.897s, where the 
computation time of vessel segmentation process are respectively in 
the order of 4.99s and 82.12s. In this context, our automated method 
can be directly employed to take benefit from its segmentation 
performance and computational time which are respectively in the 
range of 98% and 0.59s.  

Besides, the suggested method can be extended for segmenting 
separately thick and thin vessel [24, 38]. Moreover, it can be useful 
for the identification of bifurcation points [60, 61] tortuosity [62] and 
thickness [63] measurement. The purpose is to ensure a better trade-
off between accuracy and the execution time by providing higher 
detection performance into a shorter elapsed time. 

Additionally, the provided results allow our dedicated future 
work to implement retinal vessel tree segmentation into mobile 
devices, as a higher interest in mobile health within the clinical 
context. Indeed, several mobile digital imaging devices have recently 
appeared, hence enabling the capture of fundus images with good 
quality on mobile devices [64]. Furthermore, the performed 
computational performances promote targeting future work for using 
higher resolution fundus images, in particular the ultra-wide field, 
and achieving real time implementations with higher segmentation 
accuracy.  
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