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NUMERICAL ANALYSIS OF A REYNOLDS STRESS MODEL FOR
TURBULENT MIXING: THE ONE-DIMENSIONAL CASE

Xavier Blanc1 , Charles Colavolpe2, Roland Duclous2,* , Jérôme Griffond2

and Olivier Soulard2

Abstract. A mixed hyperbolic-parabolic, non conservative, Reynolds Stress Model (RSM), is studied.
It is based on an underlying set of Langevin equations, and allows to describe turbulent mixing, in-
cluding transient demixing effects as well as incomplete mixing. Its mathematical structure is analysed,
and specific regimes, related to acoustic-like, Riemann-type, or self-similar solutions, are identified. A
second-order accurate numerical scheme is proposed in arbitrary curvilinear geometry. Its accuracy and
convergence behaviour are tested by comparison with analytical solutions in the different regimes. The
numerical scheme can be generalized to multi-dimensional configurations, with potentially cylindrical
symmetry, on unstructured meshes.
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1. Introduction

Turbulent mixing at fluid interfaces plays an important role in a wide variety of domains, ranging from
the study of astrophysical objects like supernovae, to engineering applications like Inertial Confinement Fusion
(ICF). Depending on the configuration, turbulent mixing can be triggered by different instabilities, among
which the Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Reynolds Stress Models (RSMs), presented
in Section 2, are common tools to predict the main effects and evolution of such fully developed turbulence.
RSMs are one-point statistical models, which rely on a local-in-space decomposition of instantaneous fields into
a mean and a turbulent fluctuating field. Still, they do not compute the fluctuating fields, but rather compute
their double correlations. Among existing RSMs, the BHR [2] and GSG [19, 20] models are widely used for
engineering purposes related to variable-density turbulence and mixing at interfaces. They rely on a set of
evolution equations for the covariances of velocity and specific volume (or other equivalent covariances, in the
case of the BHR model). However, the mass fraction fluxes, which are defined as the covariances between velocity
and mass fractions, are algebraically closed, and expressed in terms of the evolved variables of the model. Hence
a first gradient closure is used, which implies that the material mass fractions evolve according to a nonlinear
parabolic equation. This modelling is firmly established in the self-similar regime, assuming turbulent spectra
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at equilibrium, but it lacks some important phenomenology, as mentioned in [37, 38]. More precisely, counter-
gradient turbulent transport, with transient demixing effects, and incomplete mixing, with segregation effects,
are not described. Yet, they are likely to appear in many configurations of interest, for instance just after a
shock wave crosses a Turbulent Mixing Zone (TMZ) from the heavy-fluid side to the light-fluid side [8]. In order
to take into account these effects, the closure on mass fraction fluxes should be postponed at a higher level by
adding evolution equations for the mass fraction fluxes and covariances. This yields a coherent second-order
model (in a sense that will be precised in Sect. 2).

In doing so, the nature of the model changes. The conservative parabolic equation for the material mass
fractions is superseded by a non-conservative, mixed hyperbolic-parabolic subsystem. Physically relevant solu-
tions rely on both hyperbolic and parabolic parts of the model, with comparable magnitude (see the analytical
solutions of Sect. 3.2.2), at least when the characteristic time of the external forcing by the mean flow is not too
small compared to the turbulent one. However, the regularizing closure may become unphysical when strong
accelerations occur, for instance when a shock wave crosses a TMZ. In that case, the parabolic terms imply
a supersonic transport of information from the shocked flow to the flow upstream from the shock front. This
violation of a basic physical principle leads to a “modelling” instability as shown in [36]. Such failures of the
closures must be cured through limitations which reduce or even discard the regularizing terms.

The purpose of this work is to propose a numerical scheme that can be applied to the hyperbolic subsystem,
appart from the regularizing terms. The proposed scheme falls in the class of Godunov-type methods, that rely
on a solution of the Riemann problem. While they seem appropriate in our case, at first sight (an exact solution
of the Riemann problem is known), they should be employed with care and adapted. The proposed adaptation is
rather specific to our turbulence RSM, in the sense that some non-conservative products, which are not defined,
even in the weak sense, for the Riemann problem, require an appropriate treatment. Other adapations were
introduced to enforce discrete invariant domains (realizability), entropy stability and stationary states, in 1D
cuvilinear coordinates. These latter accuracy and stability requirements are used by a large class of numerical
schemes devoted to non-conservative hyperbolic systems [7,41]. In the context of other turbulence RSM, discrete
entropy and realizability have already been discussed [5,6], but from a different point of view (with emphasis on
non-conservative products in presence of shocks). Our approximate Godunov scheme is extended to second-order
accuracy, and can be generalized to multi-dimensional and non-planar configurations, on unstructured meshes.
Little will be said here on the numerical treatment of parabolic operators, having a compact diffusion support,
since the turbulent diffusion terms do not exhibit any particular stiffness. This is not the main concern of this
work.

The article is organized as follows. In Section 2, the RSM is presented, its origins are detailed. In Section 3,
a mathematical analysis of the hyperbolic-parabolic subsystem is proposed. Filiation with other RSMs is pointed
out. The mathematical analysis supports a numerical analysis in 1D curvilinear coordinates, in Section 4.
A first-order scheme is proposed, which constitutes a basis for a subsequent second-order extension in space
and time. A special attention is paid to the simplicity of the algorithm and to stability at each step, having in
view the generalization to an unstructured multi-D scheme. In Section 5, we investigate, in a series of numerical
tests, the response of the proposed scheme with respect to the variety of possible regimes allowed by the RSM.

2. Model

The model studied in the present article is a building block of a larger-purpose turbulence model intended to
predict turbulent mixing in multi-species compressible flows subject to strong accelerations or decelerations and
shock crossing as encountered in ICF applications [24] or shock tube experiments [8, 29]. In its previous form
[20,21], this model focuses on the effect of pressure and velocity gradients but employs a simple approach for the
species mass fractions. Its present extension introduces a more general treatment of concentrations leading to
a more complex system of equations. Since the analysis of the full coupled model is a difficult task, this article
makes a first step by considering the simplified but physically meaningful situations of freely evolving turbulent
mixing zones where the mean pressure and velocity gradients can be discarded.
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To be more specific, the model under consideration here pertains to the class of the Reynolds-averaged
Navier–Stokes (RANS) turbulence models. RANS models rely on the decomposition of each flow variable 𝑞 into
a mean 𝑞 and a fluctuating part 𝑞′ = 𝑞 − 𝑞 with respect to a well-suited Reynolds average1, for instance an
ensemble average (as defined in [16], Appendix 1) as in the present case. Writing the equations for the mean
values 𝑞 of the instantaneous variables involves unknown correlations which require to be either modelled from
known quantities or evolved from their own equation which anew bring forth correlations of even larger order.
This decomposition procedure can be illustrated with the instantaneous equation for the conservation of the
mass of a material of index 𝛼. The latter reads 𝜕

𝜕𝑡 (𝜌𝑌𝛼)+∇·(𝜌𝑌𝛼U) = 0 with 𝜌 the density, 𝑌𝛼 the mass fraction
(i.e. mass of material 𝛼 per unit mass of the mixture, made of 𝑁𝑚 materials, such that

∑︀𝑁𝑚

𝛼=1 𝑌𝛼 = 1) and
U the velocity. When working with conservation equations, it is convenient to use Favre (i.e. mass-weighted)
averages together with Reynolds averages. For any quantity 𝑞, the Favre average is denoted ̃︀𝑞 and is related to
the Reynolds average, 𝑞, according to ̃︀𝑞 = 𝜌𝑞/𝜌, with 𝜌 the instantaneous density. The Favre fluctuation is then
denoted with 𝑞′′ = 𝑞 − ̃︀𝑞. Summing over the 𝛼 indices, then averaging the mass conservation equation leads to
𝜕𝜌
𝜕𝑡 +∇ · (𝜌Ũ) = 0 and does not involve any unclosed correlation, when the Favre average of the velocity Ũ is
used instead of its Reynolds averaged counter-part. On the opposite, the RANS procedure leads to the following
unclosed equation for the averaged mass fraction 𝜌𝜕𝑌𝛼

𝜕𝑡 +𝜌Ũ ·∇𝑌𝛼 +∇· (𝜌𝑌 ′′𝛼 u′′) = 0 where the turbulent scalar

flux 𝑌 ′′𝛼 u′′ is an unknown quantity. A simple approach consists in writing a closure based on phenomenological
considerations 𝑌 ′′𝛼 u′′ = −𝜈𝑇∇𝑌𝛼 where the so-called turbulent diffusivity 𝜈𝑇 ≥ 0 has to be expressed from known
correlations. Such a formula, reminiscent of the Fickian approximation for diffusion processes, is referred to as a
first gradient closure. A more general approach consists in writing an equation for the flux 𝑌 ′′𝛼 u′′ by combining
equations for 𝑌 ′′𝛼 and for u′′ but this implies that the unknown third order correlation ˜𝑌 ′′𝛼 u′′ ⊗ u′′ requires a
closure. Assumptions and approximations allowing to retrieve the gradient closure of correlations from their
unclosed equations can be found in [35], which serves as a guide for defining the turbulent diffusivity and having
an idea of the domain of validity of the simple closure. RANS models are called first-order turbulence models
when closures are applied to second-order correlations, whereas they are second-order turbulence models when
only third-order correlations are closed, while second-order correlations are kept as unknown of the system. The
second-order correlation tensor of the fluctuating velocity, ˜u′′ ⊗ u′′, is an important variable of RANS models.
It is referred to as the Reynolds stress tensor. Its half trace 𝑘 = 1

2 tr( ˜u′′ ⊗ u′′) is the turbulent kinetic energy. The
rate of molecular destruction of 𝑘 is described by the variable 𝜀. The ratio �̃� = 𝜀/𝑘 is a characteristic turbulent
frequency. Many models decompose the Reynolds stress tensor into an isotropic and a deviatoric part and use a
closure for the latter, thereby needing only one equation for 𝑘, rather than equations for each component of the
tensor. On the opposite, models which evolve the full Reynolds stress tensor are called Reynolds stress models
(RSM). The present model is of that kind.

Some RSMs can be obtained following two distinct but coherent derivation routes. The first route is deter-
mined by the procedure described above. It starts from the hydrodynamics equations for the instantaneous
fields, introduces a decomposition into a mean and a turbulent fluctuating component, isolates and averages
the equations for the products of fluctuations and finally models the unclosed correlations at second order. The
second route relies on an underlying model, which directly computes the Probability Density Function (PDF)
of the fluctuating fields [31]. This ensures that the tensor built from the double correlations of the fluctuating
fields is semi definite positive. Hence, the resulting RSM stands as realizable. It is this second route that is
followed to present the RSM under study.

In order to give more insights into the origins of the RSM of interest here, we introduce its underlying PDF
model. The RSM shares some important features with RSM equations presented in [39] (see the turbulent flux
Eq. (223), terms I to IV), while the underlying PDF model is adapted from [30, 32]. It is able to account for
a number of important identified mechanisms that occur, for instance, but not only, in turbulence induced by
the Richtmyer–Meshkov instability. For the sake of simplicity, the underlying PDF model will be described for

1A Reynolds average obeys a set of rules named by Hinze [23] after the pioneer of turbulence studies O. Reynolds.
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this particular type of flows. Thus, before presenting the PDF model, we will first give a few details about
Richtmyer–Meshkov turbulent mixing zones. They result from the impulsional energy deposit by a shock wave
crossing an interface between two fluids. The unavoidable small scale perturbations of this interface grow in
time, proportionally to the Atwood number, 𝐴𝑡 = 𝜌ℎ−𝜌𝑙

𝜌ℎ+𝜌𝑙
, which compares the densities, 𝜌𝑙 and 𝜌ℎ, of the lighter

and heavier fluids, respectively. The instability ultimately reaches a self-similar, fully turbulent state. Before
reaching such a state, compressibility effects progressively fade: the shock gets far from the mixing zone and the
Boussinesq approximation becomes valid [37, 38, 44]. The mean acceleration, mean pressure gradient, ∇𝑃 , and
mean velocity gradient, ∇̃︀U, become negligible. The only turbulence production comes from the mean mass
fraction gradients, which drive, through the fluctuating fields, both turbulent mass fluxes and a modification
of the mixing heterogeneity. This low compressibility limit regime embeds a variety of non-trivial aspects of
fully developed turbulence: fluctuating velocity field showing incomplete return to isotropy, transient demixing
effects, and incomplete mixing (defined by ̃︂𝑌 ′′2𝛼 ̸= 0) between materials [37,38].

To model this type of flows, it has been shown that the Langevin model got satisfactory results [30, 32],
notwithstanding the issue of anisotropy, that will be left aside, for the sake of simplicity. To deal with mixing,
we also propose to use Langevin models, and their corresponding PDF model. Namely, a Langevin model
inspired from the Interaction Exchange with the Mean (IEM) model for the instantaneous mass fractions [14],
together with a Simplified Langevin Model (SLM) [31] for the fluctuating velocities, with only dissipation and
complete redistribution (i.e. complete return to isotropy) terms. The IEM model has been enriched with a
Brownian noise, in order to include, by construction, a class of self-similar solutions in the subsequent RSM.
Self-similarity is indeed an important, generic feature of a wide class of fully developed turbulent regimes, that
cannot be disregarded. Even though it does not allow the respect of the mass fraction boundedness, this model
is only meant to be used as a basis for a RSM. For this purpose, this inherent defect of the Langevin model
applied to a turbulent field is not prohibitive. This bare Langevin model can be enriched with mean acceleration
and compressibility effects, for instance to account for the large scale interaction with a shock [20]. Such an
extension will not be considered in this work and we only focus on these reduced Langevin models.

The flow under consideration involves 𝑁𝑚 materials, also referred to as “species”. For each material
𝛼 ∈ [1, 𝑁𝑚] composing the fluid, the mass fraction is defined as 𝑌𝛼 = 𝜌𝛼/

∑︀𝑁𝑚

𝛽=1 𝜌𝛽 , where 𝜌𝛼 is the local
mass of material 𝛼 per unit volume, so that 𝜌 =

∑︀𝑁𝑚

𝛽=1 𝜌𝛽 is the fluid density. Each material is itself composed
of different constituents among the 𝑁𝑐 ones over the whole set of materials. The mass fraction of constituent
𝑖, in material 𝛼, is defined as 𝑌𝛼,𝑖 = 𝜌𝛼,𝑖/𝜌, where 𝜌𝛼,𝑖 is the local mass of constituent 𝑖 belonging to the
material 𝛼, per unit volume. As an illustration, ICF capsules [24] involve materials such as the filling gas and
solid shells, whereas the deuterium and tritium ions which should fusion are constituents that can be present
in different materials. Mixing between materials can be triggered by molecular or turbulent diffusion. The
turbulent material mass fraction flux of each material 𝛼, 𝑌 ′′𝛼 u′′, is a cornerstone to the turbulent mixing mod-
eling. It can be obtained by integration of the Favre PDF, ̃︀𝑓 , over the fluctuating field q′′ = (u′′, 𝑌 ′′𝛼 , 𝑌

′′
𝛽 , · · · ):̃︂𝑞′′𝑖 𝑞′′𝑗 =

∫︀
dq′′𝑞′′𝑖 𝑞

′′
𝑗
̃︀𝑓(q′′) = X𝑖𝑗 . The so-called correlation tensor, X, writes

X =

⎡⎢⎢⎢⎢⎢⎣
˜u′′ ⊗ u′′ 𝑌 ′′𝛼 u′′ 𝑌 ′′𝛽 u′′ · · ·

𝑌 ′′𝛼 u′′
𝑡 ̃︂𝑌 ′′2𝛼 𝑌 ′′𝛼 𝑌

′′
𝛽 · · ·

𝑌 ′′𝛽 u′′
𝑡

𝑌 ′′𝛼 𝑌
′′
𝛽

̃︂𝑌 ′′2𝛽 · · ·
...

...
...

⎤⎥⎥⎥⎥⎥⎦ .

The Favre PDF satisfies the following equation

𝜕

𝜕𝑡

[︁
𝜌 ̃︀𝑓(q′′)

]︁
+∇ ·

[︁
𝜌
(︁̃︀U + u′′

)︁ ̃︀𝑓(q′′)
]︁

+∇𝑞′′ ·
[︁ ̃︀𝑓(q′′)∇ ·

(︁
𝜌 ˜u′′ ⊗ q′′

)︁]︁
= −∇𝑞′′ ·

[︁
𝜌 ̃︀𝑓(q′′)Gq′′

]︁
+

1
2

HH𝑡 : ∇2
𝑞′′

[︁
𝜌 ̃︀𝑓(q′′)

]︁
. (2.1)
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The left-hand side gathers terms related to turbulent transport, that arise from the decomposition of the Navier–
Stokes equations into the mean and fluctuating components. The procedure that leads to these terms is described
in [32], for instance. The right-hand side is a Fokker–Planck model. It is commonly used in turbulence modelling
[32], as it can handle with Gaussian PDF with appropriate mean and variance of fluctuating quantities. The
coefficients G and H are defined by

G ≡
[︂
𝐺𝑢𝑢I3 0
𝐺𝑝 𝐺𝑑I𝑁𝑚

]︂
, H ≡

[︂
𝐻𝑢I3 0
0 H𝑏

]︂
,

where the diagonal components of G, that are 𝐺𝑢𝑢 and 𝐺𝑑, model the fluctuation dissipation – or return to the
mean –, while the contribution HH𝑡 accounts for the dispersion from the mean due to the turbulent motion.
I𝑛 is the identity matrix of dimension 𝑛. The coefficients that govern the fluctuating velocity dissipation and
dispersion are 𝐺𝑢𝑢 = − 1

2𝐶1̃︀𝜔 and 𝐻2
𝑢 = 2

3 (𝐶1 − 1) ̃︀𝜔̃︀𝑘, respectively. Here, 𝐶1 > 1 is a positive constant
related to the redistribution processes in the fluctuating velocity components, and determines the isotropization
rate of the Reynolds stress tensor. On the other hand, the coefficients that govern the fluctuating material

mass fraction dissipation and dispersion are 𝐺𝑑 ≡ −𝐶𝜏

2
̃︀𝜔 and H𝑏, respectively. The off-diagonal coefficient

𝐺𝑝 ≡

⎛⎜⎜⎜⎝
−
[︁
∇̃︀𝑌𝛼

]︁𝑡
−
[︁
∇̃︀𝑌𝛽

]︁𝑡
...

⎞⎟⎟⎟⎠accounts for turbulence production by the material mass fraction gradients. The tensorial

coefficient H𝑏 is defined by the relation H𝑏H𝑡
𝑏 = 𝐶𝜏𝑜̃︀𝜔

⎡⎢⎢⎣
̃︂𝑌 ′′2𝛼 𝑌 ′′𝛼 𝑌

′′
𝛽 · · ·

𝑌 ′′𝛼 𝑌
′′
𝛽

̃︂𝑌 ′′2𝛽 · · ·
...

...

⎤⎥⎥⎦. Here, 𝐶𝜏 > 𝐶𝜏𝑜 > 0 are positive

constants related to the dissipation and Brownian diffusion processes.

Remark 2.1. Consider the mass fraction and velocity fluctuations, 𝑌 ′′𝛼 and u′′ = (𝑢′′𝑥, 𝑢
′′
𝑦 , 𝑢

′′
𝑧 )𝑡, be solution of

Dt𝑌
′′
𝛼 = −u′′ · ∇̃︀𝑌𝛼 +

1
𝜌
∇ ·
(︁
𝜌𝑌 ′′𝛼 u′′

)︁
− 𝐶𝜏

2
̃︀𝜔𝑌 ′′𝛼 +

√︀
𝐶𝜏𝑜̃︀𝜔𝑁𝑚∑︁

𝛽=1

𝐻𝛼𝛽�̇�𝛽 , (2.2)

D𝑡u′′ =
1
𝜌
∇ ·
(︁
𝜌 ˜u′′ ⊗ u′′

)︁
+𝐺𝑢𝑢u′′ +

√︀
𝐻2

𝑢Ẇ𝑢, (2.3)

D𝑡x = ̃︀U + u′′, (2.4)

where x is the position of a Lagrangian fluid particle. Let 𝑓 be the corresponding Eulerian PDF, as defined
in [30, 32]. Then, from [30, 32], it can be shown formally that 𝑓 is solution to the Fokker–Planck equation
(2.1). Here, 𝑊𝛽 and W𝑢 are independent Brownian noises, and 𝐻𝛼𝛽 is implicitely defined by the relation∑︀𝑁𝑚

𝛾=1𝐻𝛼𝛾𝐻𝛽𝛾 = 𝑌 ′′𝛼 𝑌
′′
𝛽 , 𝐷𝑡 is the Lagrangian time derivative, x the position of a fluid particle. The Langevin

equations (2.3), for the Favre velocity fluctuations, u′′, is the SLM (12.109) from [32]. The first term in the
right-hand side is a turbulent pressure contribution, that arises from the decomposition between the mean and
fluctuating components of the Navier–Stokes equations. Equation (2.3) can also be viewed as a simplification
of equation (B3) of [20], for the limited scope of the present framework without pressure nor velocity gradients.
The Langevin equation (2.2) is a multi-species generalization of the Langevin model (5.52) of [30] (note that
Eq. (2.2) is expressed as a Langevin equation for a fluctuating quantity, while Eq. (5.52) of [30] is expressed as
a Langevin equation for an instantaneous quantity. The passage from one to another can be made using the
equation for the averaged material mass fraction, ̃︀𝑌𝛼). It satisfies the mass conservation property

∑︀𝑁𝑚

𝛼=1 𝑌
′′
𝛼 = 0.

The two first terms in the right-hand side of equation (2.2) also arise from the decomposition between the mean
and fluctuating components of the Navier–Stokes equations.
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To many uses, the instantaneous mass fractions 𝑌𝛼 are attached to a flow made of well-mixed constituents.
In this work, it is assumed that there is no separation effect between constituents inside a material. Thus, the
instantaneous mass fractions of the material constituents satisfy the relation

𝑌𝛼,𝑖 =
̃︀𝑌𝛼,𝑖̃︀𝑌𝛼

𝑌𝛼, ∀𝛼 ∈ [1, 𝑁𝑚],∀𝑖 ∈ [1, 𝑁𝑐]. (2.5)

This amounts to a so-called “carrying material” approximation.
The equations for the second-order correlations can be obtained by integrating the PDF equation (2.1).

A compact tensorial formulation of the evolution equations for the second-order correlations can be written as

d
d𝑡

X−∇ · ℱ𝑐 = GX + XG𝑡 + H H𝑡, (2.6)

where d
d𝑡 [·] ≡ 𝜕

𝜕𝑡 [·] + ̃︀U · ∇ [·]. The triple correlation flux, yet to be closed, is denoted by ℱ𝑐.
The latter tensorial expression may also be developed component-wise, say for a material with index 𝛼,

having a constituent with index 𝑖, in presence of another material with index 𝛽. Also, the equations for the
mean material mass fractions and their constituent mass fractions can be deduced from the Favre average of the
instantaneous equation 𝜕

𝜕𝑡 (𝜌𝑌𝛼) +∇ · (𝜌𝑌𝛼U) = 0, and from equation (2.5). This leads to the following system

d
d𝑡
𝜌 = 0, (2.7)

𝜌
d
d𝑡
̃︀𝑌𝛼 +∇ ·

(︁
𝜌𝑌 ′′𝛼 u′′

)︁
= 0, (2.8)

𝜌
d
d𝑡
̃︀𝑌𝛼,𝑖 +∇ ·

(︃
𝜌𝑌 ′′𝛼 u′′

̃︀𝑌𝛼,𝑖̃︀𝑌𝛼

)︃
= 0, (2.9)

d
d𝑡
𝑌 ′′𝛼 u′′ + ˜u′′ ⊗ u′′∇̃︀𝑌𝛼 +

1
𝜌
∇ ·
(︁
𝜌 ˜𝑌 ′′𝛼 u′′ ⊗ u′′

)︁𝑐

= −1
2

(𝐶𝜏 + 𝐶1)̃︀𝜔𝑌 ′′𝛼 u′′, (2.10)

d
d𝑡
𝑌 ′′𝛼 𝑌

′′
𝛽 + 𝑌 ′′𝛼 u′′ · ∇̃︀𝑌𝛽 + 𝑌 ′′𝛽 u′′ · ∇̃︀𝑌𝛼 +

1
𝜌
∇ ·
(︁
𝜌 ˜𝑌 ′′𝛼 𝑌

′′
𝛽 u′′

)︁𝑐

= − (𝐶𝜏 − 𝐶𝜏𝑜)̃︀𝜔𝑌 ′′𝛼 𝑌
′′
𝛽 , (2.11)

d
d𝑡

˜u′′ ⊗ u′′ +
1
𝜌
∇ ·
(︁
𝜌 ˜u′′ ⊗ u′′ ⊗ u′′

)︁𝑐

= −2
3
̃︀𝜔̃︀𝑘I− 𝐶1̃︀𝜔 [︂ ˜u′′ ⊗ u′′ − 2

3
̃︀𝑘I
]︂
. (2.12)

Remark 2.2. In these RSM equations, the material time derivative, d
d𝑡 [·] ≡ 𝜕

𝜕𝑡 [·] + ̃︀U · ∇ [·], has been used.
In an Arbitrary Lagrangian Eulerian (ALE) formulation, a moving volume control of arbitrary velocity Ẋ is
introduced. The time derivative should then be rewritten as d

d𝑡 [·] = 𝜕
𝜕𝑡 [·] +

(︁̃︀U− Ẋ
)︁
· ∇ [·], different from the

material derivative.

Finally, an equation for the turbulent mean dissipation rate, ̃︀𝜀, completes the system [15]

𝜌
d
d𝑡
̃︀𝜀+∇ ·

(︁
𝜌̃︂𝜀u′′)︁𝑐

= −𝐶𝜀2𝜌̃︀𝜔̃︀𝜀, (2.13)

where 𝐶𝜀2 > 1 is introduced as a dissipation constant.
The last term in the right-hand side of equation (2.12) is a redistribution term among the components of

the Reynolds stress tensor, which reflects its isotropization. All other terms in the right-hand side of equations
(2.10)–(2.13) are interpreted as dissipation terms, as they carry a minus sign.

In order to complete the modelling at second-order, a closure on the triple correlations needs to be introduced.
These are closed with a first gradient model. Note that such modelling relies on a presumed asymptotic regime
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where external sollicitations can be discarded, which is valid at long time scales. Such physical considerations
hold for both first-order and second-order RSMs [34]. The second-order closure reads

(︁
𝜌 ˜𝑌 ′′𝛼 u′′ ⊗ u′′

)︁𝑐

= −𝐶𝑑𝜌
˜u′′ ⊗ u′′̃︀𝜔 ∇𝑌 ′′𝛼 u′′,(︁

𝜌 ˜𝑌 ′′𝛼 𝑌
′′
𝛽 u′′

)︁𝑐

= −𝐶𝑑𝜌
˜u′′ ⊗ u′′̃︀𝜔 ∇𝑌 ′′𝛼 𝑌

′′
𝛽 ,(︁

𝜌 ˜u′′ ⊗ u′′ ⊗ u′′
)︁𝑐

= −𝐶𝑑𝜌
˜u′′ ⊗ u′′̃︀𝜔 ∇ ˜u′′ ⊗ u′′,(︁

𝜌̃︂𝜀u′′)︁𝑐

= −𝐶𝜀𝜌
˜u′′ ⊗ u′′̃︀𝜔 ∇̃︀𝜀,

where 𝐶𝑑 > 0 and 𝐶𝜀 > 0 are positive diffusion constants related to the transport processes.
The model (2.7)–(2.13), supplemented with these second-order closures, may be viewed either as an asymp-

totic limit, in the so-called Boussinesq regime, with constant-in-time mean density 𝜌 (Eq. (2.7)), or simply as a
sub-system of larger purpose RSMs dedicated to time-dependent, variable-density, compressible flows (by consid-
ering a general Reynolds averaged Navier–Stokes equations, that embeds the present RSM, without Eq. (2.7)).
It is intended to cure several flaws of these RSMs [2,19,20,28]. First, the model becomes fully second-order. This
ensures a better consistency between the various fields, since only triple correlations are closed. In particular, the
turbulent material mass fraction fluxes, 𝑌 ′′𝛼 u′′, are now computed by equation (2.10), instead of being closed,
in equation (2.8), with the first-order closure

𝜌𝑌 ′′𝛼 u′′ = −𝐶𝑑𝜌
˜u′′ ⊗ u′′̃︀𝜔 ∇̃︀𝑌𝛼, (2.14)

as was classically done in [2, 19]. Hence, demixing and counter-gradient fluxes (i.e. fluxes that are not oriented
according to the direction imposed by the minus sign in Eq. (2.14)), with coherent material mass fraction
covariances, are now allowed by the modelling, owing to equations (2.10) and (2.11). Moreover, the first-order
model is an asymptotic approximation of the second-order model in the absence of an external sollicitation,
and at long time scales, which is detailed in [35]. In this limit regime, the first-order and second-order models
share common self-similar solutions (see Sects. 3.2.2 and 3.2.3). The closure modification amounts to introduce
terms with a finite relaxation time which affects the transitory behaviour toward self-similar solutions. In
situations where short time scales are at stake, this transient modelling is indeed crucial for reproducing physical
phenomena under study. Second, the material mass fraction covariances, 𝑌 ′′𝛼 𝑌

′′
𝛽 , are also part of the evolved-in-

time correlations of the model. It is an important data as it can serve as a measure of the heterogeneity of the
TMZ [33]. When turbulent combustion modelling comes into consideration [5,39], the model may thus provide
with a modification of the combustion rates by the heterogeneity inside the TMZ [33]. Similarly, radiation
transfer across a TMZ is modified by the heterogeneity level [11].

3. Analysis of the continuous 1D model

In this Section, the continuous model is analysed, its important properties highlighted, having in view its
discretization in the remainder of this article.

3.1. The hyperbolic sub-system

In this section, the closure with diffusion terms, having a superscript 𝑐, are dropped in equation (2.6) and
system (2.10)–(2.13).
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3.1.1. Realizability

Proposition 3.1. Let ℱ𝑐 = 0 in equation (2.6). Consider X(𝑡) a solution of this system, and assume that̃︀U, X, G, H are smooth enough so that all terms have classical meaning. Then, if X(0) ≥ 0, in the sense of
symmetric matrices, X(𝑡) ≥ 0, ∀𝑡 > 0.

Proof. We first consider the case ̃︀U = 0. Then, defining

K(x, 𝑡, 𝑠) = exp
(︂∫︁ 𝑡

𝑠

d𝑟G(x, 𝑟)
)︂
,

one easily checks that {︂
𝜕𝑡K(x, 𝑡, 𝑠) = G(x, 𝑡)K(x, 𝑡, 𝑠),
K(x, 𝑠, 𝑠) = I,

where I is the identity matrix. Therefore, the solution X of (2.6) reads

X(x, 𝑡) = K(x, 𝑡, 0)X(x, 0)K𝑡(x, 𝑡, 0) +
∫︁ 𝑡

0

d𝑠K(x, 𝑡, 𝑠)H(x, 𝑠)H𝑡(x, 𝑠)K𝑡(x, 𝑡, 𝑠). (3.1)

In the above sum, both terms are semi-definite positive, hence X(x, 𝑡) ≥ 0.
Next, we turn to the case where ̃︀U ̸= 0. Equation (3.1) is then valid if one follows the characteristics of the

field ̃︀U. More precisely, let us define 𝒞 = 𝒞(x, 𝑡) the solution to{︂
𝜕𝑡𝒞(x, 𝑡) = ̃︀U(𝒞, 𝑡),
𝒞(x, 0) = x,

and

K(x, 𝑡, 𝑠) = exp
(︂∫︁ 𝑡

𝑠

d𝑟G(𝒞(x, 𝑟), 𝑟)
)︂
.

Then we have {︂
𝜕𝑡K(x, 𝑡, 𝑠) = G(𝒞(x, 𝑡), 𝑡)K(x, 𝑡, 𝑠),
K(x, 𝑠, 𝑠) = I,

and

X(𝒞(x, 𝑡), 𝑡) = K(x, 𝑡, 0)X(x, 0)K𝑡(x, 𝑡, 0) +
∫︁ 𝑡

0

d𝑠K(x, 𝑡, 𝑠)H(𝒞(x, 𝑠), 𝑠)H𝑡(𝒞(x, 𝑠), 𝑠)K𝑡(x, 𝑡, 𝑠). (3.2)

Therefore, we deduce that X(𝒞(x, 𝑡), 𝑡) ≥ 0. In order to infer that X(x, 𝑡) ≥ 0 for all x, we only need to check
that any x satisfies x = 𝒞(x0, 𝑡), for some x0. In order to prove this, we consider the backward characteristics{︂

𝜕𝑠𝒟(x, 𝑠) = ̃︀U(𝒟, 𝑠),
𝒟(x, 𝑡) = x,

Since ̃︀𝑈 is smooth enough, the map 𝑠 ↦→ 𝒟(x, 𝑠) is defined for all 𝑠. Setting x0 = 𝒟(x,−𝑡) ensures that
x = 𝒞(x0, 𝑡), which concludes the proof. �

Remark 3.2. The smoothness assumption in Proposition 3.1 is important for two things: first, smoothness on
X, G, H allows to write down the equation in a strong form and use Duhamel formula (3.1). Second, smoothness
of ̃︀𝑈 allows to follow the characteristics backward, since it exists for all time. We do not know how to prove
such a result in a non-smooth case. However, as we will see below (Prop. 3.6), the particular solution of the
Riemann problem we use to build the scheme does satisfy the realizability property.
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3.1.2. Hyperbolicity

Let us introduce ℐ𝛼± = ̃︀𝑌𝛼 ± 𝑌 ′′𝛼 𝑢
′′
𝑥/

√︁̃︂𝑢′′2𝑥 , 𝜆± = ±𝜌𝑥𝑑

√︁̃︂𝑢′′2𝑥 , and 𝜆𝛼 = 𝜌𝑥𝑑𝑌 ′′𝛼 𝑢
′′
𝑥/̃︀𝑌𝛼, where 𝑑 = 0, 1, 2 in

planar, cylindrical or spherical coordinates, respectively.

Proposition 3.3. Consider System (2.7)–(2.13) with ℱ𝑐 = 0 and
(︁
𝜌̃︂𝜀u′′)︁𝑐

= 0 everywhere in space and time.
This multi-species system is hyperbolic if and only if the mono-species, quasi-linear system (3.16), (3.17) is
hyperbolic. Moreover, if ˜u′′ ⊗ u′′ > 0 and ̃︀𝑌𝛼 > 0, System (3.16), (3.17) is hyperbolic, and all its characteristic
fields are linearly degenerated (LD). Its eigenvalues are ̃︀U, ̃︀U + 𝜆±, and ̃︀U + 𝜆𝛼, while the corresponding set of
Riemann invariants, 𝒲𝑜, 𝒲±, and 𝒲𝛼, can be expressed as

𝒲0 =
{︂̃︀𝑌𝛼,𝑖/̃︀𝑌𝛼,

1
2

(ℐ𝛼+ + ℐ𝛼−) ,
𝜆+

2
(ℐ𝛼+ − ℐ𝛼−)

}︂
,

𝒲± =
{︂̃︀𝑌𝛼,𝑖/̃︀𝑌𝛼, ℐ𝛼∓, 𝜆+, 𝑌 ′′𝛼 𝑢

′′
⊥ +

1
2𝜆∓

(ℐ𝛼+ + ℐ𝛼−) 𝜌𝑥𝑑𝑢′′𝑥𝑢
′′
⊥

}︂
,

𝒲𝛼 =
{︁
ℐ𝛼+, ℐ𝛼−, 𝑌 ′′𝛼 𝑢

′′
⊥, 𝜆+

}︁
.

Proof. We find it useful to write the 1D system in mass coordinates, using the variable change d𝑚 = 𝜌𝑥𝑑d𝑥,
where 𝑥 is one cartesian coordinate, or the radial coordinate. Then the system writes

d
d𝑡
̃︀𝑌𝛼 + 𝜕𝑚

(︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

)︁
= 0, (3.3)

d
d𝑡
̃︀𝑌𝛼,𝑖 + 𝜕𝑚

(︃
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

̃︀𝑌𝛼,𝑖̃︀𝑌𝛼

)︃
= 0, (3.4)

d
d𝑡
𝑌 ′′𝛼 u′′ + 𝜌𝑥𝑑ũ′′𝑢′′𝑥𝜕𝑚

̃︀𝑌𝛼 = −1
2

(𝐶𝜏 + 𝐶1)̃︀𝜔𝑌 ′′𝛼 u′′, (3.5)

d
d𝑡
𝑌 ′′𝛼 𝑌

′′
𝛽 + 𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥𝜕𝑚

̃︀𝑌𝛽 + 𝜌𝑥𝑑𝑌 ′′𝛼 𝑢
′′
𝑥𝜕𝑚

̃︀𝑌𝛼 = − (𝐶𝜏 − 𝐶𝜏𝑜)̃︀𝜔𝑌 ′′𝛼 𝑌
′′
𝛽 , (3.6)

d
d𝑡

˜u′′ ⊗ u′′ = −2
3
̃︀𝜔̃︀𝑘I− 𝐶1̃︀𝜔 [︂ ˜u′′ ⊗ u′′ − 2

3
̃︀𝑘I
]︂
, (3.7)

d
d𝑡
̃︀𝜀 = −𝐶𝜀2̃︀𝜔̃︀𝜀 . (3.8)

We rewrite the system (3.3)–(3.8) under the following compact, quasi-linear formulation

d
d𝑡
ℐ𝛼± + 𝜆±𝜕𝑚ℐ𝛼± ±

1
2

(ℐ𝛼+ − ℐ𝛼−) 𝜕𝑚𝜆± = ∓1
2

(︂
1
2
𝐶𝜏 +

1
3

(𝐶1 − 1)̃︀𝑘/̃︂𝑢′′2𝑥

)︂ ̃︀𝜔(ℐ𝛼+ − ℐ𝛼−), (3.9)

d
d𝑡
𝑌 ′′𝛼 𝑢

′′
⊥ +

1
2
𝜌𝑥𝑑𝑢′′𝑥𝑢

′′
⊥𝜕𝑚 (ℐ𝛼+ + ℐ𝛼−) = −1

2
(𝐶𝜏 + 𝐶1)̃︀𝜔𝑌 ′′𝛼 𝑢

′′
⊥, (3.10)

d
d𝑡

[︂
𝑌 ′′𝛼 𝑌

′′
𝛽 − 𝑌 ′′𝛼 u′′

𝑡 ˜u′′ ⊗ u′′
−1
𝑌 ′′𝛽 u′′

]︂
= − (𝐶𝜏 − 𝐶𝜏𝑜)

[︂
𝑌 ′′𝛼 𝑌

′′
𝛽 − 𝑌 ′′𝛼 u′′

𝑡 ˜u′′ ⊗ u′′
−1
𝑌 ′′𝛽 u′′

]︂
+𝐶𝜏𝑜𝑌 ′′𝛼 u′′

𝑡 ˜u′′ ⊗ u′′
−1
𝑌 ′′𝛽 u′′

+
2
3

(𝐶1 − 1)̃︀𝜔̃︀𝑘𝑌 ′′𝛼 u′′
𝑡 ˜u′′ ⊗ u′′

−2
𝑌 ′′𝛽 u′′, (3.11)

d
d𝑡

(︃ ̃︀𝑌𝛼,𝑖̃︀𝑌𝛼

)︃
+ 𝜆𝛼𝜕𝑚

(︃ ̃︀𝑌𝛼,𝑖̃︀𝑌𝛼

)︃
= 0, (3.12)
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d
d𝑡

˜u′′ ⊗ u′′ = −2
3
̃︀𝜔̃︀𝑘I− 𝐶1̃︀𝜔 [︂ ˜u′′ ⊗ u′′ − 2

3
̃︀𝑘I
]︂
, (3.13)

d
d𝑡
̃︀𝜀 = −𝐶𝜀2̃︀𝜔̃︀𝜀, (3.14)

from which we deduce straightforwardly the eigenvalues of the system (3.3)–(3.8): ̃︀U, ̃︀U + 𝜆±, and ̃︀U + 𝜆𝛼.
Here, the subscript ⊥∈ {𝑦, 𝑧} refers to any transverse component of the mass fraction flux.

Since the model is realizable, all the eigenvalues are real-valued. The model reformulation (3.9)–(3.14) makes
it also clear that hyperbolicity can be studied for each material independently, discarding equation (3.11). The
latter can indeed be viewed as a diagnostic (one-way coupled) equation, whose eigenvalue is ̃︀U. We can also
isolate the components of the Reynolds tensor, in equation (3.13), that are independent from the other variables
of the quasi-linear system (the eigenvalue associated to these components is also ̃︀U). The equation for the
remaining component, 𝜆+ = −𝜆−, can be written

d
d𝑡
𝜆+ = 0. (3.15)

The dissipation rate of the turbulent kinetic energy, ̃︀𝜀, obtained from equation (3.14) of the quasi-linear system,
is independent from the other variables of this quasi-linear system as well. The associated eigenvalue is also ̃︀U.
Therefore, hyperbolicity of the model (3.3)–(3.8) is equivalent to the hyperbolicity of the reduced, mono-species
system of quasi-linear equations (3.9)–(3.10)–(3.12)–(3.15). The latter can be rewritten as

d
d𝑡
𝒬𝛼 +𝐴𝜕𝑚𝒬𝛼 = 0, (3.16)

with 𝒬𝛼 =
(︁
ℐ𝛼+, ℐ𝛼−, 𝑌 ′′𝛼 𝑢

′′
⊥, 𝜆+, ̃︀𝑌𝛼,𝑖/̃︀𝑌𝛼

)︁𝑡

,

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜆+ 0 0
ℐ𝛼+ − ℐ𝛼−

2
0𝑡

0 −𝜆+ 0
ℐ𝛼+ − ℐ𝛼−

2
0𝑡

1
2
𝜌𝑥𝑑𝑢′′𝑥𝑢

′′
⊥

1
2
𝜌𝑥𝑑𝑢′′𝑥𝑢

′′
⊥ 0 0 0𝑡

0 0 0 0 0𝑡

0 0 0 0 𝜆𝛼I𝛼

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.17)

where I𝛼 is the identity matrix whose size is equal to the number of constituents in the material 𝛼.
The eigenvalues of the matrix 𝐴 are ̃︀U, ̃︀U + 𝜆±, and ̃︀U + 𝜆𝛼, with respective multiplicity equal to 2, 1, and

to the number of material constituents in the material 𝛼. Their right eigenvectors are{︃(︂
−ℐ𝛼+ − ℐ𝛼−

2𝜆+
,
ℐ𝛼+ − ℐ𝛼−

2𝜆+
, 0, 1,0

)︂𝑡

, (0, 0, 1, 0,0)𝑡

}︃
, (3.18)

for the eigenvalue ̃︀U,{︃(︂
𝜆+, 0,

1
2
𝜌𝑥𝑑𝑢′′𝑥𝑢

′′
⊥, 0,0

)︂𝑡
}︃

and

{︃(︂
0,−𝜆+,

1
2
𝜌𝑥𝑑𝑢′′𝑥𝑢

′′
⊥, 0,0

)︂𝑡
}︃
, (3.19)

respectively, for the eigenvalues ̃︀U + 𝜆+ and ̃︀U + 𝜆−,{︁
(0, 0, 0, 0, e𝑖)

𝑡
, ∀𝑖
}︁
,
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for the eigenvalue ̃︀U + 𝜆𝛼, with e𝑖 = (𝛿1𝑖, 𝛿2𝑖, · · · )𝑡, using the Kronecker symbol 𝛿.
The determinant of the matrix composed by these right eigenvectors (the change-of-frame matrix to the

eigenspace) can be computed, and is equal to 𝜆+𝜆−. Therefore, this determinant is positive provided ̃︂𝑢′′2𝑥 is
non-null, that is inside the TMZ. This completes the proof of hyperbolicity.

Finally, the field associated to the eigenvalue ̃︀U+𝜆𝛼 is LD because it is a function of all 𝒬𝛼 field but ̃︀𝑌𝛼,𝑖/̃︀𝑌𝛼,
and due to the structure (non-null components) of the corresponding eigenvector. Moreover, the field associated
to the eigenvalue ̃︀U + 𝜆± is LD since ∇𝒬𝛼(̃︀U + 𝜆±) = (0, 0, 0, 1,0)𝑡 is orthogonal to the eigenvector of ̃︀U + 𝜆±.
Therefore all the fields of the system are LD. �

3.1.3. Entropies

Proposition 3.4. Smooth enough solutions of system (3.3)–(3.8) satisfy the following couple of mathematical
entropy relations {︂

d
d𝑡
𝜂𝑎

𝛼 + 𝜕𝑚𝜓𝛼 = 𝒟𝑎
𝛼 ≤ 0,

d
d𝑡
𝜂𝑏

𝛼 + 𝜕𝑚𝜓𝛼 = 𝒟𝑏
𝛼 ≤ 0

}︂
, (3.20)

for each material, denoted by the subscript 𝛼. The entropy expressions read{︂
𝜂𝑎

𝛼 = 𝜂𝑎
(︁̃︀𝑌𝛼,̃︂𝑌 ′′2𝛼

)︁
=

1
2

(︁̃︂𝑌 ′′2𝛼 + ̃︀𝑌 2
𝛼

)︁
, 𝜂𝑏

𝛼 = 𝜂𝑏
(︁̃︀𝑌𝛼, 𝑌 ′′𝛼 u′′, ˜u′′ ⊗ u′′

)︁
=

1
2

(︂̃︀𝑌 2
𝛼 + 𝑌 ′′𝛼 u′′

𝑡 ˜u′′ ⊗ u′′
−1
𝑌 ′′𝛼 u′′

)︂}︂
.

Both share the same entropy flux, 𝜓𝛼 = 𝜓
(︁̃︀𝑌𝛼, 𝑌 ′′𝛼 u′′

)︁
= 𝜌𝑥𝑑 ̃︀𝑌𝛼𝑌 ′′𝛼 u′′, while they have distinct negative entropy

dissipation rates{︂
𝒟𝑎

𝛼 = − (𝐶𝜏 − 𝐶𝜏𝑜) ̃︀𝜔̃︂𝑌 ′′2𝛼 ,𝒟𝑏
𝛼 = −1

3
(𝐶1 − 1) ̃︀𝜔̃︀𝑘𝑌 ′′𝛼 u′′

𝑡
(u′′ ⊗ u′′)−2

𝑌 ′′𝛼 u′′ − 1
2
𝐶𝜏 ̃︀𝜔𝑌 ′′𝛼 u′′

𝑡
(u′′ ⊗ u′′)−1

𝑌 ′′𝛼 u′′
}︂
.

Proof. The Reynolds tensor, ˜u′′ ⊗ u′′, is nonsingular inside the TMZ. Moreover, its derivatives can be obtained
with the relation

𝜕 ˜u′′ ⊗ u′′
−1

= − ˜u′′ ⊗ u′′
−1
𝜕 ˜u′′ ⊗ u′′ ˜u′′ ⊗ u′′

−1
,

provided it is smooth enough. Hence ˜u′′ ⊗ u′′
−1

and its derivatives are well-defined quantities.
The next step is to prove that both functions 𝜂𝑎

𝛼 and 𝜂𝑏
𝛼 are convex functions.

Concerning 𝜂𝑎
𝛼, it is indeed convex, because it is the sum of two convex functions. As such, and also because

𝒟𝑎
𝛼 is non-positive, it is an entropy for the system (3.3)–(3.8).
Next, the convexity of 𝜂𝑏

𝛼 can be deduced from the convexity of the following function:

𝒩 : R𝑑 ×𝐷𝑃 (𝑑) → R
(x,M) ↦→ x𝑡M−1x

where 𝐷𝑃 (𝑑) is the positive definite cone for matrices of size 𝑑. The proof starts by noticing that the following
function

𝜂 : R× R*+ → R
(𝑥,𝑚) ↦→ 𝑥2/𝑚

is convex because its Hessian matrix has only non-negative eigenvalues. Then, the spectral theorem can be used
to show that, given 𝑀,𝑁 ∈ 𝐷𝑃 (𝑑), there exists a matrix 𝑃 which satisfies 𝑀 = 𝑃𝑃 𝑡 and 𝑁 = 𝑃𝐷𝑃 𝑡, where
𝐷 = diag(𝑑1, · · · , 𝑑𝑑) is a diagonal matrix. Let x,y ∈ R𝑑. We obtain

𝒩 (x,M) = ||x̂||2 =
𝑑∑︁

𝑖=1

𝜂(�̂�𝑖, 1) ; 𝒩 (y,N) = ||𝐷−1ŷ||2 =
𝑑∑︁

𝑖=1

𝜂(𝑦𝑖, 𝑑𝑖)
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where x̂ = 𝑃−1x = (�̂�1, · · · , �̂�𝑑) and ŷ = 𝑃−1y = (𝑦1, · · · , 𝑦𝑑). Introducing 𝜈 ∈ (0, 1), we finally get

𝒩 (𝜈x + (1− 𝜈)y, 𝜈M + (1− 𝜈)N) = (𝜈x̂ + (1− 𝜈)ŷ)𝑡 [𝜈I𝑑 + (1− 𝜈)𝐷]−1 (𝜈x̂ + (1− 𝜈)ŷ) ,

=
𝑑∑︁

𝑖=1

[𝜈�̂�𝑖 + (1− 𝜈)𝑦𝑖]
2

𝜈 + (1− 𝜈)𝑑𝑖

=
𝑑∑︁

𝑖=1

𝜂 [𝜈�̂�𝑖 + (1− 𝜈)𝑦𝑖, 𝜈 + (1− 𝜈)𝑑𝑖] ,

≤ 𝜈𝒩 (x,M) + (1− 𝜈)𝒩 (y,N) ,

which has been obtained from the convexity of the function 𝜂 applied on each index 𝑖. Hence, the function 𝒩
is convex, and so is 𝜂𝑏

𝛼. Since 𝒟𝑏
𝛼 ≤ 0,

(︀
𝜂𝑏

𝛼, 𝜓𝛼

)︀
is also a couple of entropy and entropy flux. �

3.1.4. The stationary states

Proposition 3.5. If 𝐶𝜀2 ̸= 1, the stationary states of System (3.3)–(3.8) satisfy

𝜌𝑥𝑑𝑌 ′′𝛼 𝑢
′′
𝑥 =

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁𝑜
,̃︀𝑌𝛼 = ̃︀𝑌 𝑜

𝛼 ,̃︀𝑌𝛼,𝑖 = ̃︀𝑌 𝑜
𝛼,𝑖,

where ̃︀𝑌 𝑜
𝛼 , ̃︀𝑌 𝑜

𝛼,𝑖 and
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁𝑜
are constants with respect to the time and mass coordinates.

Proof. Combining equations (3.7) and (3.8), we obtain d
d𝑡 ̃︀𝜔 = − (𝐶𝜀2− 1)̃︀𝜔2. Hence, stationary states of system

system (3.3)–(3.8) must satisfy ̃︀𝜔 = 0 if 𝐶𝜀2 ̸= 1. �

3.1.5. 1D Riemann problem in curvilinear coordinates: resolution and decomposition

Proposition 3.6. Assume 𝑑 = 0, 1, 2 and consider System (2.7)–(2.8)–(2.10)–(2.11)–(2.12), where the right-
hand side and diffusion terms are set to zero. The system reduces to System (2.7)–(3.3)–(3.5)–(3.6)–(3.7), with
null right-hand side, in mass coordinates. This system admits a four-state piecewise constant solution of a
Riemann problem in the mass coordinates, that is:

(︁
𝜌𝑥𝑑, ̃︀𝑌𝛼, 𝜌𝑥

𝑑X
)︁

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︂[︀
𝜌𝑥𝑑
]︀𝐿
, ̃︀𝑌𝛼

⃒⃒⃒𝐿
,
[︀
𝜌𝑥𝑑X

]︀𝐿)︂ if 𝑚−𝑚0 < −
[︂
𝜌𝑥𝑑

√︁̃︂𝑢′′2𝑥

]︂𝐿

𝑡,(︂[︀
𝜌𝑥𝑑
]︀𝐿*

, ̃︀𝑌𝛼

⃒⃒⃒𝐿*
,
[︀
𝜌𝑥𝑑X

]︀𝐿*)︂ if −
[︂
𝜌𝑥𝑑

√︁̃︂𝑢′′2𝑥

]︂𝐿

𝑡 < 𝑚−𝑚0 < 0,(︂[︀
𝜌𝑥𝑑
]︀𝑅*

, ̃︀𝑌𝛼

⃒⃒⃒𝑅*
,
[︀
𝜌𝑥𝑑X

]︀𝑅*)︂ if 0 < 𝑚−𝑚0 <

[︂
𝜌𝑥𝑑

√︁̃︂𝑢′′2𝑥

]︂𝑅

𝑡,(︂[︀
𝜌𝑥𝑑
]︀𝑅
, ̃︀𝑌𝛼

⃒⃒⃒𝑅
,
[︀
𝜌𝑥𝑑X

]︀𝑅)︂ if 𝑚−𝑚0 >

[︂
𝜌𝑥𝑑

√︁̃︂𝑢′′2𝑥

]︂𝑅

𝑡,

(3.21)

where the intermediated states,
(︂
𝜌|𝐿

*
, ̃︀𝑌𝛼

⃒⃒⃒𝐿*
,
[︀
𝜌𝑥𝑑X

]︀𝐿*)︂ and
(︂
𝜌|𝑅

*
, ̃︀𝑌𝛼

⃒⃒⃒𝑅*
,
[︀
𝜌𝑥𝑑X

]︀𝑅*)︂ are defined as the

unique solution of the algebraic system [︀
𝜌𝑥𝑑
]︀𝐿*

=
[︀
𝜌𝑥𝑑
]︀𝐿
, (3.22)[︀

𝜌𝑥𝑑
]︀𝑅*

=
[︀
𝜌𝑥𝑑
]︀𝑅
, (3.23)
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𝜌𝑥𝑑

√︁̃︂𝑢′′2𝑥

]︂*𝑅
=
[︂
𝜌𝑥𝑑

√︁̃︂𝑢′′2𝑥

]︂𝑅

, (3.24)[︂
𝜌𝑥𝑑

√︁̃︂𝑢′′2𝑥

]︂*𝐿
=
[︂
𝜌𝑥𝑑

√︁̃︂𝑢′′2𝑥

]︂𝐿

. (3.25)

̃︀𝑌𝛼

⃒⃒⃒*𝐿
= ̃︀𝑌𝛼

⃒⃒⃒*𝑅
= ̃︀𝑌𝛼

⃒⃒⃒*
, (3.26)[︁

𝜌𝑥𝑑𝑌 ′′𝛼 𝑢
′′
𝑥

]︁*𝐿
=
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁*𝑅
=
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁*
. (3.27)[︂

𝜌𝑥𝑑

√︁̃︂𝑢′′2𝑥

]︂*𝑅 ̃︀𝑌𝛼

⃒⃒⃒*𝑅
−
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁*𝑅
=
[︂
𝜌𝑥𝑑

√︁̃︂𝑢′′2𝑥

]︂𝑅 ̃︀𝑌𝛼

⃒⃒⃒𝑅
−
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁𝑅
, (3.28)[︂

𝜌𝑥𝑑

√︁̃︂𝑢′′2𝑥

]︂*𝐿 ̃︀𝑌𝛼

⃒⃒⃒*𝐿
+
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁*𝐿
=
[︂
𝜌𝑥𝑑

√︁̃︂𝑢′′2𝑥

]︂𝐿 ̃︀𝑌𝛼

⃒⃒⃒𝐿
+
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁𝐿
, (3.29)

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑌

′′
𝛽

]︁*𝐿
−

(︃[︂
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

𝑡
]︂*𝐿)︃2⧸︂[︁

𝜌𝑥𝑑̃︂𝑢′′𝑥2
]︁*𝐿

=
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑌

′′
𝛽

]︁𝐿
−

(︃[︂
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

𝑡
]︂𝐿
)︃2⧸︂[︁

𝜌𝑥𝑑̃︂𝑢′′𝑥2
]︁𝐿

, (3.30)

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑌

′′
𝛽

]︁*𝑅
−

(︃[︂
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

𝑡
]︂*𝑅)︃2⧸︂[︁

𝜌𝑥𝑑̃︂𝑢′′𝑥2
]︁*𝑅

=
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑌

′′
𝛽

]︁𝑅
−

(︃[︂
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

𝑡
]︂𝑅
)︃2⧸︂[︁

𝜌𝑥𝑑̃︂𝑢′′𝑥2
]︁𝑅

,(3.31)

with
[︁
𝜌𝑥𝑑̃︂𝑢′′𝑥2

]︁𝑆
=

(︃[︂
𝜌𝑥𝑑

√︁̃︂𝑢′′𝑥2

]︂𝑆
)︃2⧸︃[︀

𝜌𝑥𝑑
]︀𝑆, and 𝑆 can be either 𝐿,𝑅,𝐿* or 𝑅*.

This solution is realizable, in the sense that if
[︀
𝜌𝑥𝑑X

]︀𝐿
,
[︀
𝜌𝑥𝑑X

]︀𝑅 ≥ 0, then
[︀
𝜌𝑥𝑑X

]︀*𝐿
,
[︀
𝜌𝑥𝑑X

]︀*𝑅 ≥ 0. It is
also isentropic, in the sense that it is solution of system (3.20), with 𝒟𝑎

𝛼 = 𝒟𝑏
𝛼 = 0.

Proof. In order to adress simultaneously configurations with 𝑑 = 0, 1, 2, System (2.7)–(2.8)–(2.10)–(2.11)–(2.12)
is considered in mass coordinates, without loss of generality. We are left with System (2.7)–(3.3)–(3.5)–(3.6)–
(3.7), where we set the right-hand side to zero. If the initial state is realizable, then the algebraic System
(3.22)–(3.31) admits a unique solution. The positivity of

[︀
𝜌𝑥𝑑X

]︀*𝐿 and
[︀
𝜌𝑥𝑑X

]︀*𝑅 can be obtained using the
decomposition (4.24) of correlation tensors. Equation (3.3) is satisfied in a weak sense by this particular solution,
that is ∫︁ 𝑇

0

d𝑡
∫︁ ∞

0

d𝑚
[︁
𝜕𝑡
̃︀𝑌𝛼 + 𝜕𝑚

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁]︁
𝜙(𝑡,𝑚) = 0, (3.32)

for any test function 𝜙 smooth enough. Here, 𝑇 is a time such as 𝑚0 −
[︁
𝜌𝑥𝑑
√︀̃︂𝑢′′2]︁𝐿 𝑇 > 0, where 𝑚0 is the

position that initially makes the separation between the 𝐿 and 𝑅 states. This can be shown classically by first
integrating equation (3.32) by parts, then inserting the solution of System (3.22)–(3.31) and integrating the
derivatives of the test function. Such procedure cannot be applied a priori for equation (3.5), because it has a
non-conservative product. However, this difficulty can be circumvented, noticing that equation (3.5) with null
right-hand side is satisfied in a strong sense, at 𝑚 = 𝑚0, and for all times, by the solution of System (3.22)–
(3.31). Therefore, it is sufficient to show that equation (3.5) is satisfied in a weak sense on [0,𝑚0[ and ]𝑚0,∞[
separately, which writes ∫︁ 𝑇

0

d𝑡
∫︁ 𝑚0

0

d𝑚
[︁
𝜕𝑡𝑌 ′′𝛼 𝑢

′′
𝑥 +

[︁
𝜌𝑥𝑑̃︂𝑢′′2𝑥

]︁
𝜕𝑚
̃︀𝑌𝛼

]︁
𝜙(𝑡,𝑚) = 0, (3.33)∫︁ 𝑇

0

d𝑡
∫︁ ∞

𝑚0

d𝑚
[︁
𝜕𝑡𝑌 ′′𝛼 𝑢

′′
𝑥 +

[︁
𝜌𝑥𝑑̃︂𝑢′′2𝑥

]︁
𝜕𝑚
̃︀𝑌𝛼

]︁
𝜙(𝑡,𝑚) = 0, (3.34)
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Figure 1. Riemann fan associated to the system (3.9)–(3.14), in a 1D geometry, with trans-
verse symmetry in cartesian coordinates, assuming ̃︀U = 0.

for any test function 𝜙 smooth enough. This is true because the integration by parts is allowed, even with the
presence of a non-conservative product, because

[︁
𝜌𝑥𝑑̃︂𝑢′′2𝑥

]︁
is smooth (constant) on both domains, owing to the

solution of System (3.22)–(3.31). Next, equations (3.7) and (3.11), with null right-hand sides, are satisfied in a
strong sense by the solution of System (3.22)–(3.31). Moreover, equation (3.6) with null right-hand side can be
written as a combination of equations (3.5), (3.7) and (3.11) (with null right-hand sides), which are satisfied in
a weak sense by the solution of System (3.22)–(3.31). Therefore, the solution of System (3.22)–(3.31) satisfies
equation (3.6), with null right-hand side, in a weak sense. �

As a prelude to the discretization step, several remarks can be done.

Remark 3.7. The particular solution of the Riemann problem that is exhibited in Proposition 3.6 can be built
using the Linearly Degenerated (LD) stucture of the system of interest. The continuity of Riemann invariants
is expressed across the waves having speed ̃︀U+𝜆± and ̃︀U, as illustrated in Figure 1. Even in this LD case, we
cannot rely, to our knowledge, on a well-established theoretical result, that would grant a unique solution of the
Riemann problem (for such a non-strictly hyperbolic, non-conservative system). However, it has been shown
a posteriori that the solution of (3.22)–(3.31) is indeed a solution of the Riemann problem. Conversely, every
four-state piecewise constant solution of the Riemann problem must satisfy the Riemann invariant continuity
relations (3.22)–(3.31).

Remark 3.8. The algebraic system (3.22)–(3.31) can be solved in two steps. The first steps amounts to solve
System (3.24)–(3.29), that can be put in terms of a two-equation system[︂

𝜌𝑥𝑑

√︁̃︂𝑢′′2𝑥

⃒⃒⃒⃒𝑅 ̃︀𝑌𝛼

⃒⃒⃒*
−
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁*
=
[︂
𝜌𝑥𝑑

√︁̃︂𝑢′′2𝑥

⃒⃒⃒⃒𝑅 ̃︀𝑌𝛼

⃒⃒⃒𝑅
−
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁𝑅
, (3.35)[︂

𝜌𝑥𝑑

√︁̃︂𝑢′′2𝑥

]︂𝐿 ̃︀𝑌𝛼

⃒⃒⃒*
+
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁*
=
[︂
𝜌𝑥𝑑

√︁̃︂𝑢′′2𝑥

⃒⃒⃒⃒𝐿 ̃︀𝑌𝛼

⃒⃒⃒𝐿
+
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁𝐿
, (3.36)

and interpreted as an “acoustic” solver. The second step can be obtained by inserting the first step solution in
equations (3.30) and (3.31). This decomposition reflects that equation (2.11) is a diagnostic (one-way coupled)
equation of the system of interest.

Remark 3.9. The Riemann invariants have been expressed as functions of the stationary states.
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3.1.6. Analysis of the non-conservative products

Based on a particular solution of the Riemann problem, made explicit in Proposition 3.6, and taking advantage
of the LD nature of the system, we can propose an analysis of the non-conservative products. First, from the
following proposition, either ˜u′′ ⊗ u′′ or ̃︀𝑌𝛼 is smooth across each wave of the Riemann problem.

Proposition 3.10. ∀𝛼 ∈ 𝑁𝑚, ̃︀𝑌𝛼 is constant across the central wave having material speed ̃︀𝑈 . Moreover, the
tensor Reynolds, ˜u′′ ⊗ u′′, is constant across the extremal waves having speed ̃︀𝑈 + 𝜆±.

Owing to Proposition 3.10, the non-conservative product, ˜u′′ ⊗ u′′∇̃︀𝑌𝛼, in equation (2.10), is always defined
in a weak sense for the Riemann problem. Therefore, it cannot be considered as a pathological non-conservative
product. A similar argument does not hold for the other non-conservative product, 𝑌 ′′𝛼 u′′ · ∇̃︀𝑌𝛽 , in equation
(2.11), owing to Remark 3.11.

Remark 3.11. Both variables 𝑌 ′′𝛼 u′′ and ̃︀𝑌𝛽 may be discontinuous fields across the extremal waves of the
Riemann problem.

This apparent pathology can however be adressed, relying on the following proposition.

Proposition 3.12. Whatever the regularity of the variables, equations (2.10)–(2.12) can be combined as an
Ordinary Differential Equation (ODE)

d
d𝑡

[︂
𝑌 ′′𝛼 𝑌

′′
𝛽 − 𝑌 ′′𝛼 u′′

𝑡 ˜u′′ ⊗ u′′
−1
𝑌 ′′𝛽 u′′

]︂
= − (𝐶𝜏 − 𝐶𝜏𝑜)̃︀𝜔 [︂𝑌 ′′𝛼 𝑌

′′
𝛽 − 𝑌 ′′𝛼 u′′

𝑡 ˜u′′ ⊗ u′′
−1
𝑌 ′′𝛽 u′′

]︂
+

2
3

(𝐶1 − 1)̃︀𝜔̃︀𝑘𝑌 ′′𝛼 u′′
𝑡 ˜u′′ ⊗ u′′

−2
𝑌 ′′𝛽 u′′

+𝐶𝜏𝑜̃︀𝜔𝑌 ′′𝛼 u′′
𝑡 ˜u′′ ⊗ u′′

−1
𝑌 ′′𝛽 u′′, (3.37)

The left-hand side of equation (3.37) is defined in a weak sense, provided the temporal derivative is kept
Lagrangian. The hyperbolic system has been analysed through the prism of the Riemann problem, and the
identified pathological non-conservative products can be recast under a well-posed formulation. The system can
be viewed as “marginally non-conservative”.

Remark 3.13. We do not have much theoretical result at disposal for discontinuous solutions: uniqueness of
the solution, as well as realizability, have not been proven. Our analysis of non-conservative products is based
on a particular realizable solution of the Riemann problem. Therefore, our approach will consists in encoding
as much as possible the known theoretical results in the numerical scheme, at the discretization step, using a
Godunov approach.

3.2. The full hyperbolic-parabolic system

In this section, we consider the additional contribution of the diffusion-like closures that were not considered
in Section 3.1.

3.2.1. Mass conservation

Proposition 3.14. The model preserves the mass conservation relations

𝑁𝑚∑︁
𝛼=1

̃︀𝑌𝛼 = 1,
𝑁𝑚∑︁
𝛼=1

𝑌 ′′𝛼 u′′ = 0,
𝑁𝑐∑︁
𝑖=1

̃︀𝑌𝛼,𝑖 = ̃︀𝑌𝛼. (3.38)

Proof. The mass conservation relations,
∑︀𝑁𝑚

𝛼=1
̃︀𝑌𝛼 = 1,

∑︀𝑁𝑚

𝛼=1 𝑌
′′
𝛼 u′′ = 0 are preserved by the equations for

the material mass fractions and associated fluxes, owing to the linearity of the equations with respect to the
summation over the material index 𝛼. Similarly, the relation

∑︀𝑁𝑐

𝑖=1
̃︀𝑌𝛼,𝑖 = ̃︀𝑌𝛼 is preserved by the equations for

the mass fractions for the constituents, by summation over the material constituent index 𝑖. �
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3.2.2. A class of self-similar solutions, with the diffusion contribution

Let us assume a fixed background fluid having zero mean velocity, in 1D geometry with transverse symmetry
in cartesian coordinates, homogeneous turbulent frequency, homogeneous density, and isotropic Reynolds tensor
across the TMZ. Under these asumptions, System (2.8)–(2.13) can be simplified. The evolution of the turbulent
kinetic energy, ̃︀𝑘, and its dissipation rate, ̃︀𝜀, reduce to the following ̃︀𝑘 − ̃︀𝜀 system [15]

𝜕𝑡
̃︀𝑘 − 𝜕𝑥

(︃
𝐶𝑘

̃︀𝑘̃︀𝜔𝜕𝑥
̃︀𝑘)︃ = −̃︀𝜀, (3.39)

𝜕𝑡̃︀𝜀− 𝜕𝑥

(︃
𝐶𝜖

̃︀𝑘̃︀𝜔𝜕𝑥̃︀𝜀)︃ = −𝐶𝜀2̃︀𝜔̃︀𝜀, (3.40)

where 𝐶𝑘 = 2
3𝐶𝑑. The remaining equations of our model become

𝜕𝑡
̃︀𝑌𝛼 − 𝜕𝑥𝑌 ′′𝛼 𝑢

′′
𝑥 = 0,

𝜕𝑡𝑌 ′′𝛼 𝑢
′′
𝑥 +

2
3
̃︀𝑘𝜕𝑥

̃︀𝑌𝛼 − 𝜕𝑥

(︃
𝐶𝑘

̃︀𝑘̃︀𝜔𝜕𝑥𝑌 ′′𝛼 𝑢
′′
𝑥

)︃
= −𝐶𝜏

2
̃︀𝜔𝑌 ′′𝛼 𝑢

′′
𝑥,

𝜕𝑡
̃︂𝑌 ′′2𝛼 + 2𝑌 ′′𝛼 𝑢

′′
𝑥𝜕𝑥

̃︀𝑌𝛼 − 𝜕𝑥

(︃
𝐶𝑘

̃︀𝑘̃︀𝜔𝜕𝑥
̃︂𝑌 ′′2𝛼

)︃
= − (𝐶𝜏 − 𝐶𝜏𝑜)̃︀𝜔̃︂𝑌 ′′2𝛼 .

The existence of self-similar solutions to the problem of freely developing TMZ is suggested by dimensional
analysis, in the absence of external dimensioning parameters. The TMZ width Λ(𝑡) itself can then be taken as
the scale length of the problem. It means that possible self-similar solutions may have the form ̃︀𝑞 = 𝑡𝛾𝑞𝑞(𝑥/Λ(𝑡)),
where 𝛾𝑞 is an integer and 𝑞 is an arbitrary function. Both the time exponent 𝛾𝑞 and the shape function 𝑞 depend
on the considered quantity, 𝑞. In addition, one can assume TMZ having compact support, meaning zero-valued
turbulent quantities outside the TMZ of increasing width. Under these considerations, simple profiles can be
assumed, namely parabolic and linear profiles, for the turbulent quantities and mass fractions, respectively.
Following closely the computation of [10], we obtain some self-similar solutions for this system

̃︀𝑘(𝑥, 𝑡) = ̃︀𝑘𝑜

(︂ ̃︀𝜔̃︀𝜔𝑜

)︂2(1−𝜃)

𝑃 (𝑥, 𝑡), (3.41)

̃︀𝜀(𝑥, 𝑡) = ̃︀𝜀𝑜

(︂ ̃︀𝜔̃︀𝜔𝑜

)︂3−2𝜃

𝑃 (𝑥, 𝑡), (3.42)

̃︀𝑌𝛼(𝑥, 𝑡) =
1
2

(︂
1 +

𝑥

Λ(𝑡)

)︂
, (3.43)

𝑌 ′′𝛼 𝑢
′′
𝑥(𝑥, 𝑡) = 𝑌 ′′𝛼 𝑢

′′
𝑥

⃒⃒⃒
𝑜

(︂ ̃︀𝜔̃︀𝜔𝑜

)︂1−𝜃

𝑃 (𝑥, 𝑡), (3.44)

̃︂𝑌 ′′2𝛼 (𝑥, 𝑡) = ̃︂𝑌 ′′2𝛼

⃒⃒⃒
𝑜
𝑃 (𝑥, 𝑡), (3.45)

where

̃︀𝜔̃︀𝜔𝑜
=

1
1 + 𝐶𝜔̃︀𝜔𝑜𝑡

,

𝑃 (𝑥, 𝑡) = max

[︃
1−

(︂
𝑥

Λ(𝑡)

)︂2

, 0

]︃
,
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Λ(𝑡) = Λ𝑜

(︂ ̃︀𝜔̃︀𝜔𝑜

)︂−𝜃

.

The following compatibility relations must be satisfied for this self-similar solution to hold

𝐶𝜔 = 𝐶𝜀2 − 1, 𝜃 =
2𝐶𝜔 − 1

3𝐶𝜔
, 𝐶𝑘

[︂
𝐶𝜏

2
+ 𝐶𝜔(2𝜃 − 1)

]︂
=

2
3
, 𝐶𝜀 = 𝐶𝑘,

̃︀𝑘𝑜̃︀𝜔2
𝑜Λ2

𝑜

=
𝐶𝜔𝜃

2𝐶𝑘
,

𝑌 ′′𝛼 𝑢
′′
𝑥

⃒⃒⃒
𝑜̃︀𝜔0Λ0

= −1
4
𝐶𝜔𝜃, ̃︂𝑌 ′′2𝛼

⃒⃒⃒
𝑜

=
𝐶𝜔𝜃

4(𝐶𝜏 − 𝐶𝜏𝑜 + 𝐶𝜔𝜃)
·

Finally, all the above discussion may be summarized in the following result:

Proposition 3.15. The functions defined by (3.41)–(3.45) are self-similar solutions of the RSM (2.8)–(2.13).

Remark 3.16. Physically acceptable self-similar solutions should involve both decreasing turbulent kinetic
energy, ̃︀𝑘, and turbulent frequency, ̃︀𝜔. Only positive values of 𝐶𝜔 are then allowed. Finally, 𝐶𝜔 ≥ 0 implies that
0 ≤ 𝜃 ≤ 2/3.

Remark 3.17. These self-similar solution are representative of the late-time evolution of a TMZ. Analogous
solutions can be found in the literature [3, 10]. The stability of these solutions, of great interest, has not been
studied here, as it is beyond the scope of this work. See [18], for instance, for examples of such stability analysis
led on simpler RSMs.

3.2.3. Filiation with other RSMs

Proposition 3.18. Let us assume that the material mass fraction satisfies the following equation

𝜌
d̃︀𝑌𝛼

d𝑡
−∇ ·

[︃
𝐶𝑐𝜌

˜u′′ ⊗ u′′̃︀𝜔 ∇̃︀𝑌𝛼

]︃
= 0. (3.46)

If 𝐶𝑐 = 𝐶𝑑, the system (3.39)–(3.40)–(3.46) admits the self-similar solutions (3.41)–(3.42)–(3.43).

Remark 3.19. Proposition 3.18 shows that these self-similar solutions establish a connection between the
second-order RSM (2.8)–(2.13) and the GSG and BHR RSMs [2,19]. The latter indeed rely on equation (3.46),
for which the material mass fraction flux, 𝑌 ′′𝛼 u′′, is closed at first-order instead of being computed.

4. Numerical analysis in 1D curvilinear coordinates

We present, in this section, a first-order numerical scheme that maintains, at the discrete level, the main
properties of the model (3.3)–(3.8), namely mass conservation, realizability, preservation of stationary states,
and non-increasing entropies. This scheme is also able to handle correctly the non-conservative products, because
it relies on a reformulation of the hyperbolic model (3.3)–(3.8) with equation (3.37). The proposed scheme can
be viewed as an approximate Godunov scheme. As a preambular statement, let us notice that schemes having
collocated components of the correlation tensor are good potential candidates to obtain the discrete realizability.
Moreover, locally non-increasing discrete entropies can be obtained from collocated scheme, see [9, 13, 25] for
Euler hydrodynamics.
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4.1. Preliminaries: notations at the discrete level

Let us consider a space domain Ω = ∪𝑗∈𝐽Ω𝑗 , paved with cells. The volume of the 𝑗th cell Ω𝑗 of a given
set of cells 𝐽 , is denoted by |Ω𝑗 |. Given a 1D geometry along the unit vector e𝑥, each cell Ω𝑗 is an interval[︀
𝑥𝑗−1/2;𝑥𝑗+1/2

]︀
where 𝑥𝑗−1/2, 𝑥𝑗+1/2 are the position of its nodes. The position of the cell centroid is denoted

by 𝑥𝑗 . We introduce the vectors C𝑗𝑟 = 𝜕𝑥𝑟
|Ω𝑗 | = 𝑥𝑑

𝑟n𝑗𝑟, where n𝑗𝑟 = 𝑛𝑗𝑟e𝑥 stands for the external normal of
Ω𝑗 at its boundary 𝑥𝑟, giving 𝑛𝑗𝑟 = −1 if 𝑟 = 𝑗 − 1/2, and 𝑛𝑗𝑟 = 1 if 𝑟 = 𝑗 + 1/2. Thus we obtain∑︁

𝑟∈𝑁𝑗

n𝑗𝑟 = 0,
∑︁

𝑗∈𝑀𝑟

C𝑗𝑟 = 0, (4.1)

where 𝑁𝑗 =
{︀
𝑗 − 1

2 , 𝑗 + 1
2

}︀
is the set of node indexes that are located at the boundaries of Ω𝑗 , while 𝑀𝑟 is the

set of cells sharing the node with index 𝑟.

4.2. A splitting approach

We propose a splitting scheme to solve equations (3.3)–(3.8), during ∆𝑡 = 𝑡(𝑛+1)− 𝑡(𝑛). The left-hand side of
this system is first evolved from an initial time, labelled with (𝑛), to an intermediate diamond state, labelled with
◇, during the time step ∆𝑡. The remaining contributions, namely the dissipation and redistribution contributions,
are then evolved from the diamond state, to a final state, labelled with (𝑛+ 1), during the time step ∆𝑡. Note
that stationary states do not prevent a priori this splitting approach, as they do not involve a balance between
terms located from both sides of equations (3.3)–(3.8).

The discretization leading to the diamond state is described from Sections 4.3 to 4.10, while the discretization
leading to the dissipation and redistribution contributions is described in Section 4.11.

4.3. An approximate Godunov scheme for the mass fractions and their fluxes

The mass fractions and their fluxes evolve according to equations (2.8)–(2.10). The resulting sub-system
stands as a non-conservative sub-system of our model, whose non-conservative product, ˜u′′ ⊗ u′′∇̃︀𝑌𝛼, can be
analysed with the help of the Riemann invariants. Therefore, a Godunov-type scheme is a good candidate for
its discretization. Having the knowledge of the stationary states of the model, we propose to introduce such a

scheme for the variables 𝒰𝛼 =
(︁̃︀𝑌𝛼, 𝜌𝑥

𝑑𝑌𝛼u′′
)︁𝑡

, which are exactly the variables that can become stationary. We
will show later on that this choice does lead to the discrete preservation of stationary states. We also discard
the dissipation terms in the mass fraction flux equation. We can do so safely because stationary states indeed
occur for a null dissipation contribution. These dissipation terms will be reintroduced later on.

Let then 𝒰ℛ𝛼
(︀
𝑚/𝑡,𝒰𝐿

𝛼 ,𝒰𝑅
𝛼

)︀
be the solution of the Riemann problem in mass coordinates, follow-

ing [26]. The weak solution of the Cauchy problem, built from the initial piecewise constant data
𝒰ℎ

𝛼(𝑚, 𝑡) = 𝒰ℎ
𝛼

(︀
𝑚𝑗 , 𝑡

(𝑛)
)︀

= 𝒰𝛼|(𝑛)
𝑗 , ∀𝑚 ∈

[︀
𝑚𝑗−1/2,𝑚𝑗+1/2

]︀
, can be expressed as 𝒰ℎ

𝛼

(︀
𝑚, 𝑡+ 𝑡(𝑛)

)︀
=

𝒰ℛ𝛼
(︁(︀
𝑚−𝑚𝑗+1/2

)︀
/𝑡, 𝒰𝛼|(𝑛)

𝑗 , 𝒰𝛼|(𝑛)
𝑗+1

)︁
, ∀𝑚 ∈

[︀
𝑚𝑗−1/2,𝑚𝑗+1/2

]︀
. The projection of this solution on piecewise

constant function writes

𝒰𝛼|◇𝑗 =
1

∆𝑚𝑗

∫︁ 𝑚𝑗

𝑚𝑗−1/2

𝒰ℛ𝛼
(︁(︀
𝑚−𝑚𝑗−1/2

)︀
/∆𝑡, 𝒰𝛼|(𝑛)

𝑗−1 , 𝒰𝛼|(𝑛)
𝑗

)︁
d𝑚

+
1

∆𝑚𝑗

∫︁ 𝑚𝑗+1/2

𝑚𝑗

𝒰ℛ𝛼
(︁(︀
𝑚−𝑚𝑗+1/2

)︀
/∆𝑡, 𝒰𝛼|(𝑛)

𝑗 , 𝒰𝛼|(𝑛)
𝑗+1

)︁
d𝑚,

with the choice ∆𝑚𝑗 = 𝜌𝑗 |Ω𝑗 |. Inserting the solution of the Riemann problem and linearizing the characteristic
curves as straight lines (required for 𝑑 > 1) yields

𝒰𝛼|◇𝑗 = 𝒰𝛼|(𝑛)
𝑗

(︂
1− 2𝜆(𝑛)

𝑗

∆𝑡
∆𝑚𝑗

)︂
+ 𝜆

(𝑛)
𝑗

∆𝑡
∆𝑚𝑗

(︁
𝒰𝛼|

*𝐿
𝑗+1/2 + 𝒰𝛼|

*𝑅
𝑗−1/2

)︁
, (4.2)
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where 𝜆(𝑛)
𝑗 = 𝜌

(𝑛)
𝑗 𝑥𝑑

𝑗

√︂̃︂𝑢′′2𝑥

⃒⃒⃒(𝑛)

𝑗
, and 𝑥𝑑

𝑗 ≡
|Ω𝑗 |
Δ𝑥𝑗

. We then obtain an approximate, first-order Godunov scheme.

The explicit expressions of the intermediate states, 𝒰𝛼|
*𝐿
𝑗+1/2 and 𝒰𝛼|

*𝑅
𝑗−1/2, can be obtained from the continuity

of some well-chosen Riemann invariants across each wave exiting or entering the cell Ω𝑗 .

Lemma 4.1. Let us consider the Riemann problem at node having position 𝑥𝑗+1/2, located at a boundary of Ω𝑗.
Combining equations (3.25) and (3.29) gives

𝜆
(𝑛)
𝑗
̃︀𝑌𝛼

⃒⃒⃒*𝐿
𝑗+1/2

+
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁*𝐿
𝑗+1/2

= 𝜆
(𝑛)
𝑗
̃︀𝑌𝛼

⃒⃒⃒(𝑛)

𝑗
+
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁(𝑛)

𝑗
. (4.3)

Remark 4.2. Equation (4.3) can be obtained by expressing the continuity of Riemann invariants either across
the wave entering Ω𝑗 , at the position 𝑥𝑗+1/2, or across the wave exiting Ω𝑗 , at the position 𝑥𝑗−1/2.

Lemma 4.3. Let us consider the Riemann problem at node having position 𝑥𝑗−1/2, located at a boundary of Ω𝑗.
Combining equations (3.24) and (3.28) gives

𝜆
(𝑛)
𝑗
̃︀𝑌𝛼

⃒⃒⃒*𝑅
𝑗−1/2

−
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁*𝑅
𝑗−1/2

= 𝜆
(𝑛)
𝑗
̃︀𝑌𝛼

⃒⃒⃒(𝑛)

𝑗
−
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁(𝑛)

𝑗
. (4.4)

Remark 4.4. Equation (4.4) can be obtained by expressing the continuity of Riemann invariants either across
the wave entering Ω𝑗 , at the position 𝑥𝑗−1/2, or across the wave exiting Ω𝑗 , at the position 𝑥𝑗+1/2.

Lemma 4.5. Let us consider the Riemann problem at node having position 𝑥𝑗−1/2, located at the other boundary
of Ω𝑗. Equations (3.26) and (3.27) can be rewritten as[︁

𝜌𝑥𝑑𝑌 ′′𝛼 𝑢
′′
𝑥

]︁*𝑅
𝑗−1/2

=
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁*𝐿
𝑗−1/2

=
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁*
𝑗−1/2

, (4.5)

̃︀𝑌𝛼

⃒⃒⃒*𝑅
𝑗−1/2

= ̃︀𝑌𝛼

⃒⃒⃒*𝐿
𝑗−1/2

= ̃︀𝑌𝛼

⃒⃒⃒*
𝑗−1/2

. (4.6)

The following proposition is then obtained from Lemmas 4.1, 4.3 and 4.5.

Proposition 4.6. System (4.4)–(4.6) can be written as a nodal solver. At node having index 𝑗−1/2, this yields

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁*
𝑗−1/2

=
𝜆

(𝑛)
𝑗

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁(𝑛)

𝑗−1
+ 𝜆

(𝑛)
𝑗−1

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁(𝑛)

𝑗

𝜆
(𝑛)
𝑗 + 𝜆

(𝑛)
𝑗−1

− 𝜆
(𝑛)
𝑗 𝜆

(𝑛)
𝑗−1

̃︀𝑌𝛼

⃒⃒⃒(𝑛)

𝑗
− ̃︀𝑌𝛼

⃒⃒⃒(𝑛)

𝑗−1

𝜆
(𝑛)
𝑗 + 𝜆

(𝑛)
𝑗−1

, (4.7)

̃︀𝑌𝛼

⃒⃒⃒*
𝑗−1/2

=
𝜆

(𝑛)
𝑗
̃︀𝑌𝛼

⃒⃒⃒(𝑛)

𝑗
+ 𝜆

(𝑛)
𝑗−1

̃︀𝑌𝛼

⃒⃒⃒(𝑛)

𝑗−1

𝜆
(𝑛)
𝑗 + 𝜆

(𝑛)
𝑗−1

−

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁(𝑛)

𝑗
−
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁(𝑛)

𝑗−1

𝜆
(𝑛)
𝑗 + 𝜆

(𝑛)
𝑗−1

· (4.8)

Finally, a quadrature formula is chosen to relate 𝑌 ′′𝛼 𝑢
′′
𝑥 and 𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥, so as to deduce a discrete equation for

𝑌 ′′𝛼 𝑢
′′
𝑥

◇
, based on equation (4.2). We choose

∆𝑚𝑗 𝑌 ′′𝛼 𝑢
′′
𝑥

⃒⃒⃒◇
𝑗

= ∆𝑥𝑗

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁◇
𝑗

, ∆𝑚𝑗 𝑌 ′′𝛼 𝑢
′′
𝑥

⃒⃒⃒(𝑛)

𝑗
= ∆𝑥𝑗

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁(𝑛)

𝑗
. (4.9)

Remark 4.7. The resulting non-conservative, discrete equations for the Riemann invariants of the extremal
waves are

𝜌|Ω𝑗 |

[︃
ℐ𝛼+|◇𝑗 − ℐ𝛼+|(𝑛)

𝑗

∆𝑡

]︃
+ 𝜆

(𝑛)
𝑗

(︁
ℐ𝛼+|(𝑛)

𝑗 − ℐ𝛼+|(𝑛)
𝑗−1

)︁
+
(︁
𝜆

(𝑛)
𝑗 − 𝜆

(𝑛)
𝑗−1

)︁ 𝜆
(𝑛)
𝑗

𝜆
(𝑛)
𝑗 + 𝜆

(𝑛)
𝑗−1

(︁
ℐ𝛼+|(𝑛)

𝑗−1 − ℐ𝛼−|(𝑛)
𝑗

)︁
= 0,

𝜌|Ω𝑗 |

[︃
ℐ𝛼−|◇𝑗 − ℐ𝛼−|(𝑛)

𝑗

∆𝑡

]︃
− 𝜆

(𝑛)
𝑗

(︁
ℐ𝛼−|(𝑛)

𝑗+1 − ℐ𝛼−|(𝑛)
𝑗

)︁
+
(︁
𝜆

(𝑛)
𝑗+1 − 𝜆

(𝑛)
𝑗

)︁ 𝜆
(𝑛)
𝑗

𝜆
(𝑛)
𝑗 + 𝜆

(𝑛)
𝑗+1

(︁
ℐ𝛼+|(𝑛)

𝑗 − ℐ𝛼−|(𝑛)
𝑗+1

)︁
= 0.
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4.4. A scheme for the mass fraction covariances that handles with non-conservative
products

The discretization of the mass fraction covariance equation relies on the ODE (3.37). Discarding the dissipa-
tion terms in the right-hand side, that will be reintroduced later on, we propose the following discretization

𝑌 ′′𝛼 𝑌
′′
𝛽

⃒⃒⃒◇
𝑗
− 𝑌 ′′𝛼 u′′

⃒⃒⃒◇𝑡
𝑗

(︂
˜u′′ ⊗ u′′

⃒⃒⃒◇
𝑗

)︂−1

𝑌 ′′𝛽 u′′
⃒⃒⃒◇
𝑗

= 𝑌 ′′𝛼 𝑌
′′
𝛽

⃒⃒⃒(𝑛)

𝑗
− 𝑌 ′′𝛼 u′′

⃒⃒⃒(𝑛)𝑡

𝑗

(︂
˜u′′ ⊗ u′′

⃒⃒⃒(𝑛)

𝑗

)︂−1

𝑌 ′′𝛽 u′′
⃒⃒⃒(𝑛)

𝑗
, (4.10)

Remark 4.8. Because both variables, 𝑌 ′′𝛼 𝑢
′′
𝑥 and ̃︀𝑌𝛽 , can jump across the extremal waves, the non-conservative

product 𝑌 ′′𝛼 𝑢
′′
𝑥𝜕𝑥

̃︀𝑌𝛽 is not straightforwardly defined in a weak sense as such. The mass fraction covariance
equation expressed in the primary variables is ambiguous in this respect. The ODE (3.37) restores back a weak
sense, and thus controls the non-conservative product, as explained in Section 3.1.6,

Remark 4.9. The discretization (4.10) can be reformulated in terms of discrete entropy variations, as

𝜂𝑎
𝛼|
◇
𝑗 − 𝜂𝑎

𝛼|
(𝑛)
𝑗 = 𝜂𝑏

𝛼

⃒⃒◇
𝑗
− 𝜂𝑏

𝛼

⃒⃒(𝑛)

𝑗
. (4.11)

4.5. A conservative, realizable and entropy scheme

Proposition 4.10. The approximate Godunov scheme (4.2)–(4.9) gives a discrete equation for the material
mass fractions that can be recast under its conservative form

̃︀𝑌𝛼

⃒⃒⃒◇
𝑗

= ̃︀𝑌𝛼

⃒⃒⃒(𝑛)

𝑗
− ∆𝑡
𝜌𝑗 |Ω𝑗 |

∑︁
𝑟∈𝑁𝑗

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁*
𝑟
𝑛𝑗𝑟. (4.12)

Proposition 4.11. The approximate Godunov scheme (4.2)–(4.10) satisfies unconditional discrete realizability.

Proof. The discrete equations for the correlation tensor components can be gathered in the tensorial expression

X◇𝑗 =
(︁
I + ∆𝑡 G𝑝|(𝑛)

𝑗

)︁
X(𝑛)

𝑗

(︁
I + ∆𝑡 G𝑝|(𝑛)

𝑗

)︁𝑡

≥ 0, (4.13)

where G𝑝|(𝑛)
𝑗 ≡

[︂
0 0
𝐺𝑝|(𝑛)

𝑗 0

]︂
, and 𝐺𝑝|(𝑛)

𝑗 ≡

⎛⎜⎜⎜⎝
− 1

Δ𝑥𝑗

∑︀
𝑟∈𝑁𝑗

̃︀𝑌𝛼

⃒⃒⃒*
𝑟
𝑛𝑡

𝑗𝑟

− 1
Δ𝑥𝑗

∑︀
𝑟∈𝑁𝑗

̃︀𝑌𝛽

⃒⃒⃒*
𝑟
𝑛𝑡

𝑗𝑟

...

⎞⎟⎟⎟⎠. �

Remark 4.12. The discrete tensorial formulation (4.13) can be identified with the continuous tensorial equation
(3.2), provided the resolvent matrix, K, is approximated with a first-order Taylor expansion in the time variable:
K = I + ∆𝑡G𝑝 +𝒪(∆𝑡2). Our scheme simply brings an additional, unique prescription for a space discretization
of the mass fraction gradients, 𝐺𝑝|(𝑛)

𝑗 , in the turbulent double correlation discrete equations.

Proposition 4.13. Under the stability condition ∆𝑡
√︂̃︂𝑢′′2𝑥

⃒⃒⃒(𝑛)

𝑗
/∆𝑥𝑗 ≤ 1, the first-order scheme (4.2)–(4.10)

satisfies the following discrete entropy inequalities

𝜌𝑗 |Ω𝑗 |
𝜂𝑎,𝑏

𝛼

⃒⃒◇
𝑗
− 𝜂𝑎,𝑏

𝛼

⃒⃒(𝑛)

𝑗

∆𝑡
+
∑︁

𝑟∈𝑁𝑗

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁*
𝑟

̃︀𝑌𝛼

⃒⃒⃒*
𝑟
𝑛𝑗𝑟 ≤ 0, (4.14)

where both discrete entropies have the same dissipation rate.
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Proof. Relying on equation (4.11), we can only focus on 𝜂𝑏
𝛼, and establish its discrete entropy inequality. Equa-

tion (4.12) can be combined with equations (4.4)–(4.6) (the discrete Riemann invariant relations), to give

𝜌𝑗 |Ω𝑗 |
2∆𝑡

[︃(︂ ̃︀𝑌𝛼

⃒⃒⃒◇
𝑗

)︂2

−
(︂ ̃︀𝑌𝛼

⃒⃒⃒(𝑛)

𝑗

)︂2
]︃

= −

⎡⎣∑︁
𝑟∈𝑁𝑗

̃︀𝑌𝛼

⃒⃒⃒(𝑛)

𝑗

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁*
𝑟
𝑛𝑗𝑟

⎤⎦

+
𝜌𝑗 |Ω𝑗 |
2∆𝑥𝑗

∆𝑡̃︂𝑢′′2𝑥

⃒⃒⃒(𝑛)

𝑗

|∆𝑥𝑗 |

⎡⎣∑︁
𝑟∈𝑁𝑗

(︂ ̃︀𝑌𝛼

⃒⃒⃒*
𝑟
− ̃︀𝑌𝛼

⃒⃒⃒(𝑛)

𝑗

)︂⎤⎦2

. (4.15)

Next, rewritting component-wise the tensorial equation (4.13), we obtain the discrete equation for 𝑌 ′′𝛼 u′′. The
latter can be rearranged as

𝜌𝑗 |Ω𝑗 |
2∆𝑡

[︃
𝑌 ′′𝛼 u′′

◇𝑡 (︁ ˜u′′ ⊗ u′′
◇)︁−1

𝑌 ′′𝛼 u′′
◇
− 𝑌 ′′𝛼 u′′

(𝑛)𝑡
(︂

˜u′′ ⊗ u′′
(𝑛)
)︂−1

𝑌 ′′𝛼 u′′
(𝑛)
]︃

= −

⎡⎣∑︁
𝑟∈𝑁𝑗

̃︀𝑌𝛼

⃒⃒⃒*
𝑟

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁(𝑛)

𝑗
𝑛𝑗𝑟

⎤⎦+
𝜌𝑗 |Ω𝑗 |
2∆𝑥𝑗

∆𝑡̃︂𝑢′′2𝑥

⃒⃒⃒(𝑛)

𝑗

|∆𝑥𝑗 |

⎡⎣∑︁
𝑟∈𝑁𝑗

(︂ ̃︀𝑌𝛼

⃒⃒⃒*
𝑟
− ̃︀𝑌𝛼

⃒⃒⃒(𝑛)

𝑗

)︂
𝑛𝑗𝑟

⎤⎦2

. (4.16)

Summing equations (4.15) and (4.16), and noticing that⎡⎣∑︁
𝑟∈𝑁𝑗

(︂ ̃︀𝑌𝛼

⃒⃒⃒*
𝑟
− ̃︀𝑌𝛼

⃒⃒⃒(𝑛)

𝑗

)︂⎤⎦2

+

⎡⎣∑︁
𝑟∈𝑁𝑗

(︂ ̃︀𝑌𝛼

⃒⃒⃒*
𝑟
− ̃︀𝑌𝛼

⃒⃒⃒(𝑛)

𝑗

)︂
𝑛𝑗𝑟

⎤⎦2

= 2
∑︁

𝑟∈𝑁𝑗

(︂ ̃︀𝑌𝛼

⃒⃒⃒*
𝑟
− ̃︀𝑌𝛼

⃒⃒⃒(𝑛)

𝑗

)︂2

,

gives

𝜌𝑗 |Ω𝑗 |
𝜂𝑏

𝛼

⃒⃒◇
𝑗
− 𝜂𝑏

𝛼

⃒⃒(𝑛)

𝑗

∆𝑡
=
𝜌𝑗 |Ω𝑗 |
∆𝑥𝑗

∆𝑡̃︂𝑢′′2𝑥

⃒⃒⃒(𝑛)

𝑗

|∆𝑥𝑗 |
∑︁

𝑟∈𝑁𝑗

(︂ ̃︀𝑌𝛼

⃒⃒⃒*
𝑟
− ̃︀𝑌𝛼

⃒⃒⃒(𝑛)

𝑗

)︂2

−

⎡⎣∑︁
𝑟∈𝑁𝑗

(︂ ̃︀𝑌𝛼

⃒⃒⃒(𝑛)

𝑗
− ̃︀𝑌𝛼

⃒⃒⃒*
𝑟

)︂(︂[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁*
𝑟
−
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁(𝑛)

𝑗

)︂
𝑛𝑗𝑟

⎤⎦
−
∑︁

𝑟∈𝑁𝑗

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁*
𝑟

̃︀𝑌𝛼

⃒⃒⃒*
𝑟
𝑛𝑗𝑟.

The discrete Riemann invariant relations (4.4)–(4.6) can then be inserted in the second term of the right-hand
side, which gives

𝜌𝑗 |Ω𝑗 |
𝜂𝑎,𝑏

𝛼

⃒⃒◇
𝑗
− 𝜂𝑎,𝑏

𝛼

⃒⃒(𝑛)

𝑗

∆𝑡
+
∑︁

𝑟∈𝑁𝑗

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁*
𝑟

̃︀𝑌𝛼

⃒⃒⃒*
𝑟
𝑛𝑗𝑟 = 𝒟𝛼,𝑗 , (4.17)

where

𝒟𝛼,𝑗 =
𝜌𝑗 |Ω𝑗 |
∆𝑥𝑗

√︃̃︂𝑢′′2𝑥

⃒⃒⃒(𝑛)

𝑗

⎛⎜⎜⎝∆𝑡
√︂̃︂𝑢′′2𝑥

⃒⃒⃒(𝑛)

𝑗

∆𝑥𝑗
− 1

⎞⎟⎟⎠ ∑︁
𝑟∈𝑁𝑗

(︂ ̃︀𝑌𝛼

⃒⃒⃒*
𝑟
− ̃︀𝑌𝛼

⃒⃒⃒(𝑛)

𝑗

)︂2

. (4.18)

Enforcing inequality 𝒟𝛼,𝑗 ≤ 0 yields the stability condition. �
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Remark 4.14. We observe that the first-order scheme is isentropic at the discrete level, for both entropies, in

the very special case of uniform mesh and constant in space Reynolds tensor, with ∆𝑡 = ∆𝑥/
√︁̃︂𝑢′′2𝑥

(𝑛)
.

4.6. A non Godunov-type scheme for the material constituents

At the mixing zone boundary, there is at least one material mass fraction, denoted by index 𝛼 for instance,
that vanishes. This may lead to a divergent speed 𝜆𝛼, at the locations where the material mass fraction becomes
close to zero. This speed is associated to the material constituents, while the speed associated to the material,
𝜆±, do not diverge. The system partially degenerates at such boundary because the wave speed 𝜆𝛼 blows up.
Thus it is no more hyperbolic, if the material constituent evolution is considered. We can nevertheless mitigate
this point, because the Riemann invariant, ̃︀𝑌𝛼,𝑖/̃︀𝑌𝛼, associated to the wave speed 𝜆𝛼, has no physical significance
(as it is not linked with any physical matter). Its transport at infinite speed cannot be forbidden, contrary to the
transport of the constituent mass fraction ̃︀𝑌𝛼,𝑖. Therefore a Godunov scheme relying on the Riemann invariant̃︀𝑌𝛼,𝑖/̃︀𝑌𝛼 is clearly not an appropriate choice, as the CFL condition would force the time step toward zero. We
propose an alternative scheme, that can be written as

̃︀𝑌𝛼,𝑖

⃒⃒⃒◇
𝑗

= ̃︀𝑌𝛼,𝑖

⃒⃒⃒(𝑛)

𝑗
− ∆𝑡
𝜌𝑗 |Ω𝑗 |

∑︁
𝑟∈𝑁𝑗

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁*
𝑟

̃︀𝑌𝛼,𝑖̃︀𝑌𝛼

⃒⃒⃒⃒
⃒
𝑟

𝑛𝑗𝑟, (4.19)

where
̃︀𝑌𝛼,𝑖

̃︀𝑌𝛼

⃒⃒⃒
𝑟

can be upwinded, depending on the sign of 𝜆𝛼|𝑟 ≡
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁*
𝑟
/ ̃︁𝑌𝛼

⃒⃒⃒*
𝑟
.

Proposition 4.15. The discrete equation (4.19) is conservative. It is also entropy-stable, that is, it satisfies
(4.17), (4.18).

Proof. The discrete equation (4.12) for the material mass fraction, ̃︀𝑌𝛼 =
∑︀𝑁𝑐

𝑖=1
̃︀𝑌𝛼,𝑖, can be obtained from the

discrete equation (4.19), by summing over the material constituents. �

Remark 4.16. Initial uniform profiles of ̃︀𝑌𝛼,𝑖/̃︀𝑌𝛼 remain uniform profiles, since this mass fraction ratio is
a Riemann invariant. This stationarity property holds true at the discrete level also, owing to the discrete
equations (4.12) and (4.19).

4.7. Second-order extension in space

We propose the following second-order extension in space. It relies on the reconstruction of a variable, 𝜙𝛼,
which can be either ̃︀𝑌𝛼 or 𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥, at a node 𝑟 ∈ 𝑁𝑗

𝜙𝛼(𝑥𝑟)|𝑗 = 𝜙𝛼|𝑗 + 𝜎𝑟𝜎
𝜙
𝑗

𝜙𝛼|𝑗+1 − 𝜙𝛼|𝑗−1

𝑥𝑗+1 − 𝑥𝑗−1
(𝑥𝑟 − 𝑥𝑗) ∀𝑟 ∈ 𝑁𝑗 , (4.20)

where 𝜎𝜙|𝑗 refers to an a priori limiter at cells, while 𝜎𝑟 refers to an a posteriori limiter at nodes. The a priori
limiter is defined as

𝜎𝜙|𝑗 = min
𝛼

{︃⃒⃒⃒⃒
⃒ 𝑥𝑗+1 − 𝑥𝑗−1

𝜙𝛼|𝑗+1 − 𝜙𝛼|𝑗−1

⃒⃒⃒⃒
⃒min

{︂⃒⃒⃒⃒
𝜙𝛼|𝑗+1 − 𝜙𝛼|𝑗
𝑥𝑗+1 − 𝑥𝑗

⃒⃒⃒⃒
;
⃒⃒⃒⃒
𝜙𝛼|𝑗−1 − 𝜙𝛼|𝑗
𝑥𝑗−1 − 𝑥𝑗

⃒⃒⃒⃒}︂}︃

if
(︁
𝜙𝛼|𝑗+1 − 𝜙𝛼|𝑗

)︁(︁
𝜙𝛼|𝑗−1 − 𝜙𝛼|𝑗

)︁
≥ 0, and 𝜎𝜙|𝑗 = 0 otherwise.

The a posteriori limiter is set to its a priori value, 𝜎𝑟 = 1. We shall set 𝜎𝑟 = 0 only if an a posteriori entropy
criterion, yet to be defined, would be violated. This reconstruction is then inserted in the expressions for the
discrete Riemann invariant at nodes

𝜆
(𝑛)
𝑗
̃︀𝑌𝛼

⃒⃒⃒(*)
𝑗−1/2

−
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁(*)
𝑗−1/2

= 𝜆
(𝑛)
𝑗
̃︀𝑌𝛼(𝑥𝑗−1/2)

⃒⃒⃒(𝑛)

𝑗
−
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥(𝑥𝑗−1/2)

]︁(𝑛)

𝑗
,
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𝜆
(𝑛)
𝑗−1

̃︀𝑌𝛼

⃒⃒⃒(*)
𝑗−1/2

+
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁(*)
𝑗−1/2

= 𝜆
(𝑛)
𝑗−1

̃︀𝑌𝛼(𝑥𝑗−1/2)
⃒⃒⃒(𝑛)

𝑗−1
+
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥(𝑥𝑗−1/2)

]︁(𝑛)

𝑗−1
,

which can be viewed as a nodal solver, whose solution is

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁*
𝑗−1/2

=
𝜆

(𝑛)
𝑗

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥(𝑥𝑗−1/2)

]︁(𝑛)

𝑗−1
+ 𝜆

(𝑛)
𝑗−1

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥(𝑥𝑗−1/2)

]︁(𝑛)

𝑗

𝜆
(𝑛)
𝑗 + 𝜆

(𝑛)
𝑗−1

−𝜆(𝑛)
𝑗 𝜆

(𝑛)
𝑗−1

̃︀𝑌𝛼(𝑥𝑗−1/2)
⃒⃒⃒(𝑛)

𝑗
− ̃︀𝑌𝛼(𝑥𝑗−1/2)

⃒⃒⃒(𝑛)

𝑗−1

𝜆
(𝑛)
𝑗 + 𝜆

(𝑛)
𝑗−1

, (4.21)

̃︀𝑌𝛼

⃒⃒⃒*
𝑗−1/2

=
𝜆

(𝑛)
𝑗
̃︀𝑌𝛼(𝑥𝑗−1/2)

⃒⃒⃒(𝑛)

𝑗
+ 𝜆

(𝑛)
𝑗−1

̃︀𝑌𝛼(𝑥𝑗−1/2)
⃒⃒⃒(𝑛)

𝑗−1

𝜆
(𝑛)
𝑗 + 𝜆

(𝑛)
𝑗−1

−

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥(𝑥𝑗−1/2)

]︁(𝑛)

𝑗
−
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥(𝑥𝑗−1/2)

]︁(𝑛)

𝑗−1

𝜆
(𝑛)
𝑗 + 𝜆

(𝑛)
𝑗−1

· (4.22)

These expressions can be inserted in the discrete equations (4.12), (4.13) and (4.19), that rely on a simple
forward Euler time discretization. It could also be combined with a Runge–Kutta higher-order extension, as we
shall show in the next Sections.

Proposition 4.17. The second-order a priori reconstruction preserves linear solutions, and degenerates at
first-order at extrema, by construction.

Proposition 4.18. The second-order scheme preserves the stationary states and the mass conservation rela-
tions (3.38), at the discrete level, by construction.

In the following, we investigate the stability of this high-order in space extension, in relation with the time
discretization.

4.8. Runge–Kutta 𝐿2 stabilization: a Von Neumann analysis

The extension of the space discretization to second-order may affect stability. To evaluate its impact, a stan-

dard Von Neumann analysis is proposed for the discrete equations satisfied by the variable 𝒰𝛼 =
(︁̃︀𝑌𝛼, 𝜌𝑥

𝑑𝑌𝛼u′′
)︁𝑡

.
Strong hypotheses are made to do so. Hence, all subsequent stability constraints should be understood as con-
ditions related to linear stability, distinct from nonlinear stability.

Proposition 4.19. Let the Reynolds tensor and mean density be constant in time and space, over an interval
Ω = [0, 2𝜋] in a 1D geometry, with transverse symmetry in cartesian coordinates (𝑑 = 0). Let the dissipation
and diffusion terms be discarded. Then the equation for 𝒰𝛼 reduces to the simple “acoustic” system

d
d𝑡
𝒰𝛼 +

(︂
0 1
𝜆2 0

)︂
𝜕𝑥𝒰𝛼 = 0, (4.23)

with sound speed 𝜆 =
√︁̃︂𝑢′′2𝑥 .

The system (4.23) admits exact solutions defined as the superposition of harmonic modes 𝑒�̂�(𝑘𝑥−𝜔𝑡), where
𝑘 is a wavenumber, 𝜔 is a frequency that satisfies the dispersion relation 𝜔 = 𝜆𝑘, and �̂� the imaginary unity,
�̂�2 = −1.
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Remark 4.20. An interval of arbitrary length Ω = [0, 𝐿] can also be considered for this stability analysis. We
restrict to Ω = [0, 2𝜋], without loss of generality, for the sake of clarity.

Proposition 4.21. The proposed first-order discretization (4.2)–(4.10) of (4.23), as well as its unlimited exten-

sion to second-order in space (4.20)–(4.22) (limiters are set to 1), can be rewritten as 𝒰𝛼

⃒⃒⃒◇
𝑗

= 𝐴 𝒰𝛼

⃒⃒⃒(𝑛)

𝑗
, where

𝒰𝛼 =
(︂
𝜆 0
0 1

)︂
𝒰𝛼, 𝐴 = 𝐼 + 𝜇𝑆 is the so-called amplification matrix, 𝜇 = 𝜆∆𝑡/∆𝑥 is the Courant number,

𝑆 =

⎛⎜⎜⎝(−2 + 𝜎 [1 + cos(𝑘∆𝑥)]) sin2

(︂
𝑘∆𝑥

2

)︂
1
2

(−2 + 𝜎 [cos(𝑘∆𝑥)− 1]) sin(𝑘∆𝑥)̂𝚤

1
2

(−2 + 𝜎 [cos(𝑘∆𝑥)− 1]) sin(𝑘∆𝑥)̂𝚤 (−2 + 𝜎 [1 + cos(𝑘∆𝑥)]) sin2

(︂
𝑘∆𝑥

2

)︂
⎞⎟⎟⎠ ,

and 𝜎 is set to 0 or 1, respectively for the first-order or the second-order case. The spectral radius of 𝐴 is bounded
by one, under the CFL criterion{︂

(2− 𝜎 [1 + cos(𝑘∆𝑥)]) sin2

(︂
𝑘∆𝑥

2

)︂
+

1
4

(︁
−2 + 𝜎 [cos(𝑘∆𝑥)− 1]2

)︁
sin2(𝑘∆𝑥)

}︂
𝜇

≤ 2 (2− 𝜎 [1 + cos(𝑘∆𝑥)]) sin2

(︂
𝑘∆𝑥

2

)︂
where

– the first-order discretization in space (𝜎 = 0) yields: sin2

(︂
𝑘∆𝑥

2

)︂
𝜇 ≤ sin2

(︂
𝑘∆𝑥

2

)︂
,

– the second-order discretization in space (𝜎 = 1) yields: [9− cos(2𝑘∆𝑥)] sin2

(︂
𝑘∆𝑥

2

)︂
𝜇 ≤ 8 sin4

(︂
𝑘∆𝑥

2

)︂
.

The scheme will be deemed as linearly stable, with respect to the exact harmonic solution, if all eigenvalues
of 𝐴 are, in modulus, less than or equal to one. From Proposition 4.21, we observe that the constant mode,
𝑘 = 0, is unconditionally stable for both first-order and second-order discretization in space. Note also that
the smallest wavelength, with wavenumber 𝑘 = 𝜋/∆𝑥, is stable under the condition 𝜇 ≤ 1 in either cases.
The first-order scheme in space and time is 𝐿2 stable if 𝜇 ≤ 1. On the contrary, the second-order in space,
first-order in time scheme is unconditionally unstable. Figure 2 indeed shows the modulus of the eigenval-
ues (amplification factor) related to the first wavenumbers, against the Courant number. This suggests the
existence, for each Courant number, of at least one wavenumber having an amplification factor greater than one.

Let us now investigate whether a higher-order time discretization might bring stabilization.

Remark 4.22. The amplification matrix 𝐴, if computed from the second-order, low storage Runge–Kutta time
discretization of Appendix A, becomes

𝐴 = 𝐼 + 𝜇𝑆 +
𝜇2

2
𝑆2.

Note that the Taylor series should be pursued for higher-order time discretization. At the third and fourth order,
this series corresponds to the amplification matrices of the third and fourth order, low storage Runge–Kutta
scheme of Appendix A.

Figure 3 shows the amplification factor of the first wavenumber, for the high-order time discretizations, up
to fourth-order, against the Courant number. We observe that the stability of our scheme only depends on
the stability of the 2∆𝑥-wave, because the amplification factor from this particular wave dominates the other
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Figure 2. Amplification factor as a function of the Courant number, for the Euler explicit time
discretization, combined with the second-order space discretization. A variety of wavenumbers
is shown. The amplification factor for the null wavelength (black dashed line) is constant, while
the one related to the 16∆𝑥 wavelength (red dashed line) has a very narrow stability domain.
The intermediate wavelength are represented by solid lines. Increasing the wavelength narrows
the stability domains.

Figure 3. Same graph as in Figure 2, now related to the high order time discretization:
second-order (left), third-order (center) and fourth-order (right). Increasing the wavelength
now broadens the stability domains.

ones, as soon as one wave becomes unstable (its amplification factor exeeds unity). The CFL criteria are given
analytically in Table 1 for the first and higher-order scheme.

As a conclusion, we have shown that a stabilization is required for the second-order in space discretization.
If combined with a first-order forward Euler time discretization, it is indeed unconditionally unstable. We have
also shown that high-order Runge–Kutta schemes provide the desired stabilizing effect, and that a second-order
Runge–Kutta time discretization is sufficient. In the next section, we shall show how the second-order spatial
discretization can be appropriately combined with such second-order Runge–Kutta time discretization, having
in view an efficient and simple implementation.
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Table 1. Maximal Courant number 𝜇 for the CFL-criterion. In this table, 𝛾 =
(︀
4 +

√
17
)︀1/3

and 𝜅 =
(︁

43+9
√

29
2

)︁1/3

.

Time order: 1st 2nd 3rd 4th

1st order-space 1 1 (𝛾2 + 𝛾 − 1)/2𝛾 (𝜅2 + 2𝜅− 5)/3𝜅
2nd order-space 0 1 (𝛾2 + 𝛾 − 1)/2𝛾 (𝜅2 + 2𝜅− 5)/3𝜅

4.9. A second proof of discrete realizability

Lemma 4.23. Let 𝒜 a be a symmetric matrix

𝒜 =

⎛⎜⎜⎜⎜⎝
𝑎 𝑏1 𝑏2 · · · 𝑏𝑁
𝑏1 𝑐11 𝑐12 · · · 𝑐1𝑁

𝑏2 𝑐12 𝑐22 · · · 𝑐2𝑁

...
...

...
...

𝑏𝑁 𝑐1𝑁 𝑐2𝑁 · · · 𝑐𝑁𝑁

⎞⎟⎟⎟⎟⎠
and 𝐷 = (𝑑𝑖𝑗)1≤𝑖,𝑗≤𝑁 such as

𝑑𝑖𝑗 =
⃒⃒⃒⃒
𝑎 𝑏𝑗
𝑏𝑖 𝑐𝑖𝑗

⃒⃒⃒⃒
= 𝑎𝑐𝑖𝑗 − 𝑏𝑖𝑏𝑗 = 𝑑𝑗𝑖

If 𝒜 is Semi Definite Positive (SDP), then 𝐷 is also SDP.

The proof of Lemma 4.23 is postponed to Appendix B, and can be easily extended to the case where 𝑎 is a
matrix and 𝑏𝑖 a vector, using the Sylvester characterization for the SDP property.

Proposition 4.24. Let 𝒰◇𝛼 be the intermediate state defined by equations (4.2)–(4.9). Assume that the corre-
sponding mass fraction covariances are defined by equation (4.10). Then X◇ ≥ 0, in the sense of symmetric
matrices.

Proof of Proposition 4.24. Dropping the cell index, the discrete correlation tensor

X◇ =

⎛⎜⎜⎜⎜⎜⎝
˜u′′ ⊗ u′′

◇
𝑌 ′′𝛼 u′′

◇
𝑌 ′′𝛽 u′′

◇
· · ·

𝑌 ′′𝛼 u′′
◇𝑡 ̃︂𝑌 ′′2𝛼

◇
𝑌 ′′𝛼 𝑌

′′
𝛽

◇
· · ·

𝑌 ′′𝛽 u′′
◇𝑡

𝑌 ′′𝛼 𝑌
′′
𝛽

◇ ̃︂𝑌 ′′2𝛽

◇
· · ·

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠ .

can be written as

X◇ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

˜u′′ ⊗ u′′
◇1/2(︁

˜u′′ ⊗ u′′
◇)︁−1/2

𝑌 ′′𝛼 u′′
◇𝑡

(︁
˜u′′ ⊗ u′′

◇)︁−1/2

𝑌 ′′𝛽 u′′
◇𝑡

...

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

˜u′′ ⊗ u′′
◇1/2(︁

˜u′′ ⊗ u′′
◇)︁−1/2

𝑌 ′′𝛼 u′′
◇𝑡

(︁
˜u′′ ⊗ u′′

◇)︁−1/2

𝑌 ′′𝛽 u′′
◇𝑡

...

⎞⎟⎟⎟⎟⎟⎟⎟⎠

𝑡

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · ·

0 ∆◇
𝛼𝛼 ∆◇

𝛼𝛽 · · ·

0 ∆◇
𝛼𝛽 ∆◇

𝛽𝛽 · · ·
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.24)
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with

∆◇
𝛼𝛽 = 𝑌 ′′𝛼 𝑌

′′
𝛽

◇
− 𝑌 ′′𝛼 u′′

◇ 𝑡 (︁
˜u′′ ⊗ u′′

◇)︁−1

𝑌 ′′𝛽 u′′
◇

= 𝑌 ′′𝛼 𝑌
′′
𝛽

(𝑛)

− 𝑌 ′′𝛼 u′′
(𝑛) 𝑡(︂

˜u′′ ⊗ u′′
(𝑛)
)︂−1

𝑌 ′′𝛽 u′′
(𝑛)

.

The first term of the previous equation for X◇ is clearly Semi Definite Positive (SDP). Therefore, requiring the
second term to be SDP is a sufficient condition for X◇ to be also SDP. This is the case because the matrix
∆ = (∆𝛼𝛽) is also SDP, according to Lemma 4.23. �

In the following section, we rely on Proposition 4.24 to propose a second-order Runge–Kutta stabilization on
𝒰𝛼 only, followed by the discrete equation for the mass fraction covariances (4.10). This minimizes the required
storage, while ensuring discrete realizability.

4.10. An entropy-based a posteriori treatment

We wish to obtain a second-order in space scheme for smooth solutions, while ensuring a nonlinear entropy
stability. Recall that linear stability has already been obtained with a second-order in time Runge–Kutta scheme,
which controls smooth solutions of the linearized hyperbolic system. Note that such entropy stabilization may
also bring an additional control over spurious oscillations, for non-smooth solutions. To achieve so, let us
investigate the modification of the first-order discrete entropy inequality (4.17), by the second-order scheme.
Noticing that the discrete entropy dissipation rates are the same for both entropies 𝜂𝑎 and 𝜂𝑏, at first and also
second-order, we drop 𝜂𝑎 safely and focus on 𝜂𝑏, which is related to the variable 𝒰𝛼. The explicit Euler stages,
𝑘 = 1, 2, of our RK2 method, can be written

𝒰𝛼|(𝑘=1)
𝑗∈𝐽 = ℒ𝒰

(︁
𝒰𝛼|(𝑛)

𝑗∈𝐽 ,∆𝑡
)︁
, ̃︀𝑌𝛼,𝑖

⃒⃒⃒(𝑘=1)

𝑗∈𝐽
= ℒ𝒴

(︂ ̃︀𝑌𝛼,𝑖

⃒⃒⃒(𝑛)

𝑗∈𝐽
,∆𝑡

)︂
, (4.25)

𝒰𝛼|(𝑘=2)
𝑗∈𝐽 = ℒ𝒰

(︁
𝒰𝛼|(1)𝑗∈𝐽 ,∆𝑡

)︁
, ̃︀𝑌𝛼,𝑖

⃒⃒⃒(𝑘=2)

𝑗∈𝐽
= ℒ𝒴

(︂ ̃︀𝑌𝛼,𝑖

⃒⃒⃒(𝑘=1)

𝑗∈𝐽
,∆𝑡

)︂
, (4.26)

where ℒ𝒰 and ℒ𝒴 are symbolic operators refering to the first-order in time, second-order in space discretizations
of Sections (4.3), (4.6) and (4.7). The final convex combination stage of our RK2 method writes, ∀𝑗 ∈ 𝐽 ,

𝒰◇𝑗 =
1
2
𝒰 (𝑛)

𝑗 +
1
2
𝒰 (𝑘=2)

𝑗 , (4.27)

̃︀𝑌𝛼,𝑖

⃒⃒⃒◇
𝑗

=
1
2
̃︀𝑌𝛼,𝑖

⃒⃒⃒(𝑛)

𝑗
+

1
2
̃︀𝑌𝛼,𝑖

⃒⃒⃒(𝑘=2)

𝑗
. (4.28)

This RK2 method brings the following discrete entropy increments

𝜌𝑗 |Ω𝑗 |
𝜂𝑏

𝛼

⃒⃒(𝑘=1)

𝑗
− 𝜂𝑏

𝛼

⃒⃒(𝑛)

𝑗

∆𝑡
+
∑︁

𝑟∈𝑁𝑗

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁(*,𝑛)

𝑟

̃︀𝑌𝛼

⃒⃒⃒(*,𝑛)

𝑟
𝑛𝑗𝑟 = 𝒟(𝑘=1)

𝛼,𝑗 ,

𝜌𝑗 |Ω𝑗 |
𝜂𝑏

𝛼

⃒⃒(𝑘=2)

𝑗
− 𝜂𝑏

𝛼

⃒⃒(𝑘=1)

𝑗

∆𝑡
+
∑︁

𝑟∈𝑁𝑗

[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁(*,𝑘=1)

𝑟

̃︀𝑌𝛼

⃒⃒⃒(*,𝑘=1)

𝑟
𝑛𝑗𝑟 = 𝒟(𝑘=2)

𝛼,𝑗 ,

where the superscript (*, 𝑘) denotes the second-order solution of the nodal solver at the Runge–Kutta stage
having index 𝑘, and 𝒟(𝑘=1,2)

𝛼,𝑗 are the (unsigned) second-order entropy dissipation rates. The last Runge–Kutta
stage to the diamond state is a convex combination stage.

Proposition 4.25. The diamond state computed from equations (4.25) to (4.27) satisfies

𝜂𝑏
𝛼

⃒⃒◇
𝑗
≤ 1

2

(︁
𝜂𝑏

𝛼

⃒⃒(𝑛)

𝑗
+ 𝜂𝑏

𝛼

⃒⃒(𝑘=2)

𝑗

)︁
.
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Proof.

𝜂𝑏
𝛼

⃒⃒◇
𝑗

= 𝜂𝑏
𝛼

(︂ ̃︀𝑌𝛼

⃒⃒⃒◇
𝑗
, 𝑌 ′′𝛼 u′′

⃒⃒⃒◇
𝑗
, ˜u′′ ⊗ u′′

⃒⃒⃒◇
𝑗

)︂
= 𝜂𝑏

𝛼

(︂ ̃︀𝑌𝛼

⃒⃒⃒◇
𝑗
, 𝑌 ′′𝛼 u′′

⃒⃒⃒◇
𝑗
, ˜u′′ ⊗ u′′

⃒⃒⃒(𝑛)

𝑗

)︂
= 𝜂𝑏

𝛼

(︂
1
2
̃︀𝑌𝛼

⃒⃒⃒(𝑛)

𝑗
+

1
2
̃︀𝑌𝛼

⃒⃒⃒(𝑘=2)

𝑗
,

1
2
𝑌 ′′𝛼 u′′

⃒⃒⃒(𝑛)

𝑗
+

1
2
𝑌 ′′𝛼 u′′

⃒⃒⃒(𝑘=2)

𝑗
, ˜u′′ ⊗ u′′

⃒⃒⃒(𝑛)

𝑗

)︂
≤ 1

2
𝜂𝑏

𝛼

(︂ ̃︀𝑌𝛼

⃒⃒⃒(𝑛)

𝑗
, 𝑌 ′′𝛼 u′′

⃒⃒⃒(𝑛)

𝑗
, ˜u′′ ⊗ u′′

⃒⃒⃒(𝑛)

𝑗

)︂
+

1
2
𝜂𝑏

𝛼

(︂ ̃︀𝑌𝛼

⃒⃒⃒(𝑘=2)

𝑗
, 𝑌 ′′𝛼 u′′

⃒⃒⃒(𝑘=2)

𝑗
, ˜u′′ ⊗ u′′

⃒⃒⃒(𝑛)

𝑗

)︂
by convexity of the function 𝜂𝑏

𝛼. �

From Proposition 4.25, we obtain straightforwardly 𝜂𝑏
𝛼

⃒⃒◇
𝑗
− 𝜂𝑏

𝛼

⃒⃒(𝑘=2)

𝑗
≤ 1

2

(︁
𝜂𝑏

𝛼

⃒⃒(𝑛)

𝑗
+ 𝜂𝑏

𝛼

⃒⃒(𝑘=2)

𝑗

)︁
− 𝜂𝑏

𝛼

⃒⃒(𝑘=2)

𝑗
.

Gathering all Runge–Kutta stages, and defining

ℰ2nd
𝛼,𝑙ℎ𝑠 ≡ 𝜌𝑗 |Ω𝑗 |

𝜂𝑏
𝛼

⃒⃒◇
𝑗
− 𝜂𝑏

𝛼

⃒⃒(𝑛)

𝑗

∆𝑡
+

1
2

∑︁
𝑟∈𝑁𝑗

(︂[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁(*,𝑛)

𝑟

̃︀𝑌𝛼

⃒⃒⃒(*,𝑛)

𝑟
+
[︁
𝜌𝑥𝑑𝑌 ′′𝛼 𝑢

′′
𝑥

]︁(*,𝑘=1)

𝑟

̃︀𝑌𝛼

⃒⃒⃒(*,𝑘=1)

𝑟

)︂
𝑛𝑗𝑟,

we finally obtain the second-order discrete entropy inequality

ℰ2nd
𝛼,𝑙ℎ𝑠 ≤

1
2

(︁
𝒟(𝑘=1)

𝛼,𝑗 +𝒟(𝑘=2)
𝛼,𝑗

)︁
. (4.29)

This latter expression gives a non-ambiguous discrete expression of the entropy flux through the Runge–Kutta
stages. Now equipped with the first-order and second-order discrete entropy inequalities, respectively (4.17) and
(4.29), we can step toward a discrete entropy-based a posteriori treatment for the high-order approximation of
𝒰𝛼. Relying on the isentropic nature of the Riemann problem in the absence of diffusion and dissipation, we
impose, a posteriori, the left-hand side of the second-order entropy inequality (4.29), ℰ2nd

𝛼,𝑙ℎ𝑠, to be bounded by

the first-order discrete entropy dissipation rate, defined by equation (4.18), and denoted by 𝒟(1st)
𝛼,𝑗 . Would this

criteria be violated, then the scheme would locally reduce to first-order. The order degradation is performed
following the e-MOOD approach [4], where the local reconstruction order is determined uniquely at each node,
for the sake of coherence in the nodal solver, which gets the same reconstruction order from all the neighbour
meshes. The reconstruction is therefore not unique for cells which have both “first-order” and “higher-order
nodes”. Let us define

– 𝐽 and 𝑁 the set of cell indices and nodes indices, respectively,
– 𝑇𝑗 =

(︁
∃𝛼/ ℰ2nd

𝛼,𝑙ℎ𝑠 > |𝒟(1st)
𝛼,𝑗 |

)︁
a boolean that locally points out the need for an order degradation,

– 𝐷 = {𝑗 ∈ 𝐽/𝑇𝑗 or 𝑇𝑗+1 or 𝑇𝑗−1}, the domain that requires degradation to first-order,
– RK2 the set of 3 stages of our second-order Runge–Kutta scheme. We have chosen a specific Runge–Kutta

scheme, see Appendix A and references [17,43], so that each stage, having index 𝑘, and denoted by RK2(𝑘),
can be either an "Explicit Euler" stage, or a "Convex Combination" stage.

The algorithm that makes the transition from the initial state,
{︂
𝒰𝛼|(𝑛)

𝑗 , ̃︀𝑌𝛼,𝑖

⃒⃒⃒(𝑛)

𝑗

}︂
𝑗∈𝐽

, to the diamond state,{︂
𝒰𝛼|◇𝑗 , ̃︀𝑌𝛼,𝑖

⃒⃒⃒◇
𝑗

}︂
𝑗∈𝐽

, reads

(1) Initialisation:
∙ Constrain the time step according to the stability condition given by Proposition 4.13,
∙ ∀𝑟 ∈ 𝑁,∀𝛼∈ 𝑁𝑚 : compute 𝒰𝛼|(*)𝑟 , the first-order solution of the nodal solver, equations (4.7) and (4.8),
∙ 𝐷 = ∅.
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(2) High-order guess for

{︂
𝒰𝛼|◇𝑗 , ̃︀𝑌𝛼,𝑖

⃒⃒⃒◇
𝑗

}︂
𝑗∈𝐽

:

∙ Runge-Kutta stages: for increasing 𝑘 ∈ [1, 3] :
If 𝑅𝐾2(𝑘) == “Explicit Euler”:

∀𝑟∈ 𝑁 :
∘ ∀𝑗 ∈ 𝑀𝑟,∀𝛼∈ 𝑁𝑚: compute the nodal reconstructed state 𝒰𝛼(𝑥𝑟)|𝑗 , according to equation

(4.20),
∘ ∀𝛼∈ 𝑁𝑚: compute 𝒰𝛼|(*)𝑟 , the second-order solution of the nodal solver, equations (4.21)

and(4.22),
∀𝑗∈ 𝐽, ∀𝛼∈ 𝑁𝑚,∀𝑖∈ 𝑁𝑐: apply an explicit Euler stage, with the discrete equations (4.2), (4.9)

and (4.19), which gives the updated state
{︂
𝒰𝛼|(𝑘)

𝑗 , ̃︀𝑌𝛼,𝑖

⃒⃒⃒(𝑘)

𝑗

}︂
from the previous Runge–Kutta

state
{︂
𝒰𝛼|(𝑘−1)

𝑗′ , ̃︀𝑌𝛼,𝑖

⃒⃒⃒(𝑘−1)

𝑗′

}︂
𝑗′∈𝐽

.

Else:

∀𝑗∈ 𝐽, ∀𝛼∈ 𝑁𝑚,∀𝑖∈ 𝑁𝑐: compute the updated state,
{︂
𝒰𝛼|◇𝑗 , ̃︀𝑌𝛼,𝑖

⃒⃒⃒◇
𝑗

}︂
, as a convex combi-

nation between the initial state,
{︂
𝒰𝛼|(𝑛)

𝑗 , ̃︀𝑌𝛼,𝑖

⃒⃒⃒(𝑛)

𝑗

}︂
, and the current Runge–Kutta state,{︂

𝒰𝛼|(𝑘)
𝑗 , ̃︀𝑌𝛼,𝑖

⃒⃒⃒(𝑘)

𝑗

}︂
.

∙ ∀𝑗 ∈ 𝐽 : compute 𝑇𝑗 . Then update 𝐷.
(3) A posteriori, correction loop:

∙ While 𝐷 ̸= ∅,
∘ ∀𝑟∈ 𝑁,∀𝑗 ∈ 𝑀𝑟, if 𝑗 ∈ 𝐷: ∀𝛼∈ 𝑁𝑚: compute 𝒰𝛼|(*)𝑟 , the first-order solution of the nodal solver,

equations (4.7) and (4.8),
∘ ∀𝑗 ∈ 𝐷,∀𝛼∈ 𝑁𝑚,∀𝑖∈ 𝑁𝑐, apply an explicit Euler stage, with the discrete equations (4.2), (4.9) and

(4.19), which gives the updated state
{︂
𝒰𝛼|◇𝑗 , ̃︀𝑌𝛼,𝑖

⃒⃒⃒◇
𝑗

}︂
from

{︂
𝒰𝛼|(𝑛)

𝑗′ , ̃︀𝑌𝛼,𝑖

⃒⃒⃒(𝑛)

𝑗′

}︂
𝑗′∈𝐽

.

∘ 𝐷 = ∅. ∀𝑗 ∈ 𝐽 : compute 𝑇𝑗 , ∀𝑗 ∈ 𝐽 . Then update 𝐷.

(4) Update of the concentration covariances, 𝑌 ′′𝛼 𝑌
′′
𝛽

⃒⃒⃒◇
𝑗∈𝐽

, by the discrete equation (4.10).

This algorithm always terminates. In principle, the scheme might be degraded to first order in all cells. In
practice, we shall see that this situation does not occur, as the a posteriori corrections are barely activated. If
nevertherless activated, they remain localized in space, for instance at discontinuities.

4.11. A realizable discretization for the dissipation and redistribution terms

According to the splitting of dissipation and redistribution terms, adopted in Section 4.2, the computation
of the final state, at time 𝑡(𝑛+1), is obtained by solving the system

d
d𝑡
𝑌 ′′𝛼 u′′ = −1

2
(𝐶𝜏 + 𝐶1)̃︀𝜔𝑌 ′′𝛼 u′′,

d
d𝑡
𝑌 ′′𝛼 𝑌

′′
𝛽 = − (𝐶𝜏 − 𝐶𝜏𝑜)̃︀𝜔𝑌 ′′𝛼 𝑌

′′
𝛽 ,

d
d𝑡

˜u′′ ⊗ u′′ = −2
3
̃︀𝜔̃︀𝑘I− 𝐶1̃︀𝜔 [︂ ˜u′′ ⊗ u′′ − 2

3
̃︀𝑘I
]︂
,

d
d𝑡
̃︀𝜀 = −𝐶𝜀2̃︀𝜔̃︀𝜀,
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from an intermediate diamond state, during ∆𝑡. A combination of the two last equations of this system yields
d
d𝑡 ̃︀𝜔 = − (𝐶𝜀2 − 1)̃︀𝜔2, which can be solved analytically.

Proposition 4.26. The following semi-discrete scheme in time

𝑌 ′′𝛼 u′′
(𝑛+1)

=
(︂

1 +
1
2
𝐶1̃︀𝜔(𝑛)∆𝑡

)︂−1(︂
1 +

1
2
𝐶𝜏 ̃︀𝜔(𝑛)∆𝑡

)︂−1

𝑌 ′′𝛼 u′′
◇
, (4.30)

𝑌 ′′𝛼 𝑌
′′
𝛽

(𝑛+1)

=
(︁

1 + 𝐶𝜏𝑜̃︀𝜔(𝑛)∆𝑡
)︁(︂

1 +
1
2
𝐶𝜏 ̃︀𝜔(𝑛)∆𝑡

)︂−2

𝑌 ′′𝛼 𝑌
′′
𝛽

◇
, (4.31)

˜u′′ ⊗ u′′
(𝑛+1)

=
(︂

2
3
̃︀𝜔(𝑛)̃︀𝑘(𝑛)(𝐶1 − 1)∆𝑡I + ˜u′′ ⊗ u′′

◇
)︂(︂

1 +
1
2
𝐶1̃︀𝜔(𝑛)∆𝑡

)︂−2

, (4.32)

̃︀𝜀(𝑛+1) = ̃︀𝜔(𝑛)
(︁

1 + (𝐶𝜀2 − 1)̃︀𝜔(𝑛)∆𝑡
)︁−1

⏟  ⏞  
=̃︀𝜔(𝑛+1)

̃︀𝑘(𝑛+1), (4.33)

is realizable, in the sense that X(𝑛+1) ≥ 0 and ̃︀𝜀(𝑛+1) ≥ 0 if X◇ ≥ 0 and ̃︀𝜀◇ ≥ 0.

Proof. Let us introduce the diagonal tensor G𝑜 =
[︂
𝐺𝑢𝑢I 0
0 𝐺𝑑

]︂
, which is obtained from the matrix G, where

production gradients have been discarded (following the splitting). In order to obtain the discrete realizability,
the terms related to G𝑜 have been considered implicit in equations (4.30)–(4.32), with a realizability correction
in 𝒪(∆𝑡2). The semi-discretization in time can be put in the following tensorial form[︁

I−∆𝑡G(𝑛)
𝑜

]︁
X(𝑛+1)

[︁
I−∆𝑡G(𝑛)

𝑜

]︁
= X◇ + ∆𝑡H◇H◇𝑡,

where G(𝑛)
𝑜 =

[︃
𝐺

(𝑛)
𝑢𝑢 I 0

0 𝐺
(𝑛)
𝑑

]︃
, 𝐺(𝑛)

𝑢𝑢 = −𝐶1
2 ̃︀𝜔(𝑛), and 𝐺

(𝑛)
𝑑 = −𝐶𝜏

2 ̃︀𝜔(𝑛). The tensor [I−∆𝑡G𝑜] is diagonal with

strictly positive diagonal components, thus inversible. We obtain

X(𝑛+1) =
[︁
I−∆𝑡G(𝑛)

𝑜

]︁−1 [︀
X◇ + ∆𝑡H◇H◇𝑡

]︀ [︁
I−∆𝑡G(𝑛)

𝑜

]︁−1

≥ 0.

�

Remark 4.27. Discrete realizability can straightforwadly be deduced from Proposition 4.26, where cell indices
have been dropped, for the sake of clarity. This proposition does not introduce additional CFL constraint.
An accuracy constraint arises at all localizations in the resolution domain, which can be expressed as
max𝑗

(︁̃︀𝜔(𝑛)
𝑗 ∆𝑡

)︁
≪ 1.

4.12. Summary of the numerical analysis

Under the following stability restriction on the time step, max𝑗

(︂√︂̃︂𝑢′′2𝑥

⃒⃒⃒(𝑛)

𝑗

∆𝑡
∆𝑥𝑗

)︂
≤ 1, we propose a second-

order scheme in space for the hyperbolic part of the model (3.3)–(3.8). It is based on a splitting procedure, that
isolates the dissipation and redistribution terms. Let us summarize the full algorithm.

The first step of the splitting procedure computes an intermediate diamond state. At first order, this inter-
mediate state is computed with the discrete equations (4.12), (4.13) and (4.19), together with the first-order
solution of the nodal solver, equations (4.7) and (4.8). At second order, the diamond state is computed according
to the detailed algorithm presented in Section 4.10, steps (1) to (4). The latter algorithm relies on Proposi-
tion 4.24, which allow the separate computation of the diamond state, first for the variables 𝒰𝛼 and ̃︀𝑌𝛼,𝑖 (steps

(1) to (3)), then for the covariance 𝑌 ′′𝛼 𝑌
′′
𝛽 (step (4)), while preserving discrete realizability.
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The second step of the splitting computes a final state, from the intermediate diamond state, owing to the
discrete equations (4.30)–(4.33).

The numerical solution satisfies, for arbitrary geometry, the following properties, at the discrete level:

– entropy stability,
– preservation of stationary states,
– realizability,
– conservativity of the mass fraction and material constituent equations,
– mass conservation.

Moreover, the stability restriction on the time step is not stringent and ensures that the time step does not
vanish.

5. Numerical tests

We propose four different test cases, three of them having analytical solutions. They highlight the variety of
possible regimes that the RSM under study is able to describe. The first one focuses on wave-like behaviour in
an acoustic-like regime, while the second focuses on transitory discontinuous solutions, occuring typically at the
initialization stage of the model. The third test case deals with the important self-similar regime. The fourth
test case deals with the transient demixing regime. In the first three cases, we investigate the convergence rate,
showing the benefit of the second-order scheme. For the sake of clarity, a mixture of only two materials, having
index 𝛼 and 𝛽, will be considered in each test. The mass fractions and fluxes of material 𝛽 is easily deduced
from that of material 𝛼, hence we present results only on material 𝛼. The mean velocity ̃︀U is assumed to be
zero.

5.1. Test case in the acoustic-like regime

In the regime considered here, the settings are compatible with the Von Neumann analysis of Section 4.8, with
periodic boundary conditions. The stability analysis is confirmed numerically for the variety of wavenumbers,
and time discretizations shown in Figures 2 and 3. Let us now investigate the convergence properties and the
behaviour of the a posteriori procedure. We recall that the diffusion and dissipation terms are discarded. The
density is set to one, and the Reynolds tensor is chosen as a constant, in a planar geometry. Thus the “acoustic”
speed reduces to 𝜆 =

√︀
𝑢′′2𝑥 . The initial mass fraction fluxes and covariances are set to zero, while the initial

mass fraction is chosen as

̃︀𝑌 𝑜
𝛼 (𝑥) =

1
2

[︂
1 + sin

(︂
2𝑘𝜋

𝑥

|Ω|

)︂]︂
·

Here, the spatial domain, Ω = [−10; 10], is chosen periodic, with length |Ω| = 20. It is splitted uniformly in 𝑁
cells, so that |Ω𝑗 | ≡ ∆𝑥. The wavenumber is set to 𝑘 = 20. The analytical solution reads

̃︀𝑌𝛼(𝑡, 𝑥) =
1
2

[︁̃︀𝑌 𝑜
𝛼 (𝑥+ 𝜆𝑡) + ̃︀𝑌 𝑜

𝛼 (𝑥− 𝜆𝑡)
]︁
,

𝑌 ′′𝛼 𝑢
′′
𝑥(𝑡, 𝑥) =

1
2
𝜆
[︁̃︀𝑌 𝑜

𝛼 (𝑥+ 𝜆𝑡)− ̃︀𝑌 𝑜
𝛼 (𝑥− 𝜆𝑡)

]︁
,

̃︂𝑌 ′′2𝛼 (𝑡, 𝑥) = 𝑌 ′′𝛼 𝑢
′′
𝑥(𝑡, 𝑥)2/𝜆2.

For the purpose of convergence study, the spatial resolution varies in the range ∆𝑥 ∈ [10−4; |Ω|], while the time
step is fixed at ∆𝑡 = 10−4. Hence, the stability condition is satisfied for any value of ∆𝑥 considered.

We show in Figure 4, on the right-hand side, the convergence curves. The logarithm of the 𝐿1-error is plotted
against log𝑁 , for each variables, and for both the first-order (solid curves) and second-order (dashed curves)
schemes. The convergence rates are given in Table 2. As expected, the second-order scheme is second-order
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Figure 4. Left-hand panel: solution of the test case in the acoustic-like regime, at 𝑡 = 2.5 for
∆𝑥 = 2/30, for the first-order (solid curves) and the second-order (dashed curves) scheme. The
analytical solution is represented by the dotted curves. The mass fractions (blue), mass fraction
fluxes (red) and mass fraction covariances (green) are plotted. Right-hand panel: logarithm of
the 𝐿1-error against log𝑁 . The dotted lines correspond to the targeted convergence rates, 1
and 2. The symbols correspond to the different mesh refinements. The associated best-fit lines
are also shown.

Table 2. Test case in the acoustic-like regime: convergence rates.

1st order 2nd order

̃︀𝑌𝛼 0.863 2.010

𝑌 ′′𝛼 𝑢′′𝑥 0.804 1.971

𝑌 ′′𝛼 𝑌 ′′𝛽 0.677 1.917

convergent. The convergence rate of the first-order scheme is slightly smaller for the mass fraction covariances.
This is due to the fact that these variables depend nonlinearly on the numerical dissipation of both the mass
fractions and their fluxes.

As an illustration, Figure 4 also shows, on the left-hand panel, the numerical and analytical solutions at time
𝑡 = 2.5 with 𝑁 = 300 and ∆𝑡 = 10−4. We clearly observe that the second-order scheme is closer to the analytical
solution, because it is less damped than the first-order scheme. For larger time steps, with the same spatial
resolution, the improvement from the first-order to the second-order scheme can still be observed at 𝜇 = 1/2,
where 𝜇 =

√
𝑢′′2∆𝑡/∆𝑥. Above 𝜇 = 0.7, the second-order solution is degraded to first order, by the a posteriori

entropy constraint, which we consider acceptable.

5.2. Initialization test case: the Riemann problem

Let us now investigate the behaviour of our scheme with respect to the discontinuous, analytical solutions
of a Riemann problem. We wish, in particular, to evaluate the treatment of the non-conservative terms by
our scheme. Diffusion and dissipation terms are again discarded, while the initial mass fractions are chosen
as Heaviside functions. An initial constant heterogeneity level is prescribed via the mass fraction covariances.
The analytical solution is resumed in Table 4, where the initial condition is chosen realizable. A mixing zone
evolves from the initial location of the mass fraction discontinuity, and expands at a constant speed, equal to the
diagonal elements of the Reynolds tensor. For each material, two constituents have been considered, having initial
linear profiles. The constituent ratio was initially 99/1% at the domain edges, for the material with index 𝛼.
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Table 3. Convergence rates corresponding to Figure 5, for the Riemann problem.

First-order scheme Second-order scheme

̃︀𝑌𝛼 0.497 0.685

𝑌𝛼𝑢′′𝑥 0.497 0.685
̃︂𝑌 ′′2𝛼 0.5 0.685

Table 4. The Riemann problem: initial condition and analytical solution.

̃︀𝑌𝛼 𝑌 ′′𝛼 𝑢′′𝑥 ̃︂𝑌 ′′2𝛼
̃︂𝑢′′2𝑥 =̃︂𝑢′′2𝑦 =̃︂𝑢′′2𝑧 = ̃︀𝑘/3 𝜌 ̃︀𝜀

𝑥 < −
√︁
̃︂𝑢′′2𝑥 𝑡 1 0 1.1 0.5 1 0

−
√︁
̃︂𝑢′′2𝑥 𝑡 < 𝑥 <

√︁
̃︂𝑢′′2𝑥 𝑡 0.5 1/(2

√
2) 1.35 0.5 1 0

𝑥 >

√︁
̃︂𝑢′′2𝑥 𝑡 0 0 1.1 0.5 1 0

The constituent ratio for the material with index 𝛽 was initially chosen 70/30% at the domain edges. The
resolution domain, Ω = [−10; 10], is splitted uniformly in 𝑁 cells, so that |Ω𝑗 | ≡ ∆𝑥. The spatial resolution
varies in the range ∆𝑥 ∈ [0.02; |Ω|], while the time step is uniquely set at ∆𝑡 = 10−3, to satisfy the stability
conditions at the highest spatial resolution, that corresponds to ∆𝑥 = 0.02.

Figure 5 (with Table 3), in the right-hand panel, and Figure 6, show good convergence results. The logarithm
of the 𝐿1-error is plotted against log𝑁 , for each variable, for both the first-order (solid curves) and second-
order (dashed curves) scheme. As expected, see [12, 27], the first-order scheme converges with a 1/2 rate. The
high-order scheme proves to converge at a 2/3 rate. These convergence rates are maintained for the material
constituents, despite the fact that the high-order correction of the scheme only occurs in the nodal solver.

On the left-hand panel of Figure 5, the numerical and analytical solutions are plotted at 𝑡 = 10 with a
resolution of 𝑁 = 500 cells, with ∆𝑡 = 10−3. We do not observe any pathology due to the non-conservative
product, which would occur at the initial discontinuity position for a standard Godunov scheme applied for the
mass fraction covariances. We again observe the improvement of the second-order over the first-order scheme.

Note that the second-order to first-order degradation by the a posteriori loop is activated at the discontinuities
only, whatever the space and time resolution.

5.3. Test case in the self-similar regime

We finally propose a test case where diffusion and dissipation terms are considered. The dissipation and
diffusion constants are given in Table 5. We make use of the analytical self-similar solution of Section 3.2.2,
with ̃︀𝑘𝑜 = 1 and ̃︀𝜀𝑜 = 1, to obtain a reference solution.

At this point, let us give a few comments about the discretization of the tensorial diffusion operator, which
can be written component-wise, under the generic form (in the present conditions, assuming constant density)

𝜕

𝜕𝑡
𝜙− 𝜕𝑥 (𝜈𝑇𝜕𝑥𝜙) = 0, (5.1)

where 𝜈𝑇 is the turbulent diffusivity. It is splitted from the hyperbolic part, with a Strang splitting, to get a
global second-order time discretization if a second-order global accuracy is required. A centered discretization
in space is used. The semi-discrete scheme is

𝜕

𝜕𝑡
𝜙

⃒⃒⃒⃒
𝑗

−
(︁
𝜈𝑇 |𝑗+1/2 (𝜙𝑗+1 − 𝜙𝑗)/∆𝑥𝑗+1/2 − 𝜈𝑇 |𝑗−1/2 (𝜙𝑗 − 𝜙𝑗−1)/∆𝑥𝑗−1/2

)︁⧸︁
∆𝑥𝑗 = 0, (5.2)
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Figure 5. Left-hand panel: solution of the Riemann problem, as defined in Table 4 (dotted
curves), and numerical solution from the first-order (solid curves) and second-order (dashed
curves) schemes. The results for the mass fractions (blue), mass fraction fluxes (red) and mass
fraction covariances (green) are plotted at 𝑡 = 5 for 𝑁 = 500 cells. Right-hand panel: logarithm
of the 𝐿1-error against log𝑁 . The dotted lines correspond to the observed convergence rates, 1/2
and 2/3 (Table 3). The symbols correspond to the different mesh refinements. The associated
best-fit lines are also shown.

Figure 6. Riemann problem: convergence study for the material constituents. Logarithm of
the 𝐿1-error against log𝑁 . The dotted lines correspond to a 1/2 and 2/3 slope, close to the
observed convergence rates 0.497 and 0.65, for the first-order and the second-order schemes,
respectively. The symbols correspond to the different mesh refinements. The associated best-fit
lines are also shown.

with the arithmetic average 𝜈𝑇 |𝑗+1/2 = (∆𝑥𝑗+1 𝜈𝑇 |𝑗+∆𝑥𝑗 𝜈𝑇 |𝑗+1)/(∆𝑥𝑗+∆𝑥𝑗+1), and the definition ∆𝑥𝑗+1/2 =
(∆𝑥𝑗 + ∆𝑥𝑗+1)/2. Using this arithmetic average makes the TMZ support (i.e. the domain of non-zero Reynolds
tensor) able to expand, which is not the case if one uses harmonic averaging. The time discretization of the
variable 𝜙 is chosen implicit, while the discretization of the coefficients 𝜈𝑇 are considered explicit.

The resolution domain, Ω = [−10; 10], is splitted uniformly in 𝑁 cells, so that |Ω𝑗 | ≡ ∆𝑥. The spatial
resolution varies in the range ∆𝑥 ∈ [20/510; |Ω|], while the time step is fixed at ∆𝑡 = 10−4, for the purpose of
a convergence study. Hence, the stability condition is satisfied for any value of ∆𝑥 considered.

Figure 8 (with Table 6) shows the good behaviour of the scheme with respect to the convergence study. The
logarithm of the 𝐿1-error is plotted against log𝑁 , for each variable, and for both the first-order (with solid lines)
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Table 5. Test case in the self-similar regime: the model constants.

𝐶𝜖2 𝐶𝜏𝑜 𝐶𝜏 𝐶1 𝐶𝜖

1.92 1.2 1.5 0 2.5641

Figure 7. Analytical solutions for the self-similar test case. The mass fractions (upper left-hand
panel), mass fraction fluxes (upper right-hand panel), mass fraction covariances (lower left-hand
panel) and the slow quantity (lower right-hand panel) are shown. They evolve in time according
the arrow directions.

and second-order (with dashed lines) scheme. For the sake of illustration, Figure 7 shows the evolution of the
analytical solution of several variables of interest, including the fast computed variables ̃︀𝑌𝛼, 𝑌 ′′𝛼 𝑢

′′
𝑥, and ̃︂𝑌 ′′2𝛼 , as

well as the slow rebuilt variable, 𝑌 ′′𝛼 𝑢
′′
𝑥/

√︁̃︂𝑌 ′′2𝛼
̃︂𝑢′′2𝑥 . We observe that the second-order scheme brings a subsequent

accuracy improvement for all variables, especially for the slow quantity, see Figure 9 for an illustration. This
is remarquable, because the analytical reference remains constant across the expanding TMZ, and abruptly
falls to zero at its edge, see Figures 7 and 9. We also observe that the a posteriori, second-order to first-order
degradation, is not activated, whatever the spatial resolution, and time step ranging from ∆𝑡 = 10−4 to the
maximum stable time step, satisfying 𝜇=

√
𝑢′′2∆𝑡/∆𝑥 = 1.

We finally investigate the behaviour of the proposed scheme on non-uniform meshes, again in the case of the
self-similar solution. We introduce a geometrical progression across the TMZ, so that boundary cells are 100
times larger than the center cell. Figure 10 gives a comparison between the analytical and numerical solutions at
𝑡 = 10, for several variables of interest. As far as mass fractions are concerned, the first-order scheme generates
an artificial inflexion point at the TMZ center, while the second-order scheme does not. This illustrates, once
again, the beneficial effect of a second-order spatial discretization. The a posteriori correction never activates.
We have checked so for time steps ranging from ∆𝑡 = 10−4 to the maximum stable time step, satisfying 𝜇 = 1.
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Figure 8. Self-similar test case. The logarithm of the 𝐿2-error is plotted against log𝑁 , for a
uniform mesh, at 𝑡 = 10. Left-hand panel: error curves are shown for the mass fractions (blue),
mass fraction fluxes (red), mass fraction covariances (green) and the slow variable (purple).
Right-hand panel: error curves are shown for the mass fractions constituents (convergence rates
are shown in Table 6). In both panels, the dotted lines correspond to the theoretical convergence
rates, 1 and 2. The symbols correspond to the different mesh refinements. The associated best-fit
lines are also shown.

Figure 9. Self-similar test case: the analytical solution (dotted line) and the numerical solu-
tions, namely the first-order (solid curve) and second-order (dashed curve) schemes, are shown,
at 𝑡 = 10, for the slow variable, on a uniform mesh with 𝑁 = 300.

5.4. Test case with transient demixing

Shock tube experiments can induce transient regimes where demixing occurs, see Figures 4 and 5 in [22].
Indeed, after strong sudden accelerations or shock front crossing, the orientation of mass fraction fluxes can
transiently be opposite to the diffusive gradient closed flux of equation (2.14). This so-called counter-gradient
situation causes a decrease of the TMZ width, which can be measured as 𝒲 =

∫︀
d𝑥̃︀𝑌𝛼(1 − ̃︀𝑌𝛼). In applica-

tions where the chronometry is important (e.g. ICF where only events occurring before maximum compression
matter), this non-classical behaviour is important because it introduces a delay in the evolution of the TMZ.

In order to show that our model is able to handle transient demixing, we consider counter-gradient mass
fraction flux as an initial condition, and analyse the evolution of 𝒲 resulting from the full hyperbolic-parabolic
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Figure 10. Self-similar test case: numerical and analytical solutions on a mesh having a geo-
metric progression, at 𝑡 = 10, with 𝑁 = 50. The results from the first-order (solid curves),
second-order (dashed curves) schemes and the analytical solution (dotted curves) are given for
the mass fraction (blue), mass fraction fluxes (red), and mass fraction covariances (green), and
the slow variable (purple).

Table 6. Convergence rates corresponding to Figure 8, for the self-similar problem.

First-order scheme Second-order scheme

̃︀𝑌𝛼 1.4 1.92

𝑌𝛼𝑢′′𝑥 1.44 1.97
̃︂𝑌 ′′2𝛼 1.43 2.01

𝑌𝛼𝑢′′𝑥

⧸︂√︁
̃︂𝑌 ′′2𝛼
̃︂𝑢′′2𝑥 1.21 1.42

̃︀𝑌𝛼,1 1.34 1.63
̃︀𝑌𝛼,2 1.43 1.64
̃︀𝑌𝛽,1 1.4 1.7
̃︀𝑌𝛽,2 1.35 1.69

system. We choose the model constants according to Table 5, and propose two computations, at first order,
differing only by the initial conditions: the first begins with a diffusive turbulent mass fraction flux (i.e. of the
same sign as the first-gradient closed flux in Eq. (2.14)), and the second with an anti-diffusive flux, here taken
as the opposite of the previous one. Let us consider one material, denoted by 𝛼, of a two-material configuration.
The chosen initial conditions write

𝜌(𝑥, 𝑡 = 0) = 1, (5.3)̃︀𝑘(𝑥, 𝑡 = 0) = ̃︀𝑘𝑜𝑃 (𝑥), (5.4)̃︀𝜀(𝑥, 𝑡 = 0) = ̃︀𝜀𝑜𝑃 (𝑥), (5.5)

̃︀𝑌𝛼(𝑥, 𝑡 = 0) =
1
2

(︂
1 + tanh

(︂
𝜋
𝑥

Λ𝑜

)︂)︂
, (5.6)

𝑌 ′′𝛼 𝑢
′′
𝑥(𝑥, 𝑡 = 0) = ± 𝑌 ′′𝛼 𝑢

′′
𝑥

⃒⃒⃒
𝑜
𝑃 (𝑥, 𝑡), (5.7)

̃︂𝑌 ′′2𝛼 (𝑥, 𝑡 = 0) = ̃︂𝑌 ′′2𝛼

⃒⃒⃒
𝑜
𝑃 (𝑥, 𝑡), (5.8)



1736 X. BLANC ET AL.

Figure 11. Test case with transient demixing: the evolution of 𝒲 =
∫︀

d𝑥̃︀𝑌𝛼(1 − ̃︀𝑌𝛼) and

𝑌 ′′𝛼 𝑢
′′
𝑥(𝑥 = 0, 𝑡) are shown for two identical initial conditions, only differing by mass fraction

fluxes of opposite sign. The initial mass fraction flux, shown in the right-hand panel, is either
diffusive (red dotted curve), that is oriented along the first-gradient closed flux of equation
(2.14), or anti-diffusive (blue bold curve). In the latter case, a transient demixing induces a
delay in the final growth of the TMZ with respect to the former case (left-hand panel).

where

𝑃 (𝑥) =

⎧⎨⎩
9
8

exp
(︂
−8𝜋

𝑥2

Λ2
𝑜

)︂
, if |x| ≤ Λo

0, otherwise

̃︀𝑘𝑜 = 1, ̃︀𝜀𝑜 = 1, while Λ𝑜, 𝑌 ′′𝛼 𝑢
′′
𝑥

⃒⃒⃒
𝑜

and ̃︂𝑌 ′′2𝛼

⃒⃒⃒
𝑜

are set so as to satisfy the compatibility relations given in

Section 3.2.2. The resolution domain, Ω = [−10; 10], is splitted uniformly in 𝑁 = 510 cells. The time step is
fixed at ∆𝑡 = 10−4.

We show, in Figure 11, the evolution of the integral mixing width 𝒲, together with the evolution of the
turbulent mass fraction flux at the center of the TMZ, from both initial conditions. As expected, a transient
demixing is observed for the counter-gradient (anti-diffusive) configuration: the TMZ extent is decreasing for
small times, see Figure 11, left-hand panel. Next, due to turbulent production related to the gradient of the mean
mass fraction, second term in equation (2.10), the diffusive nature of the turbulent flux is restored with time
and both computations should tend to a similar asymptotic state, as made clear by Figure 11, right-hand panel.
Since the turbulent flux drives the width of the TMZ, the latter reaches its minimal extent at the time when
the sign of the mass fraction flux changes. This phenomenology cannot be accounted for when only diffusive
closures are used.

6. Conclusion

The mathematical analysis of Reynolds Stress Models (RSM) dedicated to compressible turbulence is delicate:
the wave-structure of wide-purpose RSMs, such as BHR [2] and GSG [19,20], is unknown, while they embed, due
to the Reynolds and Favre averaging procedure, non-conservative products. We have proposed, in this article,
a mathematical and numerical analysis of these models, and focused on a particular extension of them, though
representative of a specific limit regime. This extension has been studied independently, but it can be used
in the frame of a splitting of the comprehensive RSMs. We have justified, in terms of stability and accuracy,
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the use of an approximate, Godunov-type scheme, in 1D curvilinear coordinates. A broadband set of test-cases
has been presented, that aims at covering all the identified relevant regimes. Hence, this work contributes to
the mathematical and numerical analysis of RSMs, which deserves better understanding.

The multi-D extension of stable, high-order, and realizable 1D RSM discretization is a natural development,
but it is not trivial. The proposed 1D scheme is a good candidate. It can indeed be interpreted as a scheme
relying on nodal solvers. In an unstructured multi-D context, nodal solvers indeed enjoy a larger stencil than
face-based solvers, encompassing neighbour meshes via nodes. In this respect, the resulting schemes can be
considered closer to the genuine multi-D Riemann problem, especially for meshes having a large aspect ratio.
We have paved the way towards a multi-D adaptation of the proposed scheme, into the GLACE or EUCCLHYD
framework [13, 25], as we intend to show in a future companion paper. In this adaptation, the material mass
fraction and their fluxes would play respectively the role of the mean pressure and velocity of the Euler equation,
in the acoustic nodal solver. Further, the mathematical entropies would play the role of the Gibbs entropy. We
have also introduced an a posteriori limitation at high order, that may also bring an essential, entropy-compliant
backstop, in multi-D flows with highly distored meshes.

Among other possible perspectives and applications, this work could be pursued by introducing a molecular
inter-diffusion operator for the material mass fraction equations, see [1,42]. Such operator can be stiff, depending
on the specific stages of an Inertial Confinement Fusion (ICF) capsule implosion, for instance, as it was shown
in [40]. In the numerical analysis point of view, the interplay between the turbulent hyperbolic and the non-
turbulent, molecular inter-diffusion part of the model will then have to be considered.

Appendix A. Low storage, high-order Runge–Kutta schemes

We recall the low storage Runge–Kutta discretizations of [17,43] for the generic ODE

𝑦′ = 𝑓(𝑦).

These make use of only Euler explicit schemes or convex combinations between the last stage and the initial
stage. Let us denote by 𝑦(𝑛) the initial stage, which is an approximation of 𝑦(𝑛∆𝑡), and 𝑦(𝑘), which is the 𝑘-th
stage of the Runge–Kutta scheme. The second-order Runge–Kutta scheme writes

𝑦(1) = 𝑦(𝑛) + ∆𝑡𝑓
(︁
𝑦(𝑛)

)︁
,

𝑦(2) = 𝑦(1) + ∆𝑡𝑓
(︁
𝑦(1)

)︁
,

𝑦(𝑛+1) =
1
2

(︁
𝑦𝑛 + 𝑦(2)

)︁
,

while the third-order and fourth-order schemes write

𝑦(1) = 𝑦(𝑛) + ∆𝑡𝑓
(︁
𝑦(𝑛)

)︁
,

𝑦(2) = 𝑦(1) + ∆𝑡𝑓
(︁
𝑦(1)

)︁
,

𝑦(3) =
3
4
𝑦(𝑛) +

1
4
𝑦(2),

𝑦(4) = 𝑦(3) + ∆𝑡𝑓
(︁
𝑦(3)

)︁
,

𝑦(𝑛+1) =
1
3
𝑦(𝑛) +

2
3
𝑦(4),

and

𝑦(1) = 𝑦𝑛 + ∆𝑡𝑓
(︁
𝑦(𝑛)

)︁
,
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𝑦(2) = 𝑦(1) + ∆𝑡𝑓
(︁
𝑦(1)

)︁
,

𝑦(3) =
6
7
𝑦(𝑛) +

1
7
𝑦(2),

𝑦(4) = 𝑦(3) + ∆𝑡𝑓
(︁
𝑦(3)

)︁
,

𝑦(5) =
8
15
𝑦(𝑛) +

7
15
𝑦(4),

𝑦(6) = 𝑦(5) + ∆𝑡𝑓
(︁
𝑦(5)

)︁
,

𝑦(𝑛+1) =
3
8
𝑦(𝑛) +

5
8
𝑦(6),

respectively.

Appendix B. Supporting Lemma 4.23

Let 𝒜 a be a symmetric matrix

𝒜 =

⎛⎜⎜⎜⎜⎝
𝑎 𝑏1 𝑏2 · · · 𝑏𝑁
𝑏1 𝑐11 𝑐12 · · · 𝑐1𝑁

𝑏2 𝑐12 𝑐22 · · · 𝑐2𝑁

...
...

...
...

𝑏𝑁 𝑐1𝑁 𝑐2𝑁 · · · 𝑐𝑁𝑁

⎞⎟⎟⎟⎟⎠
and 𝐷 = (𝑑𝑖𝑗)1≤𝑖,𝑗≤𝑁 such as

𝑑𝑖𝑗 =
⃒⃒⃒⃒
𝑎 𝑏𝑗
𝑏𝑗 𝑐𝑖𝑗

⃒⃒⃒⃒
= 𝑎𝑐𝑖𝑗 − 𝑏𝑖𝑏𝑗 = 𝑑𝑗𝑖.

Let us show that if 𝒜 ≥ 0, then 𝐷 ≥ 0.

Proof. For any vector 𝑋 = (𝑥1, 𝑥2, · · · , 𝑥𝑁 )𝑡:

𝑋𝑡𝐷𝑋 =
𝑁∑︁

𝑖,𝑗=1

(𝑎𝑐𝑖𝑗 − 𝑏𝑖𝑏𝑗)𝑥𝑖𝑥𝑗 = 𝑎𝑋𝑡𝐶𝑋 −
(︀
𝑏𝑡𝑋

)︀2
.

We introduce 𝑌 = (𝑦, 𝑥1, 𝑥2, · · · , 𝑥𝑁 )𝑡 a vector of R𝑁+1, where 𝑦 is an arbitrary scalar. Let us assume that 𝒜
is a SDP matrix, thus 𝑌 𝑡𝒜𝑌 ≥ 0, which can be developed as

𝑌 𝑡𝒜𝑌 =
(︀
𝑦 𝑋𝑡

)︀(︂𝑎 𝑏𝑡

𝑏 𝐶

)︂(︂
𝑦
𝑋

)︂
= 𝑎𝑦2 + 2

(︀
𝑏𝑡𝑋

)︀
𝑦 +𝑋𝑡𝐶𝑋 ≥ 0.

This is a polynomial expression in the 𝑦-variable. It is always non-negative, so its discriminant is non-positive(︀
𝑏𝑡𝑋

)︀2 − 𝑎𝑋𝑡𝐶𝑋 ≤ 0,

which can be rewritten as 𝑋𝑡𝐷𝑋 ≥ 0. Thus 𝐷 ≥ 0.

Acknowledgements. The authors wish to acknowledge Cédric Enaux for discussions about the stationary states of the
hyperbolic model in curvilinear geometry, in relation with the stability condition.
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[26] B. Meltz, Analyse mathématiques et numérique de système hydrodynamique compressible et de photonique en coordonnées
polaires. Ph.D. thesis, Université Paris-Saclay (2015).
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