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Modeling and analysis of in-plane bending in fibrous reinforcements

with rotation-free shell finite elements.

Quentin Steer, Julien Colmars, Naim Naouar, Philippe Boisse

• An energetical modeling is proposed in order to take into account in-

plane bending of fibrous composite reinforcements, as an alternative to

second gradient models.

• Enhancement of rotation free shell element for forming simulations was

achieved, by taking into account in-plane bending energy.

• Unified approach for modeling in-plane and out of plane bending with

rotation-free elements is obtained.
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Abstract

Simulations of the draping is currently based on membrane and out-of-plane

bending stiffnesses of the composite textile reinforcements. In this article, an

additional stiffness of in-plane bending of fibers is introduced. This stiffness

gives rise to the appearance of transition zones in the deformation of fibrous

reinforcements, which have been experimentally highlighted. Second gradient

approaches have made it possible to model these phenomena in continuous

medium and 3D finite element. In this article, the curvature of the fibers
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1. Introduction

Composite materials make it possible to produce lighter structures thanks

to their good mechanical characteristics in relation to their mass (Middendorf

and Metzner, 2011; Meola et al., 2017). The combination of reinforcements

and matrices are numerous and make it possible to adapt the composite to a

given structure. On the other hand, the manufacture of defect-free composite

parts is often complex. As a result, a major effort is being made to develop

software for the simulation of manufacturing processes. In particular, the

simulation of the forming of composite textile reinforcements is the subject

of numerous developments (Gereke et al., 2013; Bussetta and Correia, 2018).

This concerns the draping of dry reinforcements in LCM processes (Liquid

Composite Molding) (Advani and Hsiao, 2012; Kruckenberg and Paton, 1998)

which will be followed by the injection of the resin. Alternatively, forming

concerns thermosetting prepregs (Lukaszewicz et al., 2012; Gangloff et al.,

2014; Leutz et al., 2016; Sjölander et al., 2016; Alshahrani and Hojjati, 2017)

or thermoplastic prepregs (Willems et al., 2008b,b; Harrison et al., 2013;

Haanappel et al., 2014; Guzman-Maldonado et al., 2015; Dörr et al., 2017).

Modeling the forming of the fibrous reinforcement is a specific problem

because its fibrous composition gives it a special mechanical behavior. Mod-

els for the simulation of the draping of reinforcements made of continuous

fibers have been proposed in recent years. Kinematic drape modeling (also

called pin-jointed net method (Wang et al., 1999; Potluri et al., 2001) or

fishnet algorithm (Long and Rudd, 1994; Potluri et al., 2006, 2001; Hancock

and Potter, 2006; Cherouat and Borouchaki, 2009) is the simplest approach

that has been proposed for the simulation of draping. The method is purely
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geometric, efficient and very fast numerically, but it does not take into ac-

count the nature of the reinforcement nor the boundary conditions in effort.

Membrane approaches have been developed (Cherouat and Billot, 2001; Lin

et al., 2007; ten Thije et al., 2007; Chen et al., 2015; Huang et al., 2020). The

bending stiffness of fibrous fabrics being low, it is neglected in these models.

So-called non-orthogonal (Xue et al., 2003; Yu et al., 2005a; Peng and Cao,

2005), hypoelastic (Khan et al., 2010) or hyperelastic (Holzapfel et al., 2004;

Aimne et al., 2010) models are used to model the specificity of the behav-

ior in the plane of the reinforcement. Nevertheless, it has been shown that

bending stiffness, although low, plays an important role during draping in

the onset and development of wrinkles (Boisse et al., 2011; Dangora et al.,

2015). This is one of the most common defects in composite manufacturing

(Skordos et al., 2007; Lightfoot et al., 2013; Hallander et al., 2015; Chen

et al., 2016; Belnoue et al., 2018; Guzman-Maldonado et al., 2019).

Taking bending into account in draping simulations is not a simple is-

sue. The possible slippage between the fibers makes the physics of textile

reinforcement bending not correctly described by the classical plate bending

theories of Kirchhoff and Mindlin. In these approaches, membrane stiffness

and bending stiffness are related. In the case of fibrous reinforcements, they

lead to much too great a bending stiffness. To avoid this difficulty, approaches

have been developed that generally consist of decoupling the membrane strain

and bending energies. The stress-resultant shell approaches relate membrane

deformation to resulting membrane stresses on the one hand and bending to

bending moments on the other (Hamila et al., 2009; Huang et al., 2020).

Other approaches decouple member and bending stiffness by superimposing
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finite elements, membrane and shell bending (e.g. DKT) (Haanappel et al.,

2014; Dörr et al., 2018) or membrane and beam elements (Harrison et al.,

2013; Dangora et al., 2015; Mitchell et al., 2016; Giorgio et al., 2018). Mod-

ifications of the properties in the thickness were also proposed in order to

obtain the desired membrane stiffness and bending (Yu et al., 2005b; Gereke

et al., 2013; Nishii et al., 2014; Dangora et al., 2015). A shell approach

specific to fibrous reinforcements has also been proposed (Liang et al., 2017).

Beyond bending modeling, some aspects of the membrane behavior spe-

cific to fibrous reinforcements have been highlighted. In particular, the in-

plane bending stiffness of fibers and yarns leads to transition zones when

bending in the plane of the fibers (Fig.1-3). Second gradient approaches

have made it possible to model these transition zones (Ferretti et al., 2014;

Rahali et al., 2015; dellIsola and Steigmann, 2015; dAgostino et al., 2015;

Boutin et al., 2017; Cuomo et al., 2017). Second gradient approaches make

it possible to take into account the deformation energy related to the curva-

ture in the plane of a fibrous reinforcement. Nevertheless, they are made in

the framework of continuous modeling and the use of three-dimensional finite

elements (or in plane stress if the problem is plane). Their implementation

is not easy and the possibility of using them for the simulation of textile

reinforcement draping is limited.

This article proposes to take into account a stiffness related to the in

plane fiber curvature of a textile reinforcement. The calculation of the in

plane curvature of this shell element uses the position of the neighboring

elements. This technique was used for out-of-plane bending in rotation free

finite elements developed for sheet metal forming (Oñate and Zárate, 2000;
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Brunet and Sabourin, 2006). The method is here implemented using explicit

dynamic scheme. It will be shown that the method leads to an efficient shell

finite element that makes it possible to model transition zones in the analysis

of textile reinforcements.

1.1. Strain modes of first gradient 3D models

Reinforcements can be thin or thick, but they generally have geome-

try that allows defining a mid-plane and a thickness; they can be indepen-

dently modeled by shell or solid approaches. For this reason in the latter we

call “membrane behavior” the material characteristics in the mid-plane, and

transverse directions the directions perpendicular to the mid-plane.

For the forming simulation of woven reinforcements using solid elements,

first gradient models have been developed at the yarn scale (Charmetant

et al., 2011) and at the fabric scale (Charmetant et al., 2012). Hypoelastic

(Khan et al., 2010) or hyperelastic (Charmetant et al., 2011, 2012) approaches

has been developed for those models. In the case of hyperelastic approaches,

strain energy W is written as the sum of decoupled strain modes. For ex-

ample, in the case of (Charmetant et al., 2012) the energy density is written

as :

W = Wλ +Wγ +Wτ +Wµ (1)

where Wλ is the energy of tension in the fibers in the the warp and weft

directions, Wγ the shear energy in the plane of the fabric (rotation of fibers

directions), Wτ the transverse shear energy, andWµ the compaction energy.In

the membrane part of the behavior (warp-weft plane), the modes of tension
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in the two fibers directions are by far the most rigid; they reflect the quasi-

inextensibility of the carbon or glass fibers used in technical woven fabrics.

This specificity of fibrous media is of the first order, even in geometrical

simulations such as fishnet algorithm. The in-plane shear mode is also a

determining factor, since it contributes to the drapability of the fabrics, i.e.

its ability to be shaped on double-curvature geometries. Compression and

transverse shear energies are important for thin (Nguyen et al., 2013) or thick

fabrics to model thickness variations during compression in a mold or, for

example, during the consolidation of thermoplastics.

1.2. Shell elements and enhanced first gradient models

Within the framework of forming simulations, many works have shown

the importance of adding to the membrane or transverse part the out-of-plane

bending stiffnesses in the directions of the fibers (Boisse et al., 2018; Hamila

et al., 2009; Mathieu et al., 2015; Dörr et al., 2017), in order to adequately

describe the formation of wrinkles. In fibrous media, the bending stiffness,

which is often very low, cannot be directly deduced from the tensile stiffness

(assumed to be infinitely rigid in the case of synthetic fibers), unlike in con-

ventional continuous media. Many conventional solutions are decoupling the

energy associated with tension and bending modes.

In shell models, the strain energy W is usually written :

W = Wλ +Wγ +Wκ (2)

with Wκ the out-of-plane bending energy in both fiber directions.
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1.3. Deformation modes for so-called second gradient models

The influence of second-gradient effects in fiber-reinforced hyper-elastic

solids has been shown in (Spencer and Soldatos, 2007). The effects of fibers

inextensibility was investigated in two-dimensional large deformation exam-

ples in (Soldatos, 2010).

Within the framework of 2nd gradient solid elements applied to fibrous

reinforcements (dellIsola and Steigmann, 2015; Madeo et al., 2015; Ferretti

et al., 2014) the strain energy is written as the sum of a so-called first gradient

energy WI which depends on the transformation gradient F and a second

gradient energy WII which is also related to the gradient F, such as :

W = WI(F) +WII(F,∇F). (3)

In these works, the shape of WI(F) is taken directly from the first gradi-

ent models proposed by (Charmetant et al., 2012). In the case of quasi-

inextensible fibers, (dellIsola and Steigmann, 2015) shows that WII can be

written as a function of ∇F only. Regarding the out-of-plane bending of the

fibrous reinforcements, it has been shown that the shell models could give

solutions close to solid models using second gradient (Boisse et al., 2018;

Mathieu et al., 2015). The above-mentioned second gradient models are the

only ones up to now that can also take into account the bending of the fibers

in the plan. They were recently used to simulate standard forming cases with

finite element (Barbagallo et al., 2017, 2019) but their use is still cost-effective

due to high order shape functions.

Other approaches have been proposed to enhanced the membrane behav-

ior of shell elements. The introduction of supplementary rotational degree of
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freedom, named drilling DOFs, was described in (Hughes and Brezzi, 1989).

Complete formulation of finite elements with drilling DOFs can be found in

(Felippa, 2003; Shin and Lee, 2014). But to the best of our knowledge, no

attempt was made to apply these methods to fibrous reinforcements.

1.4. Consideration of in-plane bending of the fibers

While out-of-plane bending has been adopted to describe more accurately

the formation of wrinkles, in-plane bending of fibrous media has given rise

to few developments, mainly based on generalized media models.

However, the in-plane bending of the fibers is a direct consequence of the

presence of shear gradients in the woven fabrics, as the curvature is related

to the second displacement gradient. In the case of inextensible fibers, the

equivalence between bending energy and plane energy related to the shear

gradient is shown in (Madeo et al., 2015).

The bending of the fibers in the plane has been observed experimentally.

(Ferretti et al., 2014; Boisse et al., 2017) showed that taking into account the

in-plane bending of the fibers modified the classical kinematics in the bias-

extension test, introducing zones of shear gradients and curvature visible in

Figure 1.

Tests conducted with the picture frame show that the fibers embedded in

the frame are subjected to bending in the plane of the reinforcement (Willems

et al., 2008a) ; which on an other hand explains the difficulty to avoid the

occurrence of tensions in the direction of the fibers in this type of test.

Finally, it is possible to observe the bending of the fibers in the plane

during the forming step of reinforcements (Tephany et al., 2016; Allaoui

et al., 2014). In Figure 3 the in-plane bending of fibers when shaping a prism
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Figure 1: Transition zones in the bias extension test according to (Ferretti et al., 2014)

Figure 2: Bending of the fibers at embedding border in a picture frame test, after (Willems

et al., 2008a)

is shown.

In this paper a shell approach able to take into account the membrane

energy related to fibers in-plane bending (noted Wχ in the following) is pro-

posed, based on the neighbor elements method. In this paper the shell energy

of Equation 2 is extended to:

W = Wλ +Wγ +Wκ +Wχ (4)

First part of the paper will focus on the calculation of in-plane curvature.
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Figure 3: In-plane bending of fibers during a forming on a prism shape (Allaoui et al.,

2014)

Complete constitutive equations and material parameters will be given in

Section 3, then first simulations will be presented in Section 4.

We will show that such a shell formulation: enables to retrieve the results

obtained by generalized continuum mechanics models; propose an alternative

to shells with drilling DOFs; and account for new energy mode into finite

elements that are already used for the forming of fibrous reinforcements.

2. Rotation free elements and neighbors elements

To model out-of-plane bending of fibrous reinforcements, several methods

have been proposed for shells and solid elements. Some of them are based

on shell elements without rotational degrees of freedom, and the curvature

is then calculated by the neighbor elements method, as in (Hamila et al.,

2009; Mathieu et al., 2015). Others are based on a decomposition of the

stress tensor, into one part related to the membrane behavior, and a second

part dedicated to the bending behavior (Dörr et al., 2017), according to the

method of (Khan et al., 2010) for the membrane behavior. In the following

we show that the neighboring element method can be used to calculate the

membrane curvature as well.
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2.1. Explicit dynamic approach

The following method was implemented in the framework of explicit

dynamic approach, widely used for forming applications (Belytschko and

Hughes, 1983). In the following, energies and kinematic variables (displace-

ments, curvatures, shear angles, etc.) are calculated in their incremental

form (noted with δ.) over small time steps; the increment are summed over

time to account for large displacements.

2.2. Curvature calculation in rotation free elements

The element proposed by (Hamila et al., 2009) for woven modeling is

based on the S3 element developed by (Sabourin and Vives, 2001; Sabourin

and Brunet, 2006; Brunet and Sabourin, 2006). The rise of commercial cal-

culation codes in the 1990s led to the development of finite elements with

a relatively simple formulation and a limited number of degrees of freedom

for sake of efficiency. The S3 element is part of a category of shell elements

called rotation free like the BPT element developed by (Oñate and Zárate,

2000) or as developed in (Laurent and Rio, 2001). The S3 element is a trian-

gular element with linear shape functions, having three degrees of freedom

in translation at each node of the element. These elements are of particular

interest for simulating the stamping of thin sheet metal. The out-of-plane

curvature is calculated from the displacement of the nodes of neighboring

elements.

According to the work of (Batoz and Gouri, 1990; Morley, 1971), the

incremental curvature pseudo-vector {δχ} due to a virtual displacement can

be calculated in a local orthogonal frame (ex, ey) from the rotation of fibers

around the edges of the element over a time step :
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{δχ} =





δχxx

δχyy

2δχxy





= −





∂2w
∂x2

∂2w
∂y2

2∂2w
∂xy





= −
3�

i=1

2

hi





−ci
2

−si
2

2cisi





θi (5)

ci = ni · ex (6)

si = ni · ey (7)

with ni, i = 1..3 outgoing normal vectors at the edges of the elements (see

Figure 4), w is the virtual displacement of fibers during a time step, and x and

y the coordinates in the frame ex, ey. The angles θi represent the rotation of

the fibers at the edges of the elements during a time step (Figure 5).

Equation 5 gives the curvatures in the element as used by (Hamila et al.,

2009) to calculate the out-of-plane curvatures. It will be used here to cal-

culate both out-of-plane and membrane curvatures ; the method for in-plane

curvature differs from that of out-of-plane bending (Hamila et al., 2009) by

the calculation of the angles θi, which is detailed in the following.

2.3. Calculation of the fibers rotations over a time step

Methods based on neighbor elements allow to calculate the angles θi from

the incremental nodes displacements of the current element and its neighbors
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Figure 4: current element (gray) and its neighboring elements.

{δu}18×1 (3DOF per node). A matrix [Q] is sought as :





θ1

θ2

θ3





= [Q]3×18





{δu1}
{δu2}
{δu3}
{δu4}
{δu5}
{δu6}





, {δui=1..6}





δux
i

δuy
i

δuz
i





(8)

In the following, matrices are noted between brackets [.] while braces {.}
are used for column vectors; for clarity, the dimensions of the matrices and

vectors are also indicated.

The calculation of θi in the case of out-of-plane bending has given rise

to several methods in the literature. (Oñate and Zárate, 2000) suggests

to calculate the θi by averaging the rotations on either side of the edge of

the element. In (Sabourin and Vives, 2001; Sabourin and Brunet, 2006),
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Figure 5: Fictive Bernouilli beam passing through the reference element and its neighbor,

used for the calculation of the curvatures ; θi corresponds to the rotation of cross-section

of the fictive beam at edge i.

the angles θi correspond to the cross-section rotations of a fictive Bernouilli

beam passing through the vertices of the elements (Figure 5). This second

approach is adapted here to the calculation of the curvature in the plane.

The calculation of rotations is similar to the method used for out-of-

plane bending (Sabourin and Brunet, 2006). The angles θi can be written

as a function of the angles αi and αn shown on Figure 5. During small time

steps of explicit procedure (and small angles θi) we have:

θi = αi
hi

hi + hn

+ αn
hn

hi + hn

(9)

with n the opposite node to i in the neighbor triangle (ex. for i = 1, n = 5).

Equation 9 can be written in matrix form :

{θ}3×1 = [G]3×6 {α}6×1 (10)

where the components of [G] are directly obtained by Equation 9.
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The angles αi, i = 1..6 are the rotations of the heights of the triangle

and its neighbors. On the initial mesh, height direction hi and length hi are

calculated from vertex i; it also gives point Hi position on edge j − k (see

Figure 6). Note that on initial mesh we have hi = −ni, but during the next

steps, all vectors are updated and hi is no longer collinear with ni The αi

are decomposed into two terms, αh
i and αs

i which represent respectively the

rotation of direction hi with respect to the opposite side, and the rotation of

the edge itself :

αi = αh
i − αs

i (11)

This decomposition allows us to take into account the movement of rigid

bodies αs
i which is a methodological point that distinguishes membrane bend-

ing from out-of-plane bending.

The rotation αh
i is finally written :

αh
i =

δui · ri − δuHi · ri
hi

(12)

with δui the displacement of node i, δuHi the displacement of pointHi (initial

projection of vertex i on edge j − k); the displacement δuHi is interpolated

from δuj and δuk. The vector ri is calculated form the vector product ri =

hi × (ni × ti).

The side rotation αs
i is written :

αs
i =

δuk · ni − δuj · ni

Li

(13)

with δuk and δuj the incremental displacements of node j and k in the

current triangle, and Li the length of edge j − k. For example for the node

i = 1 we get k = 3 and j = 2 (see Figure 4 and 6).

15



Figure 6: Definition of height rotations αh
i (left), and edge rotations αs

i (right) in the

current elements.

We can write overall :

{α}6×1 = [H]6×18 {u}18×1 (14)

The components of matrix [H] should be computed from Equations 11-13.

By assembling equations (10) and (14) the rotations θi are finally obtained

according to the displacements of the neighbor’s nodes :

{θ}3×1 = [Q]3×18 {U}18×1 = [G]3×6 [H]6×18 {U}18×1 (15)

2.4. Bending boundary conditions

To take into account the boundary conditions, it is necessary to add an

equation for the calculation of the fiber rotation. Next we give the equations

corresponding to clamped or free edges. For these two cases, a virtual node

f is created as the symmetrical of the node i with respect to the clamped

edge -or respectively free edge- (see Figure 7).
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Virtual node

Virtual element

(a)

Virtual node

Virtual element

(b)

Figure 7: Virtual node f and virtual neighbouring element for boundary condition defini-

tion. (a) clamped edge and symmetry configurations, (b) free edge configurations.

In the case of clamped edge i (Figure 7a), αi = −αf , which is equivalent

to postulate that the fiber does not rotate with respect to the clamped edge

of the element, i.e. θi = 0 according to Equation 9. Let’s make two remarks

about this :

• first, clamped edge condition is the same as the condition for an edge

in a symmetry plane (from a beam point of view) since both conditions

lead to θi = 0;

• second, this does not necessarily imply zero curvature inside the ele-

ment, since its value is calculated using θi on the three edges of the

element (see Equation 5).

In the case of a free edge (Figure 7b) we simply get αi = αf , which leads

to rotation of the fiber (θi �= 0).
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3. In-plane bending energy and other deformation modes.

In-plane bending energy is written as a function of curvatures and inte-

grated stresses :

δWχ =

�

S

Mχ
11 δχ11 +Mχ

22 δχ22 dS (16)

Mχ
11 = kχ

1χ11 (17)

Mχ
22 = kχ

2χ22 (18)

where S is the area of the element, Mχ
11 and Mχ

22 are the moments of

the integrated stresses in fiber directions f1 and f2, δχ11 and δχ22 are the

curvatures in these two same directions. δχ11 and δχ22 are obtained by

projection in both fiber directions of the complete in-plane curvature tensor

δχ (obtained in Equation 5).

δχ11 = δχ : (f1 ⊗ f1) (19)

δχ22 = δχ : (f2 ⊗ f2) (20)

The total bending energy is thus considered to be the addition of two in-

dependent non-orthogonal directions contributions. The bending energies of

the two fiber directions will therefore be assumed to be decoupled. This hy-

pothesis has been made in previous works on out-of-plane bending (Boisse

et al., 2018), but coupling between bending rigidity of two fiber directions

should be the subject of further experimental work.

In the following, it is assumed that the parameters of the behavior law

are identical to those used for out-of-plane bending, resulting from the work
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of (Abdul Ghafour et al., 2019) on a G1151 (Hexcel) reinforcement ; they

are summarized in Table 1. The determination of in-plane bending specific

properties must give rise to further experimental developments.

For the in-plane shear, the energy δWγ is calculated by the following

equations :

δWγ =

�

S

Mγ δγ dS (21)

Mγ = kγ
1γ + kγ

3γ
3 + kγ

5γ
5 (22)

where γ (and δγ) are the in-plane shear angle (or incremental shear angle),

i.e. the angle variation between two fiber directions; Mγ is the associated

shear moment. The calculation of δγ is detailed in (Hamila et al., 2009).

Out-of-plane bending is governed by the same equations as membrane bend-

ing (accounting for two independent fiber directions):

δWκ =

�

S

Mκ
11 δκ11 +Mκ

22 δκ22 dS (23)

Mκ
11 = kκ

1κ11 (24)

Mκ
22 = kκ

2κ22 (25)

On the other hand, the tension energy is calculated by the following equa-

tions :

δWλ =

�

S

F λ
11 δλ11 + F λ

22 δλ22 dS (26)

F λ
11 = kλ λ11 (27)

F λ
22 = kλ λ22 (28)
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where F11 and F22 are the stress resultant for tension, and δλ11 and δλ22

the elongations in both fiber directions. Since the fibers are assumed to

be quasi-inextensible, the kλ parameter is taken large relative to the other

parameters of the study.

In-plane bending In-plane shearing Out-plane bending

kχ
1 7.693 N.m2 kγ

1 1.00013 N.m2 kκ
1 7.693 N.m2

kχ
2 7.693 N.m2 kγ

3 -0.01939 N.m4 kκ
2 7.693 N.m2

kγ
5 0.04160 N.m6

Tension kλ 1,000 N

Table 1: G1151 properties from (Abdul Ghafour et al., 2019) used for the shell model.

4. Results

Membrane curvature calculation was implemented in PlasFib, a research

finite element code using dynamic explicit scheme for forming simulation of

composite reinforcements. Next we present simulations for material param-

eters presented in Table 1 obtained on a G1151 reinforcement.

4.1. Bias-extension-test

We present the simulation of a bias-extension test (BET) on a virtual 2D

sample of size 240 × 80mm2. A displacement of about 46mm was imposed

at one end. On Figure 8 we show the results of two simulations, without and

with taking into account the membrane bending (resp. Figure 8a and 8b).

Figure 8a shows the classical first gradient solution based on inextensible

20



fibers; it exhibits three shearing zones (central maximal shear zone, half

shear zone, and non-shearing zone near to the boundary conditions). The

same solution can be obtain with a fishnet algorithm.

The second simulation with membrane bending exhibit the same zones,

but with additional transition zones, which correspond to shearing gradients.

These are the same transition zones as shown experimentally on Figure 1; the

same qualitative results have been obtained using second gradient models

(Ferretti et al., 2014).

On Figure 9 we show the shear angle and curvature fields along the M-N-P

path of Figure 8, for both simulations (with and without membrane bending).

Note that curvature is here given in weft direction along M-N segment while

it is given in warp direction along N-P segment. Differences between the

two simulations are put into evidence: the mean value of shearing angle

is diminished when taking into account the in-plane bending energy. The

resulting difference is a few degrees for the chosen material parameters. The

shear distribution found with in-plane bending energy is in good accordance

with the results of (Ferretti et al., 2014): along M-N segment the shear

reaches a maximum of about 22 degree and then slightly decreses, while

along N-P segment it reaches a maximum of about 42 degree before dropping

slighlty towards 40 degrees.

As demonstrated in (Madeo et al., 2015; dellIsola and Steigmann, 2015),

the shear gradient are related to in-plane bending. Figure 9 shows that cur-

vature occurs in shear gradient zones.

In order to investigate the influence of mesh size, all simulations were

performed with different meshes. In the case of BET simulation we used
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three meshes of 1200, 4800 and 10800 elements. The evolution of curvature

along M-N-P path for these three meshes is plot on Figure 10. Although we

use a non local method (neighboring elements method), the method converges

with the number of elements. The influence of mesh size is mainly visible in

the transition zones, on both shear angle and curvature, while its influence

in the other zones seems to be negligible. For better visualization the results

of Figure 11a were plot only with 1200 elements.

4.2. Picture frame test

A picture frame test was simulated on a virtual specimen of size 240 ×
240mm2 (Figure 11a). As in many experimental devices described in litera-

ture, fibers are clamped in the frame (Willems et al., 2008a); in the simula-

tion displacements DOFs are linked to the frame while rotation of fibers is

prevented by boundary conditions detailed in previous section.

Simulation results are presented on Figure 11a; it shows local shearing

gradient (and curvature) next to the frame where fibers are clamped. In

this case the solution of picture frame is not a constant shear zone anymore,

although the central shearing remains the same (54.4◦, see Figure 11b). Next

to the clamped conditions we observe a ±2◦ variation in shear angle. This

oscillation of shear angle has to be related to local curvature gradients (the

curvature locally increases and decreases from boundary to the center). The

same phenomenon was observed numerically in the transition zones of the

BET, both by our model and second gradient model by (Ferretti et al., 2014).

Figure 11c shows the evolution in time of tension, shearing and bending

contributions to the total energy; this is done for both simulations, with and

without in-plane bending rigidity. In this case the shearing energy is not

22



much affected by the addition of bending rigidity. Yet the bending rigidity

results in a significant additional energy (40% of shearing energy) for the

chosen parameters.

4.3. Cantilever test

In the last simulation example we use our in-plane bending model for

unconventional application. We use it to perform a 2D simulation of can-

tilever bending test on a thick reinforcement. Here the displacements occur

in the transverse plane of the reinforcement; thus finite elements are placed

in the transverse plane, and not in the mid-plane anymore. The curvature χ,

previously called in-plane curvature, will now stand for out-of-plane curva-

ture of the sample. The sample is clamped on the left side, and a prescribed

displacement is given at the other end. The mesh is visible on Figure 12a.

Figure 12a and 12b show the respective influence of bending or shearing

parameters for a given shearing (resp. bending) rigidity. For the sake of clar-

ity, all rigidity are considered linear (kγ
3 = kγ

5 = 0) while the parameters kγ
1

and kχ
1 are taken in a log scale: kχ ∈ [1., 1000.]N and kγ

1 ∈ [0.1, 100]N.mm−1.

The method presented in this work allows decoupling the transverse shear-

ing rigidity and the out-of-plane bending property, although the curvature

is still related to shearing gradients. On Figure 12a we can see that the

increasing bending rigidity does not affect the cross section rotation, while

increasing kγ directly modifies their orientation. For instance, for high trans-

verse shearing rigidity, the model tends to a classical Bernoulli beam solution,

where cross sections remain perpendicular to to mid-line.

The same test was conducted experimentally. It was performed on a

thick interlock sample with dimensions 17 × 50 × 150mm. A 500 g dead
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weight was hung to the right end. Small dots were painted on the sample in

order to track the cross sections (Figure 13a). The experimental shape was

in accordance with simulations with high kχ/kγ ratio (see Figure 12a).

Supplementary simulations were conducted in 3D with solid elements cou-

pled with shells; the method used here was presented in details in (Mathieu

et al., 2015) and consist of adding local bending stiffness using additional

triangular rotation-free elements. Figure 13b shows the result of cantilever

test with a first gradient hyperelastic model with parameters taken from

(Charmetant et al., 2012), and Figure 13c shows the solution with additional

bending rigidity. All simulations were conducted with PlasFib using dynamic

explicit scheme.

The first gradient solution is consistent with our previous simulations with

low bending rigidity (Figure 12a), while the second simulation is consistent

with experimental solution and shapes of Figure 12a with higher bending

rigidity.

5. Conclusion

In this paper we proposed a new solution for the modeling of in-plane

bending in shells, with application to in-plane and out-of-plane bending in

composite reinforcements. Neighboring element method used in previous

studies for modeling out-of-plane bending was successfully adapted for mod-

eling in-plane bending. It allowed reproducing complex kinematics of second

gradient models found in the literature. This method revealed itself an effi-

cient alternative to second gradient solutions which implies high interpolation

finite element and thus are cost-effective in the context of forming simula-
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tions. It is also an alternative method to the addition of drilling degree of

freedom in shell elements. This work now raises the need of experimental

developments in order to characterize the specific in-plane bending behavior

of reinforcements.

This work is finally a contribution to the enhancement of rotation-free

shell element for forming simulation, by taking into account in-plane bending

energy. Neighboring element method can now be seen as a unified approach

for both in-plane and out-of plane bending. The performance of such ele-

ment was shown on classical fiber reinforcement characterization tests (bias

extension test and picture frame test) and will be demonstrated on forming

simulations in the near future.
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Figure 8: Bias-extension-test simulations with a 1200 elements mesh. (a) Shear angle field

when simulated with negligeable in-plane bending rigidity (kχ � 0) ; (b) Shear angle field

when simulated with in-plane bending rigidity (table 1 properties) ; (c) Curvature field in

warp direction.
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Figure 9: Shear angle and curvature along M-N-P path of Figure 8. For better reading, the

dots M,N and P have been positioned approximately on the graph. Note that curvature

is given in weft direction on M-N segment, and warp direction on N-P segment.

44



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

Sh
ea

r a
ng

le
 [°

]

Cu
rv

at
ur

e 
[m

-1
]

Normalized distance along path MNP

 curv 1200
curv 4800

curv 10800
shear 1200
shear 4800

shear 10800

Figure 10: Shear angle and curvature along M-N-P path of Figure 8 for three different

meshes containing 1200, 4800 and 10800 elements.
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Figure 11: Picture frame simulation. (a) shear angle distribution accounting for in-plane

bending rigidity; (b) shear angle distribution without in-plane bending rigidity (same

color scale); (c) energetic contributions of tension, bending and shearing modes, with and

without bending rigidity.
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Figure 12: cantilever bending simulation on a thick interlock with prescribed displacement;

bending and shearing properties are modified independently.
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(a)

(b) (c)

Figure 13: Cantilever test on interlock sample 17× 50× 150mm with a 500 g suspended

mass; (a) experimental result ; (b) 1st gradient solution in 3D finite element simulation ;

(c) enhanced 1st gradient solution with shell element in middle plane.
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