
HAL Id: hal-03344132
https://hal.science/hal-03344132

Submitted on 15 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterizing Distributed Machine Learning and Deep
Learning Workloads

Yasmine Djebrouni, Isabelly Rocha, Sara Bouchenak, Lydia y Chen, Pascal
Felber, Vania Marangozova-Martin, Valerio Schiavoni

To cite this version:
Yasmine Djebrouni, Isabelly Rocha, Sara Bouchenak, Lydia y Chen, Pascal Felber, et al.. Char-
acterizing Distributed Machine Learning and Deep Learning Workloads. Conférence francophone
d’informatique en Parallélisme, Architecture et Système (ComPAS’2021), Jul 2021, Lyon, France.
�hal-03344132�

https://hal.science/hal-03344132
https://hal.archives-ouvertes.fr

ComPAS’2021 : Parallélisme/ Architecture/ Système / Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

Characterizing Distributed Machine Learning and Deep
Learning Workloads
Yasmine Djebrouni1, Isabelly Rocha2, Sara Bouchenak3, Lydia Y. Chen4, Pascal Felber2,
Vania Marangozova-Martin1, and Valerio Schiavoni2

1University of Grenoble Alpes – LIG, France
2University of Neuchatel, Switzerland
3INSA Lyon – LIRIS, France
4TU Delft, The Netherlands

Abstract
Nowadays, machine learning (ML) is widely used in many application domains to analyze
datasets and build decision making systems. With the rapid growth of data, ML users switched
to distributed machine learning (DML) platforms for faster executions and large-scale training
datasets. However, DML platforms introduce complex execution environments that are over-
whelming for uninitiated users. To provide guidance for the tuning of DML platforms and
achieve good performance, it is crucial to characterize DML workloads. In this work, we focus
on popular DML and distributed deep learning (DDL) workloads leveraging Apache Spark.
We characterize the impact of several platform parameters related to distributed executions
such as parallelization, data shuffle and scheduling on performance. Based on our analysis,
we derive key takeaways on DML/DDL workload patterns, as well as unexpected behavior of
workloads based on ensemble learning methods.

Keywords : Distributed Machine Learning, Distributed Deep Learning, Workload Characteri-
zation

1. Introduction

Machine learning (ML) and deep learning (DL) models are widely used in many applica-
tion domains to analyze real-life datasets and help in the decision making process. Search
engines [21], recommendation systems [4] and medical science for disease diagnoses [17] are
some of the many examples of ML applications. As for DL models, they bring an important
breakthrough for vision and natural language applications [11]. In order to guarantee a high
prediction quality and make ML/DL a viable solution, a massive amount of training data is
necessary. However, the size of data makes the training phase impractical on centralized plat-
forms. This has lead to the emergence of distributed machine learning (DML) and distributed
deep learning (DDL) where distributed systems are used to leverage advantages such as in-
creased task parallelization or total amount of storage disks bandwidth. To simplify the devel-
opment of DML/DDL solutions, several DML/DDL libraries have been proposed including
MLlib [22], BigDL [9] and TensorFlow [3]. As DML/DDL’s performance is highly dependent
on their workloads, workload characterization is a major issue [7]. Workload characterization
captures the execution characteristics of workloads and identifies the factors for performance
degradation or optimization. In the context of DML/DDL methods, workload characterization

ComPAS’2021 : Parallélisme/ Architecture/ Système / Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

can provide a better understanding of resource utilization and guide performance optimization
at both the hardware and the software levels. Moreover, it may provide insights into the ac-
tual effectiveness of configuration strategies of the underlying distributed computing platform,
especially for data scientists and ML/DL users who are not familiar with distributed settings.
In this paper, we present our work on DML/DDL workload characterization based on real-
world collected traces [13], resulting from extensive experiments conducted on two popular
libraries, MLlib [22] and BigDL [9], running on a Spark cluster [29]. We present an analysis of
the statistical distributions of the DML/DDL workloads, and discuss the common patterns and
characteristics that we observe in these workloads. We derive key takeaways, among which the
main aspects that characterize DML/DDL workloads, and unexpected behavior of workloads
involving ensemble learning methods under configuration tuning.
The rest of the paper is organized as follows. In §2 we present the necessary background on
DML/DDL systems and workloads, as well as the main aspects considered when tuning those
systems. Section §3 presents an overview of the traces we rely on in our analysis. Section §4
presents a detailed characterization of DML/DDL workloads. We survey related work in §5,
and conclude in §6 with key takeways derived from our detailed characterization.

2. Background

DML and DDL Architecture. Figure 1 depicts the infrastructure we use to perform the DML
and DDL experiments. This architecture represents the typical deployment scenario, either on
premises or outsourced to third-party cloud deployments. The computing architecture consists
of a physical cluster, a distributed computing platform (i.e., Spark [5]), and a distributed data
storage (i.e., the Hadoop distributed file system HDFS [28]). The Spark platform is composed
of a set of nodes, called workers. During training, an interactive process iteratively executes
Spark jobs which define computation steps. Each of these jobs is scheduled and processed on a
dedicated executor which is a process on a Spark worker. Jobs are composed of a sequence of
stages running several parallel and independent tasks on data partitions.

Cluster
Manager

Driver

Spark
Context

Spark Master
Dataset Method

Workload

stage 1
task1

taskT
?

stage 2
task1

taskT
?

stage S
task1

taskT
??

Executor 1

Yarn NodeManager

HDFS DataNode

stage 1
task1

taskT
?

stage 2
task1

taskT
?

stage S
task1

taskT
??

Executor E

?

Spark Worker

part. 1
part. 2

?
part. N

part. 1 part. N

Figure 1: Infrastructure of a typical distributed machine learning or deep learning environment

DML and DDL Workloads. A DML/DDL workload is a tuple consisting of a ML or DL
method and a dataset. There are several types of ML methods, such as classification (e.g., naive
Bayes [26], decision trees [25]), regression (e.g., linear models [24]) or clustering (e.g., K-means [20]).
When it comes to DL methods, they mostly consist of different types of artificial neural net-
works which layers and overall structure best fit the domain of interest (e.g., CNNs [27], LSTMs [15],
GRU [34]). There exist several libraries that provide open source implementations for DL and
ML methods on distributed paltforms, for example, MLlib [22] and BigDL [9] are respectively
the ML and DL libraries running on top of Spark. Regarding datasets, there exist multiple real-
world datasets that are publicly available and widely used in ML and DL research [2, 12, 10, 6].
Their structure and content vary and depend on the type of learning we are interested in. For

ComPAS’2021 : Parallélisme/ Architecture/ Système / Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

example, News20 is a collection of 20,000 messages [2], collected from 20 different newsgroups,
and DrivFace is a popular dataset of 606 images of car drivers [12].
Configuration of DML and DDL.There are many configuration parameters which can be tuned
in distributed platforms. For instance, Spark [5] and Hadoop [30] have over 200 and 50 config-
urable platform parameters, respectively. These parameters usually fall in one of the following
types: (i) parameters related to memory management, (ii) parameters related to data manage-
ment and compression, (iii) parameters related to job scheduling and (iv) parameters related to
parallel execution.

3. DML and DDL Workload Traces and Setup

We use DML and DDL traces. The DML traces have been obtained from the execution of 26
DML workloads on Spark under different configurations, as described in [13]. We consider
9 popular ML methods from MLlib [22], the Spark ML library, including methods such as K-
means, decision trees and linear models. The methods have been applied on three datasets,
namely DDF, DGS and DHG, that differ in terms of features and records characteristics. DDF
corresponds to the DrivFace dataset [12] that contains a small number of records (606 images)
with a big number of features (6,400 pixels). DGS is the Drift dataset [31] with several thou-
sands of records, each corresponding to 128 chemical sensors measurements (features). Finally,
DHG references the Higgs dataset [6] which is a collection of 11 millions records of a small
number of kinematic measures (features). The DDL traces come from the executions of 9 DDL
workloads. We have used 4 popular DDL methods from BigDL [9], the Spark DL library, in-
cluding CNN [27], GRU [34], LENET [18] and LSTM [14]. The used datasets are Mnist [10],
Fashion Mnist [33] and News20 [2]. They respectively contain 70,000 images of written digits,
70,000 images of fashion articles and 20,000 newsgroup messages. The traces contain measures
collected from system level (CPU, Memory, Energy, etc.), Spark level (task duration, data size
per task, etc.) and application level (training time, inference time and accuracy). In the follow-
ing, we investigate how the application-level metrics are impacted by configuration tuning.
More details about the considered datasets and methods, the collected metrics and the consid-
ered Spark parameters can be found in the Appendix. All traces have been collected on a Spark
cluster of 4 identical nodes with a quad-socket Intel E3-1275 CPU processor, 8 cores per CPU,
64 GiB. The machines run Spark 2.4.0 as the distributed learning platform, MLlib 2.4.0 as the
ML library and BigDL 2.4.0 as the DL library. Each workload execution was replicated 3 times.

4. Characterization of DML and DDL Workloads

In the following, we investigate the impact of 13 Spark configuration parameters (cf Appendix
Table 6) on the training time, the inference throughput (i.e., inference responses per time unit)
and the accuracy of our workloads. The parameters of interest cover the main aspects of dis-
tributed execution. Regarding parallelization, EXEC_NUM and EXEC_COR control respectively
the number of executors running concurrently on the cluster, and the number of cores assigned
to each executor. Regarding memory management, EXEC_MEM helps setting the memory used
by each executor. Other parameters include SHF_COMPR which determines whether the data
resulting from shuffle1 should be compressed, and LOC_WAIT which defines how long Spark
should wait before giving up on a task and rescheduling it. More parameters related to serial-
ization and data compression are also considered .

1Shuffle is an operation that involves redistributing data across multiple partitions. It occurs whenever data
transfers are needed between stages.

ComPAS’2021 : Parallélisme/ Architecture/ Système / Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

DD
F-

KM
DD

F-
BK

M
DD

F-
DT

DD
F-

M
LP

DD
F-

BL
R

DD
F-

LR
DD

F-
RF

R
DD

F-
GB

T
DG

S-
KM

DG
S-

BK
M

DG
S-

GM
M

DG
S-

DT
DG

S-
M

LP
DG

S-
BL

R
DG

S-
LR

DG
S-

RF
R

DG
S-

GB
T

DH
G-

KM
DH

G-
BK

M
DH

G-
GM

M
DH

G-
DT

DH
G-

M
LP

DH
G-

BL
R

DH
G-

LR
DH

G-
RF

R
DH

G-
GB

T
DN

-C
NN

DN
-G

RU
DN

-L
ST

M
DF

M
-C

NN
DF

M
-L

EN
ET

5
DF

M
-L

ST
M

DM
-C

NN
DM

-L
EN

ET
5

DM
-L

ST
M

Workloads

100

0

100

200
Tr

ai
ni

ng
 ti

m
e

va
ria

tio
n

(%
)

(a) Training time variation

DD
F-

KM
DD

F-
BK

M
DD

F-
DT

DD
F-

M
LP

DD
F-

BL
R

DD
F-

LR
DD

F-
RF

R
DD

F-
GB

T
DG

S-
KM

DG
S-

BK
M

DG
S-

GM
M

DG
S-

DT
DG

S-
M

LP
DG

S-
BL

R
DG

S-
LR

DG
S-

RF
R

DG
S-

GB
T

DH
G-

KM
DH

G-
BK

M
DH

G-
GM

M
DH

G-
DT

DH
G-

M
LP

DH
G-

BL
R

DH
G-

LR
DH

G-
RF

R
DH

G-
GB

T
DN

-C
NN

DN
-G

RU
DN

-L
ST

M
DF

M
-C

NN
DF

M
-L

EN
ET

5
DF

M
-L

ST
M

DM
-C

NN
DM

-L
EN

ET
5

DM
-L

ST
M

Workloads

100

50

0

50

100

In
fe

re
nc

e
th

ro
ug

hp
ut

 v
ar

ia
tio

n
(%

) (b) Inference throughput variation

Figure 2: Performance variability per DML/DDL workload
Global Impact of Platform Configurations. We start by investigating whether varying a single
platform parameter impacts the performance of the underlying system. We execute several
runs for each workload where we individually vary each platform parameter. The variations
of training time and inference throughput are shown in Figure 2. We use a box-and-whiskers
representation to conveniently show the data distribution through their quartiles, as well as
outliers. On the horizontal axis we indicate the different workloads2, while on the vertical
axis we plot the variations in training time and inference throughputs of all the runs grouped
by workload. The variation of a run is computed as the difference between the run’s time
and the mean execution time of the workload, divided by the mean time. We can observe
important training time variations spanning between -54% and +247%. For two workloads,
namely DDF-GBT and DGS-GMM, configuration tuning result in significant training speedups
(respectively 54% and 43%). Regarding inference throughput, we observe that its variation
ranges between -78% and +61%. In most scenarios there are configurations resulting in lower
throughputs. These observations support our assumption that both training and inference are
strongly affected by the platform parameters’ configurations.
Individual Parameter Impact. To clarify the impact of each configuration parameter on train-
ing time and inference throughput, we use a heatmap plot as shown in Figure 3. For each of
the considered parameters (vertical axis) and workloads (horizontal axis), we use a three-color
scheme to represent the parameters impact, from highest (over 20%, dark grey) to negligible
(less than 10%, white). The impacts of a parameter is equal to the relative variation obtained in
performance, i.e., the difference between the lowest and highest performance, when different
values of that parameter are considered while the other parameters have fixed values. What
we can directly observe from this heatmap is that the two parameters (number of executors
EXEC_NUM and number of cores per executor EXEC_COR) that configure the parallelization of
the execution, highly affect the large majority of the workloads.
To further explore the impact of each parameter on both the training time and inference through-
put, we calculate the coefficient of variation of these two measures inside each workload when
testing several values for each parameter (cf Appendix Table 6). The coefficient of variation is
defined as the ratio of the standard deviation σ to the mean µ, i.e., cv = σ

µ . We highlight in the
following our key observations.
Observation 1 : Most of DML and DDL workloads significantly benefit from parallelization.

This observation comes from figures 4a and 4b which present respectively the coefficients of
variation of training time and inference throughput for each workload when varying EXEC_NUM
and EXEC_COR. The results report variations beyond 40%.
Observation 2 : Training times of large datasets workloads are highly impacted by task re-scheduling.

2Workload names are tuples composed of the dataset name followed by the learning method name (cf. Table 1,2)

ComPAS’2021 : Parallélisme/ Architecture/ Système / Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

DD
F-

KM
DD

F-
BK

M
DD

F-
DT

DD
F-

M
LP

DD
F-

BL
R

DD
F-

LR
DD

F-
RF

R
DD

F-
GB

T
DG

S-
KM

DG
S-

BK
M

DG
S-

GM
M

DG
S-

DT
DG

S-
M

LP
DG

S-
BL

R
DG

S-
LR

DG
S-

RF
R

DG
S-

GB
T

DH
G-

KM
DH

G-
BK

M
DH

G-
GM

M
DH

G-
DT

DH
G-

M
LP

DH
G-

BL
R

DH
G-

LR
DH

G-
RF

R
DH

G-
GB

T
DN

-C
NN

DN
-G

RU
DN

-L
ST

M
DF

M
-C

NN
DF

M
-L

EN
ET

5
DF

M
-L

ST
M

DM
-C

NN
DM

-L
EN

ET
5

DM
-L

ST
M

Workload

EXEC_NUM
EXEC_COR
EXEC_MEM

COMP_CODEC
LOC_WAIT

RDD_COMP
MAX_SIZ_INFLIGHT

SER
SHF_COMPR

SFL_BUF
PD_BUFS

SHF_SPL_COMP
STR_MEM

ML / DL method
Dataset

Impact >= 20% Impact between 10% and 20% Impact < 10%

(a) Impact on training time

DD
F-

KM
DD

F-
BK

M
DD

F-
DT

DD
F-

M
LP

DD
F-

BL
R

DD
F-

LR
DD

F-
RF

R
DD

F-
GB

T
DG

S-
KM

DG
S-

BK
M

DG
S-

GM
M

DG
S-

DT
DG

S-
M

LP
DG

S-
BL

R
DG

S-
LR

DG
S-

RF
R

DG
S-

GB
T

DH
G-

KM
DH

G-
BK

M
DH

G-
GM

M
DH

G-
DT

DH
G-

M
LP

DH
G-

BL
R

DH
G-

LR
DH

G-
RF

R
DH

G-
GB

T
DN

-C
NN

DN
-G

RU
DN

-L
ST

M
DF

M
-C

NN
DF

M
-L

EN
ET

5
DF

M
-L

ST
M

DM
-C

NN
DM

-L
EN

ET
5

DM
-L

ST
M

Workload

EXEC_NUM
EXEC_COR
EXEC_MEM

COMP_CODEC
LOC_WAIT

RDD_COMP
MAX_SIZ_INFLIGHT

SER
SHF_COMPR

SFL_BUF
PD_BUFS

SHF_SPL_COMP
STR_MEM

ML / DL method
Dataset

Impact >= 20% Impact between 10% and 20% Impact < 10%

(b) Impact on inference throughput
Figure 3: Platform parameters impact on performance

As shown in Figure 5a, when working with large datasets, tasks may take arbitrarily long time
to complete. This is due to task rescheduling or preemption variations, which are impacted by
LOC_WAIT parameter.
Observation 3 : Training of workloads using ensemble learning methods on datasets with a large num-
ber of features are affected by shuffle data size reductions.

We observe that, for ensemble learning methods used on datasets with many features (DDF-RFR,
DDF-GBT, DGS-RFR and DGS-GBT, Figure 5b), the training phase triggers frequent data trans-
fer (shuffle) operations. One can use the SHF_COMPR parameter to reduce the amount of data
during shuffle and reduce the training time.
Observation 4 : Inference throughput of workloads involving datasets with a relatively high number
of features is impacted by memory, scheduling and shuffle operations.

The number of features presented by the dataset is highly correlated with the resulting infer-
ence throughput. Figure 3b shows that there are several parameters interwined that are impact-
ing the inference throughput of workloads involving datasets with high number of features
(DDF and DGS). The concerned parameters are EXEC_MEM, MAX_SIZ_INFLIGHT, STR_MEM,
LOC_WAIT and SFL_BUF. Figure 5c illustrates the impact of one of these parameters (EXEC_MEM)
on DDF-BLR, DDF-GBT, DGS-KM and DGS-LR.
Observation 5 : Model accuracy of workloads involving ensemble learning methods on datasets with
a relatively large number of features is surprisingly impacted by parallel computing configurations.

We conclude the analysis by studying the effect of configuration tuning on the R2 score of our
regression workloads. R2 is a metric that evaluates the precision of regression methods. Figure
5d presents the coefficient of variation of R2 for DDF-RFR and DDF-GBT. The Figure shows an
unexpected behavior of (GBT and RFR) that are ensemble learning methods, when executed on
the dataset that has the highest number of features (DDF). R2 for these two workloads surpris-
ingly vary when EXEC_NUM and EXEC_COR are tuned. In fact, both RFR and GBT are based on
multiple decision trees. Before splitting a node of a decision tree, and in order to determine

DD
F-

KM
DD

F-
BK

M
DD

F-
DT

DD
F-

M
LP

DD
F-

BL
R

DD
F-

LR
DD

F-
RF

R
DD

F-
GB

T
DG

S-
KM

DG
S-

BK
M

DG
S-

GM
M

DG
S-

DT
DG

S-
M

LP
DG

S-
BL

R
DG

S-
LR

DG
S-

RF
R

DG
S-

GB
T

DH
G-

KM
DH

G-
BK

M
DH

G-
GM

M
DH

G-
DT

DH
G-

M
LP

DH
G-

BL
R

DH
G-

LR
DH

G-
RF

R
DH

G-
GB

T
DN

-C
NN

DN
-G

RU
DN

-L
ST

M
DF

M
-C

NN
DF

M
-L

EN
ET

5
DF

M
-L

ST
M

DM
-C

NN
DM

-L
EN

ET
5

DM
-L

ST
M

Workloads

0

10

20

30

40

50

60

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
(%

)

(a) Training time

DD
F-

KM
DD

F-
BK

M
DD

F-
DT

DD
F-

M
LP

DD
F-

BL
R

DD
F-

LR
DD

F-
RF

R
DD

F-
GB

T
DG

S-
KM

DG
S-

BK
M

DG
S-

GM
M

DG
S-

DT
DG

S-
M

LP
DG

S-
BL

R
DG

S-
LR

DG
S-

RF
R

DG
S-

GB
T

DH
G-

KM
DH

G-
BK

M
DH

G-
GM

M
DH

G-
DT

DH
G-

M
LP

DH
G-

BL
R

DH
G-

LR
DH

G-
RF

R
DH

G-
GB

T
DN

-C
NN

DN
-G

RU
DN

-L
ST

M
DF

M
-C

NN
DF

M
-L

EN
ET

5
DF

M
-L

ST
M

DM
-C

NN
DM

-L
EN

ET
5

DM
-L

ST
M

Workloads

0

10

20

30

40

50

60

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
(%

)

(b) Inference throughput
Figure 4: Coefficient of performance variation when varying EXEC_NUM and EXEC_COR

ComPAS’2021 : Parallélisme/ Architecture/ Système / Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

DHG-KM
DHG-MLP

DHG-BLR
DHG-GBT

Workloads

0

10

20

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
(%

)

(a) Training time:
LOC_WAIT

DDF-RFR
DDF-GBT

DGS-RFR
DGS-GBT

Workloads

0

10

20

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
(%

)

(b) Training time:
SHF_COMPR

DDF-BLR
DDF-GBT

DGS-KM
DGS-LR

Workloads

0

10

20

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
(%

)

(c) Infer. throughput:
EXEC_MEM

DDF-FRF

DDF-GBT

Workloads

0

20

40

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
(%

)

(d) R2: EXEC_NUM and
EXEC_COR

Figure 5: Coefficient of variation for different performance measures
the best split segment for features, a typical approach is to sample each partition of the dataset,
attempting to reduce data transmission operations. On the other hand, when dealing with
many features, splitting usually affects the accuracy of the model, and data partitioning comes
with a cost. Consequently, for such datasets and learning methods, the impact of paralleliza-
tion on model quality should be carefully analyzed, and platform configuration and the model
hyperparameters should be jointly configured.

5. Related Work

While there are numerous studies on the usage and optimisation of Spark, few studies tackle
the performance of ML workloads. SparkBench [19] is a benchmarking suite in which three ML
methods are considered. It characterizes the workloads in terms of data access patterns, job ex-
ecution time and system resources consumption and briefly explores the variation of one Spark
parameter. In [23], the authors compare ML performances between Spark and Hadoop [1] con-
sidering resource consumption and variations of dataset sizes and Spark cluster size. However,
the work focuses only on the KNN [8] method working on a single dataset. Some characteriza-
tion works describe their traces and share them with the community. The authors of [32] trace
the execution of DL workloads using TensorFlow. They use metrics on job scheduling, resource
allocation, DL computation features and data I/O. However, they focus on DL methods, while
we analyze both ML and DL methods. The authors of [16] have published two-month traces
about resource consumption, job scheduling and workload results. They focus on GPU cluster
resource usage and scheduling issues of DL workloads.

6. Key Takeaways

From our DML/DDL workload characterization, we derive the following key takeaways:
(1) Most of DML and DDL workloads significantly benefit from parallelization. For DML/DDL
service operators, we report how platform parameters related to parallel computing, should be
systematically considered to efficiently handle model training requests.
(2) Shuffle and scheduling related parameters are important in the tuning process. Shuffle
operations usually involve data transfer and memory access. Reducing shuffle data size helps
improving the execution times. Tasks scheduling parameters also show an important impact
on big datasets where tasks are relatively longer due to the big amounts of processed data.
(3) Model accuracy of workloads involving ensemble learning methods on datasets with rel-
atively large numbers of features is impacted by parallel computing tuning. This is counter-
intuitive, since model accuracy is usually impacted by model hyperparameters, and not by
the underlying distributed computing platform parameters. Thus, improved training times
of such workloads thanks to parallel computing can come at the cost of lower model accuracy.
This trade-off should be carefully analyzed by data scientists and DML/DDL service operators.

As future work, we intend to explore the impact of the joint configuration of platform parame-
ters and hyper-parameters on DML/DDL workloads execution time and model quality.

ComPAS’2021 : Parallélisme/ Architecture/ Système / Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

Bibliography

1. Apache Hadoop. – https://hadoop.apache.org/. Accessed: 2021-04-09.
2. News 20 dataset. – http://qwone.com/~jason/20Newsgroups. Accessed: 2021-04-

09.
3. Abadi (M.), Barham (P.), Chen (J.), Chen (Z.), Davis (A.), Dean (J.), Devin (M.), Ghemawat

(S.), Irving (G.), Isard (M.), Kudlur (M.), Levenberg (J.), Monga (R.), Moore (S.), Murray
(D. G.), Steiner (B.), Tucker (P.), Vasudevan (V.), Warden (P.), Wicke (M.), Yu (Y.) et Zheng
(X.). – Tensorflow: A system for large-scale machine learning. – In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation, Osdi’16, Osdi’16, pp.
265–283, Berkeley, CA, USA, 2016. USENIX Association.

4. Aher (S. B.) et Lobo (L.). – Combination of machine learning algorithms for recommen-
dation of courses in e-learning system based on historical data. Knowledge-Based Systems,
vol. 51, 2013, pp. 1–14.

5. Apache Spark. – Spark configuration, 2021.
6. Baldi (P.), Sadowski (P.) et Whiteson (D.). – Searching for exotic particles in high-energy

physics with deep learning. Nature Communications, vol. 5, nC, juillet 2014.
7. Calzarossa (M. C.), Massari (L.) et Tessera (D.). – Workload characterization: A survey

revisited. ACM Computing Surveys (CSUR), vol. 48, n3, 2016, pp. 1–43.
8. Cover (T.) et Hart (P.). – Nearest neighbor pattern classification. IEEE transactions on infor-

mation theory, vol. 13, n1, 1967, pp. 21–27.
9. Dai (J. J.), Wang (Y.), Qiu (X.), Ding (D.), Zhang (Y.), Wang (Y.), Jia (X.), Zhang (C. L.),

Wan (Y.), Li (Z.) et al. – Bigdl: A distributed deep learning framework for big data. – In
Proceedings of the ACM Symposium on Cloud Computing, pp. 50–60, 2019.

10. Deng (L.). – The mnist database of handwritten digit images for machine learning research
[best of the web]. IEEE Signal Processing Magazine, vol. 29, n6, 2012, pp. 141–142.

11. Deng (L.) et Yu (D.). – Deep learning: methods and applications. Foundations and trends in
signal processing, vol. 7, n3–4, 2014, pp. 197–387.

12. Diaz-Chito (K.), Hernández-Sabaté (A.) et López (A. M.). – A reduced feature set for driver
head pose estimation. Appl. Soft Comput., vol. 45, nC, août 2016, pp. 98–107.

13. Djebrouni (Y.), Bouchenak (S.) et Benabdeslem (K.). – Collecting and characterizing dis-
tributed machine learning workloads. – In Conférence d’informatique en Parallélisme, Archi-
tecture et Système, 2020.

14. Greff (K.), Srivastava (R. K.), Koutník (J.), Steunebrink (B. R.) et Schmidhuber (J.). – Lstm:
A search space odyssey. IEEE transactions on neural networks and learning systems, vol. 28, n
10, 2016, pp. 2222–2232.

15. Hochreiter (S.) et Schmidhuber (J.). – Long short-term memory. Neural computation, vol. 9, n
8, 1997, pp. 1735–1780.

16. Jeon (M.), Venkataraman (S.), Phanishayee (A.), Qian (u.), Xiao (W.) et Yang (F.). – Analy-
sis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads. – In Proceed-
ings of the 2019 USENIX Conference on Usenix Annual Technical Conference, USENIX ATC ’19,
USENIX ATC ’19, p. 947–960, USA, 2019. USENIX Association.

17. Kourou (K.), Exarchos (T. P.), Exarchos (K. P.), Karamouzis (M. V.) et Fotiadis (D. I.). – Ma-
chine learning applications in cancer prognosis and prediction. Computational and structural
biotechnology journal, vol. 13, 2015, pp. 8–17.

18. LeCun (Y.) et al. – Lenet-5, convolutional neural networks. URL: http://yann. lecun.
com/exdb/lenet, vol. 20, n5, 2015, p. 14.

19. Li (M.), Tan (J.), Wang (Y.), Zhang (L.) et Salapura (V.). – Sparkbench: a comprehensive

https://hadoop.apache.org/
http://qwone.com/~jason/20Newsgroups

ComPAS’2021 : Parallélisme/ Architecture/ Système / Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

benchmarking suite for in memory data analytic platform spark. – In Proceedings of the 12th
ACM international conference on computing frontiers, pp. 1–8, 2015.

20. Likas (A.), Vlassis (N.) et Verbeek (J. J.). – The global k-means clustering algorithm. Pattern
recognition, vol. 36, n2, 2003, pp. 451–461.

21. McCallumzy (A.), Nigamy (K.), Renniey (J.) et Seymorey (K.). – Building domain-specific
search engines with machine learning techniques. – In Proceedings of the AAAI Spring Sym-
posium on Intelligent Agents in Cyberspace. Citeseer, pp. 28–39. Citeseer, 1999.

22. Meng (X.), Bradley (J.), Yavuz (B.), Sparks (E.), Venkataraman (S.), Liu (D.), Freeman (J.),
Tsai (D.), Amde (M.), Owen (S.) et al. – Mllib: Machine learning in apache spark. The
Journal of Machine Learning Research, vol. 17, n1, 2016, pp. 1235–1241.

23. Mostafaeipour (A.), Jahangard (A.), Ahmadi (M.) et Arockia Dhanraj (J.). – Investigating
the performance of Hadoop and Spark platforms on machine learning algorithms. The Jour-
nal of Supercomputing, vol. 77, 02 2021.

24. Nelder (J. A.) et Wedderburn (R. W.). – Generalized linear models. Journal of the Royal
Statistical Society: Series A (General), vol. 135, n3, 1972, pp. 370–384.

25. Quinlan (J. R.). – Induction of decision trees. Machine learning, vol. 1, n1, 1986, pp. 81–106.
26. Rish (I.) et al. – An empirical study of the naive bayes classifier. – In IJCAI 2001 workshop on

empirical methods in artificial intelligencevolume 3, pp. 41–46, 2001.
27. Sainath (T. N.), Mohamed (A.-r.), Kingsbury (B.) et Ramabhadran (B.). – Deep convolu-

tional neural networks for lvcsr. – In 2013 IEEE international conference on acoustics, speech
and signal processing, pp. 8614–8618. IEEE, 2013.

28. Shvachko (K.), Kuang (H.), Radia (S.) et Chansler (R.). – The hadoop distributed file system.
– In 2010 IEEE 26th symposium on mass storage systems and technologies (MSST), pp. 1–10. Ieee,
2010.

29. Spark (A.). – Apache spark. Retrieved January, vol. 17, 2018, p. 2018.
30. The Apache Software Foundation. – Hadoop commands guide, 2021.
31. Vergara (A.), Vembu (S.), Ayhan (T.), Ryan (M. A.), Homer (M. L.) et Huerta (R.). – Chemical

gas sensor drift compensation using classifier ensembles. Sensors and Actuators B: Chemical,
vol. 166-167, mai 2012, pp. 320–329.

32. Wang (M.), Meng (C.), Long (G.), Wu (C.), Yang (J.), Lin (W.) et Jia (Y.). – Characterizing
deep learning training workloads on alibaba-pai. – In IEEE International Symposium on
Workload Characterization, IISWC 2019, Orlando, FL, USA, November 3-5, 2019, pp. 189–202.
IEEE, 2019.

33. Xiao (H.), Rasul (K.) et Vollgraf (R.). – Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

34. Zhang (Z.), Robinson (D.) et Tepper (J.). – Detecting hate speech on twitter using a
convolution-gru based deep neural network. – In European semantic web conference, pp.
745–760. Springer, 2018.

ComPAS’2021 : Parallélisme/ Architecture/ Système / Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

7. Appendix

Dataset Description #Records #Features Size

DDF (Driveface)
Images sequences of sub-
jects while driving in real
scenarios [12].

606 6 400 19.9 MB

DGS (Drift)

Measurements from 16
chemical sensors utilized
in a discrimination task
of 6 gases at various lev-
els of concentrations [31].

13 910 128 40.3 MB

DHG (Higgs)

A collection of kinematic
measures to detect signal
processes which produce
Higgs bosons [6].

11 000 000 28 7.5 GB

DN (News20)
Messages collected from
20 different newsgroups
[2].

20 000 2 15 MB

DFM (fashion MNIST)

28x28 grayscale images
of fashion articles, asso-
ciated with labels from
10 classes [33].

70 000 784 31 MB

DM (MNIST)
Handwritten digit im-
ages for ML research
[10].

70 000 784 12 MB

Table 1: Datasets

Library Category ML / DL Method

MLlib

Clustering
KM (K-Means)
BKM (Bisecting K-Means)
GMM (Gaussian Mixture
Model)

Classification
DT (Decision Tree)
MLP (Multilayer Perceptron)
BLR (Binomial Logistic Re-
gression)

Regression
LR (Linear Regression)
RFR (Random Forest Regres-
sor)
GBT (Gradient-Boosted Tree)

BigDL Classification

CNN (Convolutional Neural
Network)
GRU (Gated Recurrent Unit)
LENET5 (Convolutional Neu-
ral Network)
LSTM (Long Short-Term
Memory)

Table 2: Learning Methods

Application-level metrics Description

Training accuracy Percentage of predicted values that match the actual values in the train-
ing dataset.

Inference accuracy Percentage of predicted values that match the actual values in the testing
dataset.

Inference throughput Number of records inferred by unit of time.

Silouhette Evaluation metric for clustering methods. It measures how similar an
object is to its own cluster.

R2 Score TProportion of the variance in the dependent variable that is predictable
from the independent variable(s).

MAE (Mean Absolute Error) Average of the differences between original values and predicted values.

MSE (Mean Square Error) Average of the square of the difference between the original values and
the predicted values.

RMSE (Root Mean Square Error) The square root of MSE.
F1 Score Harmonic mean between precision and recall.

Table 3: Application-level Metrics

Platform-level metrics Description
Task duration Total elapsed time.
Task deserialization time Elapsed time spent to deserialize this task.
Garbage collection time Total JVM garbage collection time.
Result Serialization Time Elapsed time spent serializing the task result.

Shuffle wait time Time that tasks spent blocked waiting for shuffle data to be read from
remote machines.

Shuffle read size Total shuffle bytes read, includes both data read locally and data read
from remote executors.

Shuffle write size Total shuffle bytes written.

Table 4: Platform-level Metrics

ComPAS’2021 : Parallélisme/ Architecture/ Système / Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

Infrastructure-level metrics Description
CPU usage Percentage of used CPU.
Memory usage Percentage of memory utilization
Network traffic Amount of bytes read from and written to the network.
Disk usage Amount of bytes read from and written to disk.
Energy consumption Trapezoidal integral of power measurements collected per second.

Table 5: Infrastructure-level Metrics – From /proc/stat, /proc/meminfo, etc.

Configuration
aspect

Examples of Spark platform pa-
rameter Description Values (default value in

brackets)

Parallel
computing

EXEC_NUM (executor.instances) Number of executors MLlib: 1, 2, 3, 5, (4), 6, 7, 8;
BigDL: 1, 2, (4)

EXEC_COR (executor.cores) Number of cores per execu-
tor

MLlib: 1, 2, 3, 5, (4), 6, 7, 8;
BigDL: 1, 2, 4, (8)

Memory
management

EXEC_MEM (executor.memory) Amount of memory per ex-
ecutor

MLlib: (5 GB), 10 GB, 15 GB,
20 GB, 25 GB, 30 GB., BigDL:
1 GB, 4 GB, 8 GB, 16 GB,
24 GB, (32 GB)

MAX_SIZ_INF (re-
ducer.maxSizeInFlight)

Maximum size of map out-
puts to fetch simultaneously
from reduce tasks

12 MB, (48 MB), 72 MB,
128 MB, 256 MB, 512 MB

PD_BUFS (shuf-
fle.io.preferDirectBufs)

Must use off-heap buffers
to reduce garbage collection
during shuffle and cache
block transfer

(true), false

STR_MEM (stor-
age.memoryFraction)

Fraction of Java heap to use
for Spark’s memory cache 10%, 20%, 40%, (60%), 80%

Data
compression

COMP_CODEC
(io.compression.codec)

Codec to compress internal
data such as RDD partitions,
shuffle outputs, etc.

(snappy), lz4

RDD_COMP (rdd.compress) Must to compress serialized
RDD partitions true, (false)

SHF_SPL_COMP (shuf-
fle.spill.compress)

Must compress data spilled
during shuffles (true), false

Job
scheduling

LOC_WAIT (locality.wait)

How long to wait to launch
a data-local task before giv-
ing up and launching it on a
less-local node

10ms, 100ms, 500ms, 1s, (3s),
10s

Serialization SER (serializer) Data serialization mecha-
nism (Java), Kryo

Shuffle SHF_COMPR (shuffle.compress) Must compress map output
files (true), false

SFL_BUF (shuffle.file.buffer) Size of in-memory buffer of
shuffle file output stream

8 KB, (32 KB), 64 KB, 128 KB,
256 KB, 512 KB

Table 6: Considered Spark Parameters

	Introduction
	Background
	DML and DDL Workload Traces and Setup
	Characterization of DML and DDL Workloads
	Related Work
	Key Takeaways
	Appendix

