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CONVERGENT ALGORITHMS FOR A CLASS OF CONVEX SEMI-INFINITE
PROGRAMS*

MARTINA CERULLIT, ANTOINE OUSTRY%#, CLAUDIA D’AMBROSIO$, AND LEO LIBERTI?

Abstract. We focus on convex semi-infinite programs with an infinite number of quadratically parametrized
constraints. In our setting, the lower-level problem, i.e., the problem of finding the constraint that is the most
violated by a given point, is not necessarily convex. We propose a new convergent approach to solve these semi-
infinite programs. Based on the Lagrangian dual of the lower-level problem, we derive a convex and tractable
restriction of the considered semi-infinite programming problem. We state sufficient conditions for the optimality of
this restriction. If these conditions are not met, the restriction is enlarged through an Inner-Outer Approximation
Algorithm, and its value converges to the value of the original semi-infinite problem. This new algorithmic approach
is compared with the classical Cutting Plane algorithm. We also propose a new rate of convergence of the Cutting
Plane algorithm, directly related to the iteration index, derived when the objective function is strongly convex, and
under a strict feasibility assumption. We successfully test the two methods on two applications: the constrained
quadratic regression and a zero-sum game with cubic payoff. Our results are compared to those obtained using the
approach proposed in [29], as well as using the classical relaxation approach based on the KKT conditions of the
lower-level problem.

Key words. Semi-infinite programming, Semidefinite programming, Cutting Plane, Convergent algorithms

AMS subject classifications. 90C34, 90C22, 90C46

1. Introduction. A Semi-Infinite Programming (SIP) problem is an optimization problem
with a finite number of decision variables, and an infinite number of parametrized constraints. In
this paper we consider a standard SIP problem, for which the parameter set is independent from
the variables, as opposed to the generalized SIP problem, where such set is allowed to depend on
the decision variables. We further assume that the SIP problem is convex with respect to (w.r.t.)
the decision variable x, and has infinitely many constraints which are quadratic and possibly non-
convex w.r.t. the parameter y. More precisely, we assume that the objective function F(zx) is
continuous and convex in x, where z is the array of decision variables, constrained to be in the
feasible set X C R™. The constraint functions are convex in x and possibly non-convex quadratic
in the parameter y. The parameter set is the polytope

F={yeR": Ay <b}={yeR":Vj<r, a;-'—ygbj}7
where r is an integer, A is a r X n matrix, a; is the j-th row of the matrix A, and b a r-dimensional

vector. As already introduced, the set F does not depend on z, i.e., the standard SIP problem is
considered. The Mathematical Programming (MP) formulation we study is as follows:

min  F(x)

TEX

st h(@) <5y Q@)y +a(x)Ty VyeF,

where F'(x) and h(x) are continuous convex functions in the variables x, and both the n x n matrix

Q(z) and the n-dimensional vector ¢(z) depend linearly on x. We remark that —h(x) may be
interpreted as the constant term of the quadratic function in y, in the right hand side. Being 0,

(SIP)
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2 M. CERULLI, A. OUSTRY, C. D’AMBROSIO, L. LIBERTI

the n x n null matrix, we further introduce the following matrices

« Q) =1 (Q(f)q q(gc)) |

q(z
_ 1 ( Q) q@) ) _ (0, 0
d g(l‘) -2 (q(l‘)T 72h(x) - Q(x) 0 h(m) )
0, aj
-1 n J :
..A]—2<a;r O), V{FE{L...,T},
and the set P = ¢ M(y) = yny Z{) sy e Fy c ROEDX(+D) that we will use in the paper to

obtain different formulations of problem (SIP). Here are the assumptions we make on (SIP).
ASSUMPTION 1. The objective function F(x) is conver and J-Lipschitz continuous on X.
ASSUMPTION 2. X is convex and compact.
ASSUMPTION 3. The functions q(x) and Q(z) are linear, i.e., the function Q(x) is linear.
ASSUMPTION 4. The function h(x) is convex and Lipschitz continuous on X .

ASSUMPTION 5. The set F is compact, and a scalar p > 0 is known such that the set F is
included in the centered la-ball with radius p.

Assumptions 1, 2, 3 and 4 guarantee that the SIP problem is convex.

In the following, given a formulation (P) of an optimization problem, we denote its optimal
value by val(P), and we will use the term reformulation to describe a formulation having the same
set of optima of (P), i.e., what is defined as ezact reformulation in [26, Definition 10]. With the
term relaxation, we will refer to a formulation having a feasible set which contains the feasible set
of (P) [26, Definition 13]. Instead, we will use the term restriction when referring to a formulation
having a feasible set which is included in the feasible set of (P). Finally, a formulation (P) is defined
finite when it has a finite number of variables and constraints.

As detailed in [38], the key to the theoretical as well as algorithmic handling of SIP problems
lies in their bilevel structure. Indeed, the set of infinitely many parametrized constraints (SIP) is
equivalent to 0 < ¢(x), where ¢(z) = min,ecr g(x,y) is the so-called value function. This allows
writing the constraints in problem (SIP) as the lower-level problem of a bilevel program, as long
as g(z,y) = %yTQ(x)y +q(z) Ty — h(x). In contrast to the upper-level problem which consists in
minimizing F'(z) over the feasible set {x € X | 0 < ¢(x)}, in the lower-level problem z plays the
role of an m-dimensional parameter, and y is the decision variable. Given this equivalence, in the
following, we will refer to the lower level and the upper level of the bilevel reformulation of (SIP)
as “the lower level” and “the upper level” of (SIP), respectively. Whereas the upper level of (SIP)
is convex under the assumptions above, the lower level is not necessarily convex w.r.t. y.

Our first contribution is a new convergence rate of a classical Cutting Plane (CP) algorithm
[8, 12, 22, 43] solving (SIP). While such algorithm and its convergence are well known in SIP, we de-
rive a new convergence rate in terms of the number of iterations, under the additional assumptions
that F(x) is strongly convex and that there exists an upper-level solution strictly satisfying the
constraint involving the lower-level problem. As a second contribution, we propose a new approach
to solve problem (SIP). A tractable restriction with a finite number of constraints is obtained by
dualizing, using Lagrangian duality and Semidefinite Programming (SDP), the problem glelil’/l g(z,y),

i.e., the problem of finding the most violated constraint among the infinite number of constraints
of the corresponding SIP problem. If g(x,y) is convex in y, i.e., if Q(x) is positive semidefinite
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CONVERGENT ALGORITHMS FOR A CLASS OF CONVEX SEMI-INFINITE PROGRAMS 3

(PSD), the obtained formulation is not a restriction, but a reformulation of (SIP). The dualiza-
tion technique has been used in the SIP literature in [10, 25], and inspired by approaches from
robust optimization [4, Section 1.3-1.4]. However, SDP together with Lagrangian duality has never
been used to dualize a quadratic programming lower-level problem to the best of our knowledge.
Moreover, the finite single-level formulation we obtain with this approach is convex, contrary to
the pre-existing methods in [10, 25]. When g(z,y) is not convex in y, we still have convergence
guarantees. Indeed, we introduce a new Inner-Outer Approximation (IOA) algorithm, that pro-
gressively enlarges the restriction set so as to generate a sequence of feasible points the values of
which converge to the value of (SIP).

The rest of the paper is organized as follows. We review the relevant literature in Section 2. A
CP algorithm for solving formulation (SIP) is presented in Section 3, and a new rate of convergence
is derived in Subsection 3.1. A finite restriction/reformulation of problem (SIP) is introduced and
discussed in Section 4, in order to present a new convergent algorithm, the IOA algorithm, in
Subsection 4.5. Applications are introduced in Section 5. Numerical results, obtained by applying
both solution approaches to these applications, are presented in Section 6: our results, compared
to those obtained by solving our formulations with the algorithm proposed in [29], illustrate the
interest of the proposed method. Finally, Section 7 concludes the paper.

2. Literature review. Despite the difficulty in solving SIP problems for their infinitely many
constraints, many algorithms have been proposed in literature [11, 19, 31]. Most of them consist in
generating a sequence of finite problems, with different techniques.

The discretization approach [18, 30, 41] consists in replacing the infinite constraint parameter set
by a finite subset which samples it finely: this leads to a relaxation of the original problem, the value
of which converges towards the value of the original problem when the mesh gets finer. This method
is commonly used for parameters sets of low dimensions, but faces the curse of dimensionality when
the number of parameters increases. Indeed, the cost per iteration increases drastically as the size
of the considered finite subset grows. When the considered finite subset of constraints is increased
at each iteration by adding the most violated constraint, such discretization method for convex
problems corresponds to the Kelley algorithm [22], also known as cutting plane algorithm.

Reduction based methods [19, 31], under some strong assumptions, replace the infinitely many
SIP constraints by finitely many constraints which locally are sufficient to describe the SIP feasible
set. In order to do this, all the local minima of the lower-level problem must be computed, and this
is the bottleneck of this type of method.

Interior point methods for solving linear or convex SIP problems are suggested in [35, 37], and
for solving SIP problems with convex lower level in [40]. In [21], proximal penalty approaches have
been proposed, and a deletion procedure of inactive constraints is suggested.

A further class of methods is the so-called exchange method family [17, 31, 24, 47]. The notion
“exchange algorithm” refers to the fact that in every step some new constraints are added and
some of the old constraints may be deleted, i.e., an exchange of constraints takes place. When no
constraint is deleted and only one new constraint is added at each iteration, the exchange method
can be seen as a CP algorithm [22]. A generalized CP algorithm designed to solve SIP problems
is described in [8], and its convergence is established in the general case of continuous functions
and compact feasible set. In [43], a CP algorithm for solving a convex SIP problems with a strictly
convex quadratic objective function is presented. The relaxed CP approach for solving convex
quadratic SIP problems is studied in [12]. At each iteration, an approximate solution is computed,
using “inexact” minimizers for generating new cuts. Extending the central CP algorithm proposed
in [15] for solving linear SIP problems, a central CP method is proposed in [23] for convex SIP
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4 M. CERULLI, A. OUSTRY, C. D’AMBROSIO, L. LIBERTI

problems, ensuring a linear rate of convergence w.r.t. the values of the objective function. In [6],
an acceleration procedure of the central CP algorithm is proposed for linear SIP programs and a
faster convergence rate is obtained.

Some methods overestimate the optimal objective value of the lower level by solving a restriction
of the SIP problem. These restrictions are such that they are finite, or at least easy to reformulate
to finite problems. In [7], the first deterministic algorithm for the global optimization of non-convex
SIP problems is proposed. The upper-level variables are decided by a branch-and-bound algorithm.
The lower bound is given by a discretization-based relaxation. The upper bound is obtained via
natural interval extension underestimating the value of the lower-level problem. This yields a
restriction of the SIP problem, the feasible points of which are also feasible for the SIP problem
(and, thus, provide an upper bound to the optimal objective value). The key assumption for a finite
convergence of this algorithm to an approximate optimal solution is the assumptions that there are
Slater points in the SIP problem. Later on, under the same assumption and assuming continuity
of the involved functions, a method to generate feasible points of the SIP problem is proposed
in [29], solving restrictions of the discretization-based relaxations. A converging upper bounding
procedure similar to the strategy proposed by [8] is used, and combined with an outer approximation
of the feasible set. This generates infeasible iterates giving rigorous lower bounds to the optimal
objective value. Recently, a branch-and-bound algorithm for the solution of SIP problems with a
box-constrained lower level was proposed in [28]. In [13, 39], a convexification method is proposed
which adaptively constructs convex relaxations of the lower-level problem, replaces the relaxed
lower-level problems equivalently by their KKT conditions, and solves the resulting mathematical
restrictions with complementarity constraints. This approximation produces feasible solutions for
the original problem, under the continuity assumption and the existence of a Slater point in the
SIP problem.

Another class of algorithms for SIP is based on Lagrangian penalty functions and Trust-Region
methods [9, 42]. However, in the context of problem (SIP), as for the reduction based methods,
they would require to compute all the local minima of problem Lrg}r/l g(z,y). In the case where g is

not convex in y, the enumeration of all local minima is intractable even for medium-scale instances.

Lower-level duality has been already used in [10, 25], leveraging on approaches from robust
optimization [5]. However, contrary to what is proposed in this paper, the existing dual approaches
lead to non-convex problems, and do not use SDP. In [10], several strategies are used to reformulate
generalized SIP problems into non-convex finite minimization problems by exploiting Wolfe duality
for the convex lower-level problems. In [25], the authors tackle generalized SIP problems where
the convex quadratic lower-level problem has a fixed Hessian matrix @), which does not depend on
the variable x. Instead, in the present paper, we consider standard SIP problems with a linear
function Q(z) for the lower-level Hessian (as stated in Assumption 3). Back to [25], the authors use
the Lagrangian dual of the lower level to obtain a non-convex restriction with a finite number of
variables and constraints. In the latter problem, the convex envelopes of the non-convex functions
in the objective and constraints can be easily computed. As a consequence, an approximate solution
of the original problem can be obtained by solving finitely many convex problems.

In this paper, we prove a new convergence rate for the classical CP algorithm [22, 32] to solve
(SIP) in the case where the objective is strongly convex, and under a strict feasibility condition.
Our convergence rate is directly related to the iteration index k, which is something new w.r.t.
what is usually proved in SIP literature, where the linear rate of convergence is related to an index
that is independent of the iteration k (see [31, Theorem 4.3]). Furthermore, we exploit SDP and
Lagrangian duality (we use the so-called lower-level dualization approach) to obtain a convex single-
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CONVERGENT ALGORITHMS FOR A CLASS OF CONVEX SEMI-INFINITE PROGRAMS 5

level restriction of problem (SIP). If the lower level is convex in y for any value of x, the obtained
formulation is a reformulation of (SIP). We further prove a sufficient condition on an optimal
solution T of this single-level formulation, which can be checked a posteriori to state that T is an
optimal solution of problem (SIP). We finally present a new algorithm based on the lower-level
dualization approach, called IOA algorithm, that generates a sequence of feasible solutions of (SIP),
the values of which are proved to converge to val(SIP).

3. Cutting plane algorithm. We detail in this section a CP algorithm for solving formula-
tion (SIP). We also include a proof of convergence for this algorithm in Appendix A, as well as a
convergence rate in Section 3.1, obtained by introducing a dual view of the CP algorithm. While
CP methods and their convergence are broadly known in the SIP literature, the convergence rate
we prove under stricter assumptions is something new w.r.t. the state of the art.

Algorithm 3.1 CP algorithm for (SIP)

Input: € >0
0: Let k< 0.
1: while true do
2: Being y¢ the solution of the lower-level problem solved at iteration ¢, solve the problem
min  F(z)
(Rx) vex 10, 0\T ¢ T,t
st h(z) < 5(y) ' Q2)y" +alx) 'y, €€{0,....k -1}

obtaining a solution z*.
k

Compute an optimal solution y* of the lower-level problem for z = z*.
if h(2*) < 1(5*) T Q(a")y* + a(a*) Ty* + ¢ then
Return (2%, y*).
else
k+—k+1
end if
end while

© P NP Ew

At the first iteration of Algorithm 3.1, the relaxed problem (Rp) is given by mingcx F(x),

which considers minimizing the objective function without any constraint parametrized by y. This
problem has a finite value according to the compactness of set X'. At each iteration, Algorithm 3.1
defines the feasible set of the upper-level problem by means of cuts in the variables z. The resulting
(Ry) problems are relaxations of (SIP), and their feasible sets are decreasing in the sense of the
inclusion, bounded because included in the feasible set of Ry, and closed as intersections of closed
sets. Thus, each problem (R}) admits a minimum. Moreover, the sequence F(x*) is increasing,
and F(x*) < val(SIP) holds for any k. At step 3, the problem solved to find a new cut is
(Pyx) Jrelﬂig{%yTQ(x’“)y +q(a*) Ty | Ay <b}.
This problem is a quadratic program that is either convex or non-convex depending on the positive
semi-definiteness of the matrix Q(z*). In order to find global optima of (P,+), regardless of the
definiteness of Q(z*) (in turn depending on the value of z*), a global optimization algorithm should
be employed. Step 5 returns the optimal solution of formulation (SIP). The reader is referred to
Appendix A for a proof of the convergence of this CP algorithm.

This manuscript is for review purposes only.



214
215
216
217
218
219
220

221

6 M. CERULLI, A. OUSTRY, C. D’AMBROSIO, L. LIBERTI

3.1. A convergence rate for the CP algorithm. In this section, we give a convergence
rate of the CP Algorithm 3.1, under two additional assumptions on the SIP problem. The proofs
of all the lemmata introduced in this section are in Appendix B.

First of all, using the notation introduced in Section 1, we remark that (SIP) can be formulated

. { min  F(x)
(SIP") T€EX
st. 0<(G(x),Y), VY € P.

We define K = cone(P) € R(*T1*(n+1) a5 the convex cone generated by P, and L(x,Y) = F(z) —
(G(x),Y) as the Lagrangian function defined over X x K. We remark that, Vo € X, the following
holds:

sup L(z,Y) =

{ F(z) if0<(G(z),Y), VY eP
YeK

400 else.

Hence, problem (SIP’) can be expressed as the saddle-point problem mi;l sup L(z,Y). At this
TeEX yeK
point, we make the following further assumption.

ASSUMPTION 6. The objective function F(x) is p-strongly-convez, i.e., F(x)—4||z||* is convex.

Assumption 6 is quite strong, but we remark that, if the original objective function is just convex, it
is always possible to enforce this assumption by “regularizing” the SIP problem adding a {5 penalty
to the primal objective function, i.e., minimizing F(z) 4+ 4| z[|* instead of F(z). The Lagrangian
function L£(z,Y) is linear (thus, continuous and concave) w.r.t. Y for all x € X and is continuous
and convex w.r.t. x for all Y € IC. The convexity w.r.t. x follows from Assumptions 1-4 and from
the fact that Y, 41,41 > 0 for any Y € K. Since the set X is convex (Assumption 2) and the set
K is convex too, Sion’s minimax theorem [36] is applicable and the following holds:

min sup L(z,Y) = sup min L(x,Y).

zeX Yel% ( ) Ye)% TEX ( )
Defining the dual function 8(Y) = mi;(l L(z,Y), we know that

EAS

(3.1) val(SIP") = sup 0(Y).
Yek

Notice that the dual function 6(Y) is concave, as a minimum of linear functions in Y. As a

direct application of [20, Corollary VI.4.4.5], the dual function §(Y) is differentiable because of

the uniqueness of arg mig(l L(z,Y), which is, in turn, a consequence of the strong convexity of
xTE

L(x,Y) w.r.t. z that follows from Assumption 6. Moreover, the gradient of the dual function is
VoY) = —G(z), where z = arg mi)rrl L(x,Y). The differentiability of # implies, in particular, that
rE

f is continuous. We prove now that we can replace the sup operator with the max operator in the
formulation (3.1), under the following additional assumption.

ASSUMPTION 7. There exists & € X, s.t., Vy € F, g(2,y) = 3y Q(&)y + q(&) "y — h(2) > 0.
LEMMA 3.1. Under Assumption 7, the dual problem of (SIP") has an optimal solution Y*.

Proof. Proof in Appendix B.1. ]
According to this lemma, the dual version of problem (SIP’), thus, reads
(DSIP) max 0(Y).
YeK

This concave maximization problem on the convex cone K is the Lagrangian dual of the prob-
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CONVERGENT ALGORITHMS FOR A CLASS OF CONVEX SEMI-INFINITE PROGRAMS 7

lem (SIP). Indeed, in this section, we are dualizing the whole problem (SIP), contrary to Section 4,
where we will dualize the lower-level problem only. We are now going to see that the CP algorithm
3.1 can be interpreted, from a dual perspective, as a cone constrained Fully Corrective Frank-Wolfe
(FCFW) algorithm [27] solving the dual problem (DSIP). We prove that, during the execution of
the CP Algorithm 3.1, the dual variables obtained when solving the relaxation (Rj) instantiate
the iterates of a FCFW algorithm. In the following, the sets Bj, ¢ R(™tDx(+1) are finite sets,
composed of rank-one matrices of the form M (y).

The initialization of the CP can be seen, in the dual perspective, as the initialization of the
FCFW algorithm, with By + @ and Y° = 0. Then, the generic iteration k is described in Table 1.

Primal perspective: Link Dual perspective:
CP " FCFW
Solve the dual problem on cone(By), i.e.,
Y max  0(Y),
Step 1 stoS:l:lfe(s]Z]i)tésd k Duality ¥ econe(Bi)
r whon @ and store the solution Y*, the associated
2* and the gradient VO(Y*) = —G(a¥)
Solve the lower-level problem (P ) Solve the problem
Lo Tk kT, ) k
Step 2 min 3y Q")y +a(z™) 'y ZF = M(y¥) max (VO(Y*), Z)
and store the solution y* and store the solution Z*
If A(a*) < 5(4%)TQEMY" +a(a*) Tk + e, : If (VO(YF), Z%) <,
Step 3a Return (2, y*) Reformulation Return (Y*, 2%)
If h(z®) > L") T QR )y* + q(a®) Tk + ¢,
. (@) > 27 (.) ( .). . . If (VO(Y'*), ZF) >,
Step 3b | build (Rg4+1) as (Ry) with the additional ineq. | Reformulation set Bys1 By U{Z"}
: k+1 ke .
h(z) < 5(4°) T Q2)y" + q(x) Ty".

Table 1: The k-th iteration of the CP (Algorithm 3.1), and of the FCFW algorithm

The different steps summarized in Table 1 can be explained as follows:

e Step 1: At iteration k, the set Bj represents, from a dual perspective, the set of CPs in

the primal relaxation (Ry). The dual problem of (R}) is in fact a restriction of (DSIP) on
cone(By), which is a polyhedral subcone of K, since the following holds:

oY) = in (F(z) — Y
YGglffka)< ) el | min (F(z) — (G(z),Y))

= mnin yemax | (F(z) = (G(x),Y))

= min{F(z) s.t.0 < (G(x), Z), VZ € By},

which we recognize being the master problem (Rj). The absence of duality gap is, also
in this case, a direct application of Sion’s Theorem [36]. The new dual solution Y* is
obtained solving this restriction of (DSIP) on cone(By), and the primal solution z* =
arg ;Iél;l L(x,Y"*) gives the gradient of the dual function in Y%, ie., VO(Y*) = —G(z%).

e Step 2: Finding the SIP constraint that is the most violated by z* is equivalent to finding
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the furthest point of P in the direction VO(Y*). Indeed, the following holds:

(3.2) o (VO(Y"), Z) = ~min (G(s*), 2)
(3.3) = —;réig{%yTQ(w’“)y +q(z") Ty — h(z")},

and any optimal solution Z* in problem (3.2) has the form Z¥ = M (y*), with * optimal
in problem (3.3).
e Step 3a: The CP feasibility test h(z*) < 1(y*) T Q(z*)y" +q(z*) Ty* + € is equivalent to the
dual optimality condition (VO(Y*), Z*) < ¢, according to the equality VO(Y*) = —G(z*).
e Step 8b: Increasing the set of atoms Byy1 < Bj U {Z*} is the dual of adding the corre-
sponding cut (with y* s.t. Z*¥ = M(y*)) to (R), which creates the relaxation (Rj41).

The following lemma states a property of the iterates Y* for all k.

LEMMA 3.2. For any k € N, (VO(YF), Y*) =0.

Proof. Proof in Appendix B.2. ]
Based on the dual interpretation of the CP algorithm, we are now going to state a convergence rate
for this algorithm. We begin with two technical lemmata.

LEMMA 3.3. It exists L > 0 s.t. function 0 is L-smooth, i.e., for allY)Y' € K,

IVO(Y) = VO(Y')|l2 < LIIY = Y2,
which means that function V0 is L-Lipschitz continuous.

Proof. Proof in Appendix B.3. ]
The following lemma is a consequence of the L-smoothness of 6.

LEMMA 3.4. Being L the smoothness constant associated with 6, for any Y, Z € IC and v > 0,
_LIZ)? »

2
Proof. Proof in Appendix B.4. ]

We define the constant T' = max |Z||?. According to Lemma 3.1, (DSIP) admits an optimal
€

0Y +72) 2 0(Y) +(VO(Y), Z)

solution Y*. We define 7 as the last element of the optimal dual solution Y*, ie., 7 =Y, 14.
This scalar plays a central role in the convergence rate analysis, conducted in the following theorem.

THEOREM 3.5. Under Assumptions 1-7, if Algorithm 3.1 executes iteration k € N, then
2LT72

k+2’
where &, is the objective error val(SIP) — F(z*) > 0.

Proof. We emphasize that at each iteration k, (Y*) = F(z*), thus 6, may also be seen as the
optimality gap in the dual problem (DSIP) (i.e., §x = val(SIP) — F(z*) = (Y*) —0(Y'*)). We prove
the inequality (3.4) by induction.

Base case: k = 0. Since 6 is concave, we have that o = (Y*) —0(Y?) < (VO(Y?),Y* -Y?) =
(VO(Y9),Y*), with the last equality following from Y? = 0. We remark that (VO(Y?),Y*) =
(VO(YY) —VO(Y*),Y*) since (VO(Y*),Y*) = 0 by optimality of Y*. Hence,

do < (VO(Y®) = VO(Y™),Y™) < [VO(Y?) = VoY) Y],
where the last inequality is the Cauchy-Schwarz inequality. Using the L-Lipschitzness of V6
(Lemma 3.3), we know that |[VO(Y?) — VO(Y*)|| < L|Y® — Y*|| = L||Y*||. Finally, we deduce

(3.4) o <
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that, since Y* € rconv(P), dp < L|Y*|?> < LT
Induction. We suppose that the algorithm runs k + 1 iterations, and that the property (3.4)
is true for k. Using Lemma 3.4, we can compute a lower bound on the progress made during the
iteration of index k + 1:
k+1 k k k o DIZFIP o
oY ") > 0(Y" +~4Z27%) > 0(Y") +(VOY"), Z") — — 7
for any v > 0. Multiplying by —1, adding 8(Y™*) to both left and right hand sides of the above
inequality, and using ||Z¥||?> < T, we have that
LT
57
for any v > 0. We remark that the value T is independent from k. By concavity of 0, 0 = 0(Y™) —
O(Yk) <(VO(Y"),Y*—YF*). By Lemma 3.2, we have (VO(Y*),Y*) = 0. Thus, §; < (VO(Y*),Y*).
As Y5 1 41 = 7, we know that Y* € 7conv(P), and, therefore,

) < k _ k _ N
(3.6) e <, max (VO(Y"). Z) = max (VO(Y"). Z) = r(Vo(Y"), 2.

(3.5) 1 < 6k —(VO(YF), Z%) +

where the last equality follows from the definition of Z*. Combining Egs. (3.5) and (3.6), we obtain
Opp1 < Op —y7 L5 + %'yz, for every v > 0. Factoring and setting 5 = y7~! (for any 7 > 0) yields:

LTT? _,

(3.7) k1 < (1 —7)0k + 3

We have derived a lower bound on the optimality gap at iteration k. Applying Eq. (3.7) with
g = %H, we obtain:

2 LT7? 4 < kE 2LT7? n LTT? 4
k+2 2 (k+2)2 " k+2 k+2 2 (k+2)2
with the second inequality coming from the application of (3.4), which holds for & by the induction
hypothesis. Finally, we deduce that
2LTT* Kk 1 2LTT* k+1 _2LTT*k+2  2LTT*

y1 < (1 Ok +

Opy1 < < =

Sy e TRt S ka2 ke2S hr2 k43 k43

where the third inequality follows from the observation that f—Ié < Z—j_% Hence, the property (3.4)
is true for k 4+ 1 as well. This concludes the proof. ]

We remark that the convergence rate defined in (3.4) is directly related to the iteration index k,
which is something different w.r.t. what is usually proved for existing CP algorithms solving SIP
problems [6, 23, 31], where the rate of convergence is not directly controlled by k.

4. Lower-level dualization approach and Inner-Outer approximation algorithm. A
possible way to deal with the SIP problem (SIP) is what we call lower-level dualization approach,
which consists in replacing the constraint involving the quadratic lower-level problem with one
involving its dual. In particular, we consider a strong dual of an SDP relaxation of the lower-level
problem (or a reformulation if the latter is convex), which is something new w.r.t. the existing SIP
literature. We recall that the lower-level problem of (SIP), for any = € X, reads:

min 3y Q(z)y +q(x) "y
(Pz)

yEeR™
s.t. a;»'—ygbj7 Vie{l,...,r},

where the objective function f(z,y) = 3y Q(x)y + q(z) Ty is convex if Q(x) is PSD. In Subsec-
tion 4.1, we introduce the classical SDP relaxation (reformulation, if the lower level is convex) of the
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lower-level problem regularized by a ball constraint, and, then, in Subsection 4.2, we introduce the
SDP dual of this relaxation (reformulation, resp.). In Subsection 4.3 we present a single-level finite
formulation, (SIPR), obtained applying the so-called lower-level dualization approach to the problem
(SIP). This formulation is a reformulation of (SIP) if Q(z) is PSD for any x € X. Otherwise, an a
posteriori sufficient condition on a computed solution Z of (SIPR) introduced in Subsection 4.4 can
be verified. If Z satisfies such condition, one can state that z is an optimal solution of (SIP). If not,
an IOA algorithm is proposed in Subsection 4.5, which generates a sequence of converging feasible
solutions of (SIPR). The proofs of all the lemmata introduced in this section are in Appendix C.

4.1. SDP relaxation/reformulation of the lower-level problem. In this section, we
reason for any fixed value of the decision vector x € X. We denote by (A, B) = Tr(A" B) the
Froebenius product of two square matrices A and B with same size. Using the matrices Q, and A;
introduced in Section 1, under Assumption 5, the problem

YQR(7LT11£<(7L+1) (Q(:U),Y)
s.t. (A;,Y)
(4.1) Tr(Y)
Yn+1,n+1
Y
rank(Y)

1Y I IAIA

1 1
and, therefore, (Q(x),Y) = f(z,y). The constraint Tr(Y) < 1 + p?, derives from Assumption 5 as
follows:

-
is a reformulation of (P, ), because any feasible matrix Y has the form Y = (y) <y) with y € F,

Iyl < p* & Tr(yy") < p? & Tr(Y) < p? + 1,

being Tr(Y) = Tr(yy ") + 1. This constraint does not play any role at this point, but will be useful
thereafter to come up with a dual SDP problem with no duality gap (see Section 4.2). If we relax
the non-convex constraint rank(Y’) = 1 in problem (4.1), we obtain:

min (9Q(z),Y)
Y eR(n+1) X (n+1)
s.t. (A;,Y) < b vy e{l,...,r}
(SDP.) Tr(Y) < 14 p?
Yn+1,n+1 = 1
Y = 0,

which is a SDP relaxation of (P, ), as proved in the following Lemma 4.1. If Q(z) is PSD, Lemma 4.1

states that (SDP,) has the same optimal objective function value of (P,), the rank-constraint
relaxation notwithstanding.

LEMMA 4.1. Under Assumption 5, val(SDP,) <val(P,). If Q(z) is PSD, val(SDP,) = val(P.).
Proof. Proof in Appendix C.1. O

4.2. Dual SDP problem. As already done in Section 4.1, also in this section we reason for
any fixed value of z € X. Let E be a (n + 1) x (n+ 1) matrix s.t. Ey 4141 = 1 and E;; = 0
everywhere else. Let I,,.1 be the (n + 1) x (n + 1) identity matrix. The following SDP problem

—b"A—a(l+p?) -
AeRl,?é%i,BeR a( +p) B

(DSDP,,) .
s.t. Qx) + > NAj +alni1 + SE =0,
j=1

This manuscript is for review purposes only.
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CONVERGENT ALGORITHMS FOR A CLASS OF CONVEX SEMI-INFINITE PROGRAMS 11

is the dual of problem (SDP, ), as the following lemma states.

LEMMA 4.2. Formulations (SDP,) and (DSDP,) are a primal-dual pair of SDP problems and
strong duality holds, i.e., val(SDP,) = val(DSDP,,).

Proof. Proof in Appendix C.2.

4.3. SDP restriction/reformulation of the SIP problem. Leveraging on Section 4.1
and Section 4.2, which focus on the lower-level problem (P,), its SDP relaxation (SDP,) and the
respective dual problem (DSDP, ), we propose a single-level finite restriction of problem (SIP). It
is a reformulation of (SIP) if @(x) is PSD for any = € X.

THEOREM 4.3. The finite formulation

min  F(z)
x,\a,B
s.t. xeX
(SIPR) h(z) < —b"A—a(l+p?) — B

Q(l’) + Zj NAj+alp1 +BE =0
z eRm7)‘€R:>7 OéGR.’.,ﬁeR,
is a restriction of problem (SIP). If Q(x) is PSD for any x € X, it is a reformulation of (SIP).

Proof. Let Feas(SIP) and Feas(SIPR) be the feasible sets of (SIP) and (SIPR), respectively. Since
(SIP) and (SIPR) share the same objective function, proving for any x € R™ the implication

(4.2) (3XER,, a€Ry, BER: (z,) a,3) € Feas(SIPR)) = x € Feas(SIP),
will prove the first part of the theorem. For any = € X', we have:
(4.3) h(z) <val(SDP,) = h(x) <val(P,) <= x € Feas(SIP),

where the first implication stems from Lemma 4.1, which stipulates that val(SDP,) < val(P,).
Applying Lemma 4.2, we obtain that:

(4.4) h(z) <val(SDP,) <= h(z) < val(DSDP,.).

For any = € X, we have that
h(z) < —bTA—a(l+p?) — 8

(45)  h(z) <val(DSDP,) <= JA€R}, a € Ry, BGR:{ 0(2) + 3 AA; + s 4 BE = 0.
j=1

The equivalence (4.5) just expresses the fact that the maximization problem (DSDP,) has a value
exceeding h(z) if and only if it has a feasible solution with value exceeding h(z). Hence, from (4.4),
and (4.5), the following equivalences hold:

h(z) < =b"A—a(l+p*) -5

(4.6) h(x) <val(SDP,) <= INER], a €R;, BER: { O(z) + 2’": MA; + alnss + BE = 0
j=1

<~ JAeR,, aeRy, BER, (x,)a,p) € Feas(SIPR).

The equivalence (4.6), together with implication (4.3), proves the implication (4.2).
If Q(z) is PSD for any « € X, we can replace the implication (4.3) by the equivalence

(4.7) h(z) <val(SDP,) <= h(z) <val(P,) <= x € Feas(SIP).
This, together with equivalence (4.6), proves that
JXNeRL, acRy, BeR: (2, a,B) € Feas(SIPR) <=z € Feas(SIP),

meaning that (SIPR) is a reformulation of (SIP), since the objective function is the same. |
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Assumptions 1, 2, 3, and 4 imply that the single-level finite problem (SIPR) is convex.

4.4. Optimality of the SDP restriction: a sufficient condition. Theorem 4.3 states
that, if Q(z) > 0 for all z € X, the single-level finite formulation (SIPR) is an exact reformulation
of the problem (SIP). In this section, we show that, even if this a priori condition is not satisfied,
an a posteriori condition on the computed solution  of (SIPR) enables us to state that Z is an

optimal solution of (SIP).

THEOREM 4.4. Let T be a solution of the single-level formulation (SIPR). Assuming that
Q(z) > 0, then T is optimal in (SIP).

Proof. Given a closed convex set S, according to the definition [20, Def. 111.5.1.1], the tangent
cone to S at x (denoted by Tg(z)) is the set of directions u € R™ such that it exists a sequence
(2k)ken in S, and a positive sequence (tx)gen s.t. tp — 0 and x" £ — u. Moreover, according to
the definition [20, Def. I11.5.2.4], the normal cone Ng(z) to S at w is the polar cone of the tangent
cone Ts(z), i.e., Ng(x) = Ts(x)°. We define the closed convex set C' (resp. (') as the feasible set of
formulation (SIP) (resp. (SIPR)).

Since Q(Z) > 0 and det Q(x) is continuous, it exists r > 0 s.t. for all z in the open ball of
radius r with center Z (denoted by B(Z,r)), @Q(x) = 0. According to Lemma 4.1, this means that
for all x in X N B(Z,r), val(P,) = val(SDP,.). Hence, we deduce that, for any x € X N B(Z,r), x is
feasible in (SIP) if and only if x is feasible in (SIPR). In other words, C' N B(z,r) = C N B(Z,r).
According to the aforementioned definition of the tangent and normal cones, we further deduce
that Tc(ff) = Té(f), and Nc(ff) = Tc(i‘)o = Té(f)o = Né(:f)

We know that 7 is optimal in (SIPR), i.e., # € argmin__~ F'(x). Since Fis a finite-valued convex
function, and C is a closed and convex set, Theorem [20, Th. VIIL.1.1.1] holds, and we can deduce
that 0 € OF(Z) + N4 (). Using the equality No(Z) = Np(Z), we have that 0 € OF(Z) 4+ N¢(Z) too.
Applying the same Theorem [20, Th. VII.1.1.1] with the closed and convex constraint set C, we
know that 0 € OF(Z) + N¢(Z) implies that T € arg ggg F(x), meaning that Z is optimal in (SIP).0

If this sufficient condition is satisfied, although solving a problem with a different feasible set,
i.e., restriction (SIPR), a guarantee of global optimality for the original problem (SIP) is obtained.

4.5. Inner-Outer Approximation algorithm. If neither the lower level is convex, nor the
sufficient optimality condition in Theorem 4.4 is satisfied, we do not directly obtain an optimal
solution of the SIP problem by solving (SIPR). Yet, in this section, we present an algorithm based
on the lower-level dualization approach that allows us to construct a sequence of feasible solutions
of the SIP problem, the values of which converge to the SIP optimal value.

For k € N*, we consider two finite sequences z',...,z* ' € X and v1,...,vs—1 € R s.t.
vg = val(Pe). Smce for all £=1,...,k — 1, the inequality

1
Yy eF, 5y QEy+ale) Ty =,
holds, the following SDP problem is still a relaxation of (P,), for any x € X

rerom i (V)
s.t. (A;,Y) < by vie{l,...,r}
(SDP}) <Q(($§)7Y) > 2We {1,...,k—1}
Tr(Y < 1+4p
Yot1n+1 = 1
Y = 0.

For ease of reading, in the following, we denote by Vp(x) = val(P,) the optimal value of prob-
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lem (P,), by Vspp(z) = val(SDP,) the optimal value of problem (SDP,), and by V&, (z) =
val(SDP") the optimal value of problem (SDP”). With this notation v, = val(P,.) = Vp(z).
We underline that the function VSkDP(x) depends on the finite sequence z1,...,x,_1 € X. Being
ne¢ the Lagrangian multiplier associated to the constraint (Q(z*),Y) > vy, the strong SDP dual of
problem (SDP¥) is

k—1
max b A—a(l+p%) =B+ 3 neve
AERY ,a€R 4, =1
(4.8) BER,NERE !
- k=1
s.t. Q(z) + 3 NjAj + alns1 + BE — Y. neQ(z") = 0.
j=1 i=1

Hence, for any & € X, h() < V& (#) holds if and only if Q¥ (&) # 0, where Q%(2) is defined as

k—1
QF(@) =={(\a, B,m) €ERL xRy x RxRE™ + (&) < —b"A—a(l+p%) = B+ > meve A

=1
T k—1
Q(#) + > NAj +alup1 + BE =Y neQa’) = 0}.
j=1 =1

Algorithm 4.1 TOA algorithm for (SIP)

Input: ¢ >0,>0,d>0,e >0,k <0
0

0: Solve the restriction (SIPR), obtaining a solution £°.
1: if Q(2°) = 0 then

2: Return £°.

3: else

4: k+ 1.

5: while true do

6: Choose any i € [u,ﬁ] .

7: Being Y the extended solution of problem (Py¢), solve

min F(z) 4+ F(&) + &z — 2|

z,2,\,a,8,m

st. h(z) < (Q(z),Y* te{l,....,k—1}

(4.9) N
\ o, B,m) € Q8 (&), z,4 € X,

obtaining two solutions ¥, #*.

8: Solve (P,+) obtaining a value vy, a solution y*, and an extended solution Y* = M (y*).
9: if ||z* — 2*|| < d and h(2*) < vj, + € then

10: Return &*.

11: else

12: k< k+1.

13: end if

14: end while

15: end if

Algorithm 4.1 is the pseudocode of the IOA algorithm. It starts by solving the restriction
(SIPR) and checks whether the condition presented in Theorem 4.4 is satisfied or not. If yes, the
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algorithm stops returning the solution which is optimal for both (SIPR) and (SIP). Otherwise,
it performs a sequence of iterations, until the stopping criteria are satisfied, i.e., ||z¥ — 2¥|| < d
and h(z¥) < v, + €. At each iteration the convex optimization problem (4.9) is solved. This
problem is a coupling between the minimization of F' on a relaxed set and the minimization of F'
on a restricted set. Indeed, x belongs to an outer-approximation (relaxation), whereas & belongs
to an inner-approximation (restriction) of SIP feasible set, since # satisfies V&, (2) > h(2). The
minimization of F over these two sets is coupled by a proximal term that penalizes the distance
between x and &. After solving the master problem (4.9), the lower-level problem (P,) is solved for
x = 2¥. The solution of such problem is used to restrict the outer-approximation, and to enlarge
the inner-approximation. We are now going to prove the convergence of Algorithm 4.1. We begin
with two technical lemmata.

LEMMA 4.5. It exists ( € Ry such that, for any sequence (x*)ren- € X, the value function
V& is ¢-Lipschitz over X for all k € N*. Moreover, for any sequence (x*)ren+ € X:

L Vo€ X, Vepp(w) = Vopp(z) < Vipp(2) < ... < Vipp(2) < Ve (),
2. V<k—1, VEL(2%) =Ve(z*) = v
Proof. Proof in Appendix C.3. 0

LEMMA 4.6. Under Assumptions 1-5, and denoting by * an optimal solution of problem (SIP),
if Algorithm 4.1 runs iteration k, then F(z*) < F(x*) + up(z® — 2F)T (2% — 2F).

Proof. Proof in Appendix C.4. O

Before proving Theorem 4.7, we must assume that Slater condition holds for the restric-
tion (SIPR), even if there is no need to know the corresponding Slater point to run the algorithm.

ASSUMPTION 8. [t exists z° € X that is strictly feasible in (SIPR), i.e., Vspp(z¥) > h(x®).

Under Assumptions 1-5 and Assumption 8 the IOA algorithm converges, as stated in the
following theorem.

THEOREM 4.7. Under Assumptions 1-5 and Assumption 8, if d = € =0, Algorithm 4.1
e cither terminates in finite time and the last iterate ¥ is an optimal solution of (SIP),
e or generates an infinite sequence (%) of feasible solutions in (SIP) s.t. F(2*) — val(SIP).

Proof. First of all, we emphasize that iterate ¥, for any k € N, is feasible in (SIP) since
V& e(2) — h(2)) > 0 by definition of 2%, and since Vp(2)) > V&p(2) according to Lemma 4.5:
this proves that Vp(2y) — h(2¥) > 0.

We start by considering the first case, where Algorithm 4.1 stops. If it stops before entering
the loop, i.e., if Q(2°) = 0, we can apply Theorem 4.4 and conclude that #° is an optimal solution
of (SIP). If it stops at iteration k during the loop, this means that z* = 2* since d = 0. Applying
Lemma 4.6, we deduce that F(2%) = F(2*) < F(z*) + up(zF — 2%)T (2* — 2F) = F(2*), where z*
is any optimal solution of (SIP). Therefore, the first part of the theorem is proved.

Now, we consider the second case: Algorithm 4.1 does not stop, and generates infinite sequences
(%) ren+ and (2%)gen+. Using the notation x~ := max{0, —z} to denote the negative part of =, we
claim that (Vp(2*) — h(z¥))~™ — 0; for sake of brevity, we do not detail the proof of this vanishing
here, but it uses exactly the same arguments used in the proof of Theorem A.1 (in Appendix A),
relying on the compactness of sets X and F as well as on the continuity of the involved functions.
We prove now that (V&p (%) — h(2*))~ — 0. The sequence vy := V& (2F) — h(2*) is bounded
since (i) Vspp(z*) — h(a®) < V& (2%) — h(z*) < Vp(2*) — h(z*) due to Lemma 4.5 and (ii) Vspp — h
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as well as Vp — h are continuous (thus bounded) on the compact set X. Therefore, (1)~ is bounded
too, and we must prove that the only possible limit for any converging subsequence of (v)~ is 0.
We define any convergent subsequence extracted from (vz)™ as (v, (k))7 where ¢y : N* — N*

is an increasing application, and v* the limit of (v, ). Since (z¥0(®)) is bounded, it exists a
converging subsequence (z¥(*)). We have then Vp(k) = VS%(FIT) (z¥®)) — b (z¥®)) for all k € N*.
We add and substract Vs%(,f) (¥ =1 4 h(2¥(*=1 to the right hand side of the equation, obtaining:
vo = (VP @ 00) (@) 4+ (Vi (@09) = Vg (@) + (@) = ha*®)) . As
1 is an increasing function, we have (k —1) < (k) — 1, and thus, applying Lemma 4.5, we deduce
that Vslfs(g) (z¥*=1)) = Vp(2¥*~1). This is why, since VS%(S) is ¢-Lipschitz (Lemma 4.5),

vt = (V@ 70) = (" ®0)) 4 (Vg (@) Vgl @ *0)) 4 (ma D) — (™))

> (Vp(mzp(k—l)) _ h(ch—m)) P T (h(xww—l)) _ h(wW’“))) '

Being the negative part function decreasing and subadditive, we deduce that:

(410) g < (V@ ™) = b)) (B D) — ) = (0 )

As z¥(®) is converging and h is continuous, we have that h(z¥*~1) — p(2¥®) — ¢||z¥®) —
¥~ = 0. Hence the negative part of this term, appearing in Eq. (4.10), vanishes as well.
Since (Vp(z¥*=1) — h(z¥*k=1))) " is extracted from (Vp(z*)—h(z*))~, which converges to zero, we
deduce that the whole expression in the right hand side of Eq. (4.10) vanishes when k — oo. Thus,
Vo) — 0 and, by uniqueness of the limit, v* = 0. As a conclusion, v, = (VS’“DP(xk) — h(xk))f — 0.

Using Assumption 8, we introduce a Slater point #° € X such that Vspp(2°) — h(z®) = ¢ > 0.
We also introduce A\, := v, /(¢ + v, ). We notice that A\, — 0, since v,, — 0. We define z;, =
(1 — Ag)x® 4+ A\px®, i.e., a convex combination of 2* and 2. We emphasize that (Zy,Zy) is feasible
in problem (4.9) at iteration k since
e 7 satisfies the constraints on z, because both z* and z° satisfy the convex constraints
h(z) <(Q(x),Y*) for £ € {1,...,k — 1}, and, by convex combination, so does Zy;
e T}, satisfies the constraint on the #-component, since a solution (\, @, 3,1) € QF(7},) exists.
Indeed, by concavity of V&, — h, we have that V& (Zr) — h(@x) > (1 — M) (Vdp () —
h(z*)) + A (Ve(2%) — h(z°)) = (1 — Ae)vk + Awe > —(1 — M)y, + Ake. By construction
of A, Adke — (1 — Mgy =0 and thus V& p(Z,) — h(Zy) > 0. This means that the value of
problem (4.8) is greater than h(Z}), and thus that it exists (\, o, 8,1) € QF(Z).
As the objective value of (Zj,Zy) in the problem (4.9) is 2F (%), by optimality of (z*,#%):
(4.11) F(z®) + F(2%) + %ka — @712 <2F((1 = Mp)a® + Xez®) < 2(1 — M) F (%) 4+ 20 F(27),
with the second inequality following from the convexity of F. We also notice that (¥, 2¥) is feasible
in the problem (4.9) at iteration k, thus F(a*) + F(&%) + £ ||z* — &%||2 < 2F (&%), which means
(4.12) F(a*) + %ka —i*)2 < F(&).
Summing Eq. (4.11) with Eq. (4.12), we obtain that 2F(z*) + px||z* — || < 2(1 — A\p)F(2F) +
20, F (%), and thus pu||a* — 2%]|2 < 2\, (F(2%) — F(2¥)). Using that 0 < g < pu,

(4.13) lz* — &%) < \/g‘l(%k (F(2%) = F(«*)))
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holds. Since A, — 0, and F(2°) — F(2*) is bounded, we deduce from Eq. (4.13) that

(4.14) |z* — || — 0.

Taken an optimal solution of (SIP), z*, since 2* is feasible in (SIP) as stated above, and since F
is J-Lipschitz according to Assumption 1, we deduce that F(z*) < F(3%) < F(2F) + J||z* — 2¥|.
According to Lemma 4.6, we know that F(z*) < F(z*) + pg(2¥ — 2%)T (2* — 2¥), which implies,
according to the Cauchy-Schwartz inequality, that

(4.15) F(z*) < F(&") < F(a*) + pllz® — &*||[la* — 2*|| + ||l — &*]].

Since ||z* — z*|| is bounded, we deduce from Eq. (4.14) that F(z*) + g ||z* — 2| ||2* — 2*|| 4 J||2* —
#*¥|| — F(z*) and thus, F(2*) — F(z*) = val(SIP). d

Based on the previous Theorem, we deduce that the Algorithm 4.1 stops in finite time if the
tolerance parameters are positive. We prove this result in the following corollary, in which we use
the notation diam(X) := max |z — 23]

z1,T2€X

COROLLARY 4.8. Under Assumptions 1-5, and Assumption 8, ife > 0 and d > 0, Algorithm 4.1
terminates in finite time and returns a solution #* feasible in (SIP); moreover F(2*) < val(SIP) +
d(prdiam(X) + J), where J is the Lipschitz constant for F.

Proof. Proof in Appendix C.5. O

5. Applications. In this section, we present two problems that can be modeled as (SIP).
For each of these, we present both the SIP formulation, and the corresponding single-level finite
formulation (SIPR).

5.1. Constrained quadratic regression. We consider a quadratic statistical model with
Gaussian noise linking a vector w € R™ of explanatory variables, i.e., the features vector, and an
output z € R as follows: z = %wTQw +q w+c+e where Qe R ™ st.Q=Q",geR", ¢eR
and € ~ N(0,0?). Let us suppose that the parameters of this model are unknown, except an a priori
bound B € R on their magnitude. Moreover, we are given a dataset (wj, z;)1<i<p € (R x R)?.
Note that w; is an n-dimensional vector, for any ¢ = 1,..., P. The problem of finding the maximum
likelihood estimator for Q € R"*" g € R™, ¢ € R just consists in computing the triplet (Q, q,c) €

P
R"*"xR™ xR that minimizes the least-squares error Y- (z;— fw,” Qu;—q " w;—c)?. We consider that
i=1
(i) the features vector belongs to a given polytope F C R™, (ii) the noiseless value %yTQy +q'y+ec
is nonnegative for any y € F. Hence, this inverse problem is a “constrained quadratic regression

problem” that may be written as:

P
min > (z — %w;Qwi —qlw; — c)2
Q.qc =1
AT
(5.1) st. Q@=Q

0< %yTQy—i-qu—i-c Yy € F
Qlls < B, llallec < B, |c| < B

QeER™™ qgeR" ceR.

Formulation (5.1) is a SIP problem. In particular, this model fits in the general setting of formulation
(SIP), where the matrix @ is itself the upper-level variable of dimensions n x n. As in Section 4, we
assume that F = {y € R": ajTy <b;,¥j=1,...,r} is included in the centered fs-ball with radius
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0, %
p >0, and we use the notation A; = | .1 (2) for all j € {1,...,r}. Then
2

. 1. ..T T 2
min Zi — 5W; w; — w; — C
Q,9,6,0,0,8 1;( i 3w Qui— g wi—c)

st. Q=Q7
—c<=b"A—a(l+p%) -5

(5.2) : <Q e )) + Z N =0

[Qlle < B, liglls < B, |c| < B

QER™™ gqeR", ceR

AeRL, aeRy,BER.

is the (SIPR) formulation corresponding to (5.1). Formulation (5.2) is feasible, because the all-
zero solution satisfies every constraint. In general, (5.2) is a restriction of (5.1) since ) may not
necessarily be PSD. The set Qk(Q qd, ¢) that will be used in the IOA algorithm i 1s

0*Q,q,¢) := {(A,a,,@,n) ER, xRy x RxRET! + —e<—bTA—a(l+p )—ﬁ+znmA

N}

1 /0 +2al, Qe @
SO ) S ()=o)

where (Qy, q¢) is the solution x, obtained by solving problem (4.9) at iteration ¢, and v, is the
value of the lower-level problem: mig %yTQg Y+ q;y.
ye

In order to benchmark our approaches, we can solve the following relaxation of (5.1) obtained
by replacing the lower-level problem by its KKT conditions:

P
min > (2 — tw! Qi — ¢ wi — ¢)?
Q.q,¢,y,y =1

st. Q=QT
—c<3y"Qu+aq'y
(5.3) Ay < b
Qy+qg+ATy=0
7 (Ay—b) =0
[Qllec < B, [lgllec < B, |c] < B
QER™™ qgeR™, ceR, yeR", yeRY,
where 7 is the KK'T multiplier vector associated to the lower-level constraints Ay < b. Problem (5.3)
is a non-convex polynomial problem involving multivariate polynomials of degree up to three. We
also compare our results with those obtained by the global optimization algorithm proposed in [29].

5.2. Zero-sum game with cubic payoff. In this section, we are interested in solving a two-
player zero-sum game that is related to an undirected graph G = (V, E). We assume that player
1 benefits from a strategical advantage on player 2, which will be explained more precisely later.
We let n denote the cardinality of V. Each player positions a resource on each node i E V. After

normalization, we can consider that the action set of both players is A,, = {z € R} : Z x; = 1}
A two-player zero-sum game is a two-player game s.t., for every strategy « € A,, of player 1 and for
every strategy y € A,, of player 2, the payoffs of the two players sum to zero. If we define P;(z,y)

as the payoff of player ¢ related to the strategy pair (z,y), we thus have that Py (z,y) = —Pa(z,y).
Since the payoffs sum to zero, we can write the zero-sum game by specifying only one game payoff.
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567 Player 1 wishes to minimize it, and player 2 wishes to maximize it. The game payoff P(z,y) related
568  to the pair of strategies (z,y) € A, x A, is the sum of:

569 e the opposite of a term describing the “proximity” between x and y in the graph, = My,
570 where M € R™ " is a matrix having M;; =1ifi=j or {i,j} € E, and M,; = 0 otherwise,
571 e the quadratic costs that player 1 has to pay to deploy his resources on the graph: ¢;(z) =
572 %xTle—i—q;—x

573 e the opposite of the quadratic costs that player 2 has to pay to deploy her resources on the
574 graph, and that is influenced by player 1 strategy: ca(x,y) = 1y Q2(2)y + ¢ y. In this
575 sense, player 1 has a strategic advantage over player 2.

6 Hence, this zero-sum game can then be written as miAn max — xT My + c1(x) — co(x, 7). Loosely
TEARYEA,

577 speaking, player 1 trades off his costs for placing his resource where player 2’s one is (i.e., maximizing
578 the proximity) and for augmenting player 2’s costs. In the meantime, player 2 tries to avoid player
579 1, while minimizing her own costs. From player 1’s perspective, this problem can be cast as the
580 following SIP formulation:

min %mTle +qz+z

T,z

581 (5.4) st. —z< %yTQg(x)y +(@+M"z)Ty VyeA,
582 z €A, z€R.

583  This latter formulation clearly fits in the general setting of formulation (SIP). Hence, we apply the
584 methodology of Section 4 with r =n+2, p =1, a3 = 1 (1 is the all-ones n-dimensional vector),
585 by =1,a3=—-1,by=—-1,and Vj € {1,...,n} aj;2 = —e; (e; is the j-th vector of the standard
586 basis in R™) and b; = 0. The dual variable is A € Ri“. In this application, the single-level finite
587 formulation (SIPR) reads

zzng\lr;ﬁ z+ %xTQlw—i—qu
st. —z< =AM+ X—2a—0
588 (5.5) Qa(x) +2aln - W(a,A))
2 W(z,\) " 28 +2a) —
r€A,, z€R
589 AeRY? aeRy,BER,

500 where W(z,A\) = g2 + M "2 — 3 Njj2e; + (A1 — A2)1. If Qa(z) = 0 is PSD for any z € A,
j=1

591 formulation (5.5) is a reformulation of (5.4). Otherwise, it is just a restriction of (5.4). In any case,
592 such formulation is feasible, because for given vectors x € A,, A € RTFQ, and scalar § € R, taking
593 arbitrary large scalars « and z, the two constraints are satisfied.

594 The set QF(#, 2) that will be used in the IOA algorithm, as a constraint in problem (4.9), is
k-1
595 OF(z,2) = {(A,a,,@,n) ERTP xRy xRxRETH 1 —2< M+ XA—2a— 8+ v A
=1
k—1
596 Q2(2) +2aln W(2,N) _ 1 Q2(zr) g2+ M Ty
i S A B o (s R S B
oJ | =

598  where xy is the solution obtalned by solving problem £r4 9 at iteration ¢, and vy is the value
599 of the lower-level problem: mlAn y TQo(zo)y + (go + M Ty. As for the first application, we
ye

6(

0 benchmark our two approaches both with the KKT-based relaxation/ reformulation (depending on
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the convexity of the lower-level problem), and with the algorithm proposed by Mitsos in [29]. Given

n
the KKT multipliers v; and v associated respectively to the lower-level constraint ) y; = 1, and
i=1
the nonnegativity constraint y > 0, the single-level finite formulation obtained by replacing the
lower level of (5.4) by its KKT conditions, is

min z+ %xTQlw—i—qu
x,2,Y,71,72 - - -
st. —2< 3y Q)y+(24+M'2)'y
(5.6) Q@)y + a2+ Mz + 71— Iy2 =0

7'7;(1713/):0
€A, YyEA,, z€R, 71 €R, y2 € RY.

The KKT multiplier 7, is associated to an equality constraint, hence it can be either nonnegative
or negative, and we have no complementarity constraint involving it in formulation (5.6). This
relaxation /reformulation of problem (5.4), as well as (5.6), is a non-convex polynomial optimization
problem involving multivariate polynomials of degree up to three.

6. Numerical results. In this section we present the numerical results obtained by testing
several instances of the two applications presented in Section 5, available online at the public
repository https://github.com/aoustry /SIP-with-QP-LL.

For the constrained quadratic regression (Section 5.1), we solve twenty randomly generated
instances. Each of these instances is generated by choosing the statistical parameters Q,q,¢ at
random, drawing P = 4000 random features vectors w; € R™, and then computing the associated
outputs z; € R with a centered Gaussian noise. The data (w;, z;)1<i<p are produced with Q PSD
for ten instances, named PSD_inst# in Table 2, and are produced with an indefinite Q for ten
instances, named notPSD_inst# in Table 2.

For the zero-sum game with cubic payoff application (Section 5.2), we test twenty-two instances
where the matrix M is taken from the DIMACS graph coloring challenge!. We randomly generate
1 in a way such that it is PSD, as well as the coefficients of the linear function Q2(z) such that
Q2(x) is PSD for all feasible = in the instances named #_PSD in Table 3. Regarding the instances
named #_notPSD in Table 3, no particular precaution is taken to enforce that Q2 (z) is PSD. Hence,
the sign of the eigenvalues of Q2(z) depends on z. The code that generates all the instances is
available online, in the aforementioned repository.

The global solutions of SIP formulations are found using the CP algorithm (Algorithm 3.1
presented in Section 3), the IOA algorithm (Algorithm 4.1 presented in Section 4.5), and the global
solution algorithm proposed in [29], that we call “Mitsos Algorithm” in this section. We also
benchmark these algorithms with the traditional relaxation/reformulation approach based on the
KKT conditions of the lower-level problem.

The CP algorithm is implemented using the Python programming language [45]. Both the
master problem (Rj) and the lower-level problem (P,x) are solved using the global QP solver
Gurobi [16]. The tolerance for the feasibility error € = (h(z*) — val(P,))" is set to 1076.

The IOA algorithm is also implemented in Python. We use the conic optimization solver Mosek
[2] to solve (SIPR) at step 0 as well as the master problem (4.9) at step 7. The global solver Gurobi
is used to solve the problem (P,x) at step 8. The tolerances d and ¢, used in the stopping criteria,
are set to 107%. An a priori knowledge on the convex nature of the lower-level problem gives the

1 https://mat.tepper.cmu.edu/COLOR /instances.html
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guarantee that formulation (SIPR) has the same value of formulation (SIP). In such case, one can
just solve (SIPR) to obtain an optimal solution of (SIP). Yet, this prior knowledge is not common
to all the possible applications of our approaches, hence we decide to treat all the instances in the
same way, by running the sequence of instructions described in Algorithm 4.1.

Mitsos algorithm [29], used to benchmark the proposed approaches, is implemented using
Python. As already said in Section 2, the algorithm generates, at each iteration, a lower and
an upper bound of the optimal value of (SIP). The relaxation solved to get a lower bound is ob-
tained by approximating the infinite constraint parameter set by a progressively finer finite subset.
The formulation solved to get an upper bound is obtained by restricting the infinite constraints
right hand side by €, > 0 and considering a successively finer discretization of the parameter set.
For arbitrary combinations of the discretized parameter set and ¢, this formulation is neither a re-
striction, nor a relaxation of the SIP problem. However, the existence of a SIP-Slater point ensures
that the algorithm finitely generates feasible iterates, the objective value of which converges to the
optimal value. In our implementation, at each iteration, both the relaxation, and the restriction of
the SIP problem, as well as the lower level for the corresponding iterate, are solved using Gurobi.

We implement the KKT relaxations/reformulations with the AMPL modeling language [14],
and solve them using Gurobi, for sake of fairness in the comparison. The KKT formulations are
particularly hard to solve, mainly because of the complementarity constraints. Indeed, for most of
the tested instances, Gurobi does not terminate within the time limit. For these instances, we just
display, in italic font, the lower bound given by the optimal value of the best relaxation of the KKT
formulation found by Gurobi within the time limit.

For all the approaches, Gurobi is run with its default settings. The tests were performed on a
computer with a 2.70GHz Intel(R) Core(TM) i7 quad-core and with 16 GB of RAM. For all the
approaches we set a time limit (t.1.) of 18.000 seconds (5 hours).

The results for Application 1 and Application 2 are reported in Table 2 and Table 3 respectively.
The headings are the following:

e “n” is the number of the lower-level variables; “time(s)” is the computing time in seconds;
“it” is the number of iterations (for the IOA algorithm, such number is 0 when the sufficient
condition at step 1 is verified and the algorithm does not enter the loop);

e for CP and Mitsos algorithms “obj/LB-UB?” is, respectively, either the optimal value of STP
formulation, or a pair of values corresponding to: the best lower bound (LB) and the best
feasible solution, i.e., upper bound (UB), found by the algorithm within the time limit;

e for the IOA algorithm “obj/UB?” is, respectively, either the optimal value of the SIP for-
mulation (the sufficient condition at step 1 is verified), or the best value F(2*) found by
the algorithm within the time limit;

e for CP and IOA algorithms “% (P,x)” is the percentage of the total computing time, i.e.,
time(s), used to solve (P_x);

e for the KKT approach, “obj/LB” is, respectively, either the optimal value of the KKT
formulation, or the best lower bound of such value found by the solver Gurobi within the
time limit, which is a lower bound for the SIP optimal value too.

In Table 2 and Table 3, the minimum required times are reported in bold for each instance.

As expected, the optimal values found by the three considered global methods are the same for
all the instances (when the algorithm stops before the time limit is hit). In terms of computational
time, the IOA algorithm is more efficient than the other approaches for all the instances where the
restriction is proven to be optimal during the preliminary step of this algorithm. When solving the
other instances, CP shows the best performance, although the number of iterations needed by the

b2
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Instances CP algorithm TIOA algorithm KKT Mitsos algorithm [29]
Name n obj/LB-UB time(s) it % (P,x) | obj/UB time(s) it % (P,x) | obj/LB | obj/LB-UB time(s) it
PSD_inst1 5 358.64 070 6 3.4 358.64 0.27 0 - | 355.78 358.64 126 6
PSD_inst2 5 365.60 032 3 3.6 365.60 0.23 0 - | 363.85 365.60 056 3
PSD_inst3 5 363.43 091 8 3.4 363.43 0.22 0 - | 359.16 363.43 1.78 8
PSD_inst4 5 353.90 054 5 3.6 353.90 0.22 0 - | 353.19 353.90 097 5
PSD_instb 10 391.21 481 17 1.1 391.21 0.60 0 - | 359.48 391.21 10.14 17
PSD_inst6 10 397.59 492 17 1.0 397.59 0.63 0 - | 353.55 397.59 10.45 17
PSD_inst7 13 440.84 8.70 19 0.7 440.84 1.01 0 - | 358.19 440.84 25.1 19
PSD_inst8 13 382.17 2581 17 99.7 382.17 2734 15 98.6 345.52 382.17 6193 17
PSD_inst9 15 | 564.84 — 622.88 t.1. 5 100 572.77 1.62 0 - 351.95 | 564.84 — inf t.1. 5
PSD_inst10 15 | 526.22 — 545.54 t.1. 8 100 528.93 1.44 0 - 346.43 | 526.22 — inf t.1. 8
notPSD_inst1 5 358.47 0.22 2 4.4 358.47 203 4 0.8 | 845.12 358.47 028 2
notPSD_inst2 5 378.28 0.22 2 4.95 378.28 204 4 0.5 | 370.89 378.28 028 2
notPSD_inst3 5 345.81 0.12 1 3.5 345.81 0.66 1 0.3 345.81 345.81 0.18 1
notPSD_inst4 5 353.25 0.11 1 4.3 353.25 1.10 2 0.3 353.25 353.25 0.14 1
notPSD_inst5 10 503.88 5.17 18 8.4 503.88 322 18 1.3 | 360.42 503.88 11.3 18
notPSD_inst6 10 482.96 31.6 36 68.0 482.96 84.2 35 32.4 | 85748 482.96 65.4 36
notPSD_inst7 13 647.08 119 61 7.2 647.08 211 54 37.8 | 851.31 647.08 263 61
notPSD_inst8 13 588.19 566 77 92.8 588.19 700 74 73.6 | 358.28 588.19 977 77
notPSD_inst9 15 1126.44 687 97 89.9 | 1126.44 922 92 63.4 345.44 1126.44 1356 97
notPSD_inst10 15 580.60 595 64 92.0 580.60 711 60 70.9 | 350.60 580.60 1047 64

Table 2: Numerical results of the first application
‘ Instances CP algorithm IOA algorithm | KKT Mitsos algorithm [29] ‘
| Name n | obj/LB-UB time(s) it % (P,x) | obj/UB time(s) it % (P,») | obj/LB | obj/LB-UB time(s) it |
jean_PSD 80 -0.0760 49.5 183 23.5 | -0.0760 19.9 0 - | -1.0121 -0.0760 128 171
mycield PSD 23 -0.3643 4.81 390 31.0 | -0.3643 0.09 0 - | -1.0154 -0.3643 139 371
myciel5_PSD 47 -0.3164 21.6 684 13.1 | -0.3164 1.51 0 - | -1.0171 -0.3164 580 633
myciel6_PSD 95 -0.2841 399 2203 2.8 | -0.2841 42.0 0 - | -1.0207 -0.2841 6738 2008
myciel7_PSD 191 -0.2608 7498 5586 0.5 | -0.2608 3452 0 - | -1.9246 | -0.2608 — -0.2608 tl. 3268
queen5_5_PSD 25 -0.5536 1.73 165 39.4 | -0.5536 0.12 0 - | -1.0163 -0.5536 19.7 151
queen6_6_PSD 36 -0.4619 8.98 511 22.3 | -0.4619 037 0 - | -1.0185 -0.4619 168 458
queen?_7_PSD 49 -0.4054 31.0 937 12.1 | -0.4054 1.60 0 - | -1.0204 -0.4054 602 863
queen8_8_PSD 64 -0.3614 97.0 1578 7.0 | -0.3614 4.43 0 - | -1.0215 -0.3614 1662 1416
queen8_12_PSD 96 -0.3000 1194 4138 1.9 | -0.3000 36.4 0 - | -1.0217 -0.3000 14153 3570
queen9_9_PSD 81 -0.3247 351 2637 3.4 | -0.3247 14.9 0 - | -1.0216 -0.3247 5027 2357
jean_notPSD 80 2.3979 6.82 7 99.5 2.3979 195 8 4.0 1.4095 2.3979 16.4 7
mycield notPSD 23 0.5198 43.5 40 99.8 0.5198 52.8 41 82.9 | -0.2441 0.5198 102.6 40
myciel5_notPSD 47 1.2779 42.4 37 99.7 1.2779 86.3 33 35.3 | 0.3167 1.2779 103 37
myciel6_notPSD 95 2.9378 236 35 99.9 2.9378 2223 38 11.8 1.7319 2.9378 615 35
myciel7_notPSD 191 6.2486 773 23 99.9 6.2932 tl 4 0.06 | -9.2171 6.2486 1320 23
queen5_5_notPSD 25 0.3800 21.2 51 99.4 0.3800 29.5 44 57.2 | -0.3318 0.3800 42.4 51
queen6_6_notPSD 36 0.8511 293 73 99.9 0.8511 350 68 81.5 | -0.0377 0.8511 751 73
queen?_7_notPSD 49 1.3510 69.8 44 99.7 1.3510 161 40 40.7 | 0.83615 1.3510 174 44
queen8_8 notPSD 64 1.8122 543 33 100 1.8122 1001 42 70.1 0.7866 1.8122 1113 33
queen8_12_notPSD 96 2.8102 1049 34 100 2.8102 2525 32 324 1.6273 2.8102 1935 34
queen9_9 notPSD 81 2.2979 2424 46 100 2.2979 2613 39 69.9 1.2042 2.2979 4545 46

685
686
687
688
689
690
691

692

Table 3: Numerical results of the second application

three methods is always comparable. Indeed, IOA iterations are, in average, more time consuming
than the other algorithms and hence, for these instances, the computational time for IOA is larger
even if the number of iterations of IOA is often less w.r.t. CP and Mitsos algorithm. As regards
Mitsos algorithm, it turns out to be slower than CP. When compared to the IOA algorithm, it is
sometimes better in terms of computational time, as shown in Table 4. We recall that, as the IOA
algorithm, Mitsos algorithm computes a sequence of feasible solutions, the value of which converges
to the optimal value, whereas the iterates in the CP algorithm are only asymptotically feasible.
The instance “PSD_inst8” is interesting, since the restriction (5.2) is obviously optimal (its
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Instances IOA algorithm | Mitsos algorithm [29]
First application PSD st 100% 0%
PP notPSD _inst# 40% 60%
L # _PSD 100% 0
Second application 4 notPSD 60% 40%

Table 4: Percentage of instances for which each approach requires less computational time than the other

value is also 382.17), but the TAO algorithm is not able to detect it immediately. Indeed, matrix
Q" found solving the formulation (5.2) for “PSD_inst8” is not positive definite, but only positive
semidefinite, thus the algorithm needs to enter the loop and runs 15 iterations before stopping.

As concerns the KKT formulation, we see that the quality of the lower bounds computed by
Gurobi within the time limit is very bad. Indeed, this formulation is particularly hard to solve
mainly because of the complementarity constraints.

To understand the causes of the computational time required by the IOA and the CP algorithms,
we can look at “% (P,r)” columns of Table 2 and 3. As regards the CP algorithm, for the first
application, the time required to perform step 3 of the CP algorithm (i.e., to solve (P,+)) is longer
than the time required to perform step 2 (i.e., to solve (Ry)) only for the bigger instances (n > 13
for instances with a convex lower level and n > 10 for instances with a non-convex lower level).
In fact, when n grows, more time is needed to solve a possibly non-convex QP problem having
Q and q as coefficients, rather than a convex QP having ) and ¢ as variables. When n is small,
it is different: even if the inner problem is quadratic non-convex, it has a small size so it is not
harder to solve than the master problem. For the second application, the time required to solve
the lower-level problem is longer than the time required to solve the master problem only for the
instances having a non-convex lower level, i.e., the second half of the Table 3 rows. Indeed, when
Q2(z*) is not PSD, problem (P,+) is possibly non-convex and it becomes harder to solve than the
master problem. As regards the IOA algorithm, we see that the percentage of time required to
solve problem (P,.) depends on the instance. Actually, the difficulty of the lower-level problem
may also vary, for a same instance, between iterates, depending, e.g., on the number of the negative
eigenvalues of Q(2*). In general, the value in the column “% (P, )” for the IOA algorithm is always
less than the corresponding value in the column of the CP algorithm. This means, as expected,
that the master program is more costly for IOA than for CP.

7. Conclusion. We focus on a convex semi-infinite program having an infinite number of
quadratically parameterized constraints. We consider two independent approaches to deal with such
SIP problems. First, we focus on a classical cutting plane algorithm for solving the SIP formulation.
We propose for it a new convergence rate, in the case where the objective function is strongly-
convex and under a Slater assumption. Our new convergence rate presents the nice property to be
directly related to the iteration index k, which is something new w.r.t. what is usually proved in
SIP literature, where the linear rate of convergence is not controlled by k& (see [31, Theorem 4.3]).
Second, a new convex finite formulation (SIPR) obtained via the lower-level dualization approach
provides a feasible solution &, which is optimal either if the quadratic lower-level problem is convex,
or if a sufficient condition we introduce on Z (that can be computed a posteriori) is verified. Based
on the lower-level dualization approach, we present a new convergent algorithm, named Inner-Outer
Approximation algorithm, which solves at each iteration a relaxation of the restriction (SIPR). Our
computational experiments on small and medium-scale instances show the superiority, in terms of
solution time, of the Inner-Outer Approximation algorithm for the instances where it is able to
certify the optimality of the restriction. As concerns the other cases, the cutting plane approach is
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faster, but the IOA often requires less iterations, and provides a feasible solution at each iteration.
Both methods find an optimal solution of the SIP problem with good accuracy. We also compare the
performances of the proposed approaches with the “Mitsos algorithm” [29], which provides feasible
solutions at each iteration, and the KKT relaxation approach, which only provides loose lower
bounds. A possible extension of our work could be implementing the Inner-Outer Approximation
algorithm with the lower-level problem solved with an “on-demand” accuracy at each iteration.
A rule for the update of the proximal parameter y in the Inner-Outer Approximation algorithm
should be studied to improve the performances of the algorithm itself. These possibilities will be
addressed in future works.
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Appendices We report in this section the proof of convergence of Algorithm 3.1, as well as
the proofs of all the lemmata and corollaries introduced in the paper. While the convergence of the
cutting plane algorithm is well-known in literature (even if we prove here the convergence of our
specific Algorithm 3.1 from scratch, for sake of completeness), the other proofs reported in these
appendices are new results.

Appendix A. Convergence proof of CP algorithm. In this section, a convergence
proof for Algorithm 3.1 is given. Since Q(z) and ¢(x) are linear w.r.t. z, the function f(z,y) =
%yTQ(ac)y +q(z) Ty is continuously differentiable, and therefore Lipschitz continuous on the com-
pact set X’ x F (see Assumptions 2 and 5), with H > 0 an associated Lipschitz constant. Moreover,
x +— val(P,) is continuous over the compact feasible set X, as shown, e.g., in [33, Th. 1.17], and [3,
Sec. 4.2]. Based on these observations, we prove the convergence of the algorithm.

THEOREM A.1. Assume that X and F are compact and that e = 0, Algorithm 3.1 either ter-
minates in K € N* iterations, in which case ¥ is a solution of (SIP), or generates an infinite
sequence (z¥)gen+ with the following convergence guarantees:

o feasibility error: €, = (val(P,.) — h(z¥)) " — 0,
e objective error: &, = val(SIP) — F(z*) — 0.

Proof. If Algorithm 3.1 terminates at iteration K € N*, 2 is feasible in (SIP), i.e., % € X and
val(P,x) > h(2¥), which implies that F(x®) > val(SIP). At the same time F(z%) = val(Rg) <
val(SIP), being (R}.) a relaxation of (SIP) by definition. Thus, F(zX) = val(SIP), and z¥ is an
optimal solution of (SIP).

Let us suppose now that the stopping test is never satisfied. In this context, we prove first
the convergence of the feasibility error € towards 0. For any k € N* we have that val(P,x) =
%ykTQ(xk)yk + q(2®)TyF = f(2*,9*), thus e = (f(xk,yk) — h(l‘k))_. Since f(z,y), h(x) and the
negative part function are continuous, and since both z* and y* are bounded, the sequence ¢ is
also bounded. According to Bolzano-Weierstrass theorem [1], this bounded sequence has at least
a convergent subsequence. In the following, we define any convergent subsequence extracted from
€k AS €y, (k), Where 1 : N* = N* is an increasing application. Defining as e, € R the limit of this
convergent subsequence, we will show that this limit value is in fact 0.

The sequence (ywﬂ(k), Ewo(k)) is a subsequence of the bounded sequence (y*, €;,), therefore it is
bounded. According to the Bolzano-Weierstrass theorem, sequence (ywo(k), Ewo(k)) has a convergent
subsequence (yw(k),ew(k)). Since €y(x) is a convergent subsequence of €y, (xy, €yk) — € holds.
Because 1(k — 1) < (k) by definition of 1, the cut related to y¥*~1) is a constraint of problem
Ry (added by Algorithm 3.1 at iteration k — 1). Thus, f(z¥®),y¥(h=1) — p(2¥*)) > 0, and

f(xww)’yw(k)) — h(z¥®)) f(xw(k)’yw(k)) —f x«ﬂ(k)’yw(k—l)) + f(xw(k)w@b(k—l)) _ h(mw(m)

f(mw(k)7yw(k)) — f(xww)’yw(k—l)).

Being the negative part function decreasing, ey ) = (f(m"’(k),yw(“) - h(a:w('“))_ is less than or

vVl

equal to (f(mw(m’yw(k)) ,f(xwk),yw(kfl))) . Therefore e < .f(xw(k)yywk)) T ORRICN )
From this last result and the fact that f is H-Lipschitz continuous, we deduce that

¥ (k) P (k)
x z k k—
(A1) ey < H | (yw(k)) - (yw(kfl)) |=H ||yw( ) - yw 1)||-

As y¥®*) is convergent, we know that [|y¥®*) — ¥ =1 | — 0. Being €y (k) nonnegative, we deduce
from Eq. (A.1) that ey ) — 0, and thus, €, = 0.
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We proved that the sequence ¢ is bounded, and that any converging subsequence converge
towards 0, thus we can conclude that €, converges towards 0 itself, according to a well-known
result in analysis [1]. Based on this result, we prove now the second point, i.e., the convergence of
objective error. We know that

(A.2) Vk € N F(z*) € [F(z"),val(SIP)],

therefore the increasing sequence F(z*) is bounded, and thus, converging. Since z* is bounded, we
can derive a converging subsequence z?*) — z* with ¢ : N* — N* being an increasing func-
tion. The associated feasibility error is ey = (val(Puom ) — h(z?®))". On the one hand,
being €4y a subsequence of e, which converges towards zero, €4y — 0. On the other hand,
€pk) — (val(Pz+) — h(x*))” holds by continuity of z ~— val(P,) and h(z). By uniqueness of the
limit, (val(Pg+«) — h(z*))” = 0. Therefore, z* € X is feasible in (SIP) and F(z*) > val(SIP). From
(A.2) we also know that F(z*) < val(SIP), and thus F(z*) = val(SIP). We can conclude that F(z*)
is bounded and admits a unique limit point which is val(SIP). Hence, §; — 0. d

Appendix B. Proofs of Lemmata in Section 3.

B.1. Proof of Lemma 3.1. We denote by & € X the primal feasible solution s.t. g(&,y) =
%yTQ(:%)y +q(2)Ty — h(2) > 0 for all y € F. Since the set F is compact and the function g(,y)
is continuous in y and positive, it exists ¢ > 0 s.t. g(&,y) > c for all y € F. For any Y € K, we
have that Y = Y7 _, Ay M (y*), for an integer p € N, vectors y!,...,y? € F and nonnegative scalars

M,...,Ap € Ry. Since (G(2), M(y)) = 3y Q(&)y + q(2) Ty — h(2) for any y € F, the following
holds by linearity:

(G(2),Y) = (G(&), Y MM ") = D Ae(G(@), M(y")) = D~ Ave = Yagrmprc
k=1 k=1

k=1
Moreover, by definition of 6, for any ¥ € I 9(Y) = ngle(x) —{G(2),Y) < F(&) — (G(2),Y) <
).

F(&) — Yni1,nt1c. We take then a maximizing sequence (Y*)gey of problem (3.1). Defining Vgipr =
val(SIP"), we know that 8(Y*) — Vsjp and hence, it exists j € N s.t. for all k > j, 0(Y*) > Vgipr — 1.
This implies that, for all k> j, 0 <Y}¥ ) < w Defining 7 = w, we deduce
that Yk > 7, Y* belongs to 7 conv(P), which is compact. Thus, the sequence (Y*)ecny admits an
accumulation point Y*, s.t. 8(Y*) = Vsip/ by continuity of 6.

B.2. Proof of Lemma 3.2. This property follows from the 1st order optimality condition at
1 of the differentiable function w(t) = §(tY*). Indeed, w'(1) = (VO(Y*),Y*) = 0, because (i) 1 is

optimal for w since Y* € arg y ma>(<B )H(Y), (ii) 1 lies in the interior of the definition domain of w.
€cone( By

B.3. Proof of Lemma 3.3. For the purpose of this proof, we introduce the linear operator
O*, defined as the adjoint operator of the linear (by Assumption 3) operator Q(z). With this
notation, we have that (Q(z),Y) = 2" (Q*Y). We also denote by ||Q*|op the operator norm of Q*.
We notice that the image of the bounded set X by the subdifferential mapping 0h(X) = |J 0h(zx)

is bounded according to Th.6.2.2 in [20, Chap.]. Hence D > 0 exists such that oeX
(B.1) Vo € X, Vs € Oh(z), |s|l2 < D.

Given Y, Y’ € K, we are now going to prove that [|[VO(Y) — VO(Y')|2 < L||Y —Y”||» for a constant
L that is independent from Y and Y. Being ix(x) the indicator function of the set X', we introduce
the functions w(z) = L(z,Y) + ix(z) and w'(z) = L(z,Y’) + ix(z). According to Assumptions
6, as well as 2, 3, and 4 we remark that application w (resp. w’) is p-strongly convex because
it is the sum of the p-strongly convex function F(x) and the function —(G(x),Y) + ix(z) (resp.
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—(G(x),Y") +ix(x)) convex in . Being u (resp. u’) the unique (for strong convexity) minimum of
function w (resp. w’) the optimality conditions of function w, and w’ respectively read
(B.2) 0 € dw(u),

(B.3) 0 € ouw'(u').

We remark that w'(z) = F(z) 4+ ix(x) + Y ni1,nt1h(x) — 2T (Q*Y’). The function F(z) + ix(z) is

convex in x as a sum of convex functions; the function Y’,,11 n41h(z) is convex in z since h(z)
is convex and Y, ,,; > 0 by definition of cone K; —27(Q*Y") is linear (convex) in x. The
intersection of the relative interiors of the domains of these convex functions is ri(X). Being X
a finite-dimensional convex set, ri(X) # 0 [44, Prop. 1.9]. Hence, the subdifferential of the sum
is the sum of the subdifferentials [34, Th. 2.1], and the subdifferential of function w’ at u' reads
' (u') =0(F +ix)(u') — QY +Y, 11 ,110h(u). Based on this decomposition, it follows from (B.3)
that 3go € (F +ix)(u'), g1 € Oh(u) such that

(B.4) 90— QY + Y, 1101101 = 0.

Additionally, since w(z) = F(x)+ix(x)—x (Q*Y)+Yni1nt1h(x), and go € A(F+ix)(u'), g1 € Oh(u),
go — QY + Yoi1 nt1g1 € Ow(u'). Combining this with Eq. (B.4), we deduce:

(B.5) Q' (Y ~Y) + (Yatims1 — Yog1np1)g1 € Qw(u).

Applying Th.6.1.2 in [20, Chap.], the u-strong convexity of w gives that, for any s; € dw(u) and
sy € Ow(u'), (s2 — s1,u’ —u) > pllu — u'[|3. Moreover, due to the Cauchy-Schwartz inequality,
[[s1 — sall2]ju —u'||2 > (s2 — s1,u’ —u). Therefore, ||s3 — s1]2 > p||lu—u'||2 holds for any s; € dw(u)
and sy € Qw(u'). Since 0 € dw(u) according to (B.2), and Q*(Y' =Y )+ (Yaq1mt1— Vo1 ni1)01 €
Ow(u') according to (B.5), we deduce that ||Q*(Y' = Y) + (Yat1,n41 = Yigin41)91 — 0|, > pllu—u/||2.
According to the triangle inequality [|Q*(Y' —Y)|, + [Yati,n+1 — Yag1,nt1l lg1lls > pllu — |2, and
thus, since Y = Y'[la > Vg1t = Yisrngals [Q% ool Y =Y/l + Y = Y'[l2 [lg1]l, > pllu — w2

Defining B = ||Q*|lop + D and using that ||g1|l, < D, which holds for (B.1), we know that
BllY = Y'||l2 > pllu — u'|]2. According to Assumption 4, h(x) is Lipschitz continuous and so are
¢(z) and Q(z) by Assumption 3. Hence, it exists a constant K > 0 such that G(z) is K-Lipschitz
continuous. We deduce that K|u — |2 > [|G(u) — G(u')||2, and, consequently, [|[Y — Y|z >
211G (u) —G(u')||2. We define the constant L = %, which is clearly independent from Y, Y’ u and
u’. Since VO(Y) = —G(u) and VO(Y') = —G(u'), we deduce that L||Y —Y'|2 > ||[VO(Y) — VO(Y)] 2,
which concludes the proof.

B.4. Proof of Lemma 3.4. For any Y, Z € I and v > 0, we obtain by integration that

(B6) 0 +~2)— (V) = / LN +12), 2ydt = 4(VO), Z) + | (VY +12) — VoY), Z)dt.

Since (VO(Y +t2)—VO(Y), Zf > —|[(VO(Y +tZ) — VO(Y), Z)|, asiig Cauchy-Schwartz inequality
and L-smoothness of 8, we know that (VO(Y +tZ) — VO(Y),Z) > —||VO(Y +tZ) — VO(Y)|2 || Z]|2 >
—tL||Z||3. Combining this with Eq. (B.6), we deduce that 0(Y 4+ vZ) — 0(Y) > ~(VO(Y),Z) —

7 tL|| Z|[3dt, which yields finally that 6(Y +~2Z) — 6(Y) > (V6(Y), Z) — LIZIZy2.

Appendix C. Proofs of Lemmata in Section 4.

C.1. Proof of Lemma 4.1. The inequality val(SDP,) < val(P,) follows from the relaxation
of the rank-constraint. We now assume that Q(x) is PSD and prove that val(SDP,) > val(P,) holds.
Given a matrix Y feasible for (SDP,), we denote by uy,...,u,+1 € R*! a basis of eigenvectors
of Y (which is PSD) and their respective eigenvalues v1,...,v,+1 € Ry. Let us introduce the two
following index sets: T ={i € {1,...,n+1}: (u;)pt1 #0tand J={i € {1,....,n+ 1} : (4i)ny1 =
0}. We have then: TUJ = {1,...,n+ 1}. Moreover,
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e if i € I : we define the nonnegative scalar p; = v; (ui)iﬂ and y; € R™ s.t. u; = (6i)n41 (%)

e if i € J : we define the nonnegative scalar v; = v; and z; € R” s.t. u; = (%Z)
With this notation, we have that

n+1
Yi i Zi i ylyz Yi Zzzl 0
St -t ()6 50 () () -5 (0 Vg (9
i€l ied i€l ied
where 0 is the null n-dimensional vector (whereas 0,, is the n X n null matrix). Let us define the
vector § = Y p;y;. Its obj. value in (P,) is smaller than the obj. value of ¥ in (SDP,,). In fact:
i€l

1
(C.1) (Q@),Y) =D pif(w,0) + 5 D vz Qa)zs 2 Y wif (w,y:) = fl, ) puyi) =
i€l i€J iel i€l
The first inequality is due to Q(z) = 0 and v; > 0. The second inequality derives from > u; =
Yyi1ni1 = 1, and from the convexity of function f(z,y) (Jensen inequality). Moreover, §ifice Y
is feasible in (SDP,.), for each j € {1,...,7} we have b; > (A;,Y) = Y pa; y; = a] j, which
i€l

means that ¢ is feasible in (P,) too. This implies that f(z, ) > val(P,) and together with (C.1),
that (Q(z),Y) > val(P,). This being true for any matrix Y feasible in (SDP,), we conclude that
val(SDP,,) > val(P,). This proves that val(SDP,) = val(P,).

C.2. Proof of Lemma 4.2. The Lagrangian of problem (SDP,) is defined over Y € Sn+1( ),

AER,, 0 € R, B €R and reads Lo (Y, o, §) = (Q(z),Y) + i N (A, Y) = b)) + a(Tr(Y) = 1 —

P*)+BYnt1mp1 —1) = — XT: Ajb; — a1+ p%) — B+ (Q(z) + Z XjAj+alni1 + BE, Y). The Lagrangian
j=1

= Jj=
dual problem of (SDP,,) is: max m}in L,(Y,\ o, ). Accordlng to Lagrangian expression, it can thus

a3
be written as ” ”
max (—(Y _Ajb;+a(l+p°)+8) + min  (Qx)+ > NA; + alnt1 + BE,Y)).
AERY = vest  ®) =
aeR+
BER

We notice that

min  (Q(z) + Z)\jAj +aly1+BE,Y) =

¥ .
Yes,  (R) j=1 —oo otherwise.

{ 0 H(Q@)+ 3 MA; + alust + BE) = 0
j=1

This proves that the dual problem of (SDP,) can be formulated as (DSDP,). To prove that
val(SDP,) = val(DSDP,), we prove that the Slater condition, which is a sufficient condition for
strong duality [46], holds for the dual problem (DSDP,), exploiting the Lagrangian multiplier
associated to the constraint Tr(Y) < 1+ p?. We denote by m, the minimum eigenvalue of Q(z).
By definition of m,, the matrix Q(z) + (1 — my)I,41 is positive definite. This is why (A, «, 5) =
(0,...,0,1 —my,0) is a strictly feasible point of (DSDP,). Hence, the Slater condition holds.

C.3. Proof of Lemma 4.5. We begin by proving the points 1 and 2, before proving that
the value functions are ¢(-Lipschitz. Given any sequence (z¥)ren- € X, for all k& € N* we have that
vr = Vp(z¥) and we define U* the constraint set in (SDP”), i.e., the set

Py =0 (Ve {l,...,r} (A Y) <bj) AL E{L, ..., k—1},(Q(2"),Y) > v)A
(Tr(Y) <14 p*) A (Yag1ne1 = D}
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Thus Vde(z) = ;n%%(@(x),l’). We remark that for & = 1, the second set of constraints is
€

empty, thus U is exactly the constraint set of (SDP,), and therefore Vihp(z) = Vepp(z) for any
x € X. Moreover, U**1 C Y*. This is why Vdp(z) < VskD"l;l(m) for any k € N* and any v € X.
Finally, as explained in Section 4.5, problem (SDPQ) is a relaxation of (P,) for any k& € N* thus
V& e(z) < Vp(x). With this, we proved point 1.

We fix k£ € N* and we reason for any £ € N* s.t. £ < k — 1. On the one side, we know that
Ve (2f) < Vp(zf) from the previous point. On the other side, we know that, for any Y € U*,
(Q(x%),Y) > v = Vp(a%), which implies that V&, (zf) = Ynéiz/rllk<Q(xZ),Y> > Vp(x%). Hence,

V& e (2%) = Vp(2*), which proves point 2.
We recall that Q* is the adjoint operator of the linear operator Q and ||Q*||op is the linear
operator of Q*. We define I' := max [[Y||2, and ¢ := [|Q*|opI", with ¢ not depending on k or on
yeu

the choice of sequence (z*)ren-. We remark that the function —Vdio(z) reads max (x,—9*(Y)),
Yeu

with U* being a compact set and (x, —Q*(Y)) a linear function in z for any Y € U*. Applying
[20, Th. V1.4.4.2], we deduce that —VS"”'DP is convex and that, for any x € X, the subdifferential of
—Vp at z is
(C.2) O(—Vapp)(z) = {=Q"(Y) : (Y €U") A (~Vdbp (@) = (2, —Q"(Y)))}.
Combining this with the observation that U* C U!, we deduce that d(—Vdyp)(z) € {—Q*(Y) :
Y € U'}. Hence, for any = € X, and any s € 9(—V&yp)(z), we know that
(C.3) sl < Q% [lopI" = ¢.
Let us take any pair (z,2) € X x X. Applying convexity inequalities to —VSkDP, we deduce that for
any s € d(—Vdp)(x) and 8 € O(— V&) (2), the following holds: V& (2) — Vdp(z) < (£ —2) " s and
Vo (2) — V& (2) < (z—#) T3, We know from the Cauchy-Scwhartz inequality and from Eq. (C.3)
that (2 —x)'s < ¢||2 — 2| and (z — £) 75 < (||& — 2]

We deduce that [Vép(#) — Vo (@) < Cllé — 2.

C.4. Proof of Lemma 4.6. We analyze the variation of the objective function w.r.t. the
variable z. Since z* € X is a feasible value for variable z, the direction h = z* — z* is admissible
at ¥ in the problem (4.9). As F(z) is convex over R", the directional derivative F'(x* h) =
lim F(zP4th)—F(z")
t—0+ t
F(z) + 4|l — 2*||* in the direction h is non-negative, i.e., F'(z* h) + py(a* — 2*)Th > 0. By
convexity of F(x), we also have that F(z*) — F(2*) > F'(2*, h). Combining this with the previous
inequality yields F(2*) < F(a*) 4+ up(a® — 2%) T (2* — o).

is well-defined. By optimality of z*, the directional derivative of function

C.5. Proof of Corollary 4.8. We reason by contradiction: let us assume that the algorithm
generates an infinite sequence. We know that this implies that (Vp(2*) — h(z*))~ — 0 and |z* —
#*|| — 0. Moreover, since the algorithm does not stop, for all k € N*, either (Vp(z*) — h(z¥))™ > ¢
or ||z* — #¥|| > d. By case disjunction, we can deduce that either it exists an infinite number of &
such that (Vp(z*) — h(2*))~ > € and thus € = 0 or an infinite number of k such that ||z* — 2*| > d
and thus d = 0. Hence, if € > 0 and d > 0, the algorithm terminates in finite time. As stated in
Theorem4.7, the iterate £* is feasible. The fact that F(2%) < val(SIP) + d(ugdiam(X) + J) directly
follows from Eq. (4.15) since ||z — #*|| < d and ||z* — 2F|| < diam(X).
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