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Abstract

Individual Treatment Effect (ITE) estimation has become one of the main trends in Causal Inference
due to its applications in various areas where personalization is key. In order to circumvent the complex
problem of causal identification, the randomized control trial (RCT) set-up is used in several domains
which refer to ITE estimation as uplift modeling. If practitioners used to have full access to the user-level
data in order to learn uplift models, the rise of privacy concerns in different domains such as healthcare or
online advertising motivates to explore how such models could be trained to reach significant performances
while ensuring relevant privacy guarantees. We present e-ADUM, an e-differentially private method to
learn uplift models from data aggregated according to a given partition of the feature space. After
adapting the bias-variance decomposition to the Precision in Estimation of Heterogeneous Effects (PEHE)
metric, we propose an upper bound of the performance of eeADUM under a set of illustrative assumptions,
which explicits the privacy-utility trade-off for this class of models and provides insights on how the size of
the underlying partition can be adapted to match the privacy constraints. Finally, we provide experiments
on both synthetic and real data highlighting that e-ADUM outperforms e-differentially private models
with access to individual data for strong privacy guarantees (e < 5).

1 Introduction

1.1 Motivations

Estimating the causal effect of an action at the individual level — or Individual Treatment Effect (ITE) —
is a problem of growing interest in the machine learning community, particularly for healthcare [1], online
advertising [2, 3] or socio-economic [4] applications.

Many of these applications imply to handle sensitive data for which there are rising privacy concerns.
Consequently, many industries are starting to enforce procedures ensuring individual data protection. In the
online advertising sector for example, a series of changes to data access were proposed recently by Google
Chrome [5] in order to guarantee web users privacy through data aggregation and differential privacy.

In consequence, the scientific community has grown a strong interest in proposing ITE prediction methods
which fully leverage the trade-off between privacy and utility.

1.2 Related Work
1.2.1 ITE, CATE & uplift modeling

Individual treatment effect (ITE) [6] may be formally defined using the potential outcomes framework [7],
in which each individual ¢ has two potential outcomes Y;(1) (if 7 receives the treatment) and Y;(0) (if ¢



does not receive the treatment). The ITE of individual ¢ is then given by the difference Y;(1) — Y;(0). In
practice, individuals are often described by a set of features (contained in a variable X), and one rather aims
at estimating the conditional average treatment effect (CATE) [6], defined, for an individual ¢ with features
X = x;, as:

7(zi) = E[Y;(1) - Yi(0)|X = xi]. (1)

Standard approaches in ITE/CATE prediction include model-agnostic methods (meta-learners [8, 9, 10],
modified outcome methods [11] and their combinations [12]) that implicitly predict the CATE, as well as
tree-based approaches which are particularly suited for direct treatment effect estimation[13, 14]. A prolific
series of increasingly performing algorithm targeted towards ITE prediction have been proposed, using a
variety of techniques to adjust for the covariate shift, such as generative adversarial nets [15], auto-encoders
[16], double machine learning [17], representation learning [18, 19] or confounder balancing algorithms [20].
Another recent trend is to study theoretical limits in ITE prediction and especially generalization bounds
[21].

A practical-oriented branch of the work on CATE estimation — called Uplift Modeling (UM) [22] —
focuses on the Randomized Control Trial (RCT) setting, in which individuals are randomly split into a
treatment group and a control group. This set-up circumvents the causal identification problem (avoiding
selection bias) and ensures the CATE (or uplift) is rightfully given by the difference between the following
conditional expectations:

w(z;) =EY|X =2, T=1-E[Y|X =z;,T =0]. (2)

Privately learning the function defined in (2) is the main focus of our work.

UM methods are often overlapping with ITE prediction techniques or reinventing independently, as the
former is subproblem of the latter. For instance, the two-model method is described both in ITE [8] and
UM [23] literature, the class variable transformation [24] is a particular case of [11], and the tree-based
method from the UM community [25, 26] only fractionally differ from ITE ones. However, there are methods
specific to the UM which either extend the two-model method by using certain representations [27] or aim
at maximizing the AUUC (see below) directly [28, 29, 30].

1.2.2 Metrics

In order to evaluate CATE estimators, one may use an adapted version of the Mean-Squared Error (MSE),
namely the Precision in Estimation of Heterogeneous Effects (PEHE) [31], which is defined for a model 7 as:

eppnp(?) =E {(T(X) - %(X)ﬂ , (3)

where the expectancy is taken with respect to the distributions of both X and the data from with the model
7 is learned.

In practice however, only one of the two potential outcomes is observable for a given individual (the
factual outcome). This is known as the Fundamental Problem of Causal Inference (FPCI), and prevents
the computation of the PEHE in real settings. A possible solution is to use a ranking-based metric such as the
uplift curve [25], which evaluates a sorting of the individuals according to their predicted uplift score. In that
vein, the Area Under the Uplift Curve (AUUC) [32] represents the most popular metric in the community.

1.2.3 Learning from aggregated data

Learning individual-level behavior from aggregated-level data has long been known as the ecological inference
problem. Plenty of presented aggregated-level methods [33]| attempt to tackle the problem of ecological
fallacy: when the inferences drawn from aggregate level drastically differs from the ground truth at the
individual level.

The most relevant level of aggregation has not yet been completely determined by the research community
as the term "aggregated data" has been referring to different frameworks: label similarities with complete



access to features [19], aggregated labels with complete access to features [34] or aggregated labels with
aggregated features [35]. In this work, both features and labels are considered as sensitive and therefore
need to be aggregated, which corresponds to the most restrictive setting.

However, regardless of the selected level of aggregation, most of these methods do not ensure theoretical
privacy guarantees without being combined with differential privacy.

1.2.4 Differential Privacy

Differential privacy [36] represents one of the most widely used data protection method in so far as it enables
researchers to precisely quantify privacy guarantees while being applicable to general setups. Differential
privacy should be considered as a process-oriented method, which allows the private training of models.

In order to learn in a differentially private framework, the most common techniques include result pertur-
bation, objective perturbation [37] or noisy iterative optimization methods which can be performed thanks
to a precise budget tracking. In particular, differentially private stochastic methods adding scaled noises for
each training batch have already shown great performances when applied to deep learning models [38, 39].

The model we propose enables a one-shot spending of the privacy budget, avoiding both its complex
tracking and adaptive spending.

1.3 Owur contributions

1. We introduce e-Aggregated Data Uplift Model (e-ADUM), a differentially private method to learn
uplift models from data aggregated along a given partition of the feature space.

2. We identify and illustrate a bias-variance decomposition for e-ADUM, highlighting the role of the
underlying partition size in the privacy-utility trade-off.

3. Finally we show empirically on both synthetic and real data that, for strong privacy guarantees (e < 5),
e-ADUM outperforms comparable e-differentially private models with access to individual data.

2 ADUM and its bias-variance trade-off

2.1 Preliminaries
2.1.1 Variables and data

We consider random variables X (features), T (treatment) and Y (outcome) with respective values in K
(a compact convex subset of R?), {0,1} and R. We additionally suppose there exists treatment/control
response functions f7, f¢ : K — R and a real random variable ¢ (independent of X) with E[¢] = 0 and
E[¢?] = 02, such that

Y = TfT(X) + (1-T)fO(X) +¢, (4)

Under these notations, and for any x, we have that f€(z) = E[Y|T =0,X = 2], fT(z) =E[Y|T =1, X = 1]
and the corresponding uplift is defined as:

u(z) = f1(z) - f€(). ()

Finally, we assume we have access to D = {(x;, ;,yi) }1<i<n, & dataset containing n i.i.d. realizations of
(X,T,Y). Since we are in a randomized controlled trial (RCT) setting, the binary treatment variable T is
assumed independent of X. We denote 7 and C the subsets of D which contain respectively all datapoints
from the treatment (7" = 1) and control (T' = 0) groups.



2.1.2 Space partitioning

For a fixed positive integer p we define II,(K) := {77 e{l,....p}* : 7 surjective}, the set of all possible

partitions of K containing p elements. Let 7 € II,(K) be a fixed partition, then there exists GSP, e ,G&”

disjoint subsets of K such that [J GY) = K. For a given z € K, we denote G.(z) = m~}({n(x)}), the
1<j<p

component of 7 which contains z. For any G C K we denote |G|P = Y I,,cq, i.e. the number of points of
i€D
D for which the feature vector z; belongs to G.

2.2 ADUM presentation

We now present Aggregated Data Uplift Models (ADUM). For a given partition « € II,(K), we estimate the
uplift of x € K by the average treatment effect in the group G, (x). More formally, we define 4 : £ — R the
function which to all z € K assigns: . R
in(2) = f (2) = f7 (), (6)
where fz and ff refer respectively to aggregated-data based models of the treatment and control response
functions, i.e.:

. 1

)= —" Yiti,
|Gﬂ(m)‘T zziezc:w(w)

Ko = e, 2wt

2, €Gr(x)

fg and ff are piecewise constant functions defined using only aggregated information and would therefore
be computable from an aggregate reporting API [40] thanks to SUM and COUNT queries.

By using aggregated data models for both the treatment and control positive outcome functions, we
partially circumvent the FPCI: as long as there are points from both the treatment and control groups in
any given component G, (z) of 7, the average treatment effect in G (x) is consistently estimated by 4(z).

Remark Besides, outside of the RCT setting, additionally assuming {7(X)} is a valid adjustment set [41]
for (T,Y) — e.g. in the case where X |l T'|w(X) which is a strictly weaker assumption than the RCT setting
— guarantees ADUM rightfully models the causal effect of T on Y. Nevertheless, finding such a partition
represents a non-trivial task which is not the subject of this article.

2.2.1 General PEHE bound for ADUM
Let fﬁ : I — R be a model for a given f : I — R. For all x € K we define:

Bins(f»()) = () - Eolfs(@)]
Var(fa) = Ep | (ulo) - Eoli-(01]) |

The (squared) bias term captures how well can f be approached by a piecewise constant function on 7: it
should typically decrease when |7| = p increases. The variance term captures how close f; is to its
average in each of the components of 7: it should typically increase when |7| = p increases.

Proposition 1 Let m € IL,(K) and i, the associated ADUM learned wrt data D = T UC, then the PEHE
of Ur satisfies:

eprpme(i,) < 2E [Bias2 (f,f) + Bias® (f:)}

+ 28 [ Var (f¢) + Var (7]



2.3 ADUM : definition and algorithm

In order to get theoretical privacy guarantees, ADUM must be combined with differential privacy. Since
ADUM is based on the computation of means, it can be decomposed into a set of SUM and COUNT queries.
Knowing the range of the outcome D,, the sensitivities of these queries are directly available.

As the partition 7 creates disjoint subsets of the input domain, the privacy budget € can be entirely
spent on each group queries in parallel [42]. Here, we choose to assign an § budget to each SUM or COUNT
query. Therefore, all the queries can be noised thanks to a scaled Laplace noise, turning ADUM into an
e-differentially private model: e-ADUM (see Algorithm 1).

Algorithm 1 e-ADUM

1: function TRAIN((z4,ti, Ys)iep,n], 7 € I, (K), Dy > 0,€ > 0):
2 for k € [1,p] do
3 for t € {0,1} do
4: Ek-7t = (yi | ’/T(:El) = k, t; = t)
5: Crt = COUNT(E) ) + Lap(%) > 5-DP count
6 Skt = SUM(E},;) + Lap(222) > £-DP sum
7 Ut = g’;i > e-DP mean
8 end for
9: Uk = Yk,1 — Yk.0 > e-DP piecewise constant model
10: end for
11:  return (Ug)pe[1p)
12: end function
13:
14: function PREDICT(Z e € K):
return U, (;,,.) > Assign value linked to G, (Zpnew)

15: end function

2.4 The bias-variance trade-off for e~ ADUM: insights from an illustrative set-
ting

2.4.1 Simplified setting

For the sake of the result we present in the next subsection, we consider the following illustrative setting:

let 7 be a partition of I, with |r| = p components and assume that f7 and f¢ are respectively Lp

and L¢ Lispschitz on K that we suppose uni-dimensional (d = 1) of diameter D,. Moreover, we denote
Br = Juax {diam(G)/diam(G")}, and make the assumptions that every group G € 7 is equally populated
,G'em

with respect to 7 and C, i.e. VG € 7, |G|T = |G|¢

2.4.2 PEHE bounding for e—ADUM

Corollary 1 For a given A € (0,1), let p,n € N, D a dataset of size n, m € II,(K) and € > M

Let G, be the corresponding e— ADUM (defined in Algorithm 1), then the followmg inequality holds with
probability > 1 — A:

epprp(ic) < 2(LE + L) D;52p > ADUM Bias
+4(20% + (L + L3)D?) % ADUM Variance
> P
+ (24D,) e e—DP term. (7)



When making e—differentially private queries, it is typical to constrain € to be significantly bigger than
the inverse of the population of the group upon which the query is made [43], which is consistent with the
condition on € stated in the Corollary 1. For instance, if n = 2-10% p < 20 and A = 0.01, the bound holds
with probability 99% for any e > 0.04.

The number of groups p°P! that minimizes the upper bound in (7) has the following asymptotic variations
with respect to € and n:

e when ¢ is small compared to /p/n, (7) is dominated by its first and last terms and p°?* = O (ne),

e when ¢ is large compared to \/p/n, (7) is dominated by its two first terms and p°?* = O(n'/3) does
not depend on e.

This shows the flexibility of the class of ADUM models, which robustly adapt to noise addition when the
size of the underlying partition is rightfully tuned.

3 Experiments and results

3.1 Synthetic data
3.1.1 Data generation

First, eeADUM is tested in a synthetic framework in order to observe its performance in terms of PEHE.
Each of the n generated individuals are attributed a covariate X ~ U(—1,1) (d = 1) and a treatment
T ~ Bernoulli(0.5). The treatment effect surface is defined by the difference between response surfaces
of treatment and control populations. Each individual couple of potential outcomes is generated following
fE(X) =0, fT(X) = sinX and ¢ ~ N(0,0) in order to observe a simple but non-monotonic and noisy
treatment effect surface. Moreover, e-ADUM is computed on a regular cut of K in order to have balanced
groups (as X ~U(—1,1)) and be consistent with Corollary 1.

3.1.2 Performance comparison

Here, e-ADUM is compared with a Two-Model (TM) [23] uplift modeling method, formed by two e-
differentially private linear regressions [44] with polynomial features which have access to individual data,
denoted e-TM. For each €, we respectively tune the polynomial degree and the number of groups for e-TM
and e-ADUM. As highlighted by Figure 1, eeADUM reaches better performances than individually-trained
models for ¢ < 5, while € = 5 is often presented as a realistic parameter for the future of the tech industry
(including advertising [5]). Indeed, the ADUM framework offers a more robust and easily implementable
adaptation to noise addition than individual frameworks thanks to its query architecture. Nevertheless,
when considering large € (corresponding to low privacy guarantees), we observe that the great interaction
between aggregation and noise addition is being overruled by individual models which benefit from their
complete access to granular information. The significant drop in PEHE for e-TM can be explained by the
privacy cost of using a supplementary polynomial degree becoming profitable for a privacy budget € > 2.

3.1.3 Bias-variance trade-off illustration

The bias-variance trade-off introduced in Corollary 1 is illustrated experimentally in Figure 2. Indeed, for
every value of €, as the number of groups increases, the PEHFE starts by decreasing because of the bias
reduction (first term of (7)) before increasing due to a penalizing variance (second term of (7)) and the rising
impact of the privacy-induced noise addition (third term in (7)) — the two latter being due to an insufficient
population in the groups. Furthermore, this experiment also highlights the dependency between e and the
optimal number of groups for e ADUM. First, when € increases, the optimal number of groups increases and
e-ADUM’s best performance improves. Then, as illustrated by the two merged performance curves for ¢ = 50
and € = 100, eADUM enters a capped regime for which the e-differentially private perturbation becomes
negligible compared to errors inherent to ADUM (see 2 asymptotic regimes in Section 2.4).
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Figure 1: Comparison of test PEHE (lower is better) for e-TM and e-ADUM over 20 random train/test
splits selecting 20000 points. Arrows represent standard deviations and the tuned number of groups for
e-ADUM is annotated in blue. For this experiment, o = 1.
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Figure 2: Test PEHE (lower is better) over 20 random train/test splits selecting 20000 points, illustrating

the e-ADUM bias-variance trade-off with respect to the number of groups p for 5 selected e. For this
experiment, o = 0.1.
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Figure 3: Comparison of test AUUC' (higher is better) between individually-trained e-TM and two variations
of eeADUM over 4 random train/test splits randomly selecting 1M points from CRITEO-UPLIFTv2. The
tuned number of for e-ADUM is annotated in blue and green while the tuned regularization parameter C' is
in red for e-TM.

3.2 Real data

CRITEO-UPLIFTv2 dataset [2] is an open large scale dataset constructed from incrementality A/B tests.
Results are reported for the "visit" binary outcome, hence e-differentially private logistic regressions [37] are
used as prediction models in an e-TM method.

As presented in Section 2.2, e-ADUM is partition-dependant. For a real dataset, trivial partitions of K
such as one-dimensional regular cut are not sufficient anymore, and we propose to find a relevant partition
while preserving privacy guarantees by decomposing our privacy budget € in an §-kmeans partitioning [45]
— outputting a partition 7 — and a consecutive §-ADUM along 7. It is worth mentioning that in practice,
the partition and its corresponding mean queries could be provided by an external actor in order to avoid
any access to granular data.

As observed on synthetic data, e-ADUM appears to outperform models with access to individual data
for strict privacy guarantees (e < 5). Once again, when privacy guarantees loosen up, the e-differentially
private TM overtakes e-ADUM thanks to its access to granular data (see Figure 3). Moreover, the significant
impact of the partition is illustrated by the difference of performances between one-dimensional regular cut
(on the first feature) and g-kmeans partitioning even though the consecutive 5-ADUM is performed with a
halved privacy budget.

4 Conclusion
In this article, we introduce e-ADUM, a new uplift e-differentially private method to learn uplift models

from aggregated data. Then, a theoretical study of this model is conducted giving insights on its empirical
error through the expression of a bias-variance trade-off. Finally, on both synthetic and real data, eeADUM



is tested and appears to outperform classical differentially private methods for strong privacy guarantees
(e < 5) although the latter can access a granular level of data.
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