Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Acta Neuropathologica Année : 2013

Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons

Résumé

The recently identified GGGGCC repeat expansion in the noncoding region of C9ORF72 is the most common pathogenic mutation in patients with frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). We generated a human neuronal model and investigated the pathological phenotypes of human neurons containing GGGGCC repeat expansions. Skin biopsies were obtained from two subjects who had >1,000 GGGGCC repeats in C9ORF72 and their respective fibroblasts were used to generate multiple induced pluripotent stem cell (iPSC) lines. After extensive characterization, two iPSC lines from each subject were selected, differentiated into postmitotic neurons, and compared with control neurons to identify disease-relevant phenotypes. Expanded GGGGCC repeats exhibit instability during reprogramming and neuronal differentiation of iPSCs. RNA foci containing GGGGCC repeats were present in some iPSCs, iPSC-derived human neurons and primary fibroblasts. The percentage of cells with foci and the number of foci per cell appeared to be determined not simply by repeat length but also by other factors. These RNA foci do not seem to sequester several major RNA-binding proteins. Moreover, repeat-associated non-ATG (RAN) translation products were detected in human neurons with GGGGCC repeat expansions and these neurons showed significantly elevated p62 levels and increased sensitivity to cellular stress induced by autophagy inhibitors. Our findings demonstrate that key neuropathological features of FTD/ALS with GGGGCC repeat expansions can be recapitulated in iPSC-derived human neurons and also suggest that compromised autophagy function may represent a novel underlying pathogenic mechanism.
Fichier principal
Vignette du fichier
Almeida2013_Article_ModelingKeyPathologicalFeature.pdf (2.69 Mo) Télécharger le fichier
Origine : Publication financée par une institution

Dates et versions

hal-03339567 , version 1 (10-09-2021)

Licence

Paternité

Identifiants

Citer

Sandra Almeida, Eduardo Gascon, Hélène Tran, Hsin Jung Chou, Tania Gendron, et al.. Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons. Acta Neuropathologica, 2013, 126 (3), pp.385-399. ⟨10.1007/s00401-013-1149-y⟩. ⟨hal-03339567⟩
19 Consultations
19 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More