
HAL Id: hal-03336851
https://hal.science/hal-03336851v2

Preprint submitted on 14 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blockchain mining in pools: Analyzing the trade-off
between profitability and ruin

Hansjörg Albrecher, Dina Finger, Pierre-Olivier Goffard

To cite this version:
Hansjörg Albrecher, Dina Finger, Pierre-Olivier Goffard. Blockchain mining in pools: Analyzing the
trade-off between profitability and ruin. 2022. �hal-03336851v2�

https://hal.science/hal-03336851v2
https://hal.archives-ouvertes.fr


Blockchain mining in pools: Analyzing the trade-off between
profitability and ruin

Hansjörg Albrecher∗ Dina Finger† Pierre-O. Goffard‡

Abstract

The resource-consuming mining of blocks on a blockchain equipped with a Proof-of-Work con-
sensus protocol bears the risk of ruin, namely when the operational costs for the mining exceed
the received rewards. In this paper we investigate to what extent it is of interest to join a mining
pool that reduces the variance of the return of a miner for a specified cost for participation. Using
methodology from ruin theory and risk sharing in insurance, we quantitatively study the effects of
pooling in this context and derive several explicit formulas for quantities of interest. The results
are illustrated in numerical examples for parameters of practical relevance.

1. Introduction

A blockchain is a decentralized data ledger maintained by a Peer-to-Peer network. Blockchain users
issue transactions to the network peers who agree on those to be recorded by following a consensus
protocol. In public and permissionless blockchains, such as the one for Bitcoin, the consensus protocol
is called Proof-of-Work (PoW). The nodes, referred to as miners, compete to solve a challenging cryp-
tographic puzzle using some brute force search algorithm. The first miner to come up with a solution
includes the pending transactions in a block and is rewarded with newly minted crypto-coins. This
reward compensates the operational cost of mining mainly induced by the consumption of electricity.
The PoW protocol is designed to be incentive compatible in the sense that a miner is compensated
proportionally to her computational effort. When the Peer-to-Peer network grows large, the share of
the network computing power owned by a given miner shrinks, which in turn makes the gains infre-
quent. The constant operating costs therefore endanger the solvency of miners and has led them to
join forces by forming mining pools.

Mining pools grant miners a steadier income, as block finding rewards are collected more often. The
earnings are then fairly distributed to the pool participants based on their contribution to the com-
putational effort. The simplest way to do so consists in splitting the reward whenever a block is
found. This is the proportional reward system. More sophisticated reward schemes have been put
together to increase the amount of risk transferred from the miners to the pool and to fill the gaps
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of the proportional system that we will discuss later. These more sophisticated systems require the
supervision of a manager who undertakes part of the risk in exchange for a commission. An early
work of Rosenfeld [21] provides a detailed overview on mining pool reward systems, see also the recent
survey of Zhu et al. [24]. In practice, the individual contribution of a miner is measured through a
share submission process. A share refers to an easier-to-find ’fake’ solution to the crypto-puzzle that
miners must send to the pool manager to prove their involvement (for instance, a solution to the
crypto-puzzle with only m instead of the n > m leading zeroes required for the successful mining of a
block). In this work we provide a risk analysis of Pay-per-Share (PPS) reward systems in which the
pool manager pays for each share submitted by the miners. In that way the manager takes on much
of the randomness associated to the mining activity, which is therefore very appealing to the partici-
pant. Using utility theory, Schrijvers et al. [22] showed that such systems are incentive-compatible for
risk-averse miners. Both Rosenfeld [21] and Zhu et al. [24] stressed that a scheme of this kind must
go hand in hand with a proper capital allocation strategy on the part of the manager to avoid ruin.
Reliable information on mining companies filing for bankruptcy are hard to come by, we are able to
provide one. Bcause Mining, LLC, the mining affiliate operating in Virginia Beach, Virginia, filed
voluntarily for bankruptcy court protection under Chapter 11 on April 11, 2019 in order to reorganize
its debts. Unsecured creditors included a Virginia power company ($1, 459, 267.38), the U.S. Customs
and Border Patrol ($737, 041.90), landlords, and staff1.

The aim of this paper is to provide risk-analytic tools to inform the decision making process of miners
and pool managers. This is achieved by taking an approach inspired from insurance risk theory. The
wealth of miners and pool managers is modelled via stochastic processes that take into account op-
erational costs, pool participation fees and block finding rewards. The resulting processes are similar
to those appearing in the surplus modelling for insurance companies which collect premiums contin-
uously and have to pay loss reimbursements to policyholders in case a claim occurs. A standard risk
measure in this context is the ruin probability defined as the probability that the wealth process falls
below zero, see e.g. Asmussen and Albrecher [6] for an overview. This analogy was already used in
Albrecher and Goffard [3], where the opportunity for miners to deviate from the prescribed protocol
by withholding blocks was investigated. A first result was also obtained there in relation to the ad-
vantage of joining a mining pool which applies the proportional system. Our objective in this paper
is to considerably extend this line of thinking towards the Pay-per-Share redistribution systems that
are more commonly used in practice. We will also consider a variant of the model in which the col-
lected rewards are random variables. This assumption will enable the application of classical results
from double-sided jumps in a risk reserve process for modelling insurance portfolios, see for example
Albrecher at al. [2], Labbé and Sendova [16]. Incorporating random rewards allows us to account
for the transactions fees and the exchange rate of cryptocurrencies to fiat ones. Transaction fees are
included by blockchain users to entice the network to process their transactions, see Easley al. [11]
and Kasahara and Kawahara [14]. The redistribution of the revenue generated by the transaction fees
among the pool participants also varies from one mining pool to another. Closed-form expressions for
the probability of ruin and the expected profit given that ruin has not occurred are provided up to an
exponentially distributed time horizon. These formulas are amenable for a quick numerical evaluation
to perform a sensitivity analysis of risk and reward indicators with respect to the model parameters.

1Source: https://www.theblockcrypto.com
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We believe that our results will be useful for miners and pool managers to make the right financial
choices. Our indicators can also serve as the basis for a potential future regulatory framework for
mining activity on blockchains equipped with the Proof-of-work consensus protocol.

A major concern associated to mining pool formation is the centralization of the network. Cong et al.
[9] have explained that miners who direct their mining power to multiple small mining pools enjoy the
same risk sharing benefits as miners that choose to join a single mining pool. Hence the intuition that
a larger mining pool would grow even larger is misguided. Empirical data shows that the participation
fees are greater in larger mining pools, which naturally slows down their growth. We aim at providing
more insight on the risk of centralization in the light of our analysis.

The remainder of the paper is organized as follows. Section 2 gives a brief description of the mining
process in blockchains equipped with Proof-of-Work. Section 3 provides an overview of the existing
reward systems and describes the Pay-Per-Share mechanism in more detail, as it will be the focus
later on. Formulas for the ruin probability and expected surplus for the pool manager are derived
for deterministic rewards in Section 4 and for randomized reward in Section 5. Section 6 provides
formulas from the individual miner’s perspective. Section 7 is devoted to numerical illustrations where
the sensitivity of the risk and performance indicator is analysed with respect to the model parameters.
Section 8 concludes.

2. Mining blocks in a Proof-of-Work powered blockchain

A block consists of a header and a list of "transactions" that represents the information recorded
through the blockchain. The header usually includes the date and time of creation of the block, the
block height which is the index inside the blockchain, the hash of the block and the hash of the
previous block. The hash of a block is obtained by concatenating the header and the transactions in a
large character string thus forming a "message", to which a hash function is applied. A hash function
is a function that can map data of arbitrary size to fixed-sized values. The hash functions used in
blockchain applications must be cryptographic, i.e. quick to compute, one way and deterministic. It
must be nearly infeasible to generate a message with a given hash value or to find two messages with
the same hash value. A small change in the message should change dramatically the hash value so
that the new hash value appears to be uncorrelated to the previous hash. We will not expand on how
to build such a cryptographic hash function, we refer the interested reader to the work of Al-Kuwari
et al. [1]. In the bitcoin blockchain as well as in many other applications, the standard is the SHA-256
function which converts any message into a hash value of 256 bits. The latter is usually translated
into a hexadecimal digest, for instance the hash value of the title of the present manuscript reads as

98b1146926548f6b57c4347457713ff2f035beda9c93f12fbc9b202e9c512e80.

The information recorded in a public blockchain may be retrieved by anyone and can be accessed
through a blockchain explorer such as blockchain.com, the content of the block of height #724724
may be viewed through the following link block content. Mining a block means finding a block hash
value lower than some target which can only be achieved by brute force search thanks to the properties
of cryptographic hash functions. In practice, the search for an appropriate hash value, referred to as
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a solution, is done by appending a nonce to the block message before applying the hash function. A
nonce is a 32 bits number, drawn at random by miners until a nonce resulting in a proper block hash
value is found. For illustration, consider the block in Figure 1.

Figure 1: A block that has not been mined yet.

The hash value in decimal notation is 1.43e76 while the maximum value for a 256 bits number is
2256 − 1 ≈ 1.16e77. We refer to the latter as the maximal target and denote it by Tmax. The Proof-
of-Work protocol sets a target T < Tmax and ask miners to find a nonce such that the hash value of
the block is smaller than T . Practitioners would rather talk about the difficulty which is defined as
D = Tmax/T . If the difficulty is one, any hash value is acceptable. Increasing the difficulty reduces
the set of allowable hash values, making the problem harder to solve. A hash value is then called
acceptable if its hexadecimal digest starts with a given number of zeros. If we set the difficulty to 24,
then the hexadecimal digest of the hash of the block must start with at least 1 leading zero, making
the hash value of the block in Figure 1 not acceptable. After completing the nonce search we get the
block in Figure 2. Note that it took 5 attempts to find this nonce. The number of needed trials is

Figure 2: A mined block with a hash value having on leading zero.

geometrically distributed with parameter 1/D, which means that with a difficulty of D = 24 it takes
on average 16 trials. The protocol adjusts the difficulty automatically every 2, 016 block discoveries
so as to (globally) maintain one block discovery every 10 minutes on average. The time between
two block discoveries depends on the number of hash values computed by the network at a given
instant. At the time of writing, the network computes 182.58 Exahashes per second and the difficulty
is 27, 967, 152, 532, 434.2 For an exhaustive overview of the mining process in the bitcoin blockchain,
we refer the reader to the book of Antonopoulos [5, Chapter 10]. As each trial (of the system) for
mining a block is independent of the others and leads to a success with very small probability, the
overall number of successes is binomially distributed and will be very well approximated by a Poisson
random variable. This justifies the Poisson process assumption made in the sequel to model the block

2Source: bitcoinblockhalf.com
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arrival and the reward collecting processes. Empirical studies of the block inter-arrival times data
tend to confirm this hypothesis, see the work of Bowden et al. [8].

3. Risk models and reward systems

A risk model defines the wealth of some company or individual as a stochastic process

Rt = u− Ct +Bt, t ≥ 0

which corresponds to the income (Bt)t≥0 net of the expenses (Ct)t≥0. The surplus process (Rt)t≥0

starts at some initial level R0 = u > 0. We take a continuous time approach where t ∈ R+, and (Ct)t≥0

and (Bt)t≥0 define increasing functions or stochastic processes. A risk analysis is relevant only if at
least one of the model components is random. The activity of the company is profitable if on average
the earnings exceed the expenses, namely E(Bt) > E(Ct). Even if the net profit condition holds, the
variability of the process (Rt)t≥0 can lead to bankruptcy as it may become negative. Define the ruin
time as

τu = inf{t ≥ 0 : Rt < 0},

which corresponds to the first time at which the surplus goes below 0. The risk of bankruptcy is
classically assessed by computing the ruin probability up to time t ≥ 0 defined by

ψ(u, t) = P(τu ≤ t). (1)

It is sometimes more convenient from a mathematical point of view to consider the infinite-time
horizon by letting t → ∞, and in that case we write ψ(u) := limt→∞ ψ(u, t). Following the rationale
developed in [3], we also consider a performance indicator defined as

V (u, t) = E(RtIτu>t), (2)

which corresponds to the expected surplus at time t ≥ 0 in case ruin did not occur until then.

Consider a network of n miners, where miner i ∈ {1, . . . , n} owns a share pi ∈ (0, 1) of the network
hashpower, i.e.

∑n
i=1 pi = 1. If the number of blocks found by the network is governed by a homo-

geneous Poisson process (Nt)t≥0 with intensity λ, then the number of blocks found by miner i is a
(thinned) Poisson process (N i

t )t≥0 with intensity pi · λ. Denote by b > 0 the amount of the reward for
finding a new block and assume that the cumulative operational cost is a linear function with slope
ci > 0 which depends on the price of the electricity and the computing power of miner i. The surplus
process of miner i is then given by

Ri
t = u− ci · t+N i

t · b, t ≥ 0. (3)

Model (3) has been considered by Albrecher and Goffard [3], and formulas for both the finite-time
ruin probability (1) and the expected surplus (2) were derived. To make the formulas more amenable
for numerical evaluation, the authors then decided to approximate the fixed time horizon t ≥ 0 by an
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exponential random variable T ∼ Exp(t) with mean t ≥ 0, resulting in tractable expressions for

ψ̂(u, t) = E[ψ(u, T )], and V̂ (u, t) := E[V (u, T )], (4)

which were then used to carry out a numerical analysis.

Remark 3.1. Model (3) assumes that the block-finding reward is constant, while the bitcoin protocol
stipulates a halving of the reward every 210, 000 blocks. However, first note that 210, 000 blocks take
4 years to be found which is greater than the time horizon we have in mind when defining ψ̂(u, t) and
V̂ (u, t). Second, since these halving dates are known to blockchain networks, the market automatically
adjusts the cryptocurrency exchange rate before the halving occurs. Eventually, one could also replace
b in Model (3) with a piecewise constant function to account for halving events. However, this would
only be relevant for very long time horizons and will not be pursued in the present work.

Consider now a situation where a subset of miners I ⊂ {1, . . . , n} decides to gather in a mining pool.
The cumulated hashpower of this pool is then

pI =
∑
i∈I

pi,

and the arrival rate of block rewards for a given miner i rises from pi · λ to pI · λ. Because the reward
is shared among the pool participants, the size of the reward collected by miner i decreases from b to
pi ·b. The expected surplus is the same when mining solo and mining for a pool, but the variance (and
therefore the risk) is smaller when mining for a pool. The management of a mining pool relies heavily
on the reward distribution mechanism set up by a pool manager. For the redistribution system to
be fair, each miner must be remunerated in proportion to her calculation effort. Miner i must earn
a share pi/pI of the mining pool total income. The pool manager has to find a way to estimate the
contribution of each pool participant. This is done by submitting shares which are partial solutions to
the cryptopuzzle easier to find than the actual solution. Recall from Section 2 that a proper solution
corresponds to a hash value starting with a given number of zeros, so shares are hash values with a
smaller number of leading zeros. If the current difficulty of the cryptopuzzle is D, then the difficulty
for finding a share is set to q ·D by the pool manager, where q ∈ (0, 1). The manager’s cut is a fraction
f ∈ (0, 1) of the block discovery reward b. We start by presenting the proportional reward system in
Section 3.1.

3.1 The proportional reward system

The proportional reward system splits time in rounds which correspond to the time elapsed between
two block discoveries. During these rounds, the miners submit shares. The ratio of the number of
shares submitted by miner i over the total number of shares submitted by her fellow mining pool
participants determines her share of the reward and should converge to her share of the mining pool
computing power, that is pi/pI (for sufficiently low complexity of the shares, the latter limit will be a
very good approximation for the actual situation indeed). The surplus of miner i is then given

Ri
t = u− ci · t+N I

t · (1 − f) · pi

pI
· b, t ≥ 0, (5)
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where (N I
t ) is a Poisson proccess of intensity pI · λ that gives the number of blocks appended to the

blockchain by the mining pool. The duration of a round is exponentially distributed Exp
[
(pIλ)−1].

The uncertainty on the length of the round has undesirable consequences on the time value of the
shares submitted by the miners. Indeed, if n shares are submitted during a round, then the value
of a given share is (1 − f) · b/n. The longer a round lasts, the greater the value of n is. The shares
are worth less in longer rounds which triggers an exodus behavior of miners toward mining pools
with shorter rounds. This phenomenon, called pool hopping, has been documented in the early work
of Rosenfeld [21]. Yet another drawback is that a miner that has found a full solution may delay
the submission until her ratio of shares submitted reflects her fraction of the mining pool computing
power. The proportional system is not incentive-compatible using the terminology of Schrijvers et al.
[22]. A discounting factor may be applied to compensate the decreasing value of shares over time, see
for instance the slush’s method [20].

Our work is also concerned about the risk undertaken by pool managers. Within the frame of the
proportional reward system, the surplus of the pool manager is given by

RI
t = u+N I

t · f · b, t ≥ 0. (6)

Model (6) does not account for any mining pool operating cost. The mining costs are entirely borne by
miners and the mining pool manager only serves as coordinator. A proportional-type reward system
should therefore lead to a low management fee f .

Although this system provides fairness, it has weaknesses that justify the introduction of a more
sophisticated distribution mechanism. In particular, if miners seek to actually transfer some of the
risk associated to the mining activity to the pool manager, then they should rather turn to a mining
pool based on a Pay-per-Share system, which is the focus of this paper and introduced in the next
section.

3.2 The Pay-Per-Share reward system

In a Pay-per-Share reward system, the pool manager immediately rewards the miners for each share
submitted. Let (Mt)t≥0 be a Poisson process of intensity µ that counts the number of shares submitted
by the entire network of miners up to time t ≥ 0. Denote by q ∈ (0, 1) the relative difficulty of finding
a block compared to finding a share. Let 0 < w < b be the reward for finding a share. The number of
shares submitted by miner i is then a (thinned) Poisson process (M i

t )t≥0 with intensity pi ·µ, pi being
the share of the individual miner’s network hashpower as defined above, and her surplus when joining
a PPS mining pool becomes

Ri
t = u− ci · t+M i

t · w, t ≥ 0. (7)

The intensities of the processes (Nt)t≥0 and (Mt)t≥0 are linked through λ = q · µ. By setting w =
(1 − f) · b · q, we observe that the surplus (5) and (7) have the same expectation at time t, but the
variance and therefore the risk associated to (7) is lower. This reward system has been shown to be
resistant to pool hopping and is incentive compatible. It also entails a significant transfer of risk to
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the pool manager whose surplus process is now given by

RI
t = u−M I

t · w +N I
t · b, t ≥ 0, (8)

making her subject to the risk of bankruptcy.

Remark 3.2. Since the process (M I
t )t≥0 requires solving for a problem of lower complexitiy than

(N I
t )t≥0, (N I

t )t≥0 is a subset of the path defined by the process (M I
t )t≥0. It means that both processes

are not independent. Concretely, at the moment of the block reward payment b, at the same time
there is a realisation of the miners’ reward w. As we sometimes will need to isolate downward jumps
without the simultaneous upward jump point, we define another process with a reduced intensity. We
apply the superposition theorem (see e.g. [15]) to the Poisson process M I

t by redefining the down
jump process as (M I,d

t )t≥0 ∼ Poisson(µd), where µd = µ− λ.

Figure 3 represents sample paths of the surplus processes for an individual miner and the pool manager.
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Figure 3: Illustration of surplus paths for the pool members and the pool manager.

In addition to the bounty for finding a new block, blockchain users usually include a small financial
incentive for the network to process their transaction. These transaction fees (e.g. referred to as gas
within the ETHEREUM blockchain), are known to be variable as they highly depend on the network
congestion at a given time. Note also that since the operational cost is paid by miners using a fiat
currency, it would be more accurate to account for the exchange rate of the cryptocurrency to some
fiat currency. We can therefore model the successive rewards for shares and blocks as sequences of
nonnegative random variables denoted by (Wk)k≥1 and (Bk)k≥1 respectively, which for simplicity we
will both assume to be i.i.d. in this paper. A reward system that features a Pay-per-Share mechanism
and includes in the miners’ reward the transaction fees is referred to as a Full Pay-per-Share reward
system by practitioners. The surplus of miner i in a mining pool applying the FPPS system is given
by

Ri
t = u− ci · t+

M i
t∑

k=1
Wk, t ≥ 0, (9)
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and the surplus of the pool manager then becomes

RI
t = u−

MI
t∑

k=1
Wk +

NI
t∑

l=1
Bl, t ≥ 0. (10)

In the following sections, we will now derive formulas for the ruin probability and expected surplus in
case ruin did not occur up to a given time horizon for the models discussed above.

4. Pool analysis with deterministic rewards

We start with a fixed time horizon. For simplicity, we drop the superscript I in the following devel-
opments.

4.1 Deterministic time horizon

For the pool manager’s side, we first define some measures of interest. Let τ = inf{t ≥ 0 : Rt < 0} be
the time of ruin of the pool manager, i.e. the first time his surplus reaches 0. The corresponding ruin
probabilities in finite and infinite horizon respectively are given by

ψ(u, t) = P(τ ≤ t), and ψ(u) = P(τ < ∞). (11)

The net profit condition in this case translates to λb > µw. It implies from [6], that ψ(u) < 1. We
also define the expected surplus at time t given that ruin has not occurred up to time t:

V (u, t) = E(RtIτ>t). (12)

In the sequel, we will use the process (Md
t )t≥0 defined in Remark 3.2 representing the pure downward

jumps. Note that ruin can only occur at discrete times when the process (Md
t )t≥0 admits a jump. We

can rewrite the ruin time τ as

τ = inf{t ≥ 0;Md
t w > u+Nt(b− w)} = inf{t ≥ 0;Md

t > u/w +Nt(b− w)/w}. (13)

Equivalently, we can rewrite it as

τ = inf{t ≥ 0;Md
t w/(b− w) > u/(b− w) +Nt} (14)

to isolate the (Nt)t≥0 process with unit jumps. The study of the p.d.f. fτ of τ is analogous to the
derivations in [12]. Since (Nt)t≥0 and (Md

t )t≥0 are Poisson process, they enjoy the order statistic
property. That is, given that Nt = n, the jump times {T1, . . . , Tn} of the process Nt have the same
distribution as the order statistics vector of a random variable having distribution Ft(s) = s/t, 0 ≤
s ≤ t. Further, let {Sd

n, n ∈ N} be the sequence of arrival times associated with the process (Md
t )t≥0.

Its distribution function is denoted by FSd
n
(t) and its p.d.f. by fSd

n
(t). Denote by ⌈x⌉ the ceiling

function. Following Corollary 1 from [12], we proceed from Equation (14) and derive the next steps.

Theorem 4.1. Let (Nt, t ≥ 0) and (Md
t , t ≥ 0) be Poisson processes with intensities {λ, µd} respec-
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tively, and assume that the net profit condition λb > µw holds, then the p.d.f. of τ is given by

fτ (t) =
+∞∑
n=0

E
[(−1)n

tn
Gn

[
0|Sv0 , . . . , S

d
vn−1

]
|Sd

vn
= t

]
fSd

vn
(t)P [Nt = n] , (15)

where (vn)n≥0 is a sequence of integers defined as vn = ⌈n(b−w)/w+u/w⌉, n ≥ 0, and (Gn(·|{. . .})n∈N
is the sequence of Abel-Gontcharov polynomials defined in Appendix A.

The proof is delegated to Appendix B. The expression of the ruin time p.d.f. (15) is not convenient for
numerical purposes. The infinite series in (15) must be truncated, possibly to a high order to reach
an acceptable level of accuracy. Also, the evaluation of the Abel-Gontcharov polynomials relies on the
recurrence relationships (67) which are known to suffer from numerical instabilities. Moreover, the
conditional expectation with respect to {Sd

vn
= t} itself requires the use of Monte Carlo simulations.

Finally, a similar algebraic expression for V (u, t) is out of sight. In view of all these difficulties, we
therefore propose as in [3] a workaround which consists of replacing the deterministic time horizon by
a random variable with exponential distribution.

4.2 Exponential time horizon

To obtain a nicer solution to the problem, we now randomize the time horizon T . The practical
intuition suggests that the time horizon is never fixed in advance and is subject to various external
factors, such as bitcoin price fluctuations, in-pool events etc. We choose the time horizon T to be
exponentially distributed with rate 1/t (so that E(T ) = t). This leads to computable expressions
having an intuitive justification due to the lack of memory property of the exponential distribution.
Let V̂ (u, t) := E(RT Iτ>T ) denote the expected value of the surplus at the exponential time horizon T .

Theorem 4.2. Let b and w, b > w, be fixed positive integers and assume that the net profit condition
λb > µw holds. Then the expected surplus at an exponential time horizon can be expressed in the form

V̂ (u, t) =
w∑

i=1
cix

u
i + u+ λb t− (λ+ µd)w t,

where x1, . . . , xw are the w roots inside the unit disk of the equation

λxb − (λ+ µd + 1/t)xw + µd = 0, (16)

and the constants c1, . . . , cw are the solution of the linear equation system


λxb−w
1 − (λ+ µd + 1/t) · · · λxb−w

w − (λ+ µd + 1/t)
λxb−w+1

1 − (λ+ µd + 1/t)x1 · · · λxb−w+1
w − (λ+ µd + 1/t)xw

... . . . ...
λxb−1

1 − (λ+ µd + 1/t)xw−1
1 · · · λxb−1

w − (λ+ µd + 1/t)xw−1
w




c1

c2
...
cw

 =


A1

A2
...
Aw

 , (17)

with
Ai = (i− 1)µd + µdt(λb− (λ+ µd)w) − µdw, i = 1, . . . , w.

Proof. Akin to the approach in [2], consider some small h > 0 and condition on the following scenarios
during the time interval (0, h):
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1. no jump and T > h;

2. no jump and T ≤ h;

3. occurrence of an upward jump;

4. occurrence of a downward jump.

All other combinations of these events have negligible probability in the limit h → 0 that we will
pursue below. One then obtains

V̂ (u, t) = e−( 1
t
+λ+µd)hV̂ (u, t) + 1

t

∫ h

0
e−s/te−(λ+µd)su ds

+ λ

∫ h

0
e−λse−(1/t+µd)sV̂ (u+ b− w, t) ds+ µd

∫ h

0
e−µdse−(1/t+λ)sV̂ (u− w, t) ds.

(18)

We now take the derivative w.r.t. h and set h = 0 to obtain

λV̂ (u+ b− w, t) − (λ+ µd + 1/t)V̂ (u, t) + µdV̂ (u− w, t) + u/t = 0, u ≥ 0. (19)

By definition of V̂ (u, t) we have the boundary conditions V̂ (u, t) = 0 for all u < 0 and the linear
boundedness 0 ≤ V̂ (u, t) ≤ u+ (λb− µdw)t in both u and t for all u, t ≥ 0.

Equation (19) is an inhomogeneous difference equation with constant coefficients (see e.g. [13] for
solution methods), which has the general solution

V̂ (u, t) =
b∑

i=1
cix

u
i + d0 + d1u

with constants {ci}b
i=1, {xi}b

i=1, d0, d1 still to be determined.
Let us start with the inhomogeneous part: plugging the ansatz d0 + d1u into (19) gives

d1 = 1, d0 = λbt− (λ+ µd)wt.

For the homogeneous part, we consider the characteristic equation (16), which by the Fundamental
Theorem of Algebra has exactly b complex roots x1, . . . , xb. The linear boundedness of V̂ (u, t), how-
ever, excludes any solution with absolute value exceeding 1 (i.e., the corresponding constants ci must
be zero). In fact, it turns out that exactly w roots of the polynomial in (16) are located inside the
unit disk in the complex plane. To see this, observe first that (λ + µd + 1/t)xw + µd has exactly w

roots inside the unit disk (due to µd/(λ + µd + 1/t) < 1). Then Rouché’s Theorem establishes that
the same is true for the entire polynomial in (16), if

|λzb| < | − (λ+ µd + 1/t)zw + µd| on |z| = 1,

which translates into the condition

|µd − (λ+ µd + 1/t)zw| > λ on |z| = 1. (20)

The reverse triangle inequality states for any complex a, b ∈ C that |a − b| ≥
∣∣∣|a| − |b|

∣∣∣, which shows
that for |z| = 1 the left-hand side of (20) is larger than λ+ 1/t, so that (20) is indeed fulfilled.

11



It is now only left to determine the coefficients c1, . . . , cw corresponding to the w roots x1, . . . , xw ∈ C
with |xi| < 1 of (16). To that end, note that (19) evaluated at u = 0, . . . , w − 1 gives the following
system of equations:

λV̂ (b− w, t) − (λ+ µd + 1/t)V̂ (0, t) = 0,

λV̂ (b− w + 1, t) − (λ+ µd + 1/t)V̂ (1, t) + 1/t = 0,

· · ·

λV̂ (b− 1, t) − (λ+ µd + 1/t)V̂ (w − 1, t) + (w − 1)/t = 0.

Substituting the form

V̂ (u, t) =
w∑

i=1
cix

u
i + u+ at

with at = λb t− (λ+ µd)w t into this system leads to

λ
w∑

i=1
cix

b−w
i + λ(b− w) + λat − (λ+ µd + 1/t)

(
w∑

i=1
ci + at

)
= 0,

λ
w∑

i=1
cix

b−w+1
i + λ(b− w + 1) + λat − (λ+ µd + 1/t)

(
w∑

i=1
cixi + (1 + at)

)
+ 1/t = 0,

· · ·

λ
w∑

i=1
cix

b−1
i + λ(b− 1) + λat − (λ+ µd + 1/t)

(
w∑

i=1
cix

w−1
i + (w − 1 + at)

)
+ (w − 1)/t = 0.

But the latter can be rewritten in the form (17).

Example 4.3. Figure 4 depicts V̂ (u, t) as a function of u for the parameters b = 100, w = 9, t =
1, λ = 10, µd = 90. Note that for some capital levels u the increase of V̂ (u, 1) from u to u+ 1 is larger
than for others. This is linked to how many down-jumps relative to up-jumps are needed to become
negative, and due to the discrete nature of the problem such jumps in V̂ (u, t) occur naturally.

20 40 60 80 100

50

100

150

Figure 4: V̂ (u, 1) as a function of u

In an analogous way, an explicit formula for ψ̂(u, t) = E [ψ(u, T )] can be derived.
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Theorem 4.4. Let b and w, b > w, be fixed positive integers. Then the ruin probability up to an
exponential time horizon with mean t is given by

ψ̂(u, t) =
w∑

i=1
cix

u
i (21)

where x1, . . . , xw are the w roots inside the unit disk of Equation (16) and the constants c1, . . . , cw are
the solution of the linear equation system


λxb−w
1 − (λ+ µd + 1/t) · · · λxb−w

w − (λ+ µd + 1/t)
λxb−w+1

1 − (λ+ µd + 1/t)x1 · · · λxb−w+1
w − (λ+ µd + 1/t)xw

... . . . ...
λxb−1

1 − (λ+ µd + 1/t)xw−1
1 · · · λxb−1

w − (λ+ µd + 1/t)xw−1
w




c1

c2
...
cw

 =


−µd

−µd

...
−µd

 . (22)

Proof. We proceed in the same way as in the proof of Theorem 4.2. The analogue of (18) then is

ψ̂(u, t) = e−( 1
t
+λ+µd)hψ̂(u, t) + λ

∫ h

0
e−λse−(1/t+µd)sψ̂(u+ b− w, t) ds

+ µd

∫ h

0
e−µdse−(1/t+λ)sψ̂(u− w, t) ds

(23)

and (19) is replaced by

λψ̂(u+ b− w, t) − (λ+ µd + 1/t)ψ̂(u, t) + µdψ̂(u− w, t) = 0, u ≥ 0, (24)

which is the homogeneous equation of the former. The boundary conditions here are given by ψ̂(u, t) =
1 for u < 0 as well as the obvious bound ψ̂(u+ b− w, t) ≤ 1 for all u ≥ 0. Correspondingly, from the
proof of the previous theorem we then know that

ψ̂(u, t) =
w∑

i=1
cix

u
i (25)

with constants c1, . . . , cw still to be determined. Evaluating (24) at u = 0, . . . , w − 1 gives

λψ̂(b− w + j, t) − (λ+ µd + 1/t)ψ̂(j, t) + µd = 0, j = 0, . . . , w − 1.

Substituting (25) into these leads to

λ
w∑

i=1
cix

b−w+j
i − (λ+ µd + 1/t)

(
w∑

i=1
cix

j
i

)
+ µd = 0, j = 0, . . . , w − 1,

or equivalently (22).

5. Pool analysis with stochastic rewards

Until this point, we considered deterministic rewards b and w for jump sizes of the surplus process.
However, in practice, one may desire to incorporate variability in these quantities to account for
instance for the incorporation of variable transaction fees attached to the block reward, or to capture
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the price volatilities to convert the reward to a fiat currency.

Let us therefore assume now that the up- and downward jumps in the dynamics of the pool manager’s
surplus are stochastic. Under certain assumptions on the nature of these jumps, this will allow us to
still derive closed form formulas for ψ̂ and V̂ in the spirit of [2], see also [6, Ch. 4]. Equation (8) then
is replaced by

Rt = u−
Md

t∑
n=1

Wn +
Nt∑

n=1
Br,n, t ≥ 0, (26)

where we assumeWn, n ∈ N to be i.i.d. positive random variables with cumulative distribution function
FW and finite mean representing payments to the pool members, and Br,n, n ∈ N are assumed to
be i.i.d. positive random variables with distribution function FBr and finite mean representing the
remaining inflow of bounty rewards diminished by the simultaneous payout to the respective pool
member. If one wishes to draw a parallel to the previous case with deterministic rewards, the random
variable Br assumes the role of b− w, the fixed block reward minus the payout to the pool member.

Consider the expected surplus of the pool manager as defined previously with a random time horizon
T . Concretely, T follows an exponential distribution with mean t. As in the previous section, we are
interested in V̂ (u, t).

Proposition 5.1. The quantity V̂ (u, t) = E(RT Iτ>T ) for the pool surplus process (26) is a solution
of the integral equation

λ

∫ ∞

0
V̂ (u+br, t) dFBr (br)−(λ+µd +1/t)V̂ (u, t)+µd

∫ u

0
V̂ (u−w, t) dFW (w)+u/t = 0, u ≥ 0, (27)

with boundary conditions V̂ (u, t) = 0 for all u < 0 and 0 ≤ V̂ (u, t) ≤ u+ (λE[Br] − µdE[W ])t for all
u, t ≥ 0.

Proof. We extend the approach of the proof of Theorem 4.2 by conditioning on the size of the jump
in case a jump occurs. For some small h > 0 we correspondingly get

V̂ (u, t) = e−( 1
t
+λ+µd)hV̂ (u, t) + 1

t

∫ h

0
e−s/te−(λ+µd)su ds

+ λ

∫ h

0
e−λse−(1/t+µd)s

∫ ∞

0
V̂ (u+ br, t) dFBr (br) ds

+ µd

∫ h

0
e−µdse−(1/t+λ)s

∫ u

0
V̂ (u− w, t) dFW (w) ds.

(28)

Taking the derivative w.r.t. h and setting h = 0, one obtains (27). The property V̂ (u, t) = 0 for all
u < 0 follows by definition and the linear upper bound in u and t is obtained from the inequality
V̂ (u, t) ≤ E(RT ).

Remark 5.2. For degenerate FBr and FW (i.e. for constant Br and W ), the integral equation (27)
simplifies to (19) (and for integer constants, we get back to the setting of Theorem 4.2).

For our purposes, it is very reasonable to assume (and will lead to simplified notation) that the generic
random variables Br and W are connected via

Br = aW (29)
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for some constant a > 1 that depends on the number of miners in the pool. Indeed, W is the payment
to the pool miner for solving a less complex puzzle, and Br can be seen as the bounty reward when
the more complex puzzle is solved minus the payment to the miner who solved it, and that latter
payment will be a constant fraction, depending on the specification of the pool rules. Note that for
most positive random variables, a scaled version of it belongs to the same class of random variables
with only the parameter(s) changed, and the latter is indeed the case for all distributional assumptions
that we will pursue in this paper. In any case, all results below can easily be adapted to the case when
Br and W follow distributions that are unrelated combinations of exponentials with different n and
Ai’s.

Let us now consider in more detail the case where both the up- and down-jumps are random variables
whose distributions are combinations of exponentials. The latter class is dense in the class of all
random variables on the positive half-line, so that the result is in fact quite general (see e.g. Dufresne
[10]). Concretely, the density of downward jumps is then assumed to be of the form

fW (w) =
n∑

i=1
Aiαie

−αiw, w > 0, (30)

where α1 < α2 < . . . < αn and A1 + · · · + An = 1 (but the Ai are not necessarily positive). The
Laplace transform of this density is given by

f̃W (s) := E(e−sW ) =
n∑

i=1
Ai

αi

αi + s
, Re(s) > −α1.

From (29), we then have

fBr (br) =
n∑

i=1
Aiβie

−βibr , br > 0 (31)

with βi = αi/a, i = 1, . . . , n.

Theorem 5.3. If W and Br are random variables with densities given in (30) and (31), then we have

V̂ (u, t) =
n∑

k=1
Cke

−rku + u+ t
n∑

i=1
Ai

(
λ

βi
− µd

αi

)
, (32)

where r1, . . . , rn are the solutions with positive real parts of

λ
n∑

i=1
Ai

βi

βi + r
+ µd

n∑
i=1

Ai
αi

αi − r
− (λ+ µd + 1/t) = 0 (33)

and

Ck =

∑n
j=1Bj

n∏
h=1

(αj − rh)
n∏

i=1,i ̸=j

rk−αi
αj−αi

n∏
h=1,h ̸=k

(rk − rh)
, k = 1, . . . , n (34)

with
Bj = 1

α2
j

− t

αj

n∑
i=1

Ai

(
λ

βi
− µd

αi

)
, j = 1, . . . , n.
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Proof. Substituting (30) and (31) into (27), we get

λ
n∑

i=1
Aiβi

∫ ∞

0
V̂ (u+ br, t)e−βibrdbr

− (λ+ µd + 1/t)V̂ (u, t) + µd

n∑
i=1

Aiαi

∫ u

0
V̂ (u− w, t)e−αiwdw + u/t = 0, u ≥ 0.

The function V̂ (u, t) then has the form

V̂ (u, t) =
n∑

k=1
Cke

−rku + d1u+ d0,

for constants C1, . . . , Cn, r1, . . . , rn, d0, d1 to be determined. In fact, plugging this ansatz into the
above equation shows that comparing coefficients of e−rku exactly gives (33) (which is a generalized
Lundberg equation in the terminology of ruin theory, cf. [6]). That equation has exactly n solutions
with positive real part r1, . . . , rn and n solutions with negative real part (see e.g. [23]). The solutions
with negative real part would enter V̂ with positive real part and are correspondingly irrelevant for
our purpose, as that would violate the linear boundedness of the resulting V̂ (in other words, the
coefficients in front of such terms need to be zero). Comparing coefficients of e−αiu, i = 1, . . . , n gives

n∑
k=1

Ck

αi − rk
= d1
α2

i

− d0
αi
, i = 1, . . . , n. (35)

Coefficients in front of u e−αiu, i = 1, . . . , n all cancel. After a little algebra, one sees that a comparison
of coefficients of u in that equation establish d1 = 1 and a comparison of the constant coefficients gives

d0 = t
n∑

i=1
Ai

(
λ

βi
− µd

αi

)
.

These obtained values of d1 and d0 can now be plugged into (35), and the resulting system of linear
equations can be solved explicitly to give (34), either by realizing that the coefficient matrix is a
Cauchy matrix or by using the trick of rational function representation developed in [2, Sec.4].

Example 5.4. A particular simple example of the above is the case where W is exponentially dis-
tributed with parameter α and Br is exponentially distributed with parameter β. In that case n = 1
in Theorem 5.3 and we obtain

V̂ (u, t) =
( 1
α2 − t

α

(
λ

β
− µd

α

))
(α−R)e−Ru + u+ t

(
λ

β
− µd

α

)
, (36)

where R is the (unique) solution with positive real part of

λ
β

β + r
+ µd

α

α− r
− (λ+ µd + 1/t) = 0. (37)

Let us now move on to study the ruin probability ψ̂(u, t) = E [ψ(u, T )] in the present context.
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Theorem 5.5. If W and Br are random variables with densities given in (30) and (31), then we have

ψ̂(u, t) =
n∑

k=1
Dke

−rku, (38)

where r1, . . . , rn are the n solutions with positive real parts of (33) and

Dk =

∑n
j=1

1
αj

n∏
h=1

(αj − rh)
n∏

i=1,i ̸=j

rk−αi
αj−αi

n∏
h=1,h̸=k

(rk − rh)
, k = 1, . . . , n. (39)

Proof. We can proceed in the same way as in the proof of Proposition 5.1 to derive an integral equation
for the ruin probability. The analogue of Equation (28) here is

ψ̂(u, t) = e−( 1
t
+λ+µd)hψ̂(u, t) + λ

∫ h

0
e−λse−(1/t+µd)s

∫ ∞

0
ψ̂(u+ br, t) dFBr (br) ds

+ µd

∫ h

0
e−µdse−(1/t+λ)s

(∫ u

0
ψ̂(u− w, t) dFW (w) +

∫ ∞

u
1 dFW (w)

)
ds.

(40)

Taking the derivative w.r.t. h and evaluating at h = 0 then gives

λ

∫ ∞

0
ψ̂(u+br, t) dFBr (br)−(λ+µd+1/t)ψ̂(u, t)+µd

∫ u

0
ψ̂(u−w, t) dFW (w)+µd(1−FW (u)) = 0, u ≥ 0.

(41)
Here the boundary conditions are ψ̂(u, t) = 1 for u < 0 and ψ̂(u, t) ≤ 1 for u ≥ 0 and arbitrary t > 0,
and uniqueness of its solution follows analogously to Theorem 5.3. Under the assumptions on FBr and
FW this reads

λ
n∑

i=1
Aiβi

∫ ∞

0
ψ̂(u+ br, t) e−βibr dbr − (λ+ µd + 1/t)ψ̂(u, t)

+ µd

n∑
i=1

Aiαi

∫ u

0
ψ̂(u− w, t) e−αiw dw + µd

n∑
i=1

Aie
−αiu = 0, u ≥ 0. (42)

In analogy to the proof of Theorem 5.3 we then see that the ruin probability must have the form

ψ̂(u, t) =
n∑

k=1
Dke

−rku

for constants D1, . . . , Dn to be determined, and r1, . . . , rn being the n positive solutions of (33).
The constants Dk are now obtained by substituting the above expression into (42) and comparing
coefficients of e−αiu, i = 1, . . . , n. This gives

n∑
k=1

Dk

αi − rk
= 1
αi
, i = 1, . . . , n. (43)

This system of linear equations is again of Cauchy matrix form with explicit solution (39), establishing
the result.

Example 5.6. If W and Br are exponentially distributed with parameter α and β, respectively, then
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(38) simplifies to
ψ̂(u, t) = (1 −R/α)e−Ru, u ≥ 0, (44)

where R is the (unique) solution with positive real part of (37).
Note that for t → ∞ one obtains R = (λα− µdβ)/(λ+ µd) > 0, so that

ψ(u) = µd(1 + β/α)
λ+ µd

e
− λα−µdβ

λ+µd
u
, u ≥ 0. (45)

In particular, without initial capital in the pool, the infinite-time ruin probability amounts to

ψ(0) = µd(1 + β/α)
λ+ µd

,

in accordance with Formula (8.1) in [2].

6. Individual miner analysis

6.1 Deterministic rewards

Comparing the formula describing the miner’s surplus under the PPS pooling scheme (7) with the solo-
mining surplus (3), one can see that they are in fact the same type of process, only distinguished by
the reward amount and frequency. Correspondingly, the formulas obtained by Albrecher and Goffard
[3] for the expected value of the surplus and the ruin probability of a honest miner apply in the PPS
case with deterministic rewards. Adapted to the present context, we hence get:

Theorem 6.1. [3] For the miner’s surplus process Ri
t = u − ci · t + M i

t · w, t ≥ 0, with M i
t ∼

Poisson(piµt), the value function V̂ (u, t) can be expressed as

V̂ (u, t) = u+ (piµw − ci)t(1 − eρ∗u), (46)

where ρ∗ is the negative solution of the equation

−ciρ+ piµ(ewρ − 1) = 1/t. (47)

Theorem 6.2. [3] For the same surplus process, the ruin probability with exponential time horizon is
given by ψ̂(u, t) = eρ∗u, where ρ∗ is the negative solution of (47).

6.2 Stochastic rewards

Consider now the same surplus process as in the previous section, but with stochastic rewards. Let
us define this process by

Ri
t = u− ci · t+

M i
t∑

n=1
Wn, t ≥ 0, (48)

where we assumeWn, n ∈ N to be i.i.d. positive random variables with cumulative distribution function
FW and finite mean and M i

t ∼ Poisson(piµt) as previously. This type of process is denominated as
the dual problem in the insurance context, see e.g. [7]. We assume that the net profit condition
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piµE[Wn] > ci is satisfied.
We are again interested in deriving the expected value of the surplus and the ruin probability for the
miner. To simplify the computations, we consider again an exponential time horizon.

Theorem 6.3. For exponential time horizon, the expected value of the miner’s surplus V̂ (u, t) can be
expressed as the solution of the integro-differential equation

ciV̂
′(u, t) + (1

t
+ piµ)V̂ (u, t) − piµ

∫ +∞

0
V̂ (u+ w, t)dFW (w) − u/t = 0, (49)

with boundary conditions V̂ (0, t) = 0 and 0 ≤ V̂ (u, t) ≤ u− cit+ piµE[W ].

Proof. As in previous sections, by conditioning the occurrence of T to a small time interval (0, h), we
can write the value function as

V̂ (u, t) = e−h( 1
t
+piµ)V̂ (u− cih, t) +

∫ h

0

1
t
e−s( 1

t
+piµ)(u− cis)ds

+
∫ h

0
piµe

−s( 1
t
+piµ)

∫ +∞

0
V̂ (u− cih+ w, t)dFW (w)ds.

(50)

Taking the derivative w.r.t. h and evaluating it at h = 0 gives us (49). The boundary condition follows
from ruin considerations.

For rewards whose distribution is a combination of exponentials (30), we can refine Theorem 6.3.

Theorem 6.4. When W has density fW (w) =
∑n

j=1Ajαje
−αjw, w > 0, then

V̂ (u, t) = t

ci − piµ
n∑

j=1

Aj

αj

 e−Ru + u+ t

piµ
n∑

j=1

Aj

αj
− ci

 , u > 0, (51)

where R is the unique solution with positive real part of the equation

ciR+ piµ
n∑

j=1

Ajαj

R+ αj
− (1

t
+ piµ) = 0.

Proof. Equation (49) translates into

ciV̂
′(u, t) + (1

t
+ piµ)V̂ (u, t) − piµ

n∑
j=1

Ajαj

∫ +∞

0
V̂ (u+ w, t)e−αjwdw − u/t = 0. (52)

This equation has a solution of the form

V̂ (u, t) = Ce−Ru + d1u+ d0 (53)

and we plug this ansatz into (52)

ci(−RCe−Ru + d1) + (1
t

+ piµ)(Ce−Ru + d1u+ d0)

− piµ
n∑

j=1
Ajαj

∫ +∞

0
(Ce−R(u+w) + d1(u+ w) + d0)e−αjwdw − u/t = 0.

(54)
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Comparing coefficients, we obtain

d1 = 1, d0 = t

piµ
n∑

j=1

Aj

αj
− ci

 .
Further, a comparison of the coefficients in front of e−Ru simplifies to the following equation:

ciR+ piµ
n∑

j=1

Ajαj

R+ αj
− (1

t
+ piµ) = 0. (55)

Similarly to the Lundberg equation derived in [18], we note that there is one positive root R to this
equation. To complete the proof, we consider the boundary condition V̂ (0, t) = 0 and substituting
into the ansatz gives C = −d0.

Example 6.5. When W is exponentially distributed, i.e. fW (w) = αe−αw, w > 0, Equation (51)
simplifies to

V̂ (u, t) = t

(
ci − piµ

α

)
e−Ru + u+ t

(
piµ

α
− ci

)
, u > 0, (56)

where R is the solution with positive real part of

ciR
2 + (αci − 1

t
− piµ)R− α

1
t

= 0.

Theorem 6.6. For exponential time horizon, the miner’s ruin probability can be expressed as

ψ̂(u, t) = e−R·u, (57)

where R is the unique positive root of

piµ+ 1
t

− ciR = piµE[e−RWn ]. (58)

Proof. The proof is adapted from Example 2 of Mazza and Rullière [19]. From the latter, we have
that the Laplace transform of the ruin time τ in the dual problem is E[e−sτ ] = e−R(s)·u, with R(s)
being the unique positive root of piµ + s − ciR = piµE[e−RWn ]. Since the ruin probability up to an
exponential time horizon can be rewritten as

ψ̂(u, t) = E[P(T > τ) | τ ], (59)

with T ∼ Exp(1/t), it immediately follows that

ψ̂(u, t) = E[eτ/t] (60)

which completes the proof.

Example 6.7. If W is an exponential random variable, i.e. fW (w) = αe−αw, w > 0, then the ruin
probability reduces to

ψ̂(u, t) = e−R∗u, (61)
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where
R∗ = 1/t+ piµ− ciα+

√
∆

2ci
, ∆ = (ciα− piµ− 1/t)2 + 4ciα/t. (62)

Remark 6.8. Results concerning the ruin probability can also be retrieved from the respective results
for a more general renewal model considered in Alcoforado et al. [4].

7. Numerical illustration

7.1 Pool manager

In this section, we will illustrate the pool dynamics in both the deterministic and stochastic setting. In
addition, we will perform a sensitivity analysis on main decision variables from the pool’s perspective.

First, let us define the set of parameters used in the following examples. For each illustration, we
keep all the parameters fixed to these levels except the one that is varying : t = 336, pI = 0.1, q =
0.1, f = 0.02, b = 1000MU, w = (1 − f)bq = 98MU, λ = 6pI = 0.6, µd = 6pI(1/q − 1) = 5.4.

The units we use are hours (h) for the time parameters and monetary units (MU) for the value
functions. The choice for the time horizon t is equal to 2 weeks because it is linked to the period of
difficulty adjustment. The monetary units are related to bitcoin in this way : 1000MU = 6.25BTC.
The reason for this scaling is purely practical to solve the deterministic problem which involves integer
constraints. As of May 28th 2021, 1BTC ≈ $35670.5, so 1MU ≈ $231.85.

Figure 5 compares the function V̂ (u, t) defined in Theorem 4.2 with the Monte Carlo simulation of the
mining process with deterministic and exponential time horizon fixed at the same mean parameter.
The functions are reduced by u to isolate the expected gain realized by the pool manager. We can see
that the exact formula falls nicely within the 95% confidence interval bounds of the MC simulations
within fixed or exponential time horizon. The red line represents the upper limit of the function
to which it converges as u → +∞, which is also the expected value of the gain in absence of ruin
considerations. One can see that for small levels of initial capital potential ruin affects the resulting
profit considerably, and for any given u the pool manager can quantify the undesirable effect of ruin.
Figure 6 exhibits the corresponding ruin probability ψ̂(u, t) for the mining pool. We can note that
ruin is highly non-negligible for low levels of initial capital. Indeed, ψ̂(u, t = 336) < 5% for u > 22594,
which is equivalent to $5238419. We also see how the exponential time horizon slightly underestimates
the ruin probability for low capital levels, which is due to the skewness of the exponential distribution.
This graph can also be interpreted sideways: if one fixes a threshold for the ruin probability on the
vertical axis, the corresponding initial capital can be read off on the horizontal axis.

In Figure 7, we depict the sensitivity of the expected surplus and the ruin probability to the manage-
ment fee f . Not surprisingly, the relationship between f and ψ̂(u, t) is decreasing, as the pool retains
more reward for itself. The parameter f impacts the expected gain of the pool manager.

Remark 7.1. Note that here we consider the interplay of all factors in a static set-up for a fixed
number of participants in the pool. One may then go one step further to consider the fact that a
higher fee f may deter some participants to join the pool, with respect to their willingness to pay and
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when comparing with fees of other competitive pools in the market. This outflow of miners would
consequently impact negatively the expected profit of the pool. However, such considerations naturally
ask for an analysis with competing pools, which is beyond the scope of this paper.

In Figure 8, we explore the impact of the relative difficulty to find a share q on ruin and expected
surplus.

It is worthwhile to note that increasing q is profitable to the pool manager. Indeed, as q increases,
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Figure 7: Sensitivity to f in case of deterministic rewards and exponential time
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Figure 8: Sensitivity to q in case of deterministic rewards and exponential time
horizon.

the payout of shares to the pool members is getting less frequent, thus the pool manager retains more
liquidity and controls his probability of ruin at lower levels. The parameter q adjusts the magnitude
of the risk transfer between the miners and their manager.

Figures 9, 10, 11, 12 illustrate the same concepts with exponentially distributed rewards. For compar-
ison, the parameters for the exponential distributions are chosen so that the resulting mean matches
the deterministic jump sizes, i.e. α = 1/w = 1/98, β = 1/b = 1/1000.

Figure 13 gives a two-way sensitivity analysis with respect to the pool size pI and the pool fee f . The
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level curves indicate the expected profit for the pool manager for different pool sizes.

For a bigger pool size pI , in order to maintain the same level of expected profit, the pool manager
can reduce the fee size. One can clearly see an inverse relationship between the pool size and the
fee. Thus, a bigger pool can diminish its fees to attract more miners and thus to grow even more.
This implies a threat on the decentralized nature of the consensus protocol. If a mining pool manager
concentrates more than 50% of the total hashpower, then the blockchain is prone to 51%-type attacks
such as double spending in the bitcoin context. How can a smaller mining pool tackle this problem?
One solution consists in offering to take on more risk by decreasing the difficulty of finding a share
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Figure 11: Sensitivity to f in case of exponentially distributed rewards and expo-
nential time horizon.

0.0 0.2 0.4 0.6 0.8 1.0

3
5

0
0

3
6

0
0

3
7

0
0

3
8

0
0

3
9

0
0

4
0

0
0

q

V^
−

u

(a) V̂ (u, t) − u as a function of q.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
5

0
.1

0
0

.1
5

q

ψ̂

(b) ψ̂(u, t) as a function of q.

Figure 12: Sensitivity to q in case of exponentially distributed rewards and expo-
nential time horizon.

which reduces to decreasing the value of q. Figure 14 shows the expected profit of two mining pools,
one for which pI = 0.1 and a smaller one for which pI = 0.02, both having an initial capital level
u = 22500, for both the reward and the time horizon being exponentially distributed. The level curves
indicate that in terms of expected profit a smaller miner may decrease q without increasing the pool
fee f , while maintaining the same level of profitability. That is not the case for the larger mining pool
whose expected profit turns out to more sensitive to q.
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Figure 14: Sensitivity to q and f of the expected profit of two mining pools
of different size over and exponentially distributed time horizon and reward for
u = 22500.

7.2 Individual miner

Let us now compare the situation of an individual miner before and after joining the pool. We recall
Figure 3 (left panel), which examplifies the pool members’ surplus. Also, the surplus of the member
is described by (9). Finally, we use the results presented in Sections 6.1 and 6.2 to assess the pool
effect for the individual miner’s surplus following the protocol. Consider a miner in a deterministic
rewards environment. We assume a PPS pool and consider a pool member whose hashpower is equal
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to 1% of the pool’s total hashpower, i.e. pi = 0.001. For the choice of other parameters, we assume
that the cost of electricity c is given by

c = pi × eW × πW ,

where eW is the electricity consumption of the network expressed in kWh, and πW is the price of
electricity per kWh. For the sake of our example, we take the estimate of eW as 115.541×109

365.25×24 .3 The
price of electricity is taken to be $0.06, then converted to our MU . Therefore, the net profit condition
is satisfied both with and without joining the pool. Figures 15 and 16 illustrate the expected surplus
and ruin probability with deterministic rewards and exponential time horizon. One can observe how
effective the risk reduction in case of joining the pool is for the individual miner. Figure 16 particularly
emphasizes the drastic decrease of ruin probability for low capital levels.
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Figure 15: V̂ (u, t) − u as a function of u for an individual pool miner alone in
black and within the pool in red.

Up until a level of initial capital of u = 1255, it is more profitable for the miner to join the pool,
whereas for higher levels of capital the pool fee becomes the main decision driver instead of the ruin
considerations. Converted to USD, this amounts to approximately $290, 971. Recall that this is akin
to the effects of reinsurance, as the miner cedes part of his risk to the pool in exchange of a fixed
contractual payment (pool fee).

Finally, we investigate the sensitivity of the miner’s expected surplus with respect to the key model
parameters. In Figure 17, the miner can see for his level of initial capital u whether it is better to join
the pool or not, depending on the employed fee f . As before, for higher levels of capital, the miner

3https://cbeci.org/, consulted on May 28th 2021.
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is less willing to accept high fees than a miner with less initial capital. We also observe that the two
red lines (miner in the pool with different initial capital u) are much closer to each other than the two
black lines (miner outside of the pool with different initial capital u). This is due to the risk reduction
of the miner inside the pool, since he is transferring part of the risk to the pool and getting more
frequent rewards.
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Figure 18 shows the level curves of V̂ (u, t) with a varying difficulty for the miner’s problem q and pool
fee f . Note that not joining the pool is equivalent to setting the difficulty level equal to the block
finding problem level and letting the pool fee be f = 0.
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Figure 18: V̂ (u, t) as a function of q and f for an individual pool miner alone in
black and within the pool in red.

With such a two-way analysis, the pool can fix an appropriate fee and the miner can see whether he
is better off joining the pool for his given level of capital u.

The miner’s decision to join a pay-per-share mining pool does not depend on the size of the mining
pool. Hence a miner will be indifferent whether to direct her hashpower towards a small or large pool.
All that matters is the level of expected profit (decreasing in f) and the share of risk transferred to
the mining pool (decreasing in q). Decentralization will prevail if the preferences, more specifically
the risk aversion, of both the pool managers and the individual miners are sufficiently heterogeneous.
Note that a situation where a mining pool would control most of the computing power is not desirable
for anyone. The blockchain would then be prone to attacks and the associated cryptocurrency would
no longer be of value.

8. Conclusion

In this paper, we developed a framework for a bitcoin mining pool analysis from a risk and profitability
perspective. Given a pay-per-share pooling scheme, we investigated the profitability of a pool under
ruin probability considerations, which allows us to derive original results for the pool manager’s ex-
pected profit. When describing the pool income process as a stochastic double-sided jump process, one
can adapt techniques developed in the actuarial literature for applications in the blockchain universe.
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In addition, we also looked at the problem from the individual miner’s side, to identify conditions
under which it is profitable for her to enter the pool or not.

We find that ignoring ruin considerations highly overestimates the expected gain for a pool for small
values of initial capital and quantify the required capital level needed for which the ruin aspect be-
comes negligible. Moreover, we define a trade-off between the main pool defining parameters to set
up conditions for optimizing the pool profit for different levels of capital. For an individual miner,
pooling has similar effects as a reinsurance treaty for an insurer. We provide a sensitivity analysis
that can be helpful for the miner to select the most appropriate pool given his initial parameters.

For a randomized time horizon, it was possible to obtain explicit formulas for all quantities of interest.
The flexibility of our model enabled to consider deterministic as well as stochastic reward sizes. The
established formulas for combinations of exponentials are in fact quite flexible, as any other distri-
bution on the positive halfline can be approximated arbitrary well with such distributions (cf. [10]).
Naturally, some restrictive assumptions were needed to enable the explicit mathematical treatment in
this paper, in particular the assumption of independent and identically distributed jump sizes. It will
be interesting in future research to look into relaxing these assumptions.

The study of the formation of mining pools naturally raises the question of whether they pose a threat
to the decentralized nature of blockchain-based applications. We find that the size of the mining pool
does not interfere in a miner’s decision making process. A miner chooses a mining pool according to
the share of risk she wishes to cede and the profit she wishes to make. The preferences of miners and
pool managers have been analysed using game theory in Cong et al. [9] and Li et al. [17]. The results
of the present paper may serve as concrete risk management tools for miners and pool managers that
could also be integrated as value or cost functions within such a game-theoretic approach.
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A. Abel-Gontcharov polynomials

Let U = {ui , i ≥ 1} be a sequence of real non-decreasing numbers. The (unique) family {Gn(x|U) , n ≥
0} of Abel-Gontcharov polynomials of degree n in x attached to U is defined as follows. Starting with
G0(x|U) = 1, the polynomials Gn(x|U) satisfy the differential equations

G(1)
n (x|U) = nGn−1(x|EU), (63)

where EU is the shifted family {ui+1 , i ≥ 1}, and with boundary conditions

Gn(u1|U) = 0, n ≥ 1. (64)

So, each Gn, n ≥ 1, has the integral representation

Gn(x|U) = n!
∫ x

u1

[∫ y1

u2
dy2 . . .

∫ yn−1

un

dyn

]
dy1. (65)

The polynomials Gn, n ≥ 1, can be interpreted in terms of the joint distribution of the order statistics
(U1:n, . . . , Un:n) of a sample of n independent uniform random variables on (0, 1). Indeed, for 0 ≤ x ≤
u1 ≤ . . . ≤ un ≤ 1, we have that

P [U1:n ≤ u1, . . . , Un:n ≤ un and U1:n ≥ x] = (−1)nGn(x|u1, . . . , un).

This last identity is used inside the proof of Theorem 4.1 together with the following property Note
that

Gn(x|a+ bU) = bnGn ((x− a)/b |U) , n ≥ 1, (66)

Lastly, the numerical evaluation of (15) can rely on the recursive relations

Gn(x|U) = xn −
n−1∑
k=0

(
n

k

)
un−k

k+1Gk(x|U), n ≥ 1. (67)
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Formula (67) follows from an Abelian expansion of xn based on (63), and (64).

B. Proof of Theorem 4.1

The event {τ ∈ (t, t+ dt)} can be viewed conditioned over the values of the process (Nt)t≥0. In other
terms,

{τ ∈ (t, t+ dt)} =
+∞⋃
n=0

{τ ∈ (t, t+ dt)} ∩ {Nt = n}. (68)

We distinguish according to the value of Nt. For Nt = 0, Equation (14) can be rewritten as

τ = inf{t ≥ 0;Md
t > u/w}, (69)

which occurs when the ⌈ u
w ⌉th jump of Md

t occurs at t, where ⌈x⌉ denotes the ceiling function. It
follows that

{τ ∈ (t, t+ dt)} ∩ {Nt = 0} = {Sd
⌈ u

w
⌉ ∈ (t, t+ dt)} ∩ {Nt = 0} (70)

and
fτ |Nt=0(t) = fSd

⌈ u
w ⌉

(t), t ≥ 0. (71)

In caseNt ≥ 1, one needs to constrain {Md
t , t ≥ 0} so it does not reachNu,sw/(b−w)+u/(b−w) for any

time s < t but does so at t. Let (vn)n≥0 is a sequence of integers defined as vn = ⌈n(b−w)/w+u/w⌉,
n ≥ 0. We have

{τ ∈ (t, t+ dt)} ∩ {Nt ≥ 1} =
+∞⋃
n=1

n⋂
k=1

{Tk ≤ Sd
vk−1} ∩ {Sd

vn
∈ (t, t+ dt)} ∩ {Nt = n}, (72)

as Md
t > Nt︸︷︷︸

=n

(b−w)/w+u/w at the time of the fatal jump (and before t, Nt reaches each step before

the payout process surpasses it). Now

P [{τ ∈ (t, t+ dt)} ∩ {Nt ≥ 1}] =
+∞∑
n=1

P
[

n⋂
k=1

{Tk ≤ Sd
vk−1} ∩ {Sd

vn
∈ (t, t+ dt)} | Nt = n

]
P [Nt = n] .

(73)
By the order statistic property, we get

P
[

n⋂
k=1

{Tk ≤ Sd
vk−1} ∩ {Sd

vn
∈ (t, t+ dt)} | Nt = n

]

= P
[

n⋂
k=1

{Uk:n ≤ Ft

(
Sd

vk−1

)
} ∩ {Sd

vn
∈ (t, t+ dt)}

]

= P
[

n⋂
k=1

{Uk:n ≤ Ft

(
Sd

vk−1

)
} | Sd

vn
∈ (t, t+ dt)

]
P
[
Sd

vn
∈ (t, t+ dt)

]
= E

[
(−1)nGn

[
0 | Ft

(
Sd

v0

)
, . . . , Ft

(
Sd

vn−1

)]
| Sd

vn
∈ (t, t+ dt)

]
P
[
Sd

vn
∈ (t, t+ dt)

]
,

(74)

where (U1:n, . . . , Un:n) denote the order statistics of n i.i.d. unit uniform r.v. and Gn(. | .) denote the
Abel-Gontcharov polynomials, see Appendix A for a short presentation. Now take Ft(s) = s/t, s ≤ t.
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In virtue of the property (66), we have

Gn

[
0 | Ft

(
Sd

v0

)
, . . . , Ft

(
Sd

vn−1

)]
= Gn

[
0 | Sd

v0/t, . . . , S
d
vn−1/t

]
= 1

tn
Gn

[
0 | Sd

v0 , . . . , S
d
vn−1

]
. (75)

Inserting that last expression into (74) yields the announced result (15).
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