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Abstract: Taking into account the morphology of the particles in the aggregation dynamics is 

addressed theoretically in this paper. The rate constant or kernel of collision between particles 

with simple shapes (spheroids oblate and prolate, disc, needle) has been calculated from a 

Monte Carlo algorithm simulating shear aggregation. The corresponding data were used to 

build a model, which comes in the form of an empirical expression linking the rate constant of 

collision, the shear rate and three shape parameters describing each particle. This concise 

expression represents very well all the data issued from Monte Carlo calculation. Statistical 

analysis of the Monte Carlo calculations and the proposed model as well has been carefully 

achieved.  

 

keywords : shear aggregation, convex particles, anisotropic particles, Monte Carlo 

Simulation, analytical modelling 

 

Introduction 

Aggregation of fine particles is a phenomenon frequently met during the synthesis of particles 

by precipitation or crystallization, in suspensions containing a precursor of ceramics, in 

aerosols...Aggregation of particles in a fluid depends on several phenomena. The collision 

between two primary particles can arise from the Brownian motion, the fluid and particle 

velocity fields. So, Von Smoluchowski has calculated the collision rate for spheres in the case 

of Brownian motion and particles moving in a shear flow [1,2]. This approach has been 

extended to spherical particles moving in a turbulent flow [3] or a rarefied atmosphere [4].  As 
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a consequence, a collision rate constant has been calculated for each mechanism. In its early 

history, aggregation has been strongly related to colloids science where physico-chemical 

aspects are prevailing. So, Van der Waals and Electric Double Layer interactions have been 

identified and constitute the basis of DLVO theory [5, 6]. This one addresses the stability of 

the particle suspension. Fuchs [7] established the link between aggregation rate constant and 

inter-particle interaction by introducing a multiplicative factor into the expression of the 

collision rate constant. By a similar way, Spielman [8] and Zeichner et al. [9] introduced the 

effect of the hydrodynamic resistance on aggregation rate. Later refinements have included 

retarded Van der Waals interaction, non DLVO forces, roughness parameters, non-wetting 

effect [10]. Therefore, aggregation kernel is now written as the product of the collision rate 

constant and the aggregation efficiency. At the scale of the colliding primary particles, the 

impact of the particle asphericity has not been rigorously treated. The considered geometrical 

parameter is only the radius of the volume equivalent sphere. Brownian aggregation is the 

predominant mechanism for nanoparticles in aqueous suspension whereas shear aggregation 

is the one for micro-particles. The two mechanisms occur at the same time for particles sized 

within the [0.1-1µm] range [11]. The experimental validation of the mentioned models and 

theories is based on the study of the first instants of aggregation, for whom only doublets of 

primary particles are formed [12].  

At the later instants of aggregation, clusters of primary particles are formed. Simulations, e.g. 

Monte-Carlo simulations, make it possible their computational formation [13-16]. Statistical 

analysis of the clusters formed by basic mechanisms shows that the larger ones have a fractal-

like structure, i.e. porous objects with self-similar spatial ordering. Collision between 

aggregates has to take account of their permeability as well [17, 18]. However, the 

comparison between these simulations and experiments suggests that internal mechanisms as 

restructuring, sintering between primary particles and fragmentation occur [19-26]. The 

resulting aggregates are more compact and elongated. Consideration of such phenomena in 

simulations is yet under study. 

Moreover the dynamics of the population of interacting and merging aggregates may be 

modeled by solving a population balance equation. Aggregates are roughly depicted by one 

internal variable (the volume of matter or the radius of the volume equivalent sphere or the 

radius of the spherical hull) and, possibly, another one (porosity or fractal dimension). In the 

special case of homogeneous kernel the population density reaches a self-preserving shape 

[27-29]. In the other cases the complexity and the large variety of phenomena affecting the 
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aggregation kinetics and the morphology changes restrict complete and realistic description of 

the aggregate population to date.  

On the other hand, the synthesis of particles with controlled morphology has developed since 

the pioneering work of Matijevic [30, 31]. The authors strove to control the shape and size of 

the particles and to understand the mechanisms of synthesis. However, few studies have been 

dedicated to the aggregation of non-spherical primary particles. Unfortunately they do not 

correspond to shear aggregation [32] or consider only the late stage of aggregation in relation 

with the suspension rheology [33]. Quantitative studies about kinetics often consider the 

amount of matter and therefore the radius of the volume equivalent sphere as the relevant 

parameter involved in the modelling of the aggregation. This approximation has also been 

applied to dense aggregates with spherical hull. The objective of this paper is to evaluate the 

effect of the non-sphericity on the rate constant of aggregation. We have specifically focused 

our study on the collision rate constant, i.e. assuming an aggregation efficiency coefficient 

equal to one. This follows the classical methodology being to distinguish collision dynamics 

and attachment kinetics. We will consider particles with a simple shape: sphere, discs, needles 

and spheroids. They have been selected to represent the whole of the precipitated particles and 

eventually lead to analytical calculations. We restrict ourselves to the collision induced by 

shear flow, which is the case for primary particles in particulate systems with Peclet number 

larger than 1, e.g. aqueous suspension of particles whose largest dimension is greater than 

1µm. The ultimate goal of the article is to propose an approximate expression to the rate 

constant of collision; this relation will enable the numerical solving of a population balance 

equation, the particles being made up of objects with simple shapes, real or representative of 

more complex morphologies [34]. 

The paper is organized as follows: section 2 describes the tools and methods used to calculate 

the rate constant of collision. Section 3 presents the results corresponding to the collision of 

objects having the same shape, but homothetically different. Section 4 presents the results 

corresponding to the collision of particles with different shapes. Section 5 will discuss these 

results and conclude the paper. 

 

2. Monte Carlo Simulations and statistics 



4 

 

Von Smoluchowski [2] has studied the collision between two spheres denoted 1 and 2 with 

different radii a1 et a2 moving in a shear flow with shear rate G. The corresponding rate 

constant K12 obeys the relation: 

 
3

12 1 24 / 3K G a a            Eq.1 

Along the calculation, the particle 1 is located at the origin of Cartesian coordinate system and 

is considered as motionless (see Figure 1). The particle 2 moves in the relative fluid flow with 

a straight trajectory parallel to the z axis (unit vector k ). The velocity is expressed as 

V Gy k  in the Cartesian coordinate system  , ,i j k . j  is the unit vector in the direction of 

the shear (axis y). i  is the unit vector in the direction perpendicular to j and k  (axis x). V  is 

also the velocity of the center of mass of the particle 2. 

The flow is a pure shear flow just around the particle 1. It is, for instance, the case for 

particles moving in a turbulent flow. The initial orientation of the particle 2, i.e. close to the 

particle 1, is random. Then, a single particle in a shear flow undergoes a translation and 

rotation. For instance, in the case of a spheroidal particle, the end of the unit vector along the 

revolution axis follows circular (periodic) paths, called Jeffery trajectories [35]. The motion 

of the particle along these paths is unstable [36]. Moreover the relative motion of particles is 

made it more complicated by the presence of various physico-chemical interactions and 

interphase forces as drag, lift, hydrodynamic resistance [37]. Thus the actual trajectory should 

be estimated by means of computational fluid mechanics. As mentioned in the introduction, 

the usual practice is to include such phenomena in the aggregation efficiency. Considering 

only the collision rate and knowing that there is no favored orientation of non spherical 

particles at the beginning of the encounter, we will assume, as a rough approximation, that the 

orientation distribution of a single particle in a shear flow before the collision is uniform. This 

approach has to be considered as a first step in the search of simple kernel taking into account 

the asphericity of particles. 

The objects considered in this paper are anisotropic, but have a center of symmetry and an 

axis of revolution. Each object is characterized by a triplet of values corresponding to three 

half-distances in a 3D space (ai,bi,ci) with i i ia b c  . The selected objects are the sphere 

(ai,ai,ai),  spheroids oblate (ai,ai,bi) and prolate (ai,bi,bi), disc (ai,ai,0) and needle (ai,0,0). 
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The range of numerical values of K12 /G is very wide (see below). As K12 /G (in cubic meter) 

is roughly proportional to the particle size raised to the third power, scaling or normalization 

of K12 based on the expression of Von Smoluchowski (  
3

1 24 / 3G X X  ) appears to be 

relevant. Xi is a characteristic length of the object i. We denote 

   
3

12, 1 2 12 1 2, / 4 / 3NK X X K G X X  
 

. We have chosen for Xi a geometrical quantity 

related to the gyration radius ,g iR  for an ellipsoid and equal to i i ia b c   for the sphere: 

 2 2 2 / 3i i i iX a b c            Eq.2 

It can be underlined that the ,/i g iX R ratio remains constant for each object set (needles, discs, 

spheroids), each set having  its own constant of proportionality. The anisotropy of a given 

object will be quantified by: 

/i i iX a             Eq.3 

Then, 

1 1 1 1 11/ 3 1N P D O S           

(S: sphere; O: spheroid oblate; D: disc; P: spheroid prolate; N: needle). 

The collision of two objects is simulated by a Monte Carlo method with Nr runs, each one 

having the following steps: 

One considers a cube with the edge a at the center of which is located the Cartesian 

coordinate system. The a value is taken equal to  1 24 max ,a a . 

i. The particle 1 is located at the center of the coordinate system. Its orientation, 

i.e. orientation of the symmetry axis, is randomly selected.  

ii. The particle 2, the orientation of which is randomly chosen too, is located 

inside the cube. Given four random numbers A1, A2, A3 et A4 within the [0 ;1] 

range, the coordinates of the center of the particle 2 are:  

 

 

2 3

1
2 2

1

2 4

2 1 / 2

2 1
/ 2

2 1

2 1 / 2

X A a

A
Y A a

A

Z A a

 






 
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The expression for y-coordinate of the particle 2 satisfies the likelihood of 

relative position between particles 1 and 2 in a shear flow [38].  

iii. The particle shapes are projected onto the xOy plane perpendicularly to Oz. 

The figures generated by the projection are disc (for a sphere), line segment 

(for a needle), ellipse (for a disc or an ellipsoid).  

iv. Any intersection between the projections of particles 1 and 2 is searched. The 

collision will be effective if the two projections overlap and if 
2 2 0Y Z  . The 

latter condition means that the particle 2 is catching up with the particle 1 or is 

being caught up by particle 1: 
2 20 0Y Z   or 

2 20 0Y Z  . 

The collision rate constant is (G=1) : 

  3

12 / / 2C rK N N a          Eq.4 

where NC is the number of effective collisions. Nr is taken equal to 106, but may be modified 

in order to obtain the required accuracy (see below).  

The considered particle pairs require to perform the calculation of the intersection between 

i. two line segments 

ii. a disc (or ellipse) and a line segment  

iii. a disc (or ellipse) and another one  

The two first cases can be analytically solved. The third one leads to the search of zeros of a 

quartic polynomial, for which the procedure of Rees has been used [39]. 

The above algorithm has been checked by comparing the Monte Carlo data to analytical 

calculations for the following object collisions: Sphere – Sphere (Eq.1), Sphere – Needle 

(appendix 1), Needle – Needle (appendix 2). 

The algorithm performances have been estimated by performing twenty Monte Carlo 

calculations for a given pair of colliding objects. We have calculated the standard deviation   

and the mean value 12,NK for the sample, then the coefficient of variation 12,/ NCV K , that 

is chosen as standard of calculation precision and repeatability. If the two objects are identical 

(shape and size),  60.006 0.018 10rCV N    ; CV is all the larger given the larger 

anisotropy of the object. If the objects have the same shape, but are differently sized, CV is all 

the larger given larger difference in size of the objects. Nr will be taken equal to 106 for 

spheroids oblate, discs and spheroids prolate (b/a=c/a>0.1); this is sufficient for getting a 

good repeatability ( 0.04CV  ) within a short computational time. In the case of more 



7 

 

anisotropic objects, the poorer performance needs to increase the value of Nr. For spheroid 

prolate with b/a=c/a<0.1, Nr will be taken equal to 107 ( 0.04CV  ). For needles, Nr will be 

taken equal to 3.107 ( 0.04CV  ). As shown in the appendix four, this choice restricts the 

modeling quality to R2<0.995. 

 

3. Collision between objects with same shape and different sizes  

 

The collision rate constant has been calculated for the following pairs: sphere-sphere, oblate-

oblate with various values of bi/ai (=0.5 ; 0.2), disc-disc, prolate-prolate with various values of 

bi/ai (=0.2 ; 0.05 ; 0.01), needle-needle. The impact of the ratio of the larger lengths (a2/a1) of 

the two particles has been studied within the range [10-2 ; 2.102]. 

The results are presented by taking the ratio ( 2 1/h X X ) in abscissa and K12,N in ordinate, 

more precisely    12, 1 2, 1,2i i

NK X X i  . The superscript i-i expresses the collision between 

particles having the same shape. A dimensional analysis shows that  12, 1 2,i i

NK X X  is a 

function of the single variable 2 1/h X X . Thus it may be written: 

     12, 1 2 12,, 1,2i i i i

N NK X X K h i   . For objets 1 and 2 with the same shape, but with 

different sizes, 2 1/ 1h a a  . 

The figure 2 contains the data set (dots). The dashed lines represent the asymptotic value of 

12,

i i

NK  , i.e. when one particle is much larger than the other one. This asymptotic value, denoted 

 12, 0i i

NK  , can be obtained by considering the collision between a point-like particle (particle 

2) and the particle 1. The analytical calculation of the corresponding K12,N is reported in the 

appendix 3. 

A first analysis of the curves shows that: 

- More anisotropic are the colliding particles, smaller is the K12,N value  

- If the colliding particles have the same size, K12,N, denoted  12, 1i i

NK  , has a value 

within the [0.308; 1] range. The value for the most anisotropic particles (needles) is 

not so small.  

- More different in size are the colliding particles, smaller is the K12,N value. This 

variation is all larger given the larger anisotropy factor of the particles.  

- The asymptotic value is non-zero for all objects except for the needles.  
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Table 1 contains the  12, 0i i

NK   values got from analytical calculation and the  12, 1i i

NK   values 

got from Monte Carlo calculation, for objects with various shapes.  

The K12,N  value depends on the anisotropy factor  of the two objects and on their ratio h of 

homothety. 

i. If the objects are identical, i.e. h=1,  12, 12, 1i i i i

N NK K   only depends on the mutual 

anisotropy.  

ii. If one of the two objects is point-like, i.e. 0h   or h , 

   12, 12, 12,0i i i i i i

N N NK K K      only depends on the anisotropy of the larger object. 

iii. If the two objects are not identical ( 1h  ), the symmetry of the problem with 

respect to the exchange of the two colliding objects requires that any model should 

be invariant by the transform h → h-1. 

Therefore, it makes sense to look for such an expression:  

          12, 12, 12, 12,0 1 0i i i i i i i i

N N N NK h K g h K K            Eq.5 

with the following requirements (R1, R2, R3): 

   1g h g h           (R1) 

 1 1g             (R2) 

   0 0g g             (R3) 

A function fulfilling these conditions is: 

    / 2
p

m mg h h h


  
           Eq.6 

We have performed a fitting of Monte Carlo data reported in the figure 2 by using the least 

square method with (m,p) as parameters and the minimization of the root mean square error 

(RMSE) as criteria. The best model ( 20.017 ; 0.998RMSE R  ) is obtained for the values of 

exponents m=0.36 and p=3. 

It can be underlined that the agreement between the model (Eqs.5-6) and the data is as good if 

the two exponents are linked by the relation 1.68 0.54p m   2.5p  . 

The application of equations 5-6 is reported on figure 2 (solid line).  

The previous results show the relevance of the choice of the Xi expression (Eq.2) for the 

objects set. We emphasize that the disc has a gyration radius ( / 2gR a ) different from the 
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one of the spheroid oblate with bi/ai<<1 ( 2 / 5gR a ), whereas their respective K12 and Xi 

(= 2 / 3 a ) are equal. 

 

4. Collision between objects with different shape and size  

 

The collision rate constant has been computed for the following pairs: sphere-disc, sphere-

prolate, sphere-needle, disc-needle. The results are presented in the Figure 3 by taking the 

ratio h (
2 1 2 1/ /h X X a a  ) as abscissa and K12,N as ordinate. We can see that: 

- If one of the two particles is much smaller than the other one, the former may be 

considered as a point-like particle; the asymptotic K12,N value (appendix 3) is the same 

that the one computed for the collision between objects with the same shape (Figure 

2). This is observed for both h→0 et h→∞. 

- One deduces that the curves contain information about the larger object if h→0 et 

h→∞ 

These results suggest that the corresponding data may be represented by means of a 

composition law: 

         1 2 1 1 1 2 2 1

12, 12, 12,N N NK h f h K h f h K h            Eq.7 

f is a function of h .  12,

i j

NK h  is the dimensionless rate constant of collision between the 

objects i and j (i, j in  1,2 ), with different shapes ( i j ) or same shape ( i j ) and size ratio 

h. The equation 7 and the function f must meet the following conditions (C1, C2, C3): 

   1 2 1 1

12, 12,0 1 0N Nh f h K K           (C1) 

   1 2 2 2

12, 12,0 0N Nh f h K K           (C2) 

If the colliding particles have the same shape, then: 

           1 2 1 1

12, 12, 12, 12, 1,2i i i i i i

N N N NK h f h K h f h K h K h i                       (Eq.8) 

which imposes (see iii. in section 3): 

   1 1f h f h             (C3) 

Thus, the expression (Eq.9) would be a good candidate meeting these requirements (C1, C2): 

 
1

1 n
f h

h



           Eq.9 
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We have performed a fitting of a model consisting in Equations 7 and 9 with the Monte Carlo 

data by using the least square method with n as parameter and the minimization of the root 

mean square error (RMSE) as criteria. The  12,

i i

NK h  values are those calculated by the Monte 

Carlo method and presented in the section three. The optimal value for n is found equal to 

n=1.3 ( 20.022 ; 0.996RMSE R  ). The figure 3 compares the model (dotted lines) and the 

Monte Carlo calculations (dots). 

 

5. Discussion and conclusion 

 

Along the sections 3 and 4, we have considered separately the collisions of objects with the 

same shape and different shapes. Two separate and independent models have been provided. 

Now, we consider the use of equations 5-9 for the calculation of  12,

i j

NK h .  12,

i j

NK h  obeys 

therefore the expression: 

           
         

1 2 1 1 1 1 1 1

12, 12, 12, 12,

2 2 2 2 2 2

12, 12, 12,

1
0 / 2 1 0

1

1
0 / 2 1 0

1

p
m m

N N N Nn

p
m m

N N Nn

K h K h h K K
h

K h h K K
h


    


   



    
 

    
 

   Eq.10 

The model contains three parameters: n, m and p. The optimal values of the exponents m, p 

and n are taken equal to 0.36, 3 and 1.30, values already determined in the sections 3-4. We 

note in the figure 3 that the agreement between the Monte Carlo data (dots) and the model 

(solid line) is very good. The root mean square error is 20.015, 0.998RMSE R  . 

However the model needs the knowledge of  12, 0i i

NK   and  12, 1i i

NK  , the values of which are 

obtained from analytical calculations and Monte Carlo calculations respectively. These 

quantities depend on the shape parameters, k=b/a and l=c/a, that are the same for the two 

colliding particles. It is interesting to express   12, 0i i

NK   and  12, 1i i

NK   as an approximate 

function of these shape parameters. In view of the form of equations 5 and 10, we will 

consider thereafter the functions 

   12,, 0i i

NP k l K           Eq.11a 

     12, 12,, 1 0i i i i

N NQ k l K K           Eq.11b 
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Having no theoretical model for these functions, we logically search for each function a linear 

combination of polynomials in k and l: 

   , ,j j

j

P k l P f k l         Eq.12a 

   , ,j j

j

Q k l Q f k l         Eq.12b 

 

The functions P, Q and fj must be invariant under the exchange of k and l. The functions set 

{  ,jf k l } is infinite and the selected sub-set is just limited by the authors creativity. We have 

chosen the following set: 

 
2 3 42 2 3 3 4 4

2

0..10 1, , , , , , , , , ,
2 2 2 2 2 2 2 2

j

k l k l k l k l k l k l k l k l
f kl kl kl

                
         

         

 

Eq.13 

Pj et Qj are the coefficients to be determined. It should be noted that 

 12, 1 2 1 2, 1 ,i i

NK X X X X    for the collision of two spheres, i.e.    1,1 1; 1,1 0P Q  . We 

deduce the relationship between the coefficients: 

1j

j

P            Eq.14a 

0j

j

Q            Eq.14b 

The analytical value of 12,

i i

NK   for two needles (k=l=0) with the same length being 0.3084, the 

following expression is valid as well: 

0 0 0.3084P Q            Eq.15 

It is known that the consideration of a large number of  ,jf k l  functions for fitting data and 

model improves the coefficient of determination R2 but leads to two major drawbacks: 

- the increase of the risk to build a fortuitous model [40] 

- a decrease of the model predictability. 

The best model corresponding to equations 12a,b has been searched by using the optimization 

of the predictive R2: Q2 in a cross validation method using the leave-one-out scheme. This 

approach, similar to the one used in another study [41], is depicted in appendix 4. It leads to a 

predictive and parcimonious model. It appears that a model with four parameters is sufficient 
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to reproduce the values calculated by the Monte Carlo method with an accuracy consistent 

with the one of the Monte Carlo calculations. The selected functions are: 

 
3

2
1, , ,

2 2

k l k l
kl

    
  

   

.  

   
3

2

0 1 2 3,
2 2

k l k l
P k l P P P P kl

  
    

 
      Eq.16a 

   
3

2

0 1 2 3,
2 2

k l k l
Q k l Q Q Q Q kl

  
    

 
     Eq.16b 

The parameter values of the model leading to the best fit are reported in the Table 2. 

To test the model, we have considered the two object pairs: P0.05-N and P0.2-N, that have 

not been involved for the building of the model. Then, we have calculated  1 2

12,NK h  by using 

the Monte Carlo method and compared these data to the ones coming from the model (Figure 

4). The model is based on the equations 10 and 16a-b. We see that the model is in good 

agreement with the data coming from the Monte Carlo calculations (P0.05-N : RMSE=0.0086, 

R2=0.994 ; P0.2-N : RMSE=0.0075, R2=0.9984). (see Table 3). 

To conclude, we have calculated by using Monte Carlo simulations, the rate constant or 

kernel of collision between particles with simple shapes, but with various anisotropy factors, 

in a shear flow. These data were used to build an empirical analytical model for the collision 

rate constant. Any object is characterized by three internal distances in three mutually 

perpendicular directions. The model is expressed as a formula including the six internal 

distances and the shear rate as well. It describes very reasonably the data coming from Monte 

Carlo calculations. All the objects used for the building of the model have a center of 

symmetry and an axis of symmetry at least. One can ask whether the model would remain 

valid for objects described by three internal distances, but without the above-mentioned 

properties of symmetry. The results obtained in this paper are the starting point of a study 

undertaken to answer this question.  

 

 

References 

 [1] M.V. Smoluchowski, Drei Vorträge über Diffusion, Brownsche Bewegung und 

Koagulation von Kolloidteilchen, Zeitschrift Für Physik. 17 (1916) 557–585. 



13 

 

[2] M.V. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik 

kolloider Lösungen, Z. Physik. Chem. 92 (1917) 129-168 

[3]  P.G. Saffman and J.S. Turner, On the collision of drops in turbulent clouds, J. Fluid 

Mech., 1(1956)16-30. 

[4] C. Oh and C.M. Sorensen, Light scattering study of fractal cluster aggregation near the 

free molecular regime, J. Aerosol Sci., 28(1997)937-957 

[5] E.J.W Verwey .and J.T.G. Overbeek, “ Theory of the Stability of Lyophobics Colloids ”, 

Elsevier, Amsterdam  (1948). 

[6] M. Elimelech, J. Gregory, X. Jia, R. Williams, Particle deposition & aggregation, 

Butterworth-Heinemann, 1995 

[7] N. Fuchs, Ueber die Stabilität und Aufladung der Aerosole, Z. Phys. 89(1934)736-743 

[8] L. A. Spielman, Viscous interactions in Brownian coagulation, J. Colloid and Interface 

Sci., 33(1970)562-571. 

[9] G.R. Zeichner and W.R. Schowalter, Use of trajectory analysis to study stability of 

colloidal dispersions in flow fields, AIChE J. 23(1977)243-254 

[10] O.I. Vinogradova, Coagulation of hydrophobic and hydrophilic solids under dynamic 

conditions, J. Colloid and Interface Sci., 169 (1995) 306-312. 

[11] Y. Adachi, M.A. Cohen Stuart and R. Fokkink, Kinetics of turbulent coagulation studied 

by means of end-over-end rotation, J. Colloid and Interface Sci., 165(1994)310-317 

[12] F. Gruy, Formation of small silica aggregates by turbulent aggregation, J. Colloid and 

Interface Sci, 237(2001) 28-39 

[13] P. Meakin, Formation of Fractal Clusters and Networks by Irreversible Diffusion-

Limited Aggregation, Phys. Rev. Lett. 51 (1983) 1119–1122. 

[14] R. Jullien, The application of fractals to colloidal aggregation, Croatica Chemica acta 

65(1992)215-235 

[15] F. Family and D.P. Landau, Kinetics of aggregation and gelation, North-Holland, 1984 



14 

 

[16] F. Babick, Suspension of colloidal particles and aggregates, Particle Technology Series, 

Springer, 2016. 

[17] S. Veerapaneni, M.R. Wiesner, Hydrodynamics of fractal aggregates with radially 

varying permeability,  J. Colloid and Interface Sci., 177 (1996) 45-57. 

[18] K.A. Kusters, J.G.Wijers, D.Thoenes, Aggregation kinetics of small particles in agitated  

vessels, Chem. Eng. Sci., 52 (1997)107-121 

[19] Y. Xiong and S.E. Pratsinis, Formation of agglomerate particles by coagulation and 

sintering: Part1: a two-dimensional solution of the population balance equation, J. Aerosol 

Sci., 24(1993)283-300 

[20] G. Yang and P. Biswas, Computer simulation of the aggregation and sintering 

restructuring of fractal-like clusters containing limited numbers of primary particles, J. 

Colloid and Interface Sci., 211(1999)142-150 

[21] M. Soos, J. Sefcik, M. Morbidelli, Investigation of aggregation, breakage and 

restructuring kinetics of colloidal dispersions in turbulent flows by population balance 

modelling and static light scattering, Chem. Eng. Sci., 61(2006)2349-2363 

[22] M. Kostoglou, A.G. Konstandopoulos, S.K. Friedlander, Bivariate population dynamics 

simulation of fractal aerosol aggregate coagulation and restructuring, Aerosol Sci. 

37(2006)1102-1115  

[23] C. Selomulya, R. Amal, G. Bushell, T.D. Waite, Evidence of shear rate dependence on 

restructuring and breakup of latex aggregates, J. Colloid and Interface Sci., 236(2001)67-77 

 [24] L. Gmachowski, Aggregate restructuring and its effect on the aggregate size distribution, 

Colloids and surfaces, A: Physicochemical and Engineering Aspects 207(2002)271-277 

[25] M.L. Eggersdorfer, Nanoparticle agglomerates and aggregates in aerosols by coagulation 

and sintering, PhD Thesis, ETH Zürich, 2012. 

[26] F.Gruy, Modelling of aggregate restructuring in a weakly turbulent flow, Colloids and 

surfaces, A: Physicochemical and Engineering Aspects 395(2012)54-62 

[27] S.K. Friedlander and C.S. Wang, The self-preserving particle size distribution for 

coagulation by Brownian motion, J. Colloid and Interface Sci., 22(1966)126-132 

[28] A.A. Lushnikov, Evolution of coagulating systems, J. Colloid and Interface Sci., 

45(1973)549-556 



15 

 

[29] E. Rückenstein and B. Pulvermacher, Kinetics of crystallite sintering during heat 

treatment of supported metal catalysts, AIChE J. 19(1973)356-364 

[30] E. Matijevic, Monodispersed colloids: art and science, Langmuir. 2 (1986) 12–20. 

[31] T. Sugimoto, Monodispersed Particles, Elsevier, 2001. 

[32] J.C. Loudet, A.M. Alsayed, J. Zhang and A.G. Yodh, Capillary interactions between 

anisotropic colloidal particles, PRL 94,018301 (2005). 

[33] S. Bounoua, E. Lemaire, J F_erec, G Ausias, P Kuzhir. Shear-thinning in concen- 

trated rigid fiber suspensions: Aggregation induced by adhesive interactions. Journal of Rhe- 

ology, American Institute of Physics, 60(2016)1279-1300. <10.1122/1.4965431>. <hal- 

01422136> 

[34] F. Gruy, Inertia tensor as morphological descriptor for aggregation dynamics, Colloids 

and Surfaces A: Physicochemical and Engineering Aspects. 482 (2015) 154–164.  

[35] G.B. Jeffery, The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid, 

Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering 

Sciences. 102 (1922) 161–179. 

[36] M.S. Ingber and L.A. Mondy, A numerical study of three-dimensional Jeffery orbits in 

shear flow, J. of Rheology 38 (1994) 1829-1843. 

[37] J.S. Marshall and S. Li, Adhesive particle flow: a discrete-element approach, Cambridge 

University Press, N.Y., USA, 2014. 

[38] C. Walck, Handbook on statistical distributions for experimentalists, internal report SUF-

PFY, Stockholm, 2007 

[39] E.L. Rees, Graphical Discussion of the Roots of a Quartic Equation, The American 

Mathematical Monthly. 29 (1922) 51–55.  

[40] N. Verzelen, Minimax risks for sparse regressions: Ultra-high-dimensional 

phenomenons, Electronic Journal of Statistics. 2012 (2010) 38–90. 

[41] P. Nortier, P. Chagnon, A.E. Lewis, Modelling the solubility in Bayer Liquors: a critical 

review and new models, Chemical Engineering Science. 66 (2011) 2596–2605.  



16 

 

[42] H. Wold, Soft modeling: The basic design and some extensions, in: Systems Under 

Indirect Observation: Causality Structure, Prediction, North-Holland, Amsterdam, 1982: pp. 

1–54. 

[43] N.T. Quan, The Prediction Sum of Squares as a General Measure for Regression 

Diagnostics, Journal of Business and Economic Statistics. 6 (1988) 501–504. 

 

 

 



17 

 

Appendix 1: K12 for the collision between a needle with length L and a sphere with 

radius R  

The general expression for the rate constant (kernel) of collision between two particles with 

any shape in a shear flow is, following Von Smoluchowski [2]: 

1 2
, ,1 2

1, 2

12 1 2 ,
k K k K

O O

P C CP P
K G C C j d

 
         A1-1 

1 2

1, 2

12 12 ,

O O

O O
K K           A1-2 

1C  and 2C  are the centers of mass of the colliding objects 1 and 2. K1 and K2 are the objects 1 

and 2 consisting of geometrical points (see Figure 1). 
, ik K

P  is the projection of Ki onto the 

plane perpendicular to the vector k . 
1 2, ,k K k K

W P P   is the intersection of the projections of 

K1 and K2 onto the plane perpendicular to k . 
1 2,P C C

d  is the infinitesimal area element, in the 

plane of projection, around the center of mass of the object 2 (1 being the reference particle). 

1 2,O O
is the average over all the orientations O1 and O2 for objects 1 and 2. 

One calculate by using the same methodology as for the collision of two spheres the 

contribution 1, 2

12

O OK  of a given needle orientation to K12 (orientation of the sphere is trivial). 

The needle orientation is characterized by the angles  and .   is the angle between the 

needle projection onto the xOy plane and the x’Ox axis.  is the angle between the needle and 

the Oz axis. The length of the needle projection is sinpL L  . Two cases may occur: 

 / 2sin cospL R    

thus 

 1, 2 2 3 2

12

2 1
/ sin sin 1/ sin sin

2 3 2

O O

p pK G L R R RL


        / 2      A1-3 

 / 2sin cospL R    

thus 
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1, 2 2 2 2 2

12

1/ 2

2 2 2 2 2 2

sin 1
/ sin sin cos sin

2 12

1 1
4 / 3 sin sin

8 4

pO O

p p p

p p

L
K G L R Arc L R L

R

R L R L


    

 

    
        

   

  
    

  

 / 2     

            A1-4 

K12 is the average of 1, 2

12

O OK  over all the needle orientations (the average simply applies to the 

sphere) : 

 
   

1, 2

12 12

/ 2, , 0, / 2

2
, sinO OK K d d

    

    


 

        A1-5 
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Appendix 2: K12 for the collision between two needles with lengths L1 and L2 repectively 

The orientation of each needle is characterized by the angles i and i. i is the angle between 

the projection of needle i (  1,2 ) onto the xOy plane and the x’Ox axis. i is the angle 

between the needle i and the Oz axis. The length of the needle projection is , sinp i i iL L  . 

Two cases may occur ( 2 10      ): 

 1 1 2 2/ 2sin / 2sinp pL L   

thus 

      2 2
1, 2 1 1

12 2 1 ,2 2 ,2 2 ,1 1

2
/ tan tan / 2sin / 2sin 3 / 2sin

3

O O

p p pK G L L L         A2-1 

 1 1 2 2/ 2sin / 2sinp pL L   

thus 

      2 2
1, 2 1 1

12 2 1 ,1 1 ,1 1 ,2 2

2
/ tan tan / 2sin / 2sin 3 / 2sin

3

O O

p p pK G L L L         A2-2 

K12 is the average of 1, 2

12

O OK  over all the orientations of the two needles:  

 
   

 
   

2 2
1 2 1 2

2 2
1 2 1 2

1, 2

12 12 1 1 2 2 1 1 1 2 2 22

0, , , 0, / 2

1, 2

12 2 2 1 1 1 1 1 2 2 22

0, , , 0, / 2

1
, , , sin sin

2

1
, , , sin sin

2

O O

O O

K K d d d d

K d d d d

     

     

         


         


  

  









   A2-3 



20 

 

Appendix 3: K12 for the collision between a spheroid and a point-like particle  

 prolate (a1,b1,b1) 

   
2 2

1, 2

12 1 1

4
/ cos sin

3

O O

p p p pK G a b b a         A3-1 

ap and bp are the lengths of semi-axes of the spheroid projection, i.e. an ellipse, on a plane 

perpendicular to the flow direction: 

   
2 2

1 1 1 1

1

cos sinp

p

a b a

b b

  


 

The axis of revolution of the spheroid (prolate and oblate) is characterized by the angles  and 

.  is the angle between the axis of revolution and the Oz axis.  is the angle between the 

axis projection onto the xOy plane and the x’Ox axis. 

 oblate (a1,a1,b1) 

   
2 2

1, 2

12 1 1

4
/ sin cos

3

O O

p p p pK G a b b a         A3-2 

with 

   

1

2 2

1 1 1 1sin cos

p

p

a a

b b a 



 
 

 

endly, 

 
   1 1

1, 2

12 12 1 1 1 1 1

0, , 0, / 2

1
, sinO OK K d d

   

    


 

        A3-3 

and 

 3 3

12, 12 1 1/ 4 / 3NK K G a           A3-4 
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if 
1 0b  , then 3/ 2 1

12,

1

4
3

3
N

b
K

a
  (prolate) and  

3/ 2

12,

4
3/ 2

3
NK


  (oblate) 



22 

 

Appendix 4: Details of statistical calculations and modeling procedures 

 

Precision of the Monte Carlo calculations of K12,N (section 2): for each couple of objects 

considered, a sample of 20 independent observations ((yi), i∈{1,…I}, I = 20) was calculated 

by repeating the described Monte-Carlo procedure with independent random draws. As usual, 

the sample mean 
sy ,the sample standard deviation s  and the (sample) coefficient of 

variation CV are calculated according to : 
1

1 I

s i

i

y y
I 

  ,  
2

1

1

1

I

s i s

i

y y
I




 

 , /s sCV y  

Limitation of the quality of models due to the error in MC calculations 

A model cannot be better than the data it represents. To check the effect of CV = 0.04 on the 

maximum R² that can be obtained in any model, we performed this calculation using Matlab 

and the set of data for K12,N depicted in figure 2 1 12, , 1k N ky K : generate a normal distribution 

of k.l random values rkl ((k,l)∈{1,6}x{1,15}) with mean =1 and standard deviation 0.04, 

generate a “noisy” set of values kl kl kly y r  and calculate the value of R² corresponding 

according to    
2 26 15 6 15

2

1 1 1 1

1 /kl kl kl

k l k l

R y y y y
   

     . The average value of R² on 10000 

draws is 0.995. This result suggests that any model with R²≥0.995 can be considered as 

having its accuracy limited by the precision of the data to be modeled. 

Fitting procedure, least square method, section 3, model from Eqs.5-6:  

For each pair k (k∈{1,6}) of identical form objects,  12, , 1i i

N kK   is known from the MC 

calculation at h=1 and  12, , 0i i

N kK   from the analytical calculation described in Appendix 3. 

Each point l (l∈{1,15}), ( 12, , , ,i i

N k l kl lK y h  ) on the corresponding curve is modelled according 

to Eqs. 5-6 :         12, , 12, , 12, ,0 / 2 1 0
p

i i m m i i i i

kl N k l l N k N ky K h h K K


       
   using a Microsoft 

Excel worksheet. 

For all points ((k,l)∈{1,6}x{1,15}), m and p are kept identical, the Sum of Squared Errors 

(SSE) is calculated according to :  
26 15

1 1

kl kl

k l

SSE y y
 

   ; the Solver add_in in Excel is then 
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used with SSE as the “Objective” cell and m and p as the “Variable” cells to determine the 

values of m and p than yield the minimum value of SSE. These values are: m = 0.36 and p = 

3.0. 

Fitting procedure, least square method, section 4, model from Eqs. 7-9:  

The procedure is basically the same as for the model in §3, Eqs. 5-6, but the points 

12, , , ,i j

N k l kl lK y h   are those depicted in figure 3, kly  related to the point l on the set from the 

pair of objects k ((k,l)∈{1,5}x{1,15}) . The values of  1 1

12, ,N k lK h  and  2 2

12, , 1/N k lK h  are those 

from the MC calculation. The equation for the model 

is    1 1 2 2

12, , 12, ,

1
1/

1 1

n

l
kl N k l N k ln n

l l

h
y K h K h

h h

  
 

. The value of n is kept identical for all points, n 

is the “Variable” cell for the solver. SSE is found minimal when n = 1.3. 

Verification procedure, least square method, section 5, model from Eq. 10: 

As in the fitting procedure, section 4, Eqs. 7-9, the observed values are those of figure 3 and 

the model is:    1 1 2 2

12, , 12, ,

1
1/

1 1

n

l
kl N k l N k ln n

l l

h
y K h K h

h h

  
 

, with this modification: the values 

of  12, ,

i i

N k lK h  are not taken from the MC calculation, but from the model of section 3, Eqs. 5-

6:           12, , 12, , 12, , 12, ,0 / 2 1 0
p

i i i i m m i i i i

N k l N k l l N k N kK h K h h K K


        
  . The values of m, n and 

p are kept at the optimal values determined before (resp. 0.36, 1.3 and 3.0). The Root Mean 

Square Error (RMSE) and R² are classically calcutated according to: /RMSE SSE N where 

N is the total number of observations (5*15=75) and  
25 15

2

1 1

1 / kl

k l

R SSE y y
 

    

Modelling, section 5, Eq. 16a-b 

Let us first remark that this modeling does not have any physical basis but is necessary in the 

framework of the use of K12 in Population Balance Equations (PBE) where computing load is 

critical. Consequently, the MC calculation of  12, , 1i i

N kK   is too slow, as even is the numerical 

evaluation of the integral in the calculation of  12, , 0i i

N kK   (A3-3). 

The hypothesis and constraints of this modelling were: 
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-    12,, 0i i

NP k l K   and      12, 12,, 1 0i i i i

N NQ k l K K    are functions of k and l only  

- P(k,l) and Q(k,l) are not modified by the exchange of k and l 

- P(1,l) = 1, Q(1,1) = 0 (case of a sphere) 

-  for identical needles where h=1:  12, 1i i

NK   =0.3084, consequently, according to Eq. 

10: 0.3084 = P(0,0)+Q(0,0)  

For the sake of simplicity, we first searched a solution as a linear combination of simple 

functions of k and l, respecting the invariance by exchange, as the 11 functions: 

 
2 3 42 2 3 3 4 4

2

0..10 1, , , , , , , , , ,
2 2 2 2 2 2 2 2

j

k l k l k l k l k l k l k l k l
f kl kl kl

                
         

         

 

This list was only limited by our creativity but revealed to contain a set of functions that 

correctly reach the objective. 

The data to be modelled (observations) are issued from the 7 values in table 1 for each of the 

responses P and Q. 

With 7 observations and 11 candidate predictors, the ensemble of solutions is infinite; any 

subset of 7 predictors would yield a “perfect” model in terms of explanation of the variance 

(R²=1). However, these models would have no predictive capacity for values of (k,l) not in the 

set described by the 7 objects in table 1. Moreover, Verzelen [40] showed that incorporating 

too many predictors in a model drastically increases the risk to build a fortuitious model. 

Consequently, we decided to limit the number of predictors in the model to the minimum 

necessary to build a model with a level of quality equal to the maximum consistent with the 

accuracy of the MC calculations, namely R² =0.995. The choice of the best subset was based 

on a procedure similar to the one used by Nortier & al. [41] Because R² can only increase with 

the addition of one more predictor in the model, the criteria for the model selection was the 

predictive R², or Q² introduced by Wold [42] and refined by Quan [43]. In short, this is a cross 

validation method using the leave-one-out scheme. Contrary to [41], the authors programmed 

in this work the whole scheme in Matlab, with the multi-linear regression based on Matlab’s 

function “regress”. 
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The Q² criteria was calculated for all combinations of “1” plus up to 4 functions in the 10 non 

constant candidate predictors, for both P and Q responses. In both cases (P or Q), the best set 

of “1” plus 3 non constant predictors was: 1, (k+l)/2, ((k+l)/2)3, (kl)2, with Q² = 0.9993 and R² 

= 1.000 for P and Q² = 0.9984 and R² = 0.9998 for Q, which satisfies our criteria. 

Due to intrinsic features of Matlab function “regress”, the above described calculation could 

not take the constraints on P(1,1)(  0 1 2 31P P P P    ), Q(1,1)(  1 0 2 3Q Q Q Q    ) and 

P(0,0) + Q(0,0)( 0 00.3084Q P  ) into account: so, once the best model was obtained, we 

made another multilinear regression with the Matlab function “regress” the considering 5 

variables P1, P2, P3, Q2 and Q3 and the equations: 

    
3

2

1 2 3, 1 1 1 1
2 2

k l k l
P k l P P P kl

     
               

 

   
3

2

2 3, 0.3084 1
2 2 2 2

k l k l k l k l
Q k l Q Q kl

         
                  

 

The resulting values are given in table 2 and provide RMSEP = 0.0047, R²P = 0.9999, 

RMSEQ=0.0027, R²Q = 0.9996. 
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Figure captions 

Figure 1: Sketch of the collision between two particles moving in a shear flow. 

 

Figure 2: dimensionless rate constant of collision  K12,N  as a function of h=X2/X1 ratio for 

various pairs Y-Y of particles with the same shape Y (S: sphere; O b/a: spheroid oblate with 

b/a ratio; D: disc; P b/a: spheroid prolate with b/a ratio; N: needle) 

dots: Monte Carlo calculation 

dashed line (--): asymptotic value of K12,N 

solid line: model (Eqs.5-6) 

 

Figure 2 (zoom) 

 

Figure 3: dimensionless rate constant of collision  K12,N  as a function of h=X2/X1 ratio for 

various pairs of particles with different shapes: D-S, S-P 0.2, S-P 0.05, S-N, D-N (S: sphere; 

D: disc; P b/a: spheroid prolate with b/a ratio; N: needle) 

dots: Monte Carlo calculation 

dashed line (--): model (Eqs. 7-9) 

solid line: model (Eq. 10) 

 

Figure 4: dimensionless rate constant of collision K12,N  as a function of h=X2/X1 ratio for 

various pairs of particles with different shapes: P 0.2-N and P 0.05-N. 

dots: Monte Carlo calculation 

solid line: model (Eqs. 10 and 16a-b) 
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Figure 2 (zoom) 
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Tables 

 

 

Y O 0.5 O 0.2 D P 0.2 P 0.05 P 0.01 N 

 12, 0i i

NK   0.925 0.824 0.780 0.428 0.110 0.0221 0.000 

 12, 1i i

NK   0.936 0.864 0.827 0.590 0.383 0.329 0.3084 

 

Table 1: analytical values for  12, 0i i

NK   and values coming from Monte Carlo calculations for 

 12, 1i i

NK   for any Y object shape  

 

 

 

 

Function 1 (k+l)/2 ((k+l)/2)3 (kl)2 

Pj 0 2.200 

(2.100/2.299) 

-2.523 

(-2.820/-2.226) 

1.323 

(1.116/1.529) 

Qj 0.3084 -0.7570 0.9371 

(0.7962/1.0780) 

-0.4885 

(-0.5890/-0.3880) 

 

Table 2: Pj and Qj coefficients (Eqs.12a,b), adjusted values and (95% confidence intervals) 

P1, P2, P3 from the multilinear regression,  0 1 2 31P P P P    ; Q2, Q3 from the multilinear 

regression 0 00.3084Q P  ,  1 0 2 3Q Q Q Q    . 
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 Adjustment Validation RMSE R² 

Eq. 10  D - S  

0.015 0.998 

Determination of m,n,p S – P0.2  

Pairs of particles S – P0.05  

 S - N  

 D - N  

Eq.16 P0.01  

Pj: 0.0047 

Qj: 0.0027 

Pj: 0.9999 

Qj: 0.9996 

Determination of Pj and Qj P0.05  

Particles P0.2  

 D  

 O0.2  

 O0.5  

 N  

Eq.10 + Eq.16  P0.05 - N 0.0086 0.994 

Pairs of particles  P0.2 - N 0.0075 0.9984 

 

Table 3: sets of data used for adjustment and validation (S: sphere; O b/a: spheroid oblate 

with b/a ratio; D: disc; P b/a: spheroid prolate with b/a ratio; N: needle) 
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Nomenclature (main notations) 

a : length of the MCS box 

, ,i i ia b c : geometrical characteristics of the particle i 

,p pa b : geometrical characteristics of the particle projection 

jA : random number 

CV : coefficient of variation 

jf : function (Eq. 13) 

G : shear rate 

h : ratio of two size parameters 

,i j : particle indices (=1,2) 

, ,i j k : axis unit vectors 

12K : collision rate constant 

12,NK : dimensionless collision rate constant 

12,

i i

NK  : 12,NK  for two particles with the same shape 

12,

i j

NK  : 12,NK  for two particles with any shapes 

,k l : shape parameters / , /k b a l c a   

, pL L : needle length, length of the needle projection 

, ,n m p : exponents 

,r cN N : number of MC runs, number of effective collisions 

 ,i i iO   : orientation of the particle i 
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,P Q : functions (Eqs 11a,b) 

,j jP Q : coefficients (Eqs 12a,b) 

,g iR : gyration radius of particle i 

2 2, , ,R Q RMSE SSE : classical parameters of the statistical analysis 

V : particle velocity 

, ,x y z : coordinates 

iX : size parameter of particle i (Eq.2) 

i : anisotropy parameter of particle i (Eq.3) 

 : standard deviation 


