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Abstract

A two-velocity fluid model is presented to describe particle migration in mono-
disperse suspensions of neutrally buoyant particles. In contrast to previous mi-
gration models, the proposed formulation allows us to impose explicit boundary
conditions on particle velocity, and thereby to satisfy strict mass conservation
for the particle phase. In addition, the upper bound on particle volume frac-
tion (jamming limit) is strictly enforced through a non-smooth complementarity
condition and the introduction of a particle jamming pressure. The model is
applied to an axisymmetric Poiseuille flow and solved using a finite-element
method. For that purpose, a specific, fully implicit algorithm based on non-
smooth optimisation tools is developed and validated. Preliminary comparisons
with experimental data from the literature show promising agreement. In par-
ticular, the model properly captures the formation of an inner plug region, in
which the suspension is saturated and jammed.

Keywords: Suspension, Migration, Congested problem, Augmented
Lagrangian method, Asymptotic expansion

1. Introduction

Last decade saw the introduction of granular concepts to describe the rheology
and flow of suspensions of rigid particles [1, 2]. While hydro-dynamical effects
are prominent in dilute mixtures, inter-particle contacts and friction start to
play a role as soon as particle volume fraction φ exceeds values of 0.2–0.25,
typically [3]. Contacts and friction, in particular, appear to be responsible for
a number of specific rheological properties of concentrated suspensions, such
as existence normal stress differences, particle pressure and micro structure
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anisotropy [3, 4]. Contacts and friction can also lead to shear-thickening ef-
fects, and influence the value of the critical particle volume fraction φm above
which the suspension is jammed and behaves as a solid [5, 6]. Various consti-
tutive models have been proposed to describe these properties, either through
phenomenological expressions of the particle stresses [7, 8, 6], inclusion of auxil-
iary conformation tensors related to micro structure evolution [9, 10, 11, 12, 13],
or by explicitly accounting for granular processes [14, 15].

Among the specific properties of concentrated suspensions, shear-induced par-
ticle migration received a lot of attention since the seminal study of Leighton
and Acrivos [16]. This process is responsible for the spontaneous development
of particle volume fraction heterogeneities in sheared suspensions and can lead,
for sufficiently large values of the average volume fraction, to the formation of
jammed plugs in which φ reaches φm [17, 18]. While some recent approaches
explore the direct numerical simulation of the fluid containing a discrete distri-
bution of particles (see e.g. [19]), most numerical simulations of the migration
process base on a continuous mathematical model for the fluid–particle mix-
ture. Since the first phenomenological modelling attempt by Phillips et al. [20],
various models based on two-phase mixture theory [21] have been proposed.
Formulation of a closed system of conservation laws for a two-phase continuous
medium requires closure assumptions to express the contributions of each phase
to the Cauchy stress tensor of the mixture as well as the forces on the particle
phase [22, 23]. Specific attention should be paid to the contribution of parti-
cles and contacts to stresses, as it is now clear that shear-induced migration
is driven by the existence of normal stress gradients in the suspension [3, 4].
The classical suspension balance model (SBM), which is based on empirical ex-
pressions for the particle stress and inter-phase drag, expresses, in absence of
inertia, as a closed system of equations for the mixture velocity and particle
volume fraction [24, 7]. Qualitatively, this model proved successful in capturing
migration effects in different flow configurations [25, 8]. However, difficulties
arise when φ approaches the limit φm and the strain rate vanishes. In practice,
these issues are usually dealt with by considering unrealistically large values
of φm, and by adding an ad-hoc non-local term that effectively prevents the
strain rate from vanishing [25]. As a consequence the model cannot capture
the formation of truly jammed plugs. Note however that a recent extension
of SBM, implementing a process of inelastic compressibility through which the
particle volume fraction can increase beyond the limit φm in jammed regions,
has been shown to overcome this limitation, and to effectively predict realistic
plugs [15]. Physically, such solid compressibility of jammed regions can arise
due to non-local effects and fluctuations induced by the neighbouring sheared
regions [26, 15, 27]. Finally, another drawback of such single velocity models
is the difficulty to impose proper conditions on the particle flux at the bound-
aries of the domain. As a consequence, conservation of particle mass might not
always be satisfied in numerical implementations [25].

In this paper, we propose an alternative migration model that explicitly inte-
grates the saturation of the mixture when the volume fraction reaches the limit
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φm. A unilateral constraint is added to the system of conservation laws through
a complementarity condition to ensure that φ remains effectively bounded by
φm. In addition, the model is based on a two-velocity formulation, and embod-
ies an explicit computation of the difference between the mixture velocity and
the particle phase velocity (i.e. the migration velocity). Boundary conditions
on the particle flux can be explicitly imposed, such that strict conservation of
particle mass is satisfied. Since the study is primarily devoted to the formula-
tion and numerical solution of the system of conservation laws, particle stress
is modelled using the classical phenomenological constitutive relation proposed
by Morris and Boulay [7]. Inter-particle friction or effects of micro structure
are not directly taken into account at this stage, although they might be in-
cluded in further versions of the model by using more sophisticated constitutive
models [10, 15, 13]. As explained below, we do however introduce an addi-
tional pressure term that can be interpreted as a jamming pressure, to properly
deal with the complementarity condition. Compared to SBM, our model also
involves an additional inter-phase stress term required for the stability of the
two-velocity formulation and to enforce boundary conditions on particle velocity.

From a mathematical standpoint, flow models involving a complementarity con-
dition are usually referred to as congested problems [28, 29]. The mathematical
properties of such systems were first studied by Lions and Masmoudi [30], and
more recently by Bresch et al. [28]. Hyperbolic variants of these models, without
diffusive terms, were first applied to road traffic [31, 32] using the asymptotic
preserving numerical method [33]. Later, these models were also applied to
crowd motion [34], granular media [35, 36], and shallow flows in cavities [37].
A general overview of hyperbolic systems with unilateral constraints was ex-
posed by Bouchut et al. [38], and specific solutions were studied by Berthelin
[39], Berthelin and Bouchut [40] and recently Chen and Zhai [41].

The paper is structured as follows. The proposed two-phase model for the mix-
ture velocity, migration velocity and particle volume fraction is presented in
section 2. Through an asymptotic analysis, a reduced system is then derived
for the case of a uniform axisymmetric Poiseuille flow (flow in a circular tube).
Section 3 proposes a numerical method to solve the model in the case of the
Poiseuille problem, implementing a specific augmented Lagrangian approach to
handle the nonlinearity associated with the complementarity condition. Spatial
discretisation is performed using finite elements. Results are presented and dis-
cussed in section 4. After a careful investigation of the convergence properties of
the numerical method, the physical characteristics of the solutions are described,
and direct comparisons with experimental measurements of Oh et al. [18] are
shown. Section 5 presents final discussions and conclusions.
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notation description
u bulk velocity
w migration velocity
q pipe flow rate
p mixture pressure
pj jamming pressure
φ volume fraction
φm maximal volume fraction

ψ = φ/φm reduced volume fraction
Ω flow domain
R tube radius
L tube length
T final time
rp particle radius

notation description
ρ fluid and particle density
η0 fluid viscosity
τ p particle stress tensor

Q = diag(1, λ2, λ3) normal stress tensor
s(ψ) hindrance function
α exponent in s(ψ)

Kn, Ks reduced viscosities
ε = rp/R dimensionless particle radius

Re = 2ρq/(πR) Reynolds number
h mesh size

∆t time step
µ augmentation parameter

Table 1: Notations used in the paper.

2. Migration model

2.1. Two velocity formulation

Let rp be the radius of the rigid spherical particles, and η0 be the viscosity of
the interstitial Newtonian fluid. For the sake of simplicity, we assume here a
neutral buoyancy: let ρ denote the constant mass density of both the fluid and
the particles. This assumption is not fundamental, and the present theory could
be extended to also include different mass densities and sedimentation effects.
The dynamics of the mixture, at a continuous macroscopic scale, is described by
two independent velocities. Without loss of generality, we choose as independent
variables the velocity of the mixture, denoted by u, and the velocity difference
between the two phases, hereafter called migration velocity, denoted by w. Note
that u+w represents the velocity of the particles phase.

The volume fraction is denoted by φ and is bounded by the maximal volume
fraction φm. When φ = φm, the mixture is jammed and behaves as a solid.
For convenience, the reduced volume fraction ψ = φ/φm is introduced. The
constraint φ 6 φm, or equivalently ψ 6 1, can be expressed as a linear comple-
mentarity problem Cottle and Dantzig [42], Duvaut and Lions [43]:

0 6 (1− ψ) ⊥ pj > 0⇔

 1− ψ > 0
pj > 0

(1− ψ)pj = 0
(1)

Hence, the two quantities 1 − ψ and pj should always be positive, and the ⊥
notation expresses that their product should also be zero. When ψ < 1, we then
have pj = 0, while pj can be nonzero when ψ = 1 in the jammed case. This
constraint expresses, at the macroscopic scale, the microscopic non-penetration
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between the rigid particles when contacts occur. The quantity pj is a Lagrange
multiplier that can be interpreted as a jamming pressure. Note that (1) should
be satisfied locally, as some regions of the flow can be jammed while others are
not.

Table 1 summarises the main notations used in this paper. Let Ω ⊂ Rd denote
the flow domain, where d > 1 is the physical space dimension, and let T > 0 be
the final time. The problem to solve writes:
(P ): find u, w, p, ψ, pj, defined in ]0, T [×Ω, such that

ρ

(
∂u

∂t
+ u.∇u

)
− div (−pI + 2η0D(u) + τ p) = f in ]0, T [×Ω

ρ φmψ

(
∂(u+w)

∂t
+(u+w).∇(u+w)

)
− div (−pjI+τ p)

+
η0s(ψ)

r2
p

w − div (2η0s(ψ)D(w)) = 0 in ]0, T [×Ω

divu = 0 in ]0, T [×Ω

∂ψ

∂t
+ div ((u+w)ψ) = 0 in ]0, T [×Ω

0 6 (1− ψ) ⊥ pj > 0 in ]0, T [×Ω

τ p = 2η0
ψ

1− ψ

(
5φm

2
+

ψ

1− ψ
Ks

)
D (u)

−2η0

(
ψ

1− ψ

)2

Kn |D (u)|Q in ]0, T [×Ω

u = uΓ and w = wΓ in ]0, T [×∂Ω

ψ = ψΓ in ]0, T [×∂Ω−

u(t=0) = u0, w(t=0) = w0 and ψ(t=0) = ψ0 in Ω

(2a)

(2b)

(2c)

(2d)

(2e)

(2f)

(2g)
(2h)
(2i)

Equations (2a) and (2c) express the momentum and mass conservation of
the mixture, respectively, while Equations (2b) and (2d) express the momen-
tum and mass conservation of the particle phase. Note that the latter has
the form of an evolution equation for the reduced volume fraction ψ. Equa-
tion (2a) involves the expression of the Cauchy stress tensor of the mixture
σm = −pI + 2η0D(u) + τ p, whereD(u) = (∇u+∇uT )/2. The Lagrange mul-
tiplier p, that interprets as the bulk pressure, is introduced to enforce the mix-
ture incompressibility constraint (2c). The quantity τ p represents the contribu-
tion of the particle phase to the extra-stress tensor, and will be discussed later.
On the right–hand-side, f represents any external body force. Equation (2b)
involves the Cauchy stress of the particle phase −pjI + τ p, where pj is the jam-
ming pressure related to the jamming constraint (2e), as explained above. Note
that the particle pressure then expresses as pj − tr(τ p)/3. Equation (2b) also
involves a net force exerted on the particle phase:

η0s(ψ)

r2
p

w − div (2η0s(ψ)D(w)) .
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The first term in this force corresponds to the drag force exerted by the fluid
phase, where s(ψ) is a hindrance function for which we use the following ex-
pression proposed by Miller and Morris [25]:

s(ψ) =
9

2(1− φmψ)α−1(1− ψ)
,

with α ∈ [2, 5] a material parameter. As discussed by Miller and Morris [25],
this expression is adapted from the classical Richardson–Zaki function, with an
additional (1 − ψ) factor in the denominator to enforce that migration ceases
when maximum packing fraction is reached. The second term in the particle-
phase force, namely div (2η0s(ψ)D(w)) , represents a second-order correction
with respect to particle radius rp. It is introduced here in order to allow for the
imposition of boundary conditions on particle velocity u + w, or equivalently
on w (see Equation (2g)).

Equation (2f) is the phenomenological constitutive relation for the particle stress
tensor τ p initially proposed by Morris and Boulay [7]. Constants Ks and Kn are
material parameters that control the shear and normal viscosities, respectively.
Note that the particle stress tensor τ p diverges when ψ → 1, so that this
constitutive model cannot be used as such in saturated regions. In what follows,
a regularisation will be used to overcome this limitation (see section 3). The
tensor Q expresses as diag(1, λ2, λ3) in the velocity, gradient, vorticity basis
associated to viscosimetric flows (see e.g. [44, p. 158]), where λ2 and λ3 are
material parameters controlling the two normal stress differences. Expressions
of Q adapted to the case of non-viscosimetric flows have also been proposed [45],
but will not be used here.

Finally, the problem is closed by suitable initial and boundary conditions on
velocities u and w and reduced volume fraction ψ, expressed by Equations (2g)–
(2i). Here ∂Ω− denotes the upstream boundary domain for the particle phase:

∂Ω− = {x ∈ ∂Ω such that (u+w)(x) · n(x) < 0} ,

and uΓ, wΓ, ψΓ, u0, w0, ψ0, are given boundary and initial data satisfying
divu0 = 0,

∫
∂Ω
uΓ ds = 0 and ψ0, ψΓ ∈ [0, 1]. Observe that, from (2d) and since

ψ(t=0) > 0, then ψ(t) > 0 for any t > 0.

Suspension balance model (SBM), which only involves the mixture veloc-
ity [25], can be recovered by neglecting inertial terms in equations (2a)
and (2b), and omitting the complementarity condition (2e) as well as the term
div (−pjI + 2η0s(ψ)D(w)) in equation (2b). Note that, in SBM, the constraint
ψ 6 1 is not strictly imposed, but effectively verified through the addition of an
ad-hoc non-local term to the particle stress tensor τp.

Appendix A further expands on the link between the present model and the
general mixture theory developed by Jackson [46], including formal definitions
of the variables in terms of fluid and solid phase averages. Let us also note that,
as an alternative to the stress partition used in system (2), one could define
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the total Cauchy stress tensor of the particle phase as σp = τ p + τ p,nl − pjI,
with τ p,nl = 2η0s(ψ)D(w). Physically, the new corrective term τ p,nl could then
be interpreted as a non-local contribution to the particle stress in unjammed
regions, in the same spirit as non-local rheological models proposed for granular
materials and other complex fluids [47, 48]. The total particle pressure then
expresses as pp = pj − tr(τ p + τ p,nl)/3, also involving a contribution from τp,nl.

Finally, let us comment on the mathematical structure of problem (2a)-(2i).
The pair (u, p) satisfies an incompressible Navier-Stokes-like subsystem (2a),
(2c), while the triplet (w, ψ, pj) satisfies a variable-density Navier-Stokes-like
subsystem (2b), (2d), associated to condition (2e) that guarantees ψ ∈ [0, 1].
Coupling between the two subsystems is achieved by the tensor τ p that depends
on u and ψ from (2f).

2.2. Uniform Poiseuille flow

Figure 1: Circular tube geometry for the Poiseuille flow.

Let us consider here the circular tube geometry represented on Fig. 1, with L
the length of the tube and R its radius. Let (r, θ, z) be the associated cylin-
drical coordinate system. We consider axisymmetric flows independent upon
θ. The tube is assumed to be sufficiently long, i.e. L → ∞, such that the
flow is also considered to be independent upon z. Hence, mixture velocity
writes u(t, r) = (0, 0, uz(t, r)), while migration velocity can develop a nonzero
radial component and expresses as w(t, r) = (wr(t, r), 0, wz(t, r)). The average
reduced particle volume fraction ψ0 is constant for t > 0, and we also consider
that the mixture flow rate q is imposed and constant for t > 0.

An asymptotic analysis for L → ∞, presented in Appendix B,
shows that problem (2a)-(2i) then reduces to, in dimensionless form:
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(Q): find uz, wz, wr, ψ, pj, defined in ]0, T [×]0, 1[ and fz in ]0, T [, s.t.

Re∂tuz −
∂r
r

(r ηapp(ψ) ∂ruz) + fz = 0 in ]0, T [×]0, 1[

Reφmψ ∂t(uz + wz) +
s(ψ)

ε2
wz

− ∂r
r

(r s(ψ) ∂rwz + r (ηapp(ψ)− 1) ∂ruz) = 0 in ]0, T [×]0, 1[

Reφmψ ∂twr +
s(ψ)

ε2
wr −

∂r
r

(2 r s(ψ) ∂rwr)

+
ηn,θ(ψ) |∂ruz|

r
− ∂r

r
(r ηn,r(ψ) |∂ruz|) + ∂rpj = 0 in ]0, T [×]0, 1[

∂tψ +
∂r
r

(rwrψ) = 0 in ]0, T [×]0, 1[

0 6 (1− ψ) ⊥ pj > 0 in ]0, T [×]0, 1[∫ 1

0

uz(t, r) r dr =
1

4
, ∀ t ∈ ]0, T [

∂ruz(t, r=0) = uz(t, r=1) = 0, ∀ t ∈ ]0, T [

∂rwz(t, r=0) = wz(t, r=1) = 0, ∀ t ∈ ]0, T [

wr(t, r=0) = wr(t, r=1) = 0, ∀ t ∈ ]0, T [

uz(t=0) = wz(t=0) = wr(t=0) = 0, ψ(t=0) = ψ0 in ]0, 1[

(3a)

(3b)

(3c)

(3d)

(3e)

(3f)

(3g)
(3h)
(3i)
(3j)

where ε = rp/R and Re = ρUR/η0,, with U = 2q/(πR2) the characteristic ve-
locity scale. Here, pj denotes the Lagrange multiplier associated to the comple-
mentarity condition (3e). Similarly, fz is a Lagrange multiplier associated to
the mixture flow rate constraint (3f). Note that fz interprets as the longitudi-
nal gradient of mixture pressure. The rheological functions ηapp, ηn,r and ηn,θ
involved are given by

ηapp(ψ) = 1 +
5φm

2

(
ψ

1− ψ

)
+Ks

(
ψ

1− ψ

)2

ηn,r(ψ) = −αn,r
(

ψ

1− ψ

)2

ηn,θ(ψ) = −αn,θ
(

ψ

1− ψ

)2

with αn,r = λ2Kn and αn,θ = λ3Kn. With these notations, the dimensionless
particle stress tensor expresses as:

τ p =

 ηn,r(ψ) |∂ruz| 0 (ηapp(ψ)−1) ∂ruz
0 ηn,θ(ψ) |∂ruz| 0

(ηapp(ψ)−1) ∂ruz 0 ηn,z(ψ) |∂ruz|

 (4)

Finally, note that, unlike for 2D plane channel flow [15], particle normal stress
differences are explicitly involved in the circular tube flow considered here.
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Let us observe the mathematical structure of problem (3a)-(3j). Relations (3a)
and (3f) constitute a linear constrained parabolic sub-problem for the un-
known uz and the Lagrange multiplier fz, where ψ is considered as known. This
first linear sub-problem is closed by boundary and initial conditions (3g) and (3j)
for uz. Similarly, relation (3b) constitute a second linear parabolic sub-problem
for the unknown wz, where both uz and ψ are considered as known. This
second linear sub-problem is closed with boundary and initial conditions (3h)
and (3j) for wz. Finally, relations (3c), (3d) and (3e) constitute a nonlinear
constrained sub-problem for the unknowns wr and ψ and the Lagrange mul-
tiplier pj , where uz is considered as known. This problem will henceforth be
called the congested flow sub-problem. This third nonlinear sub-problem is
closed with boundary and initial conditions (3i) and (3j) for wr and ψ. The
Lagrange multiplier pj that imposes the nonlinear constraint ψ 6 1 in (3e) acts
on wr via its evolution equation (3c). Then, ψ is convected by wr in accordance
with the mass conservation equation (3d). Hence, pj acts as a subtle indirect
control upon ψ via wr. The numerical solution of the problem presented in
the following section is mainly suggested by observation of this mathematical
structure.

3. Numerical resolution

We present in this section a fully implicit algorithm for the numerical resolution
of problem (Q) (uniform Poiseuille flow). At each time step of an outer loop,
the three sub-problems outlined above are solved, and a fixed point inner loop
ensures the convergence. Note that, unlike Degond et al. [33] and Degond and
Tang [49] who solved an hyperbolic congested flow problem with an explicit
time scheme, we choose here an implicit time discretisation to avoid restrictions
on time steps due to stability criteria. As the present problem also involves vis-
cous and diffusion terms, such conditions on time step would be too restrictive.
Particle migration tends to be a slow process, for which the use of large time
steps is required.

Presentation of the numerical algorithm is organised as follows. Subsection 3.1
describes the fixed point method that splits problem (Q) into the three associ-
ated sub-problems. Two of these sub-problems, namely (S1) and (S2), are linear
and provide computations of (uz, fz) and wz , respectively. The three other
unknowns, wr, pj , ψ, are solution of a non smooth optimisation problem (S3).
Problem (S3), which implements a complementarity condition between pj and
ψ, cannot be solved by classical optimisation algorithms. This problem is thus
approached by another problem (S̃3), implementing a complementarity condi-
tion between pj and ∂rwr/r. An optimisation method to solve problem (S̃3) is
presented in subsection 3.2. A corrective term is added to the cost function to
apply an augmented Lagrangian method. The solution of (S̃3) then expresses
as a critical point of the augmented cost function, and is found using an Uzawa
algorithm. Finally, subsection 3.3 describes the spatial discretisation used.
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3.1. Implicit time discretisation

Let ∆t > 0 be the time step and tn = n∆t, n ∈ N, be the discrete times. A se-
quence of semi-discrete in time solutions

(
u

(n)
z , w

(n)
z , w

(n)
r , ψ(n), f

(n)
z , p

(n)
j

)
n>0

is defined by recurrence. When n = 0, the solution is provided by
the initial conditions, u(0)

z = w
(0)
z = w

(0)
r = p

(0)
j = 0, ψ(0) = ψ0 and f

(0)
z = 0

i.e. the material is at rest and homogeneous and ψ0 ∈ [0, 1[ is the given
initial reduced volume fraction. When n > 1, let us assume by re-
currence that the numerical solution of system (Q) is given at time
tn−1, i.e.

(
u

(n−1)
z , w

(n−1)
z , w

(n−1)
r , ψ(n−1), f

(n−1)
z , p

(n−1)
j

)
is known. Then,(

u
(n)
z , w

(n)
z , w

(n)
r , ψ(n), f

(n)
z , p

(n)
j

)
is computed using the following fixed point

procedure.

Let k ∈ N denotes the index of the fixed point inner loop. At each step n > 1,
a sequence

(
u

(n,k)
z , w

(n,k)
z , w

(n,k)
r , ψ(n,k), f

(n)
z , p

(n)
j

)
k>0

is defined by recurrence.

When k = 0, this inner loop is initialised from the values at the previous time
step, i.e. (

u(n,0)
z , w(n,0)

z , w(n,0)
r , ψ(n,0), f (n,0)

z i, , p
(n,0)
j

)
=(

u(n−1)
z , w(n−1)

z , w(n−1)
r , ψ(n−1), f (n−1)

z , p
(n−1)
j

) .

When k > 1, let us assume by recurrence that(
u

(n,k−1)
z , w

(n,k−1)
z , w

(n,k−1)
r , ψ(n,k−1), f

(n,k−1)
z , p

(n,k−1)
j

)
is known. Then,(

u
(n,k)
z , w

(n,k)
z , w

(n,k)
r , ψ(n,k), f

(n,k)
z , p

(n,k)
j

)
is defined by splitting (Q) into

three subsystems, two of them are linear and will be referred as (S1) and (S2),
the third one is a congested nonlinear problem, referred as (S3).

By introducing two numerical parameters, kmax and εfp, a stopping criterion is
defined:

‖ψ(n,k−1) − ψ(n,k)‖2 + ‖w(n,k−1)
r − w(n,k)

r ‖2

+‖w(n,k−1)
z − w(n,k)

z ‖2 + ‖u(n,k−1)
z − u(n,k)

z ‖2 6
√

2 ∆t εfp
or k > kmax (5)

where ‖.‖ denotes the usual L2 norm with axisymmetric weighting, defined for
all function f by

‖f‖ =

(∫ 1

0

f(r) r dr

) 1
2

When stopping criterion (5) is satisfied, the fixed point loop is ter-
minated and the last element of the sequence is simply denoted as(
u

(n)
z , w

(n)
z , w

(n)
r , ψ(n), f

(n)
z , p

(n)
j

)
, i.e. the second index k is omitted.

With the notations defined above, the two linear subsystems solved at each fixed
point iteration write:

10



(S1): find u(n,k)
z defined in ]0, 1[ and f (n,k)

z ∈ R such that

Re

∆t

(
u(n,k)
z −u(n−1)

z

)
− ∂r

r

(
r ηapp

(
ψ(n,k−1)

)
∂ru

(n,k)
z

)
+f (n,k)

z = 0 in ]0, 1[∫ 1

0

u(n,k)
z r dr =

1

4

∂ru
(n,k)
z (r=0) = u(n,k)

z (r=1) = 0

(6a)

(6b)

(6c)

(S2): find w(k,n)
z defined in ]0, 1[ such that

Reφm ψ
(n,k−1)

∆t

(
w(n,k)
z − w(n−1)

z

)
+ ε−2s

(
ψ(n,k−1)

)
w(n,k)
z

− ∂r
r

(
r s
(
ψ(n,k−1)

)
∂rw

(n,k)
z

)
=
Reφm ψ

(n,k−1)

∆t

(
u(n,k)
z − u(n−1)

z

)
in ]0, 1[

∂rw
(n,k)
z (r=0) = w(n,k)

z (r=1) = 0

(7a)

(7b)

Similarly, the nonlinear congested subsystem write:
(S3): find w(n,k)

r , p(n,k)
j and ψ(n,k) defined in ]0, 1[ such that

Reφm ψ
(n,k−1)

∆t

(
w(n,k)
r − w(n−1)

r

)
+ ε−2s

(
ψ(n,k−1)

)
w(n,k)
r

− ∂r
r

(
2 r s

(
ψ(n,k−1)

)
∂rw

(n,k)
r

)
+ ∂rp

(n,k)
j

=
∂r
r

(
r ηn,r

(
ψ(n,k−1)

) ∣∣∣∂ru(n,k)
z

∣∣∣)
− 1

r
ηn,θ

(
ψ(n,k−1)

) ∣∣∣∂ru(n,k)
z

∣∣∣
in ]0, 1[

0 6
(
ψ∗ − ψ(n,k)

)
⊥ p

(n,k)
j > 0 in ]0, 1[

1

∆t

(
ψ(n,k) − ψ(n−1) ◦X(n,k−1)

)
+
∂r
r

(
r w(n,k)

r

)
ψ(n,k) = 0 in ]0, 1[

w(n,k)
r (r=0) = w(n,k)

r (r=1) = 0

(8a)

(8b)

(8c)

(8d)

where X(n,k−1)(r) = r −∆t w
(n,k−1)
r (r) in (8c) denotes a first order approxima-

tion of the characteristics.

Observe that the original unilateral constraint ψ 6 1 has been replaced in (8b)
by ψ(n,k) 6 ψ∗, where ψ∗ < 1 is a numerical threshold close to 1. This threshold
is used to ensure that the hindrance function s and the viscosities ηapp, ηn,r
and ηn,θ remain bounded. This strategy constitutes an effective regularisation
of the constitutive law in order to avoid divergence of the stress components
and drag force in the saturated regions.
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The two linear systems (S1) and (S2) are standard, while the solution of the
congested nonlinear system (S3) requires more work. Observe that (8c) can be
explicitly solved in term of ψ(n,k) as:(

1 + ∆t
∂r
r

(
r w(n,k)

r

))
ψ(n,k) = ψ(n−1) ◦X(n,k−1) (9)

Indeed, for sufficiently small ∆t > 0, the first factor of the left-hand side of (8c)
is strictly positive in ]0, 1[, and thus ψ(n,k) is well-defined by an explicit expres-
sion. This expression of ψ(n,k) can then be replaced in (8b). After rearrange-
ments, we obtain a constraint in terms of w(n,k)

r :

− 1

∆t

(
ψ∗ − ψ(n,k−1) ◦X(n,k−1)

)
6

∂r
r

(
r w(n,k)

r

)
⊥ p

(n,k)
j > 0

This complementarity condition means that the compressibility of the particle
phase is bounded negatively, depending on the value of the volume fraction.

Hence, congested subsystem interprets as an obstacle problem coupled to an
advection equation :

(S̃3): find w(n,k)
r and p(n,k)

j , defined in ]0, 1[, such that

Reφm ψ
(n,k−1)

∆t

(
w(n,k)
r − w(n−1)

r

)
+ ε−2s

(
ψ(n,k−1)

)
w(n,k)
r

− ∂r
r

(
2 r s

(
ψ(n,k−1)

)
∂rw

(n,k)
r

)
+ ∂rp

(n,k)
j

=
∂r
r

(
r ηn,r

(
ψ(n,k−1)

) ∣∣∣∂ru(n,k)
z

∣∣∣)
− 1

r
ηn,θ

(
ψ(n,k−1)

) ∣∣∣∂ru(n,k)
z

∣∣∣
in ]0, 1[

− 1

∆t

(
ψ∗−ψ(n,k−1) ◦X(n,k−1)

)
6
∂r
r

(
r w(n,k)

r

)
⊥ p

(n,k)
j > 0 in ]0, 1[

w(n,k)
r (r=0) = w(n,k)

r (r=1) = 0

(10a)

(10b)

(10c)

As soon as w(n,k)
r is known, ψ(n,k) can be explicitly computed from (9).

We recognise in (S̃3) the standard obstacle problem in mathematical physics
(see e.g. [50, 51, 52]). It is expressed here in term of w(n,k)

r with a convex
constraint (10b) on all the interior of the domain ]0, 1[, where p(n,k)

j is the
associated Lagrange multiplier.

3.2. Resolution of the non smooth obstacle sub-problem

Problem (S̃3) defined above can be solved efficiently, without any regularisation,
by an augmented Lagrangian method described in this subsection. Since there is
no ambiguity, indices n and k are omitted here on the unknowns. The problem

12



becomes:
(O): find wr and pj, defined in ]0, 1[, such that

κwr −
∂r
r

(r β ∂rwr) + ∂rpj = f in ]0, 1[

g 6
∂r
r

(r wr) ⊥ pj > 0 in ]0, 1[

wr(r=0) = wr(r=1) = 0

(11a)

(11b)

(11c)

where the following notations are introduced for the known data:

κ = Reφm ψ
(n,k−1)

β = 2 s
(
ψ(n,k−1)

)
f = κw(n−1)

r +
∂r
r

(
r ηn,r

(
ψ(n,k−1)

) ∣∣∣∂ru(n,k)
z

∣∣∣)− 1

r
ηn,θ

(
ψ(n,k−1)

) ∣∣∣∂ru(n,k)
z

∣∣∣
g = − 1

∆t

(
ψ∗ − ψ(n,k−1) ◦X(n,k−1)

)
Let L2, H1, H−1, and H1

0 denote the usual Hilbert functional spaces associated
with the weight r for the cylindrical coordinates. Let us introduce the following
convex subset of L2:

K =
{
ξ ∈ L2 ; ξ > g

}
Note that K is indeed convex, since each convex combinations of any elements
of K belongs to K. Let us also introduce the following bilinear and linear forms,
defined for all w, v ∈ H1 and q ∈ L2 by:

a(w, v) =

∫ 1

0

(κw v + β ∂rw ∂rv) r dr

b(w, q) =

∫ 1

0

∂r(r w) q dr

`(v) =

∫ 1

0

f v r dr

With κ, β ∈ L∞, and f ∈ H−1, where L∞ denotes the space of bounded
functions. Hence, these forms are well-defined.

Moreover, we assume that g ∈ L2. Let B denotes the linear operator from H1

to L2 associated to the bilinear form b and defined for all v ∈ H1 by

Bv = r−1∂r (r v) .

It interprets as the divergence operator in the axisymmetric tube section. The
quadratic function J is defined for all v ∈ H1 by

J(v) =
1

2
a(v, v)− `(v)

13



Problem (O) then expresses as a convex minimisation problem:

wr = arg min
v∈H1

0

J(v)

subject to Bv ∈ K

Note that the convex set K is not a vector space. Thus, the previous optimi-
sation problem is difficult to solve by finite element method, which is based on
vector space approximations of functional spaces. For this reason, we introduce
the indicator function IK : L2 → [0,∞], defined for all ξ ∈ L2 by:

IK(ξ) =

{
0 when ξ ∈ K
∞ otherwise

Observe that IK is a convex function since K is a convex set. The problem can
then be rewritten as:

wr = arg min
v∈H1

0

J(v) + IK(Bv)

The problem now expresses as an unconstrained minimisation problem of a con-
vex non-differentiable function on a vector space, which is more suitable to a
finite element approximation. The main difficulty is to minimise with respect
to IK(Bv), which is the non-differentiable part. A solution is to introduce an
auxiliary variable δ, together with the additional constraint δ = Bw and its as-
sociated Lagrange multiplier, which shall coincide with the jamming pressure pj .
We then introduce the following augmented Lagrangian (see e.g. [53]):

L(v, ξ ; q)=J(v) + IK(ξ) +

∫ 1

0

(ξ −Bv) q r dr +
µ

2

∫ 1

0

(ξ −Bv)
2
r dr (12)

where µ > 0 is the augmentation parameter. The problem is equivalent to
finding the following saddle point:

(wr, δ ; pj) = arg min
v ∈ H1

0

ξ ∈ L2

max
q∈L2

L(v, ξ ; q)

Observe that the term factored by the augmentation parameter µ in (12) is
the square of the constraint: the saddle-point of the Lagrangian L is thus in-
dependent of µ. The numerical parameter µ only influences the convergence of
minimisation algorithm.

The solution is computed by an Uzawa descent method, fully described in Ap-
pendix C.

3.3. Finite element spatial discretisation

The dimensionless space interval [0, 1] is discretised by a uniform mesh whose
step is denoted h > 0. Components uz, wz and wr of the velocities are ap-
proximated by continuous and piecewise quadratic functions, while the reduced
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volume fraction ψ, the jamming pressure pj and the divergence δ are approx-
imated by continuous and piecewise linear functions. The algorithm described
in the previous subsections is implemented using Rheolef C++ finite element
library [54]. Four different values of dimensionless mesh size h were investigated,
namely h = 1/200, 1/400, 1/800, and 1/1600. The dimensionless time step ∆t
is adapted according to the value of h as follows: ∆t = 400h. Hence, for each
refinement of the mesh, the time step is divided by two.

Final computation time T is set such that steady-state flow regime is reached.
In practice, the time needed to reach this steady state depends on the value of
average volume fraction φ0. For most of the numerical tests presented below
(subsections 4.2, 4.3, 4.4), an arbitrary large value T = 4000 was chosen. When
comparing results obtained for different values of φ0 (subsections 4.4 and 4.5),
the value of T was adapted according to a proper steady-state criterion, as
explained later.

4. Results and discussion

This section is dedicated to a preliminary exploration of the predictions of the
new migration model presented in this paper. The solutions, computed with the
algorithm presented in the previous section, are compared with experimental
results obtained by Oh et al. [18]. This section starts with a presentation of
the experimental setup and the choice of model material parameters. Then,
validations of our numerical algorithm are presented. We start by a study of
the convergence of the residual terms in the two inner loops of the implicit
time discretisation scheme, and then turn to the convergence of the solution
versus mesh refinement. Finally, the main physical features of the solution are
described, together with preliminary comparisons to experimental data and a
sensitivity analysis with respect to maximum volume fraction φm.

4.1. Experimental setup

symbol value unit
ρ 1056 kg.m−3

η0 3.6 Pa.s
rp 7× 10−5 m
R 3.15× 10−3 m
q 3.14× 10−8 m3.s−1

φ0 0.32 ; 0.5
φm 0.585 – 0.64

symbol value unit
Ks 0.6
Kn 1
λ2 0.9
λ3 0.5
α 3

Table 2: Values of model material parameters.

Oh et al. [18] injected a mono-disperse particle suspension in a circular tube
from a tank with an imposed flow rate q. At the inlet of the tube, the volume
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fraction is supposed to be uniform, equal to φ0. Particle volume fraction φ and
axial velocity of the mixture uz were measured by MRI at a sufficiently long
distance from the inlet to ensure fully developed flow. Note that this distance,
at which the flow can be considered as fully developed, depends upon several
parameters [18]: the volume fraction at the inlet of the tube φ0, the density of
both the fluid and the particles, the fluid viscosity η0, the particle radius rp,
and the tube radius R. Inlet flow rate was varied between 0.5 and 3 ml/min.
For the computations presented thereafter, we retained an intermediate value
q = 1.88 ml/min.

The values of model constants chosen for the computations presented in this
section are summarised in Table 2. The parameters Kn, Ks, λ2, λ3 and α of
the rheological model were identified from experimental data, as explained in
Appendix D. The choice of the maximum volume fraction φm will be discussed
in the forthcoming paragraph dedicated to comparisons with experiments.

4.2. Convergence of the inner loops

This paragraph documents the convergence of the augmented Lagrangian loop
and the fixed point loop. These numerical tests were performed with values of
φ0 = 0.32, φm = 0.585, and an arbitrary final time T = 4000. The link between
h and ∆t is provided by Table 4. Fig. 2.left plots the relative error in L2

10−9

10−6

10−3

1

0 2× 103 4× 103

‖δ(m+1) − δ(m)‖2

‖δ(1) − δ(0)‖2

m

µ = 80
= 320
= 1280
= 5120
= 20480

10−12

10−11

10−10

10−9

0 20 40

‖ψ(n,k+1) − ψ(n,k)‖2

µ = 1280

k ×mmax

mmax = 16
= 4
= 1

Figure 2: Convergence of the two inner loops at t = 3T/8 (h = 1/800). (left) Convergence of
the augmented Lagrangian loop: normalised relative error on the auxiliary variable δ(m) versus
iteration number m for different values of augmentation parameter µ. (right) Convergence of
the fixed point loop: relative error for the volume fraction ψ(n,k) versus total iteration number
k ×mmax for different values of mmax.

norm of the auxiliary variable δ(m) during the augmented Lagrangian loop as a
function of loop index m. The convergence is studied for k = 0, i.e. at the first
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iteration of the fixed point loop, and for t = 3T/8, i.e. fully developed flow is not
reached yet. First, observe that the relative error decrease for all values of the
augmentation parameter µ, as expected from theory (see Fortin and Glowinski
[53]). Next, observe that the convergence is faster for intermediate values of µ:
the optimal value is near µ = 1280.

Let us now turn to the convergence of the fixed point loop. Fig. 2.right presents
the relative error for the volume fraction ψ(n,k) versus total number of iterations
k × mmax of the inner loops. The initial relative error ‖ψ(n,1) − ψ(n,0)‖ is of
about 10−9, and decreases to about 10−12, when rounding effects appear. Hence,
the normalised relative error decreases to about 10−3. Recall that there is an
inner augmented Lagrangian loop, whose index is m and maximal number of
iterations ismmax. To understand how the two loops interact, the value ofmmax

has been varied. Observe that it is not necessary to iterate more than once in
the augmented Lagrangian loop, for the fixed point loop to converge. Moreover,
this strategy appears to be the most efficient in terms of overall convergence
rate of the algorithm.

symbol value description
µ 1280 augmented Lagrangian parameter

mmax 1 inner augmented Lagrangian maximum iteration
kmax 40 outer fixed point maximal iteration
εfp 10−12 fixed point stopping criterion

Table 3: Numerical parameters of the algorithm.

Finally, the numerical parameters retained for the simulations of the next sec-
tions are grouped in Table 3. The values of µ, mmax and kmax ensure proper
convergence of the inner loops. The stopping criterion (5) of the fixed point
outer loop is set at εfp = 10−12.

4.3. Spatial and temporal convergences

This paragraph is dedicated to the convergence of the solution versus the si-
multaneous refinement of the time and space steps. The four considered mesh
configurations are summarised in Table 4. Similar to time step ∆t that tends
to zero with mesh size h, we also considered that the regularisation parameter
of the constitutive law ψ∗ (effective maximum volume fraction) evolves with
mesh refinement, and tends to 1 when h → 0. Specifically, the following re-
lation was considered based on a specific convergence study (not shown here):
ψ∗ = 1− 10.24h (Tab. 4).

As in the previous subsection, these numerical tests were performed for values
of φ0 = 0.32, φm = 0.585, and T = 4000. In Fig. 3, an additional subscript h
is added to variables, e.g. wr,h, ψh, in order to indicate the mesh dependence.
Fig. 3.left plots the L2 norm of the radial migration velocity wr,h versus dimen-
sionless time t for the four mesh refinements. Observe first that, on all meshes,
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1/h ∆t 1− ψ∗

200 2 5.12× 10−2

400 1 2.56× 10−2

800 0.5 1.28× 10−2

1600 0.25 0.64× 10−2

Table 4: Parameters of the numerical discretisation for dimensionless final time T = 4000.

10−6

10−5

10−4

0 T/2 T

‖wr,h(t, .)‖

t

h = 1/1600
= 1/800
= 1/400
= 1/200

10−6

10−5

10−4

10−3

10−2

5×10−4 10−3 5×10−3

max
t∈[0,T ]

∣∣∣∣ψ0

2
−
∫ 1

0

ψh(t, r) r dr

∣∣∣∣

1

h

Figure 3: Convergence versus simultaneous space and time refinement (see Table 4), with
T = 4000, φ0 = 0.32, φm = 0.585. (left) L2 norm of the radial component wr,h of migration
velocity versus dimensionless time t. (right) Maximum particle mass error versus mesh size h.

wr,h decays exponentially with time: as expected, radial particle migration van-
ishes in steady-state regime. Furthermore, the slope of this decay appears to be
mesh-independent.

An important feature of our model is that it should conserve the mass of the fluid
and solid phases, as expressed by Eq. (2c) for the whole mixture and Eq. (2d)
for the particle phase. At t = 0, the particle mass is given by

∫ 1

0
φ0 r dr = φ0/2.

Fig. 3.right shows the maximum particle mass error as a function of mesh size h.
Obviously, this error is never exactly zero, as the finite element method only
provides an approximation of the solution. However, the error clearly tends to
zero and Fig. 3.right suggests that it converges as O(h), i.e. linearly, with mesh
refinement. This linear convergence represents a major improvement compared
to other existing migration models. As our formulation enables us to impose
a non-penetration boundary condition (2g) on the particle velocity u+w, or
equivalently on w, it prevents uncontrolled mass loss. Let us recall that this
property is made possible by introducing the second-order differential term onw
in (2b).
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Fig. 4 presents the radial profiles of various quantities at time t = T for the four
mesh refinements. A clear, progressive convergence of all the profiles with h can
be observed. Note that the amplitude of radial migration velocity wr is very
small, confirming that the system has reached quasi-steady state. Accordingly,
the bulk shear stress σm,rz is observed to evolve linearly within the tube, as
expected, for all mesh refinements. The peak of jamming pressure pj on the
symmetry axis r = 0 is likely due to a numerical artefact in the treatment of
the boundary condition, but appears to remain bounded as h→ 0.

For each mesh size h, one can define a critical radius, denoted as rc,h(t), such that
ψh(t, r) reaches its maximum 1−ψ∗ for all r ∈ [0, rc,h(t)] (see Fig. 4.top-right).
This region corresponds to a central plug, where the radial migration velocity
wr vanishes while the axial bulk velocity uz is constant and maximum. Table 5
indicates the values of rc,h at time t = T for the four mesh refinements (see also
Tab. 4). The last column corresponds to the difference with the value obtained
for the finest subdivision. Observe that this difference decreases regularly when
h→ 0, and suggests that the critical radius converges as O(h).

h rc,h(T ) |rc,h − rc,h4
|

1/200 0.240 0.033
1/400 0.222 0.015
1/800 0.214 0.007
1/1600 0.207

Table 5: Convergence of critical plug radius rc,h versus mesh refinement h.

4.4. Main features of the solution

This subsection describes the main features of the solution predicted by the
present migration model. The finest mesh, namely h = 1/1600, is retained for
these computations.

Fig. 5 shows the radial profiles of various physical quantities in the tube section
at three different times. Note that values of φ0 = 0.32,φm = 0.585, and T = 4000
are still used here. It is observed that the central plug, in which the material is
saturated (ψ = ψ∗), grows over time. At the transition between the plug and
the outer sheared region (r = rc(t)), the reduced volume fraction ψ is continuous
but not differentiable. As already mentioned, the radial migration velocity wr
strongly decreases with time, and vanishes in the plug. Negative values of wr
in the sheared region indicate that particles migrate from the wall to the centre
of the tube, as expected. Interestingly, one also observes that the values of
longitudinal migration velocity wz remain slightly negative even at steady-state,
indicating that particle velocity lags behind fluid velocity. As expected from
the complementarity condition (11b), the jamming pressure pj is nonzero inside
this plug, while it is zero in the unsaturated sheared zone. Jamming pressure
pj appears to increase towards the centre of the plug, as do the components of
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the particle stress tensor τ p,rz and (τ p). Note however that stress values in the
plug are likely to be strongly influenced by the considered regularisation for the
constitutive law. One cannot argue that stress profiles in this region converge
to those that would be obtained with a more sophisticated constitutive law
avoiding the need for a regularisation. Finally, also observe that the jamming
pressure displays a small discontinuity at the transition between the plug and
the sheared region at intermediate times, but that this discontinuity tends to
vanish in the steady-state regime.

Steady-state solutions have been computed for five different values of average
reduced volume fraction ψ0 ranging between 0.55 and 0.78. The corresponding
values of φ0 and φm are indicated in Figure 6. The final computation time
T used for each case was varied to ensure that a fully-developed flow regime
is effectively reached. For that purpose, a steady-state criterion based on the
exponential decay of wr (see Fig. 3.left) is used. More precisely, the time loop is
stopped when ‖wr(t)‖ is reduced by a factor of 100 compared to its value at the
end of the first iteration. Observe that the final dimensionless time T decreases
as the average reduced volume fraction ψ0 increases (see Fig. 6).

Figure 7 illustrates the influence of average volume fraction φ0 on the steady-
state solution, for a fixed value of φm. As expected, the width of the plug
region strongly increases with φ0, while the average bulk velocity decreases.
The jamming pressure in the plug, as well as the different components of the
particle stress tensor, are also observed to increase when φ0 increases. For
completeness, let us also mention that the Lagrange multiplier fz is negative
and decreases with φ0: steady-state values are fz(T ) = −10.80 for φ0 = 0.32
and fz(T ) = −43.84 for φ0 = 0.50. Recall that fz interprets as the longitudinal
gradient of the bulk pressure.

20



0

0.5

1

0 0.5 1

uz

r

h = 1/1600
= 1/800
= 1/400
= 1/200

0

0.5

1

0 0.5 1

ψ

r

−2

−1

0

0 0.5 1

wz × 10−4

r

−2

−1

0

0 0.5 1

wr × 10−5

r

−6

−3

0

0 0.5 1

σm,rz

r

0

1

2

3

0 0.5 1

pj

3

0 0.25

r

Figure 4: Convergence versus mesh refinement: radial profiles at t = T = 4000 of longitudinal
bulk velocity uz , reduced particle volume fraction ψ, radial and longitudinal migration velocity
wr and wz , bulk shear stress σm,rz , and jamming pressure pj (φ0 = 0.32, φm = 0.585).21



0

0.5

1

0 0.5 1

uz

r

t = T/4
= T/2
= T

0

0.5

1

0 0.5 1

ψ

r

−2

−1

0

0 0.5 1

wz × 10−4

r

−4

−2

0

0 0.5 1

wr × 10−5

r

0

1

2

3

0 0.5 1

pj

0

0.75

0 0.25

r

−4

−2

0

0 0.5 1

τ p,rz

r

−2

−1

0

0 0.5 1

tr(τ p)

r

Figure 5: Convergence of the solution to the steady state: radial profiles at three different times
of longitudinal bulk velocity uz , reduced particle volume fraction ψ, radial and longitudinal
migration velocity wr and wz , jamming pressure pj , and particle stress shear and spherical
component τp,rz and tr(τp). Final dimensionless time is T = 4000 (φ0 = 0.32, φm = 0.585,
h = 1/1600).

22



10−4

10−3

10−2

10−1

1

0 T5 T4 T3 T2 T1 8000

‖wr(t, .)‖
‖wr(0, .)‖

t

run 1
2
3
4
5

run 1 2 3 4 5
φ0 0.32 0.50
φm 0.585 0.60 0.64 0.585 0.64
ψ0 0.55 0.53 0.50 0.85 0.78
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Figure 6: Final dimensionless computation time T , for which |wr| is reduced by a factor
of 100 with respect to its initial value, for the five simulation runs discussed in the text.
The corresponding values of average reduced volume fraction ψ0 = φ0/φm, average volume
fraction φ0, and maximal volume fraction φm, are indicated in the table. Other parameters
are given in Table 2. Finest mesh size h = 1/1600 is used.
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4.5. Comparison with experiments

This paragraph presents direct comparisons between the experimental measure-
ments of Oh et al. [18], performed on fully developed flows, and steady-state
solutions of our migration model. Oh et al. [18] report data for several values of
average particle volume fraction φ0. We retained here the results correspond-
ing to a semi-concentrated and to a concentrated case, with nominal values
φ0 = 0.35 and φ0 = 0.52 respectively. We observed that these nominal values of
volume fraction slightly differ from the values obtained by direct integration of
the measured radial particle fraction profiles. This computation leads to effec-
tive values φ0 = 0.32 and φ0 = 0.5 for the semi-concentrated and concentrated
cases, respectively. To avoid systematic discrepancies between experimental and
numerical profiles, the model solutions were computed for these effective values
of φ0.

Choosing the value of the maximal volume fraction φm in the model requires
care. As explained by Lecampion and Garagash [15], volume fraction φ is actu-
ally characterised by two noticeable limits in highly-concentrated mixtures. The
first limit is the random close packing fraction φrcp = 0.64, which cannot be ex-
ceeded. The second limit is the critical volume fraction φc ≈ 0.585, above which
the mixture is jammed, i.e. behaves as a solid. In regions where φ > φc, vol-
ume fraction can still continue to increase by compaction, as the particle phase
behaves as a compressible solid. As shown by Oh et al. [18], the actual steady-
state volume fraction reached in the jammed regions depends upon φ0. We may
hypothesise that this steady-state volume fraction results from a complex bal-
ance between particle jamming pressure pj and friction. Since the constitutive
law of Morris and Boulay [7] considered in the present model does not account
for friction nor for solid compressibility in the jammed regions, the apparent
maximal volume fraction φm to be considered remains a priori unknown in the
range [φc, φrcp]. Accordingly, for each average volume fraction φ0, solutions
corresponding to several values of maximal volume fraction φm were computed
and compared to experimental data.

Fig. 8 presents comparisons between the steady-state solution at t = T and
experimental measurements for the semi-concentrated case (φ0 = 0.32). It is
observed that the radial profile of mixture velocity uz across the tube section
is very well reproduced by the model, and this for all choices of φm in the
range 0.585–0.64 (see Fig. 8.top-left). In particular, the velocity value in the
plug appears to be well captured. Concerning particle volume fraction φ (see
Fig. 8.top-right), discrepancies can be observed concerning the width of the
plug and the sharpness of the transition with the sheared layer. Experimental
data seem to indicate thinner plugs, and a smoother transition between the
two zones. Note however that the evolution of φ in the vicinity of the wall of
the tube is well reproduced by the model. It is also observed that, while the
choice of φm in the model has obviously a direct impact on the value of particle
volume fraction reached in the plug, this parameter has only little influence on
the profiles of φ in the sheared region. Experimental measurements appear to
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be best captured with φm = 0.60 in this case.

Similar observations can be made for the concentrated case (φ0 = 0.50). Here
also, the radial profile of uz is well reproduced in the whole tube section for all
choices of φm (see Fig. 8.bottom-left). In this case, the value of volume fraction
in the central plug is best captured with the upper bound φm = 0.64 (see
Fig. 8.bottom-right), suggesting that the maximum volume fraction reached in
the plug appears to increase with the average concentration of the suspension.
In contrast, it is again observed that the value of φ near the wall depends only
slightly on the choice of φm.

The discrepancies between numerical solutions and experimental measurements
observed on volume fraction profiles are probably attributable to the limitation
of the model pointed out above, namely that the constitutive law for the particle
phase does not account for friction and solid compressibility in jammed regions.
Experimental results clearly indicate that volume fraction continues to increase
beyond φc in the plug, and saturates only when reaching the limit φ = φrcp.
In contrast, in the model, a single maximum value φm is considered. Extension
of the constitutive law to account for such granular processes, as proposed by
Lecampion and Garagash [15], thus represents a promising prospect to further
improve the agreement with experimental data.
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5. Conclusion and perspectives

This paper presents a new migration model for mono-disperse suspensions of
neutrally buoyant particles. Unlike suspension balance model (SBM), which
relies on a single velocity formulation [25], our model involves two velocities
and two pressures. The two-velocity formulation, coupled to the introduction
of a diffusive term on the migration velocity w, allows us to properly impose
non-penetration boundary conditions for the particles across walls, and thus to
satisfy rigorous mass conservation for the particle phase. Physically, the new
diffusive term can be interpreted as a non-local contribution to the particle
stresses in unjammed regions. In addition, the unilateral constraint φ 6 φm on
the particle volume fraction is strictly imposed through the introduction of a
particle jamming pressure pj . This Lagrange multiplier, which takes nonzero
values only in jammed regions, interprets as the contribution to the particle
pressure of the collective interactions (contact chains) that develop between
particles in these regions.

Through an asymptotic analysis, a reduced 1D migration model is derived in
the case of an axisymmetric Poiseuille flow, and a fully implicit algorithm is
proposed for computing numerical solutions of this reduced model. The origi-
nality lies in the handling of the unilateral constraint, through an augmented
Lagrangian method embedded in a fixed point iteration at each time step. This
algorithm is coupled to a finite element spatial discretisation, and the conver-
gence properties of the scheme are carefully demonstrated. In particular, the
inner loops involved in the augmented Lagrangian and the fixed point are shown
to converge in a small number of iterations. The error on particle mass is also
shown to converge linearly with mesh refinement.

The physical characteristics of the solutions are described as a function of av-
erage volume fraction, and quantitative comparisons with experimental mea-
surements in fully-developed flow regime [18] are presented for both a semi-
concentrated and a concentrated case. Mixture velocity profiles, characterised
by the formation of a central plug, appear to be very well reproduced. The
model is thus able to accurately capture the effects of jamming and the effec-
tive viscoplastic behavior [1] in highly-concentrated mixtures. Discrepancies
between model predictions and experimental data remain nevertheless visible
on the volume fraction profiles, particularly at the transition between the plug
and the outer sheared region. In experiments, the transition between the two
zones appears smoother than in the numerical solutions.

To overcome the current limitations of the model, future improvements shall
concentrate on including more sophisticated constitutive relations accounting
for specific granular processes in concentrated regions. In particular, inelastic
compressibility beyond the jamming limit seems to be a necessary ingredient
to better capture the evolution of particle volume fraction observed in plug
regions [15]. Inclusion of a true yield stress in jammed zones through, e.g.,
frictional effects Saramito [see, e.g., 55], would also be necessary to avoid the
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use of a regularised apparent viscosity and predict more realistic particle stress
values in these regions. Finally, the development of anisotropic micro-structures
in both jammed and sheared regions could also be considered through specific
tensorial constitutive relations [13]. Once these more realistic constitutive mod-
els will be implemented and tested, future work shall also consider the extension
of the numerical algorithm in order to efficiently address more complex geome-
tries such as 3D channel flows, flows around obstacles [56, 57], or re-suspension
experiments [58]. Finally, another promising line of improvement of the nu-
merical resolution would consist in implementing mesh adaptation along the
interface between the plug and the sheared region, as done for Bingham fluids
by, e.g., Roquet and Saramito [59].
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Appendix A. Link with mixture theory

The mixture theory developed by Jackson [46] is based on an asymptotic anal-
ysis for small particle radius rp. Ozenda [60, chap. 2] recently revisited this
asymptotic analysis and obtained, at first order in rp, the following two-velocity
system of conservation equations (see also Nott et al. [23]):

ρ

(
∂u

∂t
+ u.∇u

)
− div (−pfI + 2η0D(u) + σh + σc) = f

ρ φmψ

(
∂(u+w)

∂t
+ (u+w).∇(u+w)

)
− div (σc)− fh = 0

divu = 0

∂ψ

∂t
+ div((u+w)ψ) = 0

(A.1a)

(A.1b)

(A.1c)

(A.1d)

where σh and σc denote contributions to the Cauchy stress of the mixture due
to hydrodynamic and contact interactions between the particles, respectively,
pf is the fluid phase pressure, and fh is the hydrodynamic force exerted on the
particle phase.

Present model Jackson’s mixture theory
σf

ν
2

〈
τ l + τTl

〉
p

σc
ν
2

〈
τ c + τTc

〉
p

u 〈u〉
w 〈u〉p − 〈u〉
pf 〈p〉f
fh ν〈fl〉p

Table A.6: Correspondence between the notations used in system (A.1) and those used
by Jackson [46]. Three different averages are introduced, namely the volume average over
the suspension 〈.〉, the volume average over the fluid phase 〈.〉f , and the discrete particle
phase average 〈.〉p, with ν the number density of particles. See also Ozenda [60, chap. 2].

The correspondence between the notations used in the above system and the
different phase averages introduced by Jackson [46] are explained in Table A.6
(see also Ozenda [60, p. 45] for more details). Identifying (2a) with (A.1a),
and (2b) with (A.1b), we obtain the following expressions for the Cauchy stress
tensor of the mixture and the forces in the particle phase, respectively:

−pfI + 2η0D(u) + σh + σc = −pI + 2η0D(u) + τ p

−div (σc)− fh = −div (−pjI + τ p + 2η0s(ψ)D(w)) +
η0s(ψ)

r2
p

w

(A.2a)

(A.2b)

The following closure relation can be considered:

pf = p− pj (A.3a)
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Then, Equations (A.2a) and (A.2b) successively lead to

σh + σc = −pjI + τ p

−fh + div(σh) =
η0s(ψ)

r2
p

w − div (2η0s(ψ)D(w))

The first relation corresponds to a classical closure in mixture theory [46,
chap. 2], through which the hydrodynamic and contact contributions σh, σc
are lumped into a particle stress, which writes here −pjI + τ p. The second
relation writes equivalently:

fh = −η0s(ψ)

r2
p

w + div (σh + 2η0s(ψ)D(w)) (A.3b)

This expression identifies term by term with Equation (62) of Nott et al. [23],
where the first term on the right–hand side represents the drag force, and the
second term is a particle phase hydrodynamic stress. Note that the new cor-
rective term introduced in our model identifies as the difference between the
particle phase hydrodynamic stress and the hydrodynamic stress σh involved
in the mixture momentum conservation (A.1a), as discussed by Nott et al. [23].
Since this corrective term is of second-order with respect to rp, it does not
change the overall accuracy of the mixture model.

Appendix B. Poiseuille flow in a long tube

We consider the circular tube geometry represented on Fig. 1, with (r, θ, z)
the associated cylindrical coordinate system. This appendix shows how prob-
lem (2a)-(2i) reduces asymptotically to problem (3a)-(3j) when tube length L
becomes large with respect to its radius R. The flow is assumed to be axisym-
metric, i.e. independent upon θ. No-slip conditions are assumed at tube wall
i.e. uΓ = 0 in (2g). Moreover, we assume that the initial conditions u0 and w0

satisfies u0,θ = w0,θ = 0.

Let U be a characteristic velocity of the mixture and W be a characteristic mi-
gration velocity; R/U is then a characteristic time and η0U/R is a characteristic
stress. Dimensionless variables are denoted by tildes, e.g. t̃ = (U/R)t, r̃ = r/R,
z̃ = z/L and ũ = (ũr, ũθ, ũz) = u/U. Finally, let ξ = R/L denote the tube as-
pect ratio, ε = rp/R denote the dimensionless particle radius, and ζ = W/U .
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Appendix B.1. Mixture subsystem

Let us first consider the mixture subsystem associated to the unknowns ũ and p̃.
Mixture momentum and mass conservations (2a) and (2c) become:

Re
ũθ
r̃2
− ∂r̃

r̃
(r̃ τ̃p,rr) +

τ̃p,θθ
r̃
− ξ∂z̃ τ̃p,rz + ∂r̃p̃ = 0

Re (∂t̃ũθ + ξũz∂zũθ)−
∂r̃
r̃2

(
r̃2 (τ̃p,rθ + ∂r̃ũθ)− r̃ ũθ

)
− ξ ∂z (τ̃p,θz + ξ ∂z̃ũθ) = 0

Re (∂t̃ũz + ξ ũz∂z̃ũz)−
∂r̃
r̃

(r̃ (∂r̃ũz + τ̃p,rz))− ξ ∂z̃ τ̃p,zz + ξ ∂z̃ p̃ = 0

∂r̃
r̃

(r̃ ũr) + ξ ∂z̃ũz = 0

(B.1a)

(B.1b)

(B.1c)

(B.1d)

where the Reynolds number is defined by Re = ρUR/η0. For ξ → 0, rela-
tion (B.1d) reduces to ∂r̃ (r̃ũr) = 0. Hence, the boundary condition (2g) yields
ũr(t̃, r̃=0) = ũr(t̃, r̃=1) = 0 at any time t̃ ∈ ]0, T̃ [. Thus, ũr = 0 at any time.
Moreover, since we assume ũθ = 0 at t̃ = 0, from (B.1b), this identity remains
true at any time. Thus ũ = (0, 0, ũz).

Observe in (B.1a) that the term ∂r̃ τ̃p,rr, responsible for the migration, appears
at the same order in ξ as the pressure derivative ∂r̃p̃. Conversely, in (B.1c), the
term ξ ∂z̃ p̃ should be at zeroth order in ξ; otherwise the suspension would not
move in a long tube when ξ → 0. Finally, the pressure is assumed to admit the
following expansion in ξ:

p̃(t̃, r̃, z̃) = ξ−1f̃z(t̃) z̃ + p̃0(t̃, r̃) + O(ξ)

where f̃z depends only upon t̃, and p̃0 depends upon t̃ and r̃ but is independent
of z̃, as inferred from (B.1a). Then, for ξ → 0, momentum conservation (B.1a)
and (B.1c) reduce to

−∂r̃
r̃

(r̃ τ̃p,rr) +
τp,θθ
r̃

+ ∂r̃p̃0 = 0 (B.2a)

Re∂t̃ũz −
∂r̃
r̃

(r̃ (∂r̃ũz + τ̃p,rz)) + f̃z = 0 (B.2b)

Two types of controls can be considered for the flow of the mixture: either the
pressure drop f̃z or the flow rate can be imposed. Here, we choose to impose
the flow rate, denoted by q. The characteristic mixture velocity is then defined
as U = 2q/(πR2), which is equal to twice the average velocity, such that the
dimensionless flow rate expresses as∫ 1

0

ũz(t̃, r̃) r̃ dr̃ =
1

4
(B.2c)

and f̃z in (B.2b) interprets as a Lagrange multiplier for the imposition of the
flow rate constraint (B.2c). Note that when ψ = 0, from (2f), the particle
stress τ p vanishes, the fluid is Newtonian and U coincides with the maximal
value of the mixture velocity.
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Appendix B.2. Congested subsystem

Let us now turn to the congested subsystem associated to the unknowns w̃,
p̃j and ψ. Since w̃θ = 0 at t= 0, we assume that w̃ = (w̃r, 0, w̃z) at any time.
Note that w̃r 6= 0 in general, since the particles are expected to migrate in the
tube. The momentum and mass conservations of the particle phase (2b) and
(2d) become:

Reφmψ
(
ζ ∂t̃w̃r + ζ2 (w̃r∂r̃w̃r + ξw̃z∂z̃w̃r) + ξζũz∂z̃w̃r

)
+ ε−2ζs(ψ) w̃r − ζ

∂r̃
r̃

(2r̃ s(ψ) ∂r̃w̃r)− ξζ ∂z̃ (s(ψ) (∂r̃w̃z + ξ∂z̃w̃r))

+ ∂r̃p̃j =
∂r̃
r̃

(r̃ τ̃p,rr)−
τ̃p,θθ
r̃

+ ξ ∂z̃ τ̃p,rz

Reφmψ
(
∂t̃ũz + ζ ∂t̃w̃z + ζ2 (w̃r∂r̃w̃z + ξw̃z∂z̃w̃z) + ξζ ũz∂z̃w̃z

)
+ ε−2ζ s(ψ) w̃z − ζ

∂r̃
r̃

(r̃ s(ψ) (∂r̃w̃z + ξ∂z̃w̃r))− ξ2ζ ∂z̃ (2s(ψ)∂z̃w̃z) p̃j

+ ξ∂z̃ =
∂r̃
r̃

(r̃ τ̃p,rz) + ξ∂z̃ τ̃p,zz

∂t̃ψ + ζ
∂r̃
r̃

(r̃w̃rψ) + ξ ũz∂z̃ψ + ξζ ∂z̃ (w̃zψ) = 0

By passing to the limit ξ → 0 and neglecting second-order terms in ζ, which are
associated to inertia effects, the previous system becomes:

Re ζφmψ ∂t̃w̃r + ε−2ζ s(ψ)w̃r − ζ
∂r̃
r̃

(2r̃ s(ψ) ∂r̃w̃r) + ∂r̃p̃j

=
∂r̃
r̃

(r̃ τ̃p,rr)−
τ̃p,θθ
r̃

Re φmψ (∂t̃ũz + ζ∂t̃w̃z) + ε−2ζ s(ψ)w̃z − ζ
∂r̃
r̃

(r̃ s(ψ) ∂r̃w̃z)

=
∂r̃
r̃

(r̃ τ̃p,rz)

∂t̃ψ + ζ
∂r̃
r̃

(r̃ w̃r ψ) = 0

(B.3a)

(B.3b)

(B.3c)

Appendix B.3. System closure

Finally, let us turn to the expression of particle stress tensor τp given by (2f).
Since ũ(t̃, r̃) = (0, 0, ũz(t̃, r̃)), the norm of the strain rate writes |2D̃(ũ)| = |∂r̃ũz|
and the components of τp express as explicit relations involving ũz and ψ, as
shown by (4).

The final system involves seven equations, namely (B.2a)-(B.2c), (B.3a)-(B.3c),
and (1), and seven unknowns: ũz, p̃0, f̃z, w̃r, w̃z, p̃j , and ψ. All these unknowns
depend both upon time t̃ and radial position r̃, except for f̃z that only depends
upon time. Observe that Equation (B.2a) leads to an explicit computation of p̃0,
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and is used in post-treatment to obtain a first order approximation in ξ of mix-
ture pressure p̃. Similarly, w̃z appears only in equation (B.3b); consequently,
this equation can be integrated explicitly after the resolution of the five remain-
ing equations. The system is closed by suitable initial and boundary conditions,
and is summarised in (3). Finally note that, for convenience, tilde notations
are dropped in the main text (section 2.2), and the two-velocities ũ and w̃ are
normalised by the same characteristic velocity U .

Appendix C. Uzawa algorithm

Problem (O), as defined in subsection 3.2, is solved by minimising the cost
function J defined by equation (12). Let us introduce the dual function J∗

defined for all q ∈ L2 by:

J∗(q) = − min
(v,ξ)∈H1

0×L2
L(v, ξ ; q)

The problem writes equivalently as a minimisation problem for this dual func-
tion:

pj = arg min
q∈L2

J∗(q)

The numerical procedure used to solve this problem, based on Uzawa method, is
described in subsection B.1, with two technical lemmas gathered in subsection
B.2.

Appendix C.1. Numerical algorithm

The Uzawa algorithm for the augmented Lagrangian method expresses as a
constant-step descent algorithm for the dual function J∗:

• m = 0: let p(0)
j be given.

• m > 1: let p
(m−1)
j be known. Then compute:

p
(m)
j = p

(m−1)
j − µ∇J∗

(
p

(m−1)
j

)
.

Here, m ∈ N denotes the descent loop index, which is implemented as an inner
loop inside the fixed point loop with index k introduced in subsection 3.1. A
numerical parameter mmax is introduced, such that the stopping criterion for
this inner loop is defined as m > mmax. Note that the constant-descent step has
been chosen equal to the augmentation parameter µ. Note also that J∗ is dif-
ferentiable. Then, expanding its gradient, we obtain an equivalent formulation
of the descent algorithm:

• m = 0: let p(0)
j be given.
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• m > 1: let p(m−1)
j be known. Then compute successively:(
w(m)
r , δ(m)

)
= arg min

(v,ξ)∈H1
0×L2

L
(
v, ξ ; p

(m−1)
j

)
p

(m)
j = p

(m−1)
j + µ

(
δ(m) −Bw(m)

r

)
To simplify the simultaneous minimisation versus (v, ξ) of the Lagrangian, the
algorithm is modified by decoupling the first step as:

• m = 0: let p(0)
j and δ(0) be given.

• m > 1: let p(m−1)
j and δ(m−1) be known. Then compute successively:

w(m)
r = arg min

v∈H1
0

L
(
v, δ(m−1) ; p

(m−1)
j

)
δ(m) = arg min

ξ∈L2

L
(
w(m)
r , ξ ; p

(m−1)
j

)
p

(m)
j = p

(m−1)
j + µ

(
δ(m) −Bw(m)

r

)
From (12), the Lagrangian L is quadratic and differentiable versus v. Thus,
the first step of the above algorithm reduces to a linear sub-problem, namely,
find w(m)

r ∈ H1
0 such that, for all v ∈ H1

0 , we have

∂L

∂v

(
w(m)
r , δ(m−1), p

(m−1)
j

)
= 0

The Lagrangian L is both nonlinear and non-differentiable versus ξ, but in-
volves a sub-differential with respect to ξ. Hence, the optimal value δ(m) verifies
0 ∈ ∂ξL(w

(m)
r , δ(m), p

(m−1)
j ), where ∂ξL(w

(m)
r , δ(m), p

(m−1)
j ) is the sub-differential

of L with respect to the variable ξ. The second step of the descent algorithm
is then solved locally. The sub-gradient of the indicator of [g(r),∞[, denoted
∇I[g(r),∞[, verifies, for all ξ ∈ R:

∂I[g(r),∞[(ξ) =

 ∅ when ξ < g(r)
[0,∞[ when ξ = g(r)
{0} otherwise

For all r ∈ [0, 1], the second step then expresses:
find δ(m)(r) ∈ R such that:

0 ∈ ∂I[g(r),∞[

(
δ(m)(r)

)
+ p

(m−1)
j (r) + µδ(m)(r)− µBw(m)

r (r)

⇐⇒


δ(m)(r) > g(r) and δ(m)(r) = Bw

(m)
r (r)−

p
(m−1)
j (r)

µ
or

δ(m)(r) = g(r) and δ(m)(r) > Bw
(m)
r (r)−

p
(m−1)
j (r)

µ
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Finally, the computation of δ(m) reduces to an explicit relation, as shown in
Appendix C.2 (lemma 1), and the practical Uzawa algorithm writes:

• m = 0: let p(0)
j and δ(0) be given.

• m > 1: let p(m−1)
j and δ(m−1) be known. Then successively:

i) find w(m)
r ∈ H1

0 such that, for all v ∈ H1
0 , we have

a
(
w(m)
r , v

)
+ µ

∫ 1

0

Bw(m)
r Bv r dr

= `(v) +

∫ 1

0

(
p

(m−1)
j + µδ(m−1)

)
Bv r dr (C.1a)

ii) compute explicitly:

δ(m) = max

(
g, Bw(m)

r −
p

(m−1)
j

µ

)
p

(m)
j = p

(m−1)
j + µ

(
δ(m) −Bw(m)

r

) (C.1b)

(C.1c)

This algorithm has been shown to converge for any µ > 0 [53, theorem 5.1]).
Recall that the solution is independent upon µ. At convergence, (C.1c) leads to
δ = Bwr and then (C.1a) is exactly a weak formulation of (11a). Since wr ∈ H1

0

in (C.1a), we also obtain (11c). Replacing δ = Bwr in (C.1b), we obtain

Bwr = max

(
g, Bwr −

pj
µ

)
which leads to (11b), as shown in Appendix C.2 (lemma 2). Thus, the previous
algorithm effectively provides a solution of (11a)-(11c).

Appendix C.2. Technical lemmas

Lemma 1. With the notations defined in section 3, we state the following equiv-
alence relation:

δ(m) = max

(
g,Bw(m)

r −
p

(m−1)
c,0

µ

)
⇐⇒


δ(m) > g and δ(m) = Bw

(m)
r −

p
(m−1)
j

µ
or

δ(m) = g and δ(m) > Bw
(m)
r −

p
(m−1)
j

µ

40



Proof. The maximum condition is split between two cases that are equivalent
to the right hand side disjunctive relation in lemma 1:

δ(m) = g

g > Bw
(m)
r −

p
(m−1)
j

µ

⇐⇒


δ(m) = g

δ(m) > Bw
(m)
r −

p
(m−1)
j

µ
δ > g

δ = Bw
(m)
r −

p
(m−1)
j

µ

⇐⇒


δ = Bw

(m)
r −

p
(m−1)
j

µ

g < Bw
(m)
r −

p
(m−1)
j

µ

Lemma 2. With the notations defined in section 3, we state

Bwr = max(g,Bwr −
pj
µ

) =⇒ g 6 Bwr ⊥ pj > 0

Proof.

Bwr = max

(
g,Bwr −

pj
µ

)
=⇒

{
Bwr > g

Bwr > Bwr −
pj
µ

• The condition Bwr > g is evidently satisfied.

• Recalling µ > 0, the positivity of pj is deduced :

Bwr > Bwr −
pj
µ

=⇒ pj > 0

• The condition pj (Bwr − g) = 0 is finally stated:

pj > 0 =⇒ Bwr −
pj
µ
< Bwr =⇒ Bwr = g

Bwr > g =⇒ Bwr −
pj
µ

= Bwr =⇒ pj = 0

Hence the unilateral condition g 6 Bwr ⊥ pj > 0 is stated.

Appendix D. Identification of the rheological parameters

Steady state flow profiles computed with our model show a very low sensitivity
to the values of rheological parameters Kn, λ2, λ3 and α. Hence, only the
value of Ks was adjusted to fit with the migration data of Oh et al. [18] (see
Fig. 8). Values of λ2 and λ3 define the relative magnitude of the normal stress
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Figure D.9: Steady-state normal stress ratio N2/ηapp|2D(u)| as a function of reduced volume
fraction ψ: comparison between the predictions the rheological model (with values indicated
in table 2 and φm = 0.60) and experimental data of Dbouk et al. [61] and Couturier et al.
[62].

differences N1 = τp,zz − τp,rr and N2 = τp,rr − τp,θ,θ. The values chosen for
these parameters (see table 2) ensure that |N2| > 3|N1|, in agreement with
experimental observations [63]. The value of Kn controls the magnitude of the
ratio N2/ηapp|2D(u)|, and was set to fit with experimental data from Dbouk
et al. [61] and Couturier et al. [62], as shown on Fig. D.9. Finally, the parameter
α should verify α ∈ [2, 5], see Miller and Morris [25]. The present choice α = 3
corresponds to an intermediate value. We observed that the smaller the value
of α, the faster the system reaches the steady state regime.
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