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a b s t r a c t 

In the context of credit scoring, ensemble methods based on decision trees, such as the random for- est method, provide better classification 

performance than standard logistic regression models. However, logistic regression remains the benchmark in the credit risk industry mainly because 

the lack of inter- pretability of ensemble methods is incompatible with the requirements of financial regulators. In this paper, we propose a high-

performance and interpretable credit scoring method called penalised logistic tree regression (PLTR), which uses information from decision trees to 

improve the performance of logistic regression. Formally, rules extracted from various short-depth decision trees built with original predic- tive 

variables are used as predictors in a penalised logistic regression model. PLTR allows us to capture non-linear effects that can arise in credit scoring 

data while preserving the intrinsic interpretability of the logistic regression model. Monte Carlo simulations and empirical applications using four 

real credit default datasets show that PLTR predicts credit risk significantly more accurately than logistic regression and compares competitively to 

the random forest method.

1

c

d

1

n

1  

t  

c

m

t

T

t

o

F

M

F

c

C

a

f

e  

e

h

(

(

o

s

a

fi

s

s

. Introduction

Credit scoring was one of the first fields of application of ma- 

hine learning techniques in economics. Some early examples are 

ecision trees ( Coffman, 1986; Makowski, 1985; Srinivasan & Kim, 

987 ), k -nearest neighbours ( Henley & Hand, 1996; 1997 ), neural 

etworks (NN) ( Desai, Crook, & Overstreet Jr, 1996; Tam & Kiang, 

992; West, 20 0 0; Yobas, Crook, & Ross, 20 0 0 ), and support vec-

or machines (SVMs) ( Baesens et al., 2003 ). At that time, the ac-

uracy gains (compared to the standard logistic regression model) 
� This paper has previously circulated under the title ”Machine Learning or Econo- 

etrics for Credit Scoring: Let’s Get the Best of Both Worlds”. We are grateful

o Emanuele Borgonovo (the editor), three anonymous referees, Jérémy Leymarie,

homas Raffinot, Benjamin Peeters, Alexandre Girard, and Yannick Lucotte. We also

hank the seminar participants at University of Orléans as well as the participants

f the 16th Conference “Développements Récents de l’Econométrie Appliquée à la

inance” (Université Paris Nanterre), 7th PhD Student Conference in International

acroeconomics and Financial Econometrics, 35th Annual Conference of the French

inance Association and International Association for Applied Econometrics for their
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or creditworthiness assessment appeared to be limited (see the 

arly surveys of Thomas (20 0 0) and Baesens et al. (2003) ). How-

ver, the performance of machine learning-based scoring models 

as been improved substantially since the adoption of ensemble 

aggregation) methods, especially bagging and boosting methods 

 Finlay, 2011; Lessmann, Baesens, Seow, & Thomas, 2015; Paleol- 

go, Elisseeff, & Antonini, 2010 ). 1 In their extensive benchmarking 

tudy, Lessmann et al. (2015) compared 41 algorithms with various 

ssessment criteria and several credit scoring datasets. They con- 

rmed that the random forest method, i.e., the randomised version 

f bagged decision trees ( Breiman, 2001 ), largely outperforms lo- 

istic regression and has progressively become one of the standard 

odels in the credit scoring industry ( Grennepois, Alvirescu, & 

ombail, 2018 ). Over the last decade, machine learning techniques 

ave been increasingly used by banks and fintechs as challenger 

odels ( ACPR, 2020 ) or sometimes for credit production, generally 

ssociated with “new” data (social or communication networks, 

igital footprint, etc.) and/or “big data” ( Hurlin & Pérignon, 2019 ). 2 
1 The ensemble or aggregation methods aim to improve the predictive perfor- 

ance of a given statistical or machine learning algorithm (weak learner) by using

 linear combination (through averaging or majority vote) of predictions from many

ariants of this algorithm rather than a single prediction.
2 See Óskarsdóttir, Bravo, Sarraute, Vanthienen, & Baesens (2019) or Frost, Gam- 

acorta, Huang, Shin, & Zbinden (2019) for a general discussion about the value of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2021.06.053&domain=pdf
mailto:elena.dumitrescu@parisnanterre.fr
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However, one of the main limitations of machine learning 

ethods in the credit scoring industry comes from their lack of 

xplainability and interpretability. Most of these algorithms, in par- 

icular ensemble methods, are considered as “black boxes” in the 

ense that the corresponding scorecards and credit approval pro- 

ess cannot be easily explained to customers and regulators. This 

s consistent with financial regulators’ current concerns about the 

overnance of AI and the need for interpretability, especially in the 

redit scoring industry. See, for instance, the recent reports on this 

opic published by the French regulatory supervisor ( ACPR, 2020 ), 

he Bank of England ( Bracke, Datta, Jung, & Sen, 2019 ), the Euro- 

ean Commission ( EC, 2020 ), and the European Banking Author- 

ty ( EBA, 2020 ), among many others. This explains why the logistic 

egression remains the standard approach in credit industry, due 

o its simplicity and intrinsic interpretability. Most international 

anks still use the logistic regression model, especially for regu- 

atory scores used to estimate the probability of default for capital 

equirements (Basel III) or for point-in-time estimates of expected 

redit losses (IFRS9). 

Within this context, we propose a hybrid credit scoring ap- 

roach called the penalised logistic tree regression model (hereafter 

LTR). PLTR aims to improve the predictive performance of the lo- 

istic regression model through data pre-processing and feature 

ngineering based on short-depth decision trees and a penalised 

stimation method while preserving the intrinsic interpretability of 

he scoring model. Formally, PLTR consists of a simple logistic re- 

ression model including predictors extracted from decision trees. 

hese predictors are binary rules (leaves) outputted by short-depth 

ecision trees built with original predictive variables. To handle a 

ossibly large number of decision-tree rules, we incorporate vari- 

ble selection in the estimation through an adaptive lasso logistic 

egression model ( Friedman, Hastie, & Tibshirani, 2010; Zou, 2006 ), 

.e., a penalised version of classic logistic regression.

The PLTR model has several advantages. First, it allows us to

apture non-linear effects (i.e., thresholds and interactions between

he features) that can arise in credit scoring data. It is recognised

hat ensemble methods consistently outperform logistic regression

ecause the latter fails to fit these non-linear effects. For instance,

he random forest method benefits from the recursive partition- 

ng underlying decision trees and hence, by design, accommodates

nobserved univariate and multivariate threshold effects. The no- 

able aspect of our approach consists of using these algorithms to

re-treat the predictors instead of modelling the default probabil- 

ty directly with machine learning classification algorithms. Sec- 

nd, PLTR provides parsimonious and interpretable scoring rules

e.g., marginal effects or scorecards) as recommended by the reg- 

lators, since it preserves the intrinsic interpretability of the lo- 

istic regression model and is based on a simple feature selection

ethod.

In this article, we propose several Monte Carlo experiments to 

llustrate the inability of standard parametric models, i.e., standard 

ogistic regression models with linear specification of the index 

r with quadratic and interaction terms, to capture well the non- 

inear effects (thresholds and interactions) that can arise in credit 

coring data. Furthermore, these simulations allow us to evaluate 

he relative performance of PLTR in the presence of non-linear ef- 

ects while controlling for the number of predictors. We show that 

LTR outperforms standard logistic regression in terms of out-of- 

ample forecasting accuracy. Moreover, it compares competitively 

o the random forest method while providing an interpretable scor- 

ng function. We apply PLTR and six other benchmark credit scor- 

ng methodologies (random forest, linear logistic regression, non- 
ig data for credit scoring. In the present article, we limit ourselves to the use of

achine learning algorithms with “traditional data” for credit risk analysis.

w

L

inear logistic regression, non-linear logistic regression with adap- 

ive lasso, an SVM and an NN) on four real credit scoring datasets. 

he empirical results confirm those obtained through simulations, 

s PLTR yields good forecasting performance for all the datasets. 

his conclusion is robust to the various predictive accuracy indica- 

ors considered by Lessmann et al. (2015) and to several diagnostic 

ests. Finally, we show that PLTR also leads to more cost reductions 

han alternative credit scoring models. 

Our paper contributes to the literature on credit scoring on var- 

ous issues. First, our approach avoids the traditional trade-off be- 

ween interpretability and forecasting performance. We propose 

ere to restrict the intrinsic complexity of credit-score models 

ather than apply ex post interpretability methods to analyse the 

coring model after training. Indeed, many model-agnostic meth- 

ds have been recently proposed to make the “black box” machine 

earning models explainable and/or their decisions interpretable 

see Molnar, 2019 for an overview). We can cite here among many 

thers the partial dependence (PDP) or individual conditional ex- 

ectation (ICE) plots, global or local (such as the LIME) surrogate 

odels, feature interaction, Shapley values, Shapley additive ex- 

lanations (SHAPE), etc. In the context of credit scoring models, 

racke et al. (2019) and Grennepois & Robin (2019) promoted the 

se of Shapley values. 3 Bussman, Giudici, Marinelli, & Papenbrock 

2019) recently proposed an explainable machine learning model 

pecifically designed for credit risk management. Their model ap- 

lies similarity networks to Shapley values so that the predic- 

ions are grouped according to the similarity in the underlying 

xplanatory variables. However, obtaining the Shapley values re- 

uires considerable computing time because the number of coali- 

ions grows exponentially with the number of predictive variables, 

nd computational shortcuts provide only approximate and unsta- 

le solutions. An alternative approach is the InTrees method pro- 

osed by Deng (2019) . That algorithm extracts, measures, prunes, 

elects, and summarises rules from a tree ensemble and calcu- 

ates frequent variable interactions. This helps detect simple de- 

ision rules from the forest that are important in predicting the 

utcome variable. Nevertheless, the algorithms underlying the ex- 

raction of these rules are not easy to disclose. Finally, our con- 

ribution can also be related to the methods designed to enable 

Ns and SVMs to be interpretable, especially the TREPAN ( Thomas, 

rook, & Edelman, 2017 ), Re-RX ( Setiono, Baesens, & Mues, 2008 ), 

r ALBA ( Martens, Baesens, & Van Gestel, 2008 ) algorithms. How- 

ver, there is a slight difference between these approaches and 

urs. While the latter aim to enable a model (i.e., NNs or SVMs) to 

e explainable/interpretable, PLTR aims to improve the predictive 

erformance of a simple model (i.e., the logistic regression model) 

hat is inherently interpretable. 

Second, our approach can be viewed as a systematisation of 

ommon practices in the credit industry, where standard logistic 

egression is still the standard scoring model, especially for regula- 

ory purposes. Indeed, credit risk modellers usually introduce non- 

inear effects in logistic regression by using ad hoc or heuristic pre- 

reatments and feature engineering methods ( Hurlin & Pérignon, 

019 ) such as discretisation of continuous variables, merger of cat- 

gories, and identification of non-linear effects with cross-product 

ariables. In contrast, we propose here a systematic and automatic 

pproach for modelling such unobserved non-linear effects based 

n short-depth decision trees. Thus, PLTR may allow model devel- 

pers to significantly reduce the time spent on data management 

nd data pre-processing steps. 

More generally, our paper complements the literature devoted 

o hybrid classification algorithms. The PLTR model differs from 
3 This method assumes that each feature of an individual is a player in a game

here its predictive abilities determine the pay-out of each feature ( Lundberg &

ee, 2017 ).
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he so-called logit-tree models, i.e., trees that contain logistic re- 

ressions at the leaf nodes such as the logistic tree with unbiased 

election (LOTUS) in Chan & Loh (2004) and the logistic model 

ree (LMT) in Landwehr, Hall, & Frank (2005).  Although similar in

pirit, our PLTR method also contrasts with the hybrid CART-logit 

odel of Cardell & Steinberg (1998).  Indeed, to introduce multi-

ariate threshold effects in logistic regression, Cardell & Steinberg 

1998) used a single non-pruned decision tree. However, the large 

epth of this unique tree complicates interpretability and may lead 

o predictor inflation that is not controlled for (e.g., through pe- 

alisation, as in our case). PLTR also shares similarities with the 

wo-step classification algorithm recently proposed by De Caigny, 

oussement, & De Bock (2018) in the context of customer churn 

rediction. Their initial analysis consisted of applying a decision 

ree to split customers into homogeneous segments corresponding 

o the leaves of the decision tree, while the second step consisted 

f estimating a logistic regression model for each segment. How- 

ver, their method is based on a single non-pruned decision tree 

s in the hybrid CART-logit model. Furthermore, their objective was 

o improve the predictive performance of the logistic regression by 

dentifying homogeneous subsets of customers and not by intro- 

ucing non-linear effects as in the PLTR approach. 

The rest of the article is structured as follows. Section 2 analy- 

es the performance of logistic regression and random forest in the 

resence of univariate and multivariate threshold effects through 

onte Carlo simulations. In Section 3 , we introduce the PLTR credit 

coring method and assess through Monte Carlo simulations its ac- 

uracy and interpretability (parsimony) in the presence of thresh- 

ld effects. Section 4 describes an empirical application with a 

enchmark dataset. The robustness of the results to dataset choice 

s explored in Section 5 . Section 6 compares the models from an 

conomic point of view, while the last section concludes the pa- 

er. 

. Threshold effects in logistic regression

.1. Non-linear effects and the logistic regression model 

Let ( x i , y i ) , i = 1 , . . . , n be a sample of size n of independent

nd identically distributed observations, where x i ∈ R 

p is a p- 

imensional vector of predictors and y i ∈ { 0 , 1 } is a binary vari- 

ble taking the value one when the i-th borrower defaults and 

ero otherwise. The goal of a credit scoring model is to provide 

n estimate of the posterior probability Pr ( y i = 1 | x i ) that borrower

 defaults given its attributes x i . The relevant characteristics of 

he borrower vary according to its status: household or company. 

or corporate credit risk scoring, the candidate predictive variables 

 i, j , j = 1 , . . . , p, may include balance-sheet financial variables that 

over various aspects of the financial strength of the firm, such as 

he firm’s operational performance, its liquidity, and capital struc- 

ure ( Altman, 1968 ). 4 For retail loans, financial variables such as 

he number and amount of personal loans, normal repayment fre- 

uency of loans, the number of credit cards, the average overdue 

uration of credit cards and the amount of housing loans are com- 

ined with socio-demographic factors. A typical example is the 

ICO score, which is widely used in the US financial industry to 

ssess the creditworthiness of individual customers. 

Regardless of the type of borrower, the conditional probability 

f default is generally modelled using a logistic regression with the 
4 For instance, using a sample of 4,796 Belgian firms, Bauweraerts (2016) shows

he importance of taking into account the level of liquidity, solvency and profitabil- 

ty of the firm in forecasting its bankruptcy risk. For small and medium enterprises

SMEs), specific variables related to the financial strength of the firm’s owner are

lso shown to be important ( Wang, 2012 ).

w(
w

d

r

ollowing specifications: 

r ( y i = 1 | x i ) = F ( η( x i ;β) ) = 1 

1 + exp ( −η( x i ;β) ) 
, (1) 

here F ( . ) is the logistic cumulative distribution function and 

( x i ;β) is the so-called index function defined as 

( x i ;β) = β0 + 

p ∑ 

j=1

β j x i, j , 

here β = 

(
β0 , β1 , . . . , βp 

)
∈ R 

p+1 is an unknown vector of pa- 

ameters. The estimator ̂ β is obtained by maximizing the log- 

ikelihood function 

 (y i ;β) = 

n ∑ 

i =1

{ 

y i log { F ( η( x i ;β) ) } + ( 1 − y i ) log { 1 − F ( η( x i ;β) ) } 
} 

.

The main advantage of the logistic regression model is its sim- 

le interpretation. Indeed, this model searches for a single linear 

ecision boundary in the predictors’ space. The core assumption 

or finding this boundary is that the index η( x i ;β) is linearly re- 

ated to the predictive variables. In this framework, it is easy to 

valuate the relative contribution of each predictor to the prob- 

bility of default. This is achieved by computing marginal effects 

s 

∂ Pr ( y i = 1 | x i ) 
∂x i, j 

= β j 

exp ( η( x i ;β) ) 

[1 + exp ( η( x i ;β) ) ] 2 
,

ith estimates obtained by replacing β with 

̂ β . Thus, a predictive

ariable with a positive (negative) significant coefficient has a pos- 

tive (negative) impact on the borrower’s default probability. 

This simplicity comes at a cost when significant non-linear re- 

ationships exist between the default indicator, y i , and the predic- 

ive variables, x i . A very common type of non-linearity can arise 

rom the existence of a univariate threshold effect on a single pre- 

ictive variable, but it can also be generalised to a combination of 

uch effects (multivariate threshold effects) across variables. A typ- 

cal example of the former case in the context of credit scoring is 

he income “threshold effect”, which implies the existence of an 

ndogenous income threshold below (above) which default prob- 

bility is more (less) prominent. The income threshold effect can 

bviously interact with other threshold effects, leading to highly 

on-linear multivariate threshold effects. The common practice to 

pproximate non-linear effects in credit scoring applications is to 

ntroduce quadratic and interaction terms in the index function 

( x i ;β) . However, such a practice is not successful when unob- 

erved threshold effects are at stake. 

To illustrate the inability of standard parametric models, i.e., 

tandard logistic regression model or logistic regression with 

uadratic and interaction terms, to capture accurately the non- 

inear effects (thresholds and interactions) that can arise in credit 

coring data, we propose a Monte Carlo simulation experiment. 

n a first step (simulation step), we generate p predictive vari- 

bles x i, j , j = 1 , . . . , p, i = 1 , . . . , n , where the sample size is set to

 = 5 , 0 0 0 . Each predictive variable x i, j is assumed to follow the

tandard Gaussian distribution. The index function η( x i ;�) is sim- 

lated as follows: 

( x i ;�) = β0 + 

p ∑ 

j=1

β j 1 
(
x i, j ≤ γ j 

)
+ 

p−1 ∑ 

j=1 

p ∑ 

k = j+1

β j,k 1 
(
x i, j ≤ δ j 

)
1 
(
x i,k ≤ δk 

)
,

(2) 

here 1 ( . ) is the indicator function and � =
β0 , β1 , . . . , βp , β1 , 2 , . . . , βp−1 ,p 

)′ 
is the vector of parameters, 

ith each component randomly drawn from a uniform [ −1 , 1 ]

istribution, and 

(
γ1 , . . . , γp , δ1 , . . . , δp 

)′ 
are some threshold pa- 

ameters, whose values are randomly selected from the support 



Fig. 1. Comparison of performances under univariate and bivariate threshold effects: linear and non-linear logistic regressions.
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f each predictive variable generated while excluding data below 

above) the first (last) decile. The default probability is then ob- 

ained for each individual by plugging (2) into (1) . Subsequently, 

he simulated target binary variable y i is obtained as 

 i = 

{
1 if Pr ( y i = 1 | x i ) > π
0 otherwise , 

(3) 

here π stands for the median value of the generated probabili- 

ies. 

In a second step (estimation step), we estimate by maximum 

ikelihood two logistic regressions on the simulated data { y i , x i } n i =1 :

 i ) a standard logistic regression model and ( ii ) a (non-linear) logis-

ic regression with quadratic and interaction terms. For the stan- 

ard logistic regression model, the conditional probability is based 

n a linear index defined as 

( x i ;β) = β0 + 

p ∑ 

j=1

β j x i, j . 

or non-linear logistic regression, we also include quadratic and in- 

eraction terms 

(nl) 
(
x i ;�(nl) 

)
= α0 + 

p ∑ 

j=1

α j x i, j + 

p ∑ 

j=1

ξ j x 
2 
i, j + 

p−1 ∑ 

j=1 

p ∑ 

k = j+1

ζ j,k x i, j x i,k . 

here �(nl) = 

(
α0 , α1 , . . . , αp , ξ1 , . . . , ξp , ζ1 , 2 , . . . , ζp−1 ,p 

)′ 
is the 

nknown vector of parameters. 

Fig. 1 displays the average value of the percent of correct classi- 

cation (PCC) values of these two models over 100 simulations and 

or different numbers of predictors p = 4 , . . . , 20 . 5 We observe that

heir accuracy decreases with the number of predictors. This result 

rises because the two logistic regression models are misspecified 

ecause they do not control for threshold and interaction effects, 

nd their degree of misspecification increases with additional pre- 

ictors. Indeed, in our DGP (i.e., Eq. (2) ), the number of regressors 
5 We divide the simulated sample into two sub-samples of equal size at each

eplication. The training sample is used to estimate the parameters of the logistic

egression model, while the classification performance is evaluated on the test sam- 

le. To compute the PCC, we estimate y i by comparing the estimated probabilities

f default, ̂  p i , to an endogenous threshold ̂  π . As usual in the literature, we set ̂  π to 

 value such that the number of predicted defaults in the learning sample is equal

o the observed number of defaults.

t

d

i

s

d

ontrols for the degree of non-linearity of the data generating pro- 

ess: more predictors correspond to more threshold and interac- 

ion effects. These results suggest that in the presence of univariate 

nd bivariate threshold effects involving many variables, logistic re- 

ression with a linear index function, eventually augmented with 

uadratic and interaction terms, fails to discriminate between good 

nd bad loans. In the case where p = 20 , the PCCs of the logistic

egression models are equal to only 72 . 30% and 75 . 19% . 

.2. Machine learning for non-linear effects 

In the context of credit scoring, ensemble methods based on 

ecision trees, such as the random forest method, provide better 

lassification performance than standard logistic regression mod- 

ls ( Finlay, 2011; Lessmann et al., 2015; Paleologo et al., 2010 ). 

he out-performance of the random forest method arises from the 

on-linear “if-then-else” rules underlying decision trees. 6 Formally, 

or a given tree, l, the algorithm proceeds as follows. Let D m,l be 

he data (sub)set at a given node m of this tree. We denote by 

m,l = 

(
j m,l , t m,l, j 

)
a candidate split, where j m,l = 1 , . . . , p indicates 

 given predictor and t m,l, j is a threshold value in the support of 

his variable. The algorithm partitions the data D m,l into two sub- 

ets D m,l, 1 

(
θm,l 

)
and D m,l, 2 

(
θm,l 

)
, with 

7 

 m,l, 1 

(
θm,l 

)
= ( x i , y i ) | x i, j < t m,l, j ,

 m,l, 2 

(
θm,l 

)
= ( x i , y i ) | x i, j ≥ t m,l, j ,

here the parameter estimates ̂ θm,l satisfy 

m,l = ( ̂  j m,l , ̂  t m,l, j ) = arg max 
θm,l

H 

(
D m,l

)
− 1

2 

(
H 

(
D m,l, 1 

(
θm,l 

))
+ H 

(
D m,l, 2 

(
θm,l 

)))
,

ith H ( . ) a measure of diversity, e.g., the Gini criterion, applied to 

he full sample and averaged across the two sub-samples. Hence, 
6 Indeed, the latter is a non-parametric supervised learning method based on a

ivide-and-conquer greedy algorithm that recursively partitions the training sample

nto smaller subsets to group together as accurately as possible individuals with the

ame behaviour, i.e., the same value of the binary target variable “y i ”.
7 To simplify the description of the algorithm, we focus only on quantitative pre- 

ictors. A similar procedure is available for qualitative predictors.



Fig. 2. Example of a decision tree for credit scoring.
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m,l appears as the value of θm,l that reduces diversity the most 

ithin each subset resulting from the split. The splitting process is 

epeated until the terminal sub-samples, also known as leaf nodes, 

ontain homogeneous individuals according to a predefined homo- 

eneity rule. We denote by M l the total number of splits in tree l

nd by | T l | the corresponding number of leaf nodes.

An illustrative example of a decision tree is given in Fig. 2 . At

he first iteration (or split), m = 1 , ̂ θm,l is defined by ( ̂  j m,l , ̂
 t m,l, 1 ) ,

ith 

̂ j m,l the index of the variable “income” and ̂

 t m,l, 1 = 33270 . 53 .

he other iterations also include “age” and “education” for further 

efinements. The process ends with a total number of 5 splits and 

 leaf nodes labelled 10, 11, 12, 13, 4 and 7. Each leaf node R t ,

 = 1 , . . . , | T l | includes a specific proportion of individuals belong- 

ng to each class of borrowers (1 = “default”, 0 = “no default”). For 

nstance, leaf node “7” contains 89 individuals, 93 . 3% of them hav- 

ng experienced a default event. Note that each of these individuals 

as an income lower than 33270.53 and is less than 28.5 years old. 

he predominant class in each leaf defines the predicted value of 

 i for individuals i that belong to that particular leaf. Formally, the 

redicted default value for the i th individual is 

 l (x i ; ̂ �l ) =
| T l | ∑
t=1

c t R i,t , 

here �l = 

(
θm,l , m = 1 , . . . , M l 

)
is the parameter v ect or for tr ee l, 

 i,t = 1 ( i ∈R t ) 
indicates whether individual i belongs to leaf R t , and

 t is the dominant class of borrowers in that leaf node. For exam- 

le, in leaf node 7, the “default” class is dominant; hence, the pre- 

icted value h l ( x i ) is equal to 1 for all the individuals that belong 

o this leaf node. Note that this simple tree allows us to identify 

oth interaction and threshold effects. For instance, in the simple 

xample of Fig. 2 , the predicted value can be viewed as the result

f a kind of linear regression 

8 on the product of two binary vari- 

bles that take a value of one if the income is lower than 33270.53

nd the age is less than 28.5. 

The random forest method is a bagging procedure that ag- 

regates many uncorrelated decision trees. It exploits decision- 

ree power to detect univariate and multivariate threshold effects 

hile reducing their instability. Its superior predictive performance 

prings from the variance reduction effect of bootstrap aggrega- 
8 This equivalence is true only in the case of a regression tree when the target

ariable y is continuous.

o

w

n

ion for non-correlated predictions ( Breiman, 1996 ). Let L trees be 

onstructed from bootstrap samples (with replacement) of fixed 

ize drawn from the original sample. To ensure a low level of cor- 

elation among those trees, the random forest algorithm chooses 

he candidate variable for each split in every tree, j m,l with m ∈ 

 1 , . . . , M l } and l ∈ { 1 , . . . , L } , from a restricted number, p l , of ran-

omly selected predictors among the p available ones, with p l = 

 

√ 

p 	 . The default prediction of the random forest for each bor- 

ower, h ( x i ) , is obtained by the principle of majority vote; that 

s, h ( x i ) corresponds to the mode of the empirical distribution of 

 l (x i ; ̂ �l ) , l = 1 , . . . , L .

To illustrate the ability of the random forest method to capture 

he non-linear effects that can arise in credit scoring data well, we 

onsider the same Monte Carlo framework as in Section 2.1 . The 

roportion of correct classification for the random forest algorithm, 

isplayed as a yellow line in Fig. 3 , is computed over the same 

est samples of length 2500 as the PCCs of the logistic regressions 

reviously discussed. The optimal number of trees in the forest, L , 

s tuned using the out-of-bag error. Our results confirm the em- 

irical findings of the literature: in the presence of non-linear ef- 

ects, random forest outperforms not only linear logistic regression 

as expected) but also non-linear logistic regression. This illustrates 

he ability of random forests to capture both threshold and inter- 

ction effects between the predictors well. These findings are valid 

egardless of the number of predictors, even if the differences in 

lassification performance between the three models are decreas- 

ng in the number of predictors. 9 Indeed, as the number of pre- 

ictors increases, the complexity and the non-linearity of the DGP 

lso increases, which diminishes the performance of all the classi- 

ers. For instance, the PPCs are equal to 99 . 18% (resp. 84 . 50% ) for

he random forest (resp. logistic regression with quadratic and in- 

eraction terms) in the case with 4 predictors, against 81 . 20% (resp. 

5 . 19% ) in the case with 20 predictors. 

Despite ensuring good performance, the aggregation rule (ma- 

ority vote) underlying the random forest method leads to a predic- 

ion rule that lacks interpretation. This opacity is harmful for credit 

coring applications, where decision makers and regulators need 

imple and interpretable scores (see ACPR (2020) and EC (2020) , 
9 See Vapnik & Chervonenkis (1971) for a theoretical result on the fact that the- 

retical risk or generalisation error for any machine learning algorithm decreases

ith the number of observations and increases with the complexity given by the

umber of predictors, or more generally the so-called VC dimension.



Fig. 3. Comparison of performances under univariate and bivariate threshold effects: linear and non-linear logistic regressions and the random forest method.
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11 It is also possible that the univariate threshold variable V ( j) 
i, 1 

takes the value

of one when the income is lower than an estimated income threshold, and zero

otherwise. In that case, the bivariate threshold effect V ( j,k ) 
i, 2 

( V ( j,k ) 
i, 3 

) is equal to one 

when the individual’s income is higher than its threshold and at the same time

his/her age is higher (lower) than an estimated age threshold, and zero otherwise.
12 Note that one could also go beyond two splits by analyzing triplets or quadru- 

plets of predictive variables. Such a procedure would allow the inclusion of more
mong many others). The key question here is how to find a suit- 

ble trade-off between predictive performance and interpretabil- 

ty. To address this issue, two lines of research can be explored. 

irst, one can try to diminish the complexity of the random forest 

ethod’s aggregation rule by selecting (via an objective criterion) 

nly some trees or decision rules in the forest. 10 Second, we can 

reserve the simplicity of logistic regression while improving its 

redictive performance with univariate and bivariate endogenous 

hreshold effects. We opt here for the second line of research, with 

he PLTR hybrid scoring approach. 

. Penalised logistic tree regression

.1. Description of the methodology 

PLTR aims to improve the predictive performance of the logis- 

ic regression model through new predictors based on short-depth 

ecision trees and a penalised estimation method while preserving 

he intrinsic interpretability of the scoring model. The algorithm 

roceeds in two steps. 

The objective of the first step is to identify threshold effects 

rom trees with one and two splits. The case of one-split trees 

s simple: for each explanatory variable in the analysis, regard- 

ess of its level of informativity, two multicolinear leaf nodes are 

reated and one of them is retained for the subsequent analysis. 

verall, we count p such threshold effects, one for each predic- 

ive variable. To understand more easily the case of two-split trees, 

et us take an example (see Fig. 4 ). Consider the income and age

s the jth and k th explanatory variables, respectively, and assume 

hat income is more informative than age in explaining credit de- 

ault. For each individual i , the corresponding decision tree gener- 

tes three binary variables, each associated with a terminal node. 

he first binary variable V ( j) 
i, 1 

accounts for univariate threshold ef- 

ects and takes the value of one when the income of individual 

 is higher than an estimated income threshold and zero other- 

ise. The second (third) binary variable V ( j,k ) 
i, 2 

( V ( j,k ) 
i, 3 

), represent- 

ng bivariate threshold effects, is equal to one when the person’s 

ncome is lower than its threshold and at the same time his/her 

ge is higher (lower) than an estimated age threshold and zero 
10 Note that this is the approach underlying the so-called InTrees method of Deng

2019) , who proposed a methodology to render the random forest outputs inter- 

retable by extracting simple rules from a tree ensemble.

c

p

t

p

t

therwise. 11 Note that this particular form of splitting should arise 

hen both variables are informative, i.e., each of them is selected 

n the iterative process of splitting. If the second variable is non- 

nformative (age), the tree relies twice on the first informative vari- 

ble (income). 

One leaf of the longer branch of the tree is retained so as to 

over two-splits threshold-effects, i.e., V ( j,k ) 
i, 2

in this example. We 

ount at most q such threshold effects, q ≤ p × ( p − 1 ) / 2 , corre- 

ponding to the total number of couples of predictors. We could 

lso retain the leaf coming from the first split of the tree, V ( j) 
i, 1

, but

his would come down to a subset of the p threshold effects iden- 

ified with one-split trees. Indeed, the most informative predic- 

ive variables may be selected in the first split of several two-split 

rees, while the others, less informative, may never be retained as 

he most relevant predictor. Consequently, they do not produce any 

 

( j) 
i, 1

in this setup even though they are relevant on their own, i.e. 

n one-split trees. To avoid this loss of information, we regroup the 

p univariate threshold effects from one-split trees and the q bi- 

ariate threshold effects corresponding to the V ( j,k ) 
i, 2 

leaf of two- 

plit trees. Still, some bivariate threshold effects may be redun- 

ant. Indeed, redundancy can arise from the fact that some vari- 

bles may be selected in the splits of several trees. Consequently, 

e remove the redundant threshold effects before moving to the 

ollowing step. 12 

In the second step, the endogenous univariate and bivariate 

hreshold effects previously obtained are plugged in the logistic re- 

ression 

r 
(
y i = 1 |V ( j) 

i, 1 
, V ( j,k ) 

i, 2 
;�

)
= 

1 

1 + exp 

[
−η(V ( j) 

i, 1 
, V ( j,k ) 

i, 2 
;�) 

] , (4) 
omplex non-linear relationships in the logistic regression. Nevertheless, the ex- 

ected uprise in performance would come at the cost of increased complexity of

he model toward that of random forests, which would plunge its level of inter- 

retability. For this reason, in our PLTR model, we use only short-depth decision

rees involving one and two splits.



Fig. 4. Illustration of the two-stage splitting process.
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13 Different estimation algorithms have been developed in the literature to esti- 

mate regression models with the adaptive lasso penalty (for a given value of λ):

the quadratic programming technique ( Shewchuk et al., 1994 ), the shooting algo- 

rithm ( Zhang & Lu, 2007 ), the coordinate-descent algorithm ( Friedman et al., 2010 ),

and the Fisher scoring algorithm ( Park & Hastie, 2007 ). Most of them are imple- 

mented in software such as MATLAB and R, and we rely here on the algorithm

based on Fisher scoring. See McIlhagga (2016) for more details on this optimisation

algorithm.
14 We thank an anonymous referee for this suggestion.
ith 

(V ( j) 
i, 1 

, V ( j,k ) 
i, 2 

;�) = β0 + 

p ∑ 

j=1

α j x i + 

p ∑ 

j=1

β j V ( j) 
i, 1 

+ 

p−1 ∑ 

j=1 

p ∑ 

k = j+1

γ j,k V ( j,k ) 
i, 2 

he index and � = (β0 , α1 , . . . , αp , β1 , . . . , βp , γ1 , 2 , . . . , γp−1 ,p ) 
′ the

et of parameters to be estimated. The corresponding log- 

ikelihood is 

 (V ( j) 
i, 1 

, V ( j,k ) 
i, 2 

;�) = 

1 

n 

n ∑ 

i =1

[
y i log 

[
F 

(
η(V ( j) 

i, 1 
, V ( j,k ) 

i, 2 
;�) 

)]
+ ( 1 − y i ) log 

[
1 − F 

(
η(V ( j) 

i, 1 
, V ( j,k ) 

i, 2 
;�) 

)] ]
,

here F (η(V ( j) 
i, 1 

, V ( j,k ) 
i, 2

;�)) is the logistic cdf. The estimate ̂ � is ob-

ained by maximizing the above log-likelihood with respect to the 

nknown parameters �. Note that the length of � depends on the 

umber of predictive variables, p, which can be relatively high. For 

nstance, there are 45 couples of variables when p = 10 ; this leads

o a maximum number of 55 univariate and bivariate threshold ef- 

ects that play the role of predictors in our logistic regression. 

To prevent overfitting issues in this context with a large num- 

er of predictors, a common approach is to rely on penalisation 

regularisation) for both estimation and variable selection. In our 

ase, this method consists of adding a penalty term to the nega- 

ive value of the log-likelihood function, such that 

 p (V ( j) 
i, 1 

, V ( j,k ) 
i, 2 

;�) = −L (V ( j) 
i, 1 

, V ( j,k ) 
i, 2 

;�) + λP (�) , (5)

here P (�) is the additional penalty term and λ is a tuning pa- 

ameter that controls the intensity of the regularisation and which 

s selected in such a way that the resulting model minimises 

he out-of-sample error. The optimal value of the tuning param- 

ter λ is usually obtained by relying on a grid search with cross- 

alidation or by using some information criteria. In addition, sev- 

ral penalty terms P (�) have been proposed in the related lit- 

rature ( Tibshirani, 1996; Zou, 20 06; Zou & Hastie, 20 05 ). Here,

e consider the adaptive lasso estimator of Zou (2006) . Note that 

he adaptive lasso satisfies the oracle property; i.e., the probabil- 

ty of excluding relevant variables and selecting irrelevant vari- 

bles is zero, contrary to the standard lasso penalisation ( Fan & Li, 

001 ). The corresponding penalty term is P (�) = 

∑ V 
v =1 w v | θv | with

 v = | ̂  θ (0) 
v | −ν , where ̂ θ (0) 

v , v = 1 , . . . , V , are consistent initial esti-

ators of the parameters and ν is a positive constant. The adaptive 
asso estimators are obtained as 

̂ 

alasso (λ) = arg min
�

− L
(
V ( j ) 

i, 1 
, V ( j,k ) 

i, 2 
;�

)
+ λ

V ∑ 

v =1 

w v | θv | . (6) 

n practice, we set the parameter ν to 1 and the initial estimator 
 

(0) 
j 

to the value obtained from the logistic-ridge regression ( Hoerl

 Kennard, 1970 ), and the only free tuning parameter, λ, is found 

ia 10-fold cross-validation. 13 Note also that since decision tree al- 

orithms are immune to collinearity by nature and the adaptive 

asso regression is consistent in variable selection for Generalized 

inear Models even when the irrepresentable condition is violated, 

he PLTR method is robust to collinearity issues. 

Instead of penalizing the logistic regression to select only the 

ost relevant threshold effects, we could have selected only the 

inary variables (the leaves of the trees) corresponding to the trees 

ith the highest predictive power. 14 However, two main issues 

rise from this approach. Firstly, measuring the performance of the 

hort-depth decision trees over the training sample is a potential 

ource of overfitting. A natural solution would be to divide the cur- 

ent training sample into a pure training sample, and a validation 

ample to measure the out-of-sample performances of the trees, 

ut this strategy is reliable only if the initial dataset is particu- 

arly large. Secondly, implementing a pre-selection procedure sup- 

oses setting a threshold γ on the scale of predictive performance, 

eyond (below) which a decision tree and therefore its leafs will 

e retained (excluded). Setting this threshold is challenging, as too 

igh values could exclude relevant trees and too low values could 

nclude irrelevant ones. In contrast, our approach, which consists 

n retaining all non-redundant binary variables outputted by all the 

ecision trees and in selecting the most relevant ones in the sec- 

nd step (within the penalized logistic regression) does not suf- 

er from these shortcomings. As the adaptive Lasso has the oracle 

roperty, it will select only binary variables related to trees with 



Fig. 5. Comparison of performances under univariate and bivariate threshold effects: linear and non-linear logistic regressions, the random forest method and PLTR.
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16 Computation time may also be a relevant criterion. We compute the average

time required to run each classifier over 100 simulations over the same test samples

previously considered. All computation times are very reasonable for the problem

at hand. It increases with the complexity of the approach: logistic regression are

almost instantaneous, followed closely by the random forest and the PLTR. Notice

that most of the computation time of the PLTR model comes from the penalisation,

which is standard in the literature and insures a proper selection of the relevant

predictors, and not from the identification of threshold effects, which render PLTR

superior to the standard logistic regression. We are grateful to an anonymous ref- 
igh predictive power. More precisely, the calibrated penalty pa- 

ameter λ in the adaptive Lasso is positively related to the un- 

nown γ threshold. 

In summary, PLTR is a hybrid classification model designed to 

ncrease the predictive power of the logistic regression model via 

eature engineering. Its first step consists of creating additional bi- 

ary predictors based on short-depth decision trees built with sin- 

letons and couples of predictive variables. These binary variables 

re then introduced, in a second step, in a penalised logistic re- 

ression model, where the adaptive lasso is used for both estima- 

ion and variable selection. 

.2. PLTR under threshold effects: Monte Carlo evidence 

In this subsection, we assess the accuracy and interpretability 

f the PLTR method in the presence of threshold effects. For that, 

e consider the same Monte Carlo experiment as that defined in 

ection 2 . 

Fig. 5 displays the PCC for our PLTR method computed over 

he same test samples of length 2,500 that were generated with 

he DGP in (2) - (3) . The main conclusion is that the PLTR method

utperforms the two versions of the logistic regression, i.e., with 

nd without quadratic and interaction terms. Equally important, 

hen there are few predictors, i.e., p is small, the PCC of PLTR is 

ower than that of random forest. However, as p increases, the per- 

ormance of PLTR approaches that of the random forest method, 

nd both models have approximately the same classification per- 

ormance. For example, the PCCs are equal to 94.81 for our new 

ethod and 99.18 for the random forest with p = 4 , against 83.65

nd 81.20 for p = 20 , respectively. Note that the latter case seems

ore realistic, as credit scoring applications generally rely on a 

arge set of predictors in practice. 

We gauge the robustness of these findings to the choice of eval- 

ation criteria by computing on the same test samples two other 

erformance measures for all models under analysis, namely the 

rea Under the ROC Curve (AUC) and the Brier Score (BS). 15 The 
15 The Area Under the ROC Curve and Brier Score are complementary performance

easures to the PCC and related to different facets of the predictive performance

f scorecards, i.e., the accuracy of the scores and the discriminatory power of the

lassifiers. We provide a complete description of these performance measures in

ection 4.2 .

e
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a

a

v

esults, displayed in Figures C.1 and C.2 in Section C of the online 

ppendix, are very similar to those obtained for the PCC, and the 

onclusions remain the same. The random forest and PLTR outper- 

orm both versions of the logistic regression and the performance 

f each model decreases with the complexity and non-linearity of 

he DGP. Moreover, the PLTR compares competitively to the ran- 

om forest and even surpasses it as the number of predictors in- 

reases. 

Performance is not the only essential criterion for credit scoring 

anagers. The other fundamental characteristic of a good scoring 

odel is interpretability. 16 Interpretability and accuracy are gen- 

rally two competing objectives: the first is favoured by simple 

odels, the latter by complex models. Moreover, the degree of in- 

erpretability of a credit scoring model is difficult to measure. As 

iscussed in Molnar (2019) , there is no real consensus in the lit- 

rature about what is interpretable for machine learning, nor is it 

lear how to measure this factor. Doshi-Velez & Kim (2017) dis- 

inguishes three levels of evaluation of interpretability: the appli- 

ation level, the human level, and the function level. While the 

pplication and human levels are related to the understanding of 

he conclusion of a model (from an expert or a layperson, respec- 

ively), the function level corresponds to the evaluation of decision 

ules from a statistical viewpoint (for example, the depth of a de- 

ision tree). In the specific context of credit scoring, Bracke et al. 

2019) distinguishes six different types of stakeholders (developers, 

st- and 2nd-line model checkers, management, regulators, etc.). 17 

ach of them has its own definition of what interpretability should 
ree for this suggestion.
17 Bracke et al. (2019) distinguished the (i) developers, i.e., those developing or

mplementing an ML application; (ii) 1st-line model checkers, i.e., those directly

esponsible for ensuring that model development is of sufficient quality; (iii) man- 

gement responsible for the application; (iv) 2nd-line model checkers, i.e., staff that,

s part of a firm’s control functions, independently check the quality of model de- 

elopment and deployment; (v) conduct regulators that are interested in deployed
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19 The major difference between these two methods is the endogenous character
e and how to measure it. For instance, the developer and 1st-line 

heckers may be interested in individual predictions when they 

btain customer queries and in better understanding outliers. In 

ontrast, second-line model checkers, management, and prudential 

egulators are likely to adopt a more general viewpoint and may 

e less interested in individual predictions. 

In the credit scoring context, interpretability can be measured 

rom at least two perspectives. First, one can consider simple met- 

ics such as the size of the set of decision rules. This indicator 

llows us to compare models in terms of ease of interpretation: 

he fewer the rules in a decision set, the easier it is for a user to

nderstand all the conditions that correspond to a particular class 

abel. The size of a given rule in a decision set is a complemen-

ary measure. Indeed, if the number of predicates in a rule is too 

arge, it will lose its natural interpretability. This perspective corre- 

ponds to the function level evaluation mentioned by Doshi-Velez 

 Kim (2017) . Second, one can interpret the decision rules through 

arginal effects, elasticities, or scorecards. This second perspective 

orresponds to the human-level evaluation evoked by Doshi-Velez 

 Kim (2017) or to the global model interpretability defined by 

olnar (2019) . Which features are important and what kind of in- 

eractions take place between them? 

We confirm this trade-off between interpretability and classifi- 

ation performance. The less accurate model, i.e., the logistic re- 

ression model, is intrinsically interpretable through marginal ef- 

ects or explicit scorecard. In contrast, the model with the highest 

lassification performance among our competing models, i.e., the 

andom forest model, is not interpretable for two reasons. First, the 

orest relies on many trees with many splits, which involves many 

omplicated if-then-else rules. Second, the rules obtained from the 

rees are aggregated via the majority vote. 

Within this context, our PLTR method is a parsimonious solu- 

ion to the trade-off between performance and interpretability. The 

coring decision rules are simple to interpret through marginal ef- 

ects (as well as elasticities and scorecards) similar to those of tra- 

itional logistic regression. This is facilitated by the simple decision 

ules obtained in the first step of the procedure from short-depth 

ecision trees. Indeed, the skeleton of our PLTR is actually a lo- 

istic regression model with binary indicators that account for en- 

ogenous univariate and bivariate threshold effects. The complete 

oan-decision process based on the PLTR method is illustrated in 

ig. 6 . The input of the method includes all the predictive vari- 

bles from the loan applicant, while the output is fundamentally 

he decision to accept or to reject the credit application based on 

he default risk of the person. Additionally, the mapping from the 

nputs to the output allows one to transform the internal set of 

ules of PLTR into transparent feedback about the weaknesses and 

trengths of the application. 

To provide more insights into interpretability, we compare our 

LTR model and the random forest in the same Monte Carlo setup 

s in Section 2 , with p fixed to 20, using simple metrics. We con-

ider the two metrics previously defined, i.e., the size of the set 

f decision rules and the size of a given rule in the decision set. 

cross the 100 simulations, the random forest registers an aver- 

ge number of 160.9 trees, each with an average number of 410.5 

erminal nodes. This leads to a decision set of 410 . 5 × 160 . 9 binary

ecision variables or rules that can be used for prediction with this 

ethod. Across the same simulations, the average number of ac- 

ive binary decision variables in our penalised logistic regression is 

qual to 146.9. 18 Moreover, the number of predicates involved in 
odels being in line with conduct rules and (vi) prudential regulators that are in- 

erested in deployed models being in line with prudential requirements.
18 Note that for p = 20 predictors, the maximum number of binary variables is 

qual to 20 + 

20 ×19 
2 

= 210 . This result illustrates the selection processed through 

daptive lasso regression.
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6

ach of these binary decision variables for our PLTR method varies 

etween 1 and 2 by construction, whereas the maximum number 

f predicates in a rule of the random forest model is 14.5 on aver- 

ge. Hence, the PLTR model appears to be easier to interpret than 

he random forest model and comparable to non-linear logistic re- 

ression in this sense. 19 

Furthermore, marginal effects and elasticities can be easily ob- 

ained in PLTR due to the linearity of the link function (cf. Eq. (4) ).

n the one hand, this greatly simplifies significance testing as well 

s the implementation of out-of-sample exercises. On the other 

and, this allows credit institutions to easily explain, in a trans- 

arent way, the main reasons behind a loan decision. 

. Model performance with a benchmark dataset

As a complement to Monte Carlo simulations, we now con- 

ider an empirical application based on a benchmark credit default 

ataset to assess the practical usefulness of PLTR. 

.1. Data description and processing 

To gauge the out-of-sample performance of the PLTR method 

nd to illustrate its interpretability, we use a popular dataset pro- 

ided by a financial institution for the Kaggle competition “Give 

e some credit”, which is often used in credit scoring applica- 

ions ( Baesens et al., 2003 ). The dataset includes several predictive 

ariables and a binary response variable measuring default. The 

redictive variables provide information about the customers (age, 

onthly income, the number of dependents in the family) and the 

pplication form (number of mortgage and real estate loans, the 

onthly debt payments, the total balance on credit cards, etc.). The 

ataset contains 10 quantitative predictors. See Table A.1 in Section 

 of the online appendix for a description of the variables in the 

ataset. 

The number of instances in the dataset is equal to 150,0 0 0 

oans out of which 10,026 defaults, leading to a prior default 

ate of 0.067. 20 All the missing values have been replaced by the 

ean of the predictive variable. Finally, regarding data partition- 

ng, we use the so-called N × 2 -fold cross-validation of Dietterich 

1998) , which involves randomly dividing the dataset into two sub- 

amples of equal size. The first (second) part is used to build the 

odel, while the second (first) part is used for evaluation. This 

rocedure is repeated N times, and the evaluation metrics are av- 

raged. This method of evaluation produces more robust results 

ompared to classical single data partitioning. We set N = 5 for 

omputational reasons. 

.2. Statistical measures of performance and interpretability 

To evaluate the performance of each classifier, we use five accu- 

acy measures considered by Lessmann et al. (2015) in their bench- 

arking study: the area under the ROC curve (AUC), the Brier score 

BS), the Kolmogorov-Smirnov statistic (KS), the percentage of cor- 

ectly classified (PCC) cases, and the partial Gini index (PGI). These 

ndicators are related to different facets of the predictive perfor- 

ance of scorecards, namely, the accuracy of the scores as mea- 

ured by the BS statistics, the quality of the classification given by 
f the thresholds that characterise variable interactions in our framework.
20 It is well known that imbalanced classes impede classification: some classifiers

ay focus too much on the majority class and neglect the minority group (of in- 

erest). They can hence exhibit good overall performance despite poorly identifying

he minority group, i.e., the borrowers that default. A common solution consists of

sing an under-sampling or over-sampling method, such as SMOTE. Nonetheless,

ere, we choose not to resample the data, as the prior default rate is larger than

% .



Fig. 6. PLTR inference process.
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he PCC and KS statistics, and the discriminatory power assessed 

hrough the AUC and the PGI statistics. By using several statistics 

nstead of a single one, we expect to obtain a robust and complete 

valuation of the relative performances of the competing models. 

The AUC tool evaluates the overall discriminatory performance 

f each model or classifier. It is a measure of the link between the 

alse positive rate (FPR) and the true positive rate (TPR), each com- 

uted for every threshold between 0 and 1. The FPR (TPR) is the 

ercentage of non-defaulted (defaulted) loans misclassified (cor- 

ectly classified) as defaulted. Thus, AUC reflects the probability 

hat the occurrence of a randomly chosen bad loan is higher than 

he occurrence of a randomly chosen good loan. 

The Gini index is equal to twice the area between the ROC 

urve and the diagonal. Hence, similar to the AUC metric, it evalu- 

tes the discriminatory power of a classifier across several thresh- 

lds, with values close to one corresponding to perfect classifica- 

ions. However, in credit scoring applications, it is not realistic to 

tudy all possible thresholds. Informative thresholds are those lo- 

ated in the lower tail of the distribution of default probabilities 

 Hand, 2005 ). Indeed, only applications below a threshold in the 

ower tail can be granted a credit, which excludes high thresholds. 

he partial Gini index solves this issue by focusing on thresholds 

n the lower tail ( Pundir & Seshadri, 2012 ). With x denoting a given

hreshold and L (x ) denoting the function describing the ROC curve, 

he PGI is then defined as 21 

 GI = 

2 

∫ b 
a L (x ) dx 

(a + b)(b − a ) 
− 1 .
21 The PGI within bounds a = 0 and b = 1 is equivalent to the Gini Index. In 

he empirical applications, we evaluate the PGI within the ( 0 , 0 . 4 ) bounds as in

essmann et al. (2015) .
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The PCC is the proportion of loans that are correctly classi- 

ed by the model. Its computation requires discretisation of the 

ontinuous variable of estimated probabilities of default. Formally, 

e need to choose a threshold π above (below) which a loan is 

lassified as bad (good). In practice, the threshold π is fixed by 

omparing the costs of rejecting good customers/granting credits 

o bad customers. Since we do not have such information, we set 

his threshold to a value such that the predicted number of de- 

aults in the learning sample is equal to the observed number of 

efaults. 

The Kolmogorov-Smirnov statistic is defined as the maximum 

istance between the estimated cumulative distribution functions 

f two random variables. In credit scoring applications, these two 

andom variables measure the scores of good loans and bad loans 

 Thomas, Edelman, & Crook, 2002 ). 

Lastly, the Brier score ( Brier, 1950 ) is defined as 

S = 

1 

n 

n ∑ 

i =1

( ̂  Pr (y i = 1 | x i ) − y i ) 
2 ,

here ̂ Pr (y i = 1 | x i ) is the estimated probability of default and y i
s the target binary default variable. Note that it is the equivalent 

f the mean-square error but designed for the case of discrete- 

hoice models. Overall, the higher these indicators are, the better 

he model is, except for the Brier score, for which a smaller value 

s better. 

Regarding the interpretability of the scoring models, the criteria 

etained to compare PLTR and the random forest method are the 

ize of the decision set and the average size of rules in a decision 

et (see also Section 3.2 ). 



Table 1

Statistical performance indicators: Kaggle dataset.

Methods AUC PGI PCC KS BS

Linear Logistic Regression 0.6983 0.3964 0.9082 0.3168 0.0576

Non-Linear Logistic Regression 0.7660 0.5255 0.9127 0.4173 0.0649

Non-Linear Logistic Regression + ALasso 0.8062 0.6102 0.9208 0.4751 0.0535

Random Forest 0.8529 0.6990 0.9260 0.5563 0.0500

PLTR 0.8568 0.7076 0.9247 0.5647 0.0496

Support Vector Machine 0.7418 0.4830 0.9117 0.3723 0.0619

Neural Network 0.7517 0.5006 0.9074 0.3895 0.0552

Note: Non-linear logistic regression includes linear, quadratic and interaction terms. The method

labelled “Non-Linear Logistic Regression + ALasso” corresponds to a penalised version of non-linear

logistic regression with an adaptive lasso penalty.
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.3. Statistical evaluation results 

Table 1 presents the average value of each statistic across the 

 × 2 cross-validation test samples. We compare the out-of-sample 

erformance of PLTR to that of traditional logistic regression and 

he random forest method. Three different versions of the logistic 

egression are implemented: simple linear logistic regression, its 

on-linear version, which includes as additional variables quadratic 

nd interaction terms, 22 and a penalised version of this last model 

o avoid overfitting due to the large number of predictors. We use 

he adaptive lasso penalty as described above. These augmented 

ogistic regression models are used to assess the importance of 

on-linear effects of the features. We also include an SVM and NN 

n the comparison, as they are widely used for credit scoring ap- 

lications in the literature ( Baesens et al., 2003; Lessmann et al., 

015; Thomas, 20 0 0 ). 

The results displayed in Table 1 show that the random forest 

ethod performs better than the three versions of the logistic re- 

ression, and this holds for all statistical measures considered. In 

articular, the differences are more pronounced for the AUC, PGI 

nd KS statistics. Our PLTR method also performs better than the 

hree versions of logistic regression irrespective of the performance 

easure. This is particularly applicable for the AUC, PGI and KS 

etrics, for which the dominance is stronger. The take-away mes- 

age here is that combining decision trees with a standard model 

uch as logistic regression provides a valuable statistical modelling 

olution for credit scoring. In other words, the non-linearity cap- 

ured by univariate and bivariate threshold effects obtained from 

hort-depth decision trees can improve the out-of-sample perfor- 

ance of traditional logistic regression. The SVM and NN results 

re consistent with those in the literature ( Baesens et al., 2003; 

rennepois et al., 2018; Lessmann et al., 2015; Thomas, 20 0 0 ). 

hey are slightly better than those of the logistic regression model, 

ut these methods generally perform less well than ensemble 

earning methods such as the random forest method. Most impor- 

antly, these models also perform less well than PLTR. 

The results in Table 1 also show that PLTR compares compet- 

tively to the random forest method. All statistical performance 

easures are of the same order. Therefore, the two methods ex- 

ibit similar statistical performance, and neither of them should be 

referred over the other based on these criteria. However, the par- 

imony of PLTR contrasts with the complexity underlying the pre- 

iction rule of the random forest method. To illustrate this point, 

able 2 displays the interpretability measures for the random for- 

st method and PLTR, as well as that of linear logistic regression 

or comparison purposes. The average number of trees in the ran- 

om forest method across the 5 × 2 cross-validation test samples is 

qual to 173.9. These trees have on average 5,571.1 terminal nodes, 
22 As already stressed, this non-linear model is the one that is generally used to

apture non-linear effects in the framework of logistic regression.

t
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b

a

ith a total of 5 , 571 . 1 × 173 . 9 binary variables for prediction (via

he majority vote). By contrast, the average number of bivariate 

hreshold effects selected by our penalised logistic regression is 

nly 40. More importantly, these bivariate threshold effects are 

asily interpretable because they arise from short-depth decision 

rees. In addition, the PLTR rules are built from only 2 predicates at 

ost, whereas the rules from the random forest method are built 

rom an average number of 32.2 predicates at most. Overall, both 

riteria confirm that PLTR is easier to interpret than the random 

orest method. These differences in terms of the size of the deci- 

ion set and size of the rules between both models are the penalty 

f capturing more non-linear effects, although such effects do not 

eem to play a significant role in this dataset. For comparison, the 

verage number of predictors is 11 for linear logistic regression, 

ach of them relying on a single predicate. The PLTR results are 

ot very different from those of linear logistic regression, with the 

ap corresponding to the non-linear effects included in our model 

o improve the performance of the benchmark linear logistic re- 

ression method. 

Lastly, to highlight the interpretability advantage of our method, 

e report in Table 3 the 10 most important decision rules from 

hort-depth decision trees, which are selected by an adaptive 

asso in the implementation of our PLTR method. These deci- 

ion rules are associated with the largest absolute values of the 

arginal effects (averaged across individuals). A positive (nega- 

ive) value of a given marginal effect provides information about 

he strength of an increase (decrease) of the probability of de- 

ault. We observe that three univariate threshold variables are 

elected, i.e., “NumberOfTime60-89DaysPastDueNotWorse < 0.5”, 

NumberOfTimes90DaysLate < 0.5” and “RevolvingUtilizationOfUn- 

ecuredLines < 0.69814”, the first one appearing as the most im- 

ortant in terms of marginal effect. Referring to the description of 

his variable in Table A.1 of the online appendix, we can infer that 

he probability of default is 3 . 92% less important when the num- 

er of times a borrower has been between 60 and 89 days past 

ue (but not worse in the last 2 years) is lower than 0.5 compared 

o the reference case when this number is higher than 0.5. More- 

ver, seven bivariate threshold effects are selected by the models 

s being important in explaining credit default. This kind of analy- 

is that helps measure through marginal effects the importance of 

he decision rules from the short-depth decision trees is an impor- 

ant added value of our PLTR model in terms of interpretability. 

. Robustness across datasets

In this section, we evaluate the out-of-sample robustness of the 

bove empirical results across datasets. To this end, we consider 

hree popular additional datasets. The first one, named “Housing”, 

s available in an SAS library and has been used by many authors 

or illustrative examples ( Matignon, 2007 ). The second dataset, la- 

elled the “Australian dataset”, concerns credit card applications 

nd is a University of California at Irvine (UCI) dataset provided 



Table 2

Measures of interpretability: Kaggle dataset.

Methods Size of the decision set Maximal number of predicates

Linear Logistic Regression 11 1

Random Forest 5,571.1 × 173.9 32.2

PLTR 40 2

Note: This table displays the average values of interpretability measures for linear logistic

regression, the random forest method and PLTR.

Table 3

Decision rules and average marginal effects: full sample Kaggle dataset.

# Decision rules Average marginal effects

1 “NumberOfTime60-89DaysPastDueNotWorse < 0.5” -0.0392

2 “NumberOfTimes90DaysLate < 0.5” & “RevolvingUtilizationOfUnsecuredLines < 0.59907” -0.0389

3 “NumberOfTimes90DaysLate < 0.5” & “NumberOfTime60-89DaysPastDueNotWorse < 0.5” -0.0342

4 “NumberOfTime60-89DaysPastDueNotWorse < 0.5” & “NumberOfTime30-59DaysPastDueNotWorse < 0.5” -0.0326

5 “NumberOfTimes90DaysLate < 0.5” -0.0326

6 “NumberOfTime60-89DaysPastDueNotWorse > = 0.5” & “NumberOfTime60-89DaysPastDueNotWorse < 1.5” -0.0300

7 “RevolvingUtilizationOfUnsecuredLines > = 0.69814” & “RevolvingUtilizationOfUnsecuredLines < 1.001” -0.0285

8 “RevolvingUtilizationOfUnsecuredLines < 0.69814” -0.0281

9 “NumberOfTimes90DaysLate < 0.5” & “NumberOfTime30-59DaysPastDueNotWorse < 0.5” -0.0277

10 “NumberOfTimes90DaysLate < 0.5” & “NumberOfTime30-59DaysPastDueNotWorse < 0.5” -0.0231

Note: The table provides the list of the decision rules associated with the 10 largest absolute values of the marginal effects (with respect to

the probability of defaulting) derived from the PLTR model estimated using the full sample. See Table A.1 in the online appendix for a precise

description of the variables.
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y Quinlan, and it was used as a credit approval database in the 

tatlog project. 23 Lastly, the third dataset, labelled the “Taiwan 

ataset”, is also a UCI dataset that collects information about de- 

ault payments in Taiwan. 

The Housing dataset includes 5960 loans, 1,189 of which de- 

aulted. Therefore, the prior default rate is 19 . 95% . In the Australian

Taiwan) dataset, there are 690 (30,0 0 0) instances out of which 

07 (6636) defaulted, leading to a prior default rate of 44 . 49% 

 22 . 12% ). In the Housing dataset, there are 12 explanatory vari-

bles, two of which are nominal. The Australian dataset includes 6 

umerical and 8 nominal predictors. For the Taiwan dataset, there 

re 23 predictors, nine of which are nominal. Tables A.2 and A.3 of 

he online appendix display the list of predictive variables for the 

ousing and Taiwan datasets, respectively. We do not provide this 

nformation for the Australian dataset, as all attribute names and 

alues have been changed to meaningless symbols to maintain the 

onfidentiality of the data. 

We rely on the same (N × 2) comparison setup as for the 

enchmark Kaggle dataset, with N = 5 . Table 4 displays the values 

f the five statistics retained for the comparison of the alternative 

odels. For the Australian dataset, the two best performing models 

re PLTR and the random forest method, with similar values for all 

ve statistics. 24 This finding once again confirms the relevance of 

ur approach in terms of statistical performance. The same picture 

s observed for the Taiwan dataset with the PLTR model appearing 

s efficient as the random forest method. 

Lastly, for the Housing dataset, the random forest method and 

LTR are once again the best performing models. However, in con- 

rast to the results obtained for the other datasets, the random 

orest model outperforms our method. Table 5 displays the inter- 

retability performance for these three additional datasets. Using 

he same arguments as above, the average number of active vari- 

bles (univariate and bivariate threshold effects) in our penalised 
23 StatLog is an international project that aims to compare the performances of

achine learning, statistical, and NN algorithms on datasets from real-world indus- 

rial areas, including medicine, finance, image analysis, and engineering design.
24 For the non-linear logistic regression results, we find that all fitted probabilities

re higher than 0.6. Therefore, as we compute the PGI within ( 0 , 0 . 4 ) , this statistic

annot be computed. Unlike in practice, this bad performance can also be observed

hrough the high value of the BS statistic compared to those of the other methods.

f

c

a

m

a

i

ogistic regression is equal to 47.6, while the random forest method 

elies on an average of 343 . 8 × 110 . 5 binary variables for predic-

ion. 25 Moreover, the results of PLTR are close to those of lin- 

ar logistic regression for both criteria, indicating that the PLTR 

odel remains interpretable despite including non-linear effects. 

ther results, available upon request, show that by relaxing the 

onstraint of parsimony via the inclusion of trivariate and quadri- 

ariate threshold effects, the performance of our penalised logistic 

egression increases and reaches that of the random forest model. 

his suggests that complex non-linear relationships that go be- 

ond univariate and bivariate threshold effects are present in this 

ataset. In view of this result, it is important to emphasise that our 

ethod offers a highly flexible framework to credit risk managers, 

s they can tune their model according to the desired level of par- 

imony. The predictive performance can be significantly improved 

ut at the cost of less interpretable results. 

Additional robustness results consists in out-of-sample forecast- 

ng performance comparison tests of the three main competing 

odels, i.e. linear logistic regression, random forest, and PLTR. We 

ely on Diebold-Mariano ( Diebold & Mariano, 1995 ) and AUC tests 

 Candelon, Dumitrescu, & Hurlin, 2012 ) to perform pairwise com- 

arisons and on the Model Confidence Set ( Hansen, Lunde, & Na- 

on, 2011 ) to identify the bucket of models that are superior to the 

emaining ones and which exhibit similar performance. They are 

ll well known model comparison approaches, the second being 

pecific to the case with binary dependent variables. The pairwise 

ests are two-sided, the null hypothesis corresponds to equal per- 

ormance and its rejection indicates that the model with smaller 

verage loss is better. At the same time, the Model Confidence Set 

dentifies the subset of models that exhibit similar forecasting abil- 

ties and outperform the remaining approaches. 

Tables C.1 and C.2 in Section C of the online appendix display 

hese results for the four datasets under analysis. They take the 

orm of percentage of rejection of each null hypothesis in the 5 × 2 

ross-validation test samples and the outperforming model under 
25 In this dataset, we identify on average of 110.5 trees in the forest, with an

verage number of terminal nodes equal to 343.8 for each tree. Furthermore, at

ost, 18.8 predicates are used on average in the rules of the random forest method

gainst 2 at most for the PLTR model. Hence, PLTR is once again better from the

nterpretability point of view.



Table 4

Statistical performance indicators: robustness check.

Methods AUC PGI PCC KS BS

Australian dataset

Linear Logistic Regression 0.8998 0.5664 0.8374 0.7135 0.1186

Non-Linear Logistic Regression 0.6090 0.6067 0.2266 0.3921

Non-Linear Logistic Regression + ALasso 0.8866 0.5092 0.8214 0.6816 0.1333

Random Forest 0.9344 0.6246 0.8603 0.7523 0.0999

PLTR 0.9299 0.6370 0.8606 0.7425 0.1029

Support Vector Machine 0.9210 0.5557 0.8445 0.7391 0.1122

Neural Network 0.9141 0.5799 0.8539 0.7366 0.1102

Taiwan dataset

Linear Logistic Regression 0.6310 0.2099 0.7586 0.2506 0.2344

Non-Linear Logistic Regression 0.5963 0.0984 0.7035 0.1927 0.2965

Non-Linear Logistic Regression + ALasso 0.7596 0.5029 0.7871 0.3926 0.1447

Random Forest 0.7722 0.4924 0.8102 0.4177 0.1362

PLTR 0.7780 0.5156 0.7959 0.4257 0.1352

Support Vector Machine 0.7102 0.3207 0.8195 0.3382 0.1461

Neural Network 0.7304 0.4226 0.7879 0.3885 0.1401

Housing dataset

Linear Logistic Regression 0.7904 0.5508 0.8103 0.4450 0.1228

Non-Linear Logistic Regression 0.7965 0.5425 0.8239 0.4650 0.1199

Non-Linear Logistic Regression + ALasso 0.8113 0.5754 0.8217 0.4815 0.1125

Random Forest 0.9387 0.8157 0.9036 0.7455 0.0736

PLTR 0.9011 0.7341 0.8818 0.6694 0.0844

Support Vector Machine 0.7890 0.5514 0.8093 0.4444 0.1254

Neural Network 0.7910 0.5478 0.8132 0.4470 0.1208

Note: Non-linear logistic regression includes linear, quadratic and interaction terms. The method

labelled “Non-Linear Logistic Regression + ALasso” corresponds to a penalised version of non-linear

logistic regression with the adaptive lasso penalty.

Table 5

Measures of interpretability: robustness check.

Methods Size of the decision set Maximal number of predicates

Australian dataset

Linear Logistic Regression 34.4 1

Random Forest 52.4 × 69.6 8

PLTR 25.4 2

Taiwan dataset

Linear Logistic Regression 78.7 1

Random Forest 2,378.7 × 174.7 29.9

PLTR 79.9 2

Housing dataset

Linear Logistic Regression 17 1

Random Forest 343.8 × 110.5 18.8

PLTR 47.6 2

Note: This table displays the average values of interpretability measures for linear logistic

regression, the random forest method and PLTR.
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he alternative hypothesis is displayed below in parentheses. Two 

ifferent loss functions are used for the general tests (Diebold- 

ariano and Model Confidence Set), namely the Brier Score and 

he opposite of the log-likelihood, in the spirit of a robustness 

heck. 

All findings are consistent with those already obtained with sta- 

istical performance indicators. Namely, the pairwise comparisons 

eveal that the PLTR method is superior to standard logistic re- 

ression, and its performance is far better than that of random 

orests in two datasets, in the other two the results being more 

itigated. Additionally, the Model Confidence Set identifies most 

ften the PLTR method as that belonging to the subset of outper- 

orming models. 

. Economic evaluation

An important question for a credit risk manager is to what ex- 

ent these out-of-sample statistical performance gains have a pos- 
tive impact at a financial level for a credit company. An economic 

valuation method consists of estimating the amount of regula- 

ory capital induced by the estimated probabilities of default. A 

imilar comparison approach was proposed by Hurlin, Leymarie, & 

atin (2018) for loss-given-default (LGD) models. However, this ap- 

roach requires computing other Basel risk parameters, in particu- 

ar the LGD and the exposure at default (EAD), and hence needs 

pecific information about the consumers and the terms of the 

oans, which is not publicly available. 

An alternative approach consists of comparing the misclassifica- 

ion costs (see Viaene & Dedene, 2004 ). This cost is estimated from 

ype 1 and Type 2 errors weighted by their probability of occur- 

ence. Formally, let C F N be the cost associated with a Type 1 error 

the cost of granting credit to a bad customer) and C F P be the cost 

ssociated with a Type 2 error (e.g., the cost of rejecting a good 

ustomer). Thus, the misclassification error cost is defined as 

C = C F P F P R + C F N F NR, 



where FPR is the false positive rate and FNR is the false negative 

rate. There is no consensus in the literature about how to deter- 
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mine CF  N and CF  P . Two alternatives have been proposed. The 

first method fixes these costs by calibration based on previous 

studies ( Akkoc, 2012 ). For example, West (20 0 0) set CF  N to 5

and CF  P to 1. The second method evaluates misclassification costs

for differ- ent values of CF  N to test as many scenarios as 

possible ( Lessmann et al., 2015 ). Although there is no consensus

on how to determine these costs, it is generally acknowledged 

that the cost of granting

redit to a bad customer is higher than the opportunity cost of re- 

ecting a good customer (see Baesens et al., 2003; Thomas et al., 

0 02; West, 20 0 0,  among others). We choose to follow the second

pproach to assess the performance of the competing models. We 

x CF  P at 1 without loss of generality ( Hernández-Orallo, Flach, &

amirez, 2011)  and consider values of CF  N between 2 and 50. Onc

hese misclassification costs are computed, we set the linear logis- 

ic regression as the reference, and we compute the financial gain 

r cost reduction associated with an alternative scoring model rel- 

tive to this reference. 26 

Figures C.3-C.6 in the online appendix display the average cost 

eduction or financial gains over the test samples for the four 

atasets considered above. First, all methods deliver positive cost 

eductions, except in three cases. This means that financial institu- 

ions relying on each of these methods rather than on the bench- 

ark linear logistic regression are expected to save an amount 

quivalent to the cost of rejecting (accepting) good (bad) appli- 

ants. In view of the large number of credits in bank credit port- 

olios, these gains could represent substantial savings for credit in- 

titutions. The fact that non-linear logistic regression leads to an 

ncrease in costs compared to the linear logistic regression comes 

rom the relatively high number of variables in the two datasets 

14 and 23 in the Australian and Taiwan datasets, respectively). 

his leads to a proliferation of predictors (squares of the variables, 

ross-products of the variables) and therefore to overfitting. The 

enalised version of the non-linear logistic regression succeeds in 

ealing with this issue, which materialises in positive values of 

ost reductions in all cases except for the Australian dataset. The 

N and SVM both reduce the misclassification costs compared to 

he logistic regression. This result is once again consistent with the 

esults of the literature. 

Second, across all datasets, the PLTR method is among the most 

fficient in terms of cost reduction. For the Kaggle dataset, the 

ost reduction relative to the linear logistic regression is equal to 

8.  06% on average. This result also holds in the Taiwan dataset

ith an average cost reduction of 22.  29%.  Note that the random

orest method leads to lower cost reduction for these two datasets, 

ith an average cost reduction of 13.  09% ( 11.  51%)  for the Kag

le (Taiwan) dataset. This means that although the random for- 

st method has high global predictive accuracy, as given by the 

roportion of correct classification (see Tables 1 and 4 ), it fails to 

ome extent to detect bad customers, which leads to a relative 

ncrease in costs due to more false negatives. For the other two 

atasets (Australian and Housing), the random forest method per- 

orms well. With the Australian dataset, the average cost reduction 

f the random forest (PLTR) method is equal to 22.  71% ( 14.  89%

or the Housing dataset, the average values are equal to 44.  56%

nd 38.  69% for the random forest method and PLTR, respectively. 27

To conclude, all results show that the PLTR model may gen- 

rate important cost reductions compared to the standard logistic 
26 The misclassification costs are computed from test samples.
27 We also consider a second measure of performance, namely, the expected max- 

mum profit (EMP) introduced by Verbraken, Bravo, Weber, & Baesens (2014) , to

ompare the models from an economic viewpoint. The results of this robustness

xercise are displayed in Section B of the online appendix.

B
B

B

B

C

egression model generally used by the credit risk industry while 

reserving its intrinsic interpretability. 

. Conclusion

Despite the development and dissemination of many efficient 

achine learning classification algorithms, the benchmark scor- 

ng model in the credit industry remains logistic regression. This 

urrent state is caused mainly by the stability and robustness of 

he logistic regression model and also its intrinsic interpretability. 

any academic papers advocate the use of more sophisticated en- 

emble methods, such as the random forest method. These black- 

ox models are not interpretable, but many agnostic methods can 

e used to make their forecasting rules interpretable ex post for 

he various stakeholders (risk modellers, model checkers, clients, 

anagement, regulators, etc.). Nevertheless, these alternative mod- 

ls are still generally considered as challenger models and rarely 

sed in the credit granting process or for regulatory purposes. 

Recognising that traditional logistic regression underperforms 

andom forest due to its pitfalls in modelling non-linear (thresh- 

ld and interaction) effects, this article introduces penalised logis- 

ic tree regression (PLTR) with predictive variables given by easy- 

o-interpret endogenous univariate and bivariate threshold effects. 

hese effects are quantified by dummy variables associated with 

eaf nodes of short-depth decision trees built with singletons and 

ouples of the original predictive variables. 

Monte Carlo simulations and an empirical application based on 

our real-life credit scoring datasets show that PLTR has good pre- 

ictive power while remaining easily interpretable. More precisely, 

sing several metrics and diagnostic tests to evaluate the accuracy 

nd the interpretability of credit models, we show that it performs 

etter in out-of-sample than traditional linear and non-linear lo- 

istic regression, while being competitive relative to the random 

orest method. We also evaluate the economic benefit of using our 

LTR method through misclassification costs and expected max- 

mum profit analysis. We find that beyond parsimony, the PLTR 

ethod leads to a significant reduction in misclassification costs. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.ejor.2021.06.053 
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