Skip to Main content Skip to Navigation
Conference papers

Image Denoising Inspired by Quantum Many-Body physics

Abstract : Decomposing an image through Fourier, DCT or wavelet transforms is still a common approach in digital image processing, in number of applications such as denoising. In this context, data-driven dictionaries and in particular exploiting the redundancy withing patches extracted from one or several images allowed important improvements. This paper proposes an original idea of constructing such an image-dependent basis inspired by the principles of quantum many-body physics. The similarity between two image patches is introduced in the formalism through a term akin to interaction terms in quantum mechanics. The main contribution of the paper is thus to introduce this original way of exploiting quantum many-body ideas in image processing, which opens interesting perspectives in image denoising. The potential of the proposed adaptive decomposition is illustrated through image denoising in presence of additive white Gaussian noise, but the method can be used for other types of noise such as image-dependent noise as well. Finally, the results show that our method achieves comparable or slightly better results than existing approaches.
Document type :
Conference papers
Complete list of metadata
Contributor : Bertrand Georgeot Connect in order to contact the contributor
Submitted on : Wednesday, September 1, 2021 - 2:37:27 PM
Last modification on : Wednesday, October 20, 2021 - 3:47:04 AM

Links full text



Sayantan Dutta, Adrian Basarab, Bertrand Georgeot, Denis Kouame. Image Denoising Inspired by Quantum Many-Body physics. IEEE International Conference on Image Processing (ICIP 2021), IEEE, Sep 2021, Anchorage, France. pp.1619-1623, ⟨10.1109/ICIP42928.2021.9506794⟩. ⟨hal-03331112⟩



Record views