On Speech Sparsity for Computational Efficiency and Noise Reduction in Hearing Aids
Adrien Llave, Simon Leglaive

To cite this version:
Adrien Llave, Simon Leglaive. On Speech Sparsity for Computational Efficiency and Noise Reduction in Hearing Aids. 13th Asia Pacific Signal and Information Processing Association Annual Summit and Conference, Dec 2021, Tokyo, Japan. hal-03330307v2

HAL Id: hal-03330307
https://hal.archives-ouvertes.fr/hal-03330307v2
Submitted on 21 Sep 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On Speech Sparsity for Computational Efficiency and Noise Reduction in Hearing Aids

Adrien Llave and Simon Leglaive
CentraleSupélec, IETR, Avenue de la Boulaie, 35510 Cesson-Sévigné, France

Abstract—Beamforming techniques are widely used in hearing aids to improve the signal-to-noise ratio. In a multi-speaker scenario, it is common to assume that the speech signals associated with each speaker do not overlap in the time-frequency domain. This so-called W-disjoint orthogonality assumption allows us to reduce the complexity of the beamforming algorithm. However, its validity decreases in presence of more than two speakers. In this study, we propose a beamforming algorithm relying on a less restrictive assumption regarding the sparsity of speech signals in the time-frequency domain. Its implications over the noise reduction performance and the computational complexity are discussed and compared with the Linearly Constrained Minimum Variance (LCMV) and the Minimum Variance Distortionless Response (MVDR) beamformers. We show that the proposed algorithm improves the noise reduction performance and reduces the computational cost compared to the LCMV beamformer without increasing the artifacts amount unlike the MVDR beamformer.

Index Terms—Beamforming, speech sparsity, noise reduction, hearing aids

I. INTRODUCTION

Noise reduction is a key feature in Hearing Aids (HA) and beamforming algorithms are the most efficient techniques in this context [14]. They are based on a constrained optimization problem [5] as the Linearly Constrained Minimum Variance (LCMV) beamformer. The aim is to minimize the power of the noise component at the beamformer output subject to the constraint of preserving the sources of interest. However, the noise reduction performance decreases with the number of speakers to preserve. Indeed, the preservation constraint for one given speaker removes one degree of freedom in the optimization problem, reducing the size of the sub-space over which the noise power minimization is achieved [19]. Moreover, adding a source of interest into the optimization problem increases the computational complexity of the resulting filter which is known to be a severe constraint of HA.

Some works addressed the LCMV computational efficiency. For instance, [7] assumed that the location of the speech sources does not change frequently, such that the filter can be updated from a time frame to the next one thanks to an iterative method with a low computational cost. Another work [12] proposed to consider that only a subset of speech sources move between two time frames. Then, they proposed a method to update the LCMV filter without recomputing it from scratch. However, those hypotheses are not suitable in the HA context, as the head is able to move quickly and often. Moreover, those methods are efficient for larger sensor arrays than the ones used in the HA and do not address the problem of the limited noise reduction performance of the LCMV when the number of speakers and microphones are close.

To solve this problem, we can consider an additional hypothesis, the W-disjoint orthogonality of speech sources in the Short-Time Fourier Transform (STFT) domain [17]. This consists in exploiting the sparsity of the speech signals in the STFT domain by assuming that they do not overlap so that only one source is active at a given time-frequency (T-F) point. This allows us to use a beamformer targeting only one source per T-F point, known as the Minimum Variance Distortionless Response (MVDR) beamformer. It exhibits good noise reduction performance in a two-speaker scenario [3], [23] and it has a reduced computational complexity.

However, for a number of sources greater than 2, this assumption becomes false on a non-negligible proportion of T-F points. For instance, in a three-speaker scenario, it is false for about 30 % of the T-F points\(^1\). We observe in Fig. 1 that the speech signals mostly overlap at low frequencies, which also correspond to the most energetic frequency area of speech. Therefore, although in most T-F points the hypothesis is valid, the remaining ones where it is not valid correspond to the most critical areas of the speech spectrum. In the example of Fig. 1, the T-F points subject to overlap are on average 20 dB louder than the average speech level.

In this study, we propose a beamforming method based on a milder hypothesis: the speech sources in the STFT domain

\(^1\)obtained with the ideal time-frequency voice activity detector and the STFT parameters described in Section IV-A.
are allowed to overlap but most of the time they do not. To our knowledge, only one work studied a similar relaxed sparsity assumption for source separation problem (without diffuse noise) and with a Soundfield microphone array rather than hearing aids [9]. These differences in the application context lead to different implications. Furthermore, the computational efficiency was not a concern for the authors and has not been investigated. From this more flexible sparsity assumption, we derive a beamforming algorithm and assess its noise reduction performance and its computational complexity in the HA context. Interestingly, the proposed beamformer can be seen as a special case of the parametric multispeaker multichannel Wiener filter [13]. The performance is compared to the MVDR beamformer, result of the W-disjoint orthogonality assumption, and to the LCMV beamformer [19] for which all the sources are assumed to be present at each T-F point.

II. SIGNAL MODEL

We consider an auditory scene composed of Q point sources, denoted by \(s_q(t) \). The transformation between the \(q \)-th source and the \(m \)-th microphone is modeled by a linear filter whose impulse response is denoted by \(h_{m,q}(t) \). It is also assumed that there is a different noise component per microphone, denoted by \(n_m(t) \). Then, the signal received at the \(m \)-th microphone can be written as follows:

\[
x_m(t) = \sum_{q=1}^{Q} h_{m,q}(t) \ast s_q(t) + n_m(t),
\]

where \(\ast \) is the convolution operator. This mixture model is usually expressed in the STFT domain. When the length of \(h_{m,q}(t) \) is lower than the size of the STFT analysis window, convolution can be approximated by a simple product [1]:

\[
x_m(k, \ell) = \sum_{q=1}^{Q} h_{m,q}(k) s_q(k, \ell) + n_m(k, \ell),
\]

where \(k \) and \(\ell \) are the frequency and time indices, respectively. This expression can be rewritten in matrix form by stacking the variables along the microphones and sources axes:

\[
\mathbf{M}_1 : \quad \mathbf{x}(k, \ell) = \mathbf{H}(k, \ell) \mathbf{s}(k, \ell) + \mathbf{n}(k, \ell),
\]

with \(\mathbf{H}(k, \ell) \in \mathbb{C}^{M \times Q} \) the mixing matrix containing the Acoustic Transfer Functions (ATFs), \(\mathbf{n}(k, \ell) \in \mathbb{C}^M \) and \(\mathbf{s}(k, \ell) \in \mathbb{C}^Q \).

Assuming that only one source is active at each T-F point (the so-called W-disjoint orthogonality assumption [17]), the previous expression can be written as follows:

\[
\mathbf{M}_2 : \quad \mathbf{x}(k, \ell) = \mathbf{h}_q(k, \ell)(k) s_q(k, \ell) + \mathbf{n}(k, \ell),
\]

where \(q(k, \ell) \) is the index of the active speech source at the T-F point \(k, \ell \).

The alternative hypothesis proposed in this study is to consider all intermediate configurations from \(\kappa(k, \ell) = 0 \) up to \(\kappa(k, \ell) = Q \) active sources at T-F point \(k, \ell \):

\[
\mathbf{M}_3 : \quad \mathbf{x}(k, \ell) = \mathbf{\hat{H}}(k, \ell) \mathbf{s}(k, \ell) + \mathbf{n}(k, \ell),
\]

where \(\mathbf{\hat{H}}(k, \ell) \in \mathbb{C}^{M \times \kappa(k, \ell)} \) and \(\mathbf{s}(k, \ell) \in \mathbb{C}^{\kappa(k, \ell)} \). In the following, we refer to the models described in (3), (4) and (5) as \(\mathbf{M}_1 \), \(\mathbf{M}_2 \) and \(\mathbf{M}_3 \), respectively.

Furthermore, \(s_q(k, \ell) \) and \(n(k, \ell) \) are modeled as random variables following a centered complex isotropic normal distribution with a variance \(\phi_n(k, \ell) \) and covariance matrix \(\mathbf{\Phi}_n(k, \ell) \), respectively. The noise is assumed to be cylindrically spatially diffuse, allowing us to decompose its covariance matrix as the product of the time-invariant coherence matrix corresponding to a spatially cylindrical diffuse noise, denoted \(\mathbf{\Gamma}_d(k) \), and a scaling factor, denoted \(\phi_n(k, \ell) \) [6]. In practice, the matrix \(\mathbf{\Gamma}_d(k) \) is estimated by averaging all the ATF of the horizontal plane [11]. Finally, the ATFs are assumed to be known for all the sources located in the horizontal plane. Moreover, similarly to [4], we assume the oracle knowledge of the directions of arrival of the sources present in the auditory scene.

III. NOISE REDUCTION METHODS

A. Algorithms derivation

The ideal beamformer output does not contain the noise component and is only composed of the sum of the \(Q \) speech sources filtered by the corresponding transfer function \(g_q(k, \ell) \) containing, for instance, the desired localization cues [13]:

\[
y(k, \ell) = \mathbf{g}^H(k, \ell) \mathbf{s}(k, \ell),
\]

where \(\mathbf{g}(k, \ell) = \left[g_1(k, \ell), ..., g_Q(k, \ell) \right]^T \in \mathbb{C}^Q \). They may be time dependent if the sources move for example.

The beamformer output, denoted by \(\hat{y}(k, \ell) \), is built as a linear combination of the microphone signals mixed with the weights \(\mathbf{w}(k, \ell) \in \mathbb{C}^M \):

\[
\hat{y}(k, \ell) = \mathbf{w}^H(k, \ell) x(k, \ell).
\]

Determining \(\mathbf{w}_{\mathbf{M}_1}(k, \ell) \), the weights of the beamformer for the \(\mathbf{M}_1 \) model, consists in minimizing the variance of the noise component at the output of the beamformer subject to the constraint of preserving the frequency response of the target sources:

\[
\mathbf{w}_{\mathbf{M}_1}(k, \ell) = \arg\min_{\mathbf{w}} \left\{ \phi_n(k, \ell) \mathbf{w}^H \mathbf{\Gamma}_d(k) \mathbf{w} \right\} \quad \text{s.t.} \quad \mathbf{w}^H \mathbf{H}(k, \ell) = \mathbf{g}^H(k, \ell).
\]

Using the Lagrange multipliers, we obtain:

\[
\mathbf{w}_{\mathbf{M}_1}(k, \ell) = \mathbf{\Gamma}_d^{-1}(k) \mathbf{H}(k, \ell) \left(\mathbf{H}^H(k, \ell) \mathbf{\Gamma}_d^{-1}(k) \mathbf{H}(k, \ell) \right)^{-1} \mathbf{g}(k, \ell).
\]

This solution is called in the literature the LCMV beamformer [19].

The model \(\mathbf{M}_2 \) is the special case of \(\mathbf{M}_1 \) for which only one source \(s_q(k, \ell)(k) \) is present at each T-F point \(k, \ell \). We can then write the solution as:

\[
\mathbf{w}_{\mathbf{M}_2}(k, \ell) = \frac{\mathbf{\Gamma}_d^{-1}(k) \mathbf{h}_q(k, \ell)(k)}{\mathbf{h}_q^H(k, \ell)(k) \mathbf{\Gamma}_d^{-1}(k) \mathbf{h}_q(k, \ell)(k)}.
\]

This solution corresponds to the MVDR beamformer or more precisely to the beamformer maximizing the directivity.
Finally, the proposed M_3 model leads, as the M_1 model, to the LCMV beamformer by replacing H by \hat{H} and g by \tilde{g}:

$$w_{M_3} = \Gamma_d^{-1} \left(H^H \Gamma_d^{-1} \hat{H} \right)^{-1} \tilde{g},$$

(12)

where the indices k and ℓ has been omitted for the sake of brevity. Let us recall that the dimensions of $H(k, \ell) \in \mathbb{C}^{M \times (k,\ell)}$ and $\tilde{g}(k, \ell) \in \mathbb{C}^{n(k,\ell)}$ vary with the T-F indices (k, ℓ). By making the assumption that the speech source signals in the STFT domain can overlap but most of the time they do not, the average constraints number in the optimization problem is expected to be lower than for w_{M_1}, letting more degrees of freedom allocated to the noise reduction task. Furthermore, unlike the M_2 for which it is assumed that one speech source is always present, M_3 considers the case where no source is active, leading to $w_{M_3}(k, \ell) = 0$.

B. Analysis of the solution

In this subsection, we analyze w_{M_1}, w_{M_2} and w_{M_3} as special cases of the Parametric Multispeaker Multichannel Wiener Filter (PMMWF) aiming at minimizing the noise power at the output of the beamformer as well as the distortion between the ideal speech sources and their estimates [13]. By removing the indices k and ℓ for brevity, we can write the determination of the filter, denoted w_{PMMWF} as the following optimization problem:

$$w_{PMMWF} = \arg \min_w \left\{ \frac{w^H \Phi_n w}{\lambda_q} + \sum_{q=1}^{Q} \lambda_q E \left[|g_q s_q - w^H h_q s_q|^2 \right] \right\},$$

(13)

where $\lambda_q, q \in \{1, ..., Q\}$ control the speech distortion amount. This problem accepts the following closed-form solution:

$$w_{PMMWF} = \Gamma_d^{-1} \left(\phi_n \Lambda^{-1} \Phi_s^{-1} + H^H \Gamma_d^{-1} \hat{H} \right)^{-1} \tilde{g},$$

(14)

where $\Lambda = \text{diag}\{\lambda_1, ..., \lambda_Q\}$ and $\Phi_s = \text{diag}\{\phi_{s_1}, ..., \phi_{s_Q}\}$ is the speech sources covariance matrix. The optimal way to set Λ is not straightforward. Several strategies have been proposed, for example setting $\lambda_q = \text{sig}(\hat{\phi}_{s_q}/\phi_{s_q})$ with sig () a sigmoid function [21], or setting λ_q as the posterior speech presence probabilities [2], or with $\lambda_q \rightarrow \infty$ or \tilde{g}, reducing the PMMWF to the LCMV beamformer. The proposed beamformer w_{M_3} can be interpreted as setting $\lambda_q \rightarrow \infty$ if source q is active, and $\lambda_q = 0$ otherwise.

C. Computational complexity analysis

In this subsection, we analyze the computational complexity of the beamformers presented previously, defined as the number of products required to compute the corresponding filter. To do so, we assume that it is not possible to pre-compute and store the filters. For instance, the number of possible $H(k, \ell)$ is equal to the binomial coefficient (D^Q) where D is the number of known directions. For a horizontal plane sampled with a step of 5°, $D = 72$, leading to 59640 possible H per frequency with $Q = 3$. This makes it prohibitive to compute offline and store all possible filters w_{M_1}. In Tab. I, we provide the details for determining the number of products required to compute the LCMV beamformer w_{M_1}. The results for the three beamformers are presented in the Tab. II.

It is worth noting that the number of products per time frame required by the computation of the proposed beamformer w_{M_3} is no longer constant, as it depends on the number of active sources at each frequency. Its average depends on the proportions of T-F points $\alpha_k \in [0; 1]$ for which $k \in \{0, ..., Q\}$ sources are active ($\sum \alpha_k = 1$).

Finally, we have to mention that the computation of the LCMV filter in the 2-speaker case ($Q = 2$) can be accelerated with the efficient implementation proposed in [8]. Taking this improvement into account in our more general 3-speaker scenario is left for future work.

D. Voice activity detection (VAD)

In order to detect which speech source is present or not at each T-F point, we propose to use a voice activity detector (VAD) based on the thresholding of the SNR at the output of an MVDR beamformer steering to the q^{th} source, denoted by $\xi_{MVDR,q}(k, \ell)$ [20]:

$$\text{VAD}_q(k, \ell) = \begin{cases} 1 & \text{if } \xi_{MVDR,q}(k, \ell) > 10^{\frac{\tau}{10}} \\ 0 & \text{otherwise,} \end{cases}$$

(15)

where $\tau \in \mathbb{R}$ is the threshold. The estimation of the SNR at the output of the MVDR steering to the q^{th} source, denoted by $\hat{\xi}_{MVDR,q}(k, \ell)$, is expressed as follows:

$$\hat{\xi}_{MVDR,q}(k, \ell) = \frac{\hat{\phi}_{s,q}(k, \ell) - \tilde{h}_q H(k) \Gamma_d^{-1}(k) h_q(k)}{\hat{\phi}_{n,q}(k, \ell) - \tilde{h}_q H(k) \Gamma_d^{-1}(k) h_q(k)},$$

(16)

where $\hat{\phi}_{s,q}(k, \ell)$ and $\hat{\phi}_{n,q}(k, \ell)$ are respectively the estimates of the q^{th} source and noise variances assuming that only the
by 6.5 dB with an optimal detection threshold setting while the proposed algorithm improves the performance of reduction performance. Using a VAD based on an oracle SNR, the tested scenario, both algorithms have very poor distortion and that it improves the is more than 5 times less complex than the LCMV beamformer complexity in Fig. 2. We observe that the MVDR beamformer 128 samples and an overlap of 50 %. Each frame is expressed into an overlap-add processing chain with a window size of B. Results First, let us compare the component. (i) the artifacts generated by the beamforming, (ii) the other components in the output signal, and (iii) the interfering noise component. B. Results First, let us compare the \(q^{th} \) source is active [20]:

\[
\hat{\phi}_{n,q}(k, \ell) = \frac{1}{M-1} \text{Tr}\{ (I - h_q(k)) \Phi_x(k, \ell) \Gamma_d^{-1}(k) \}
\]

where \(\Phi_x(k, \ell) \) is the microphone covariance matrix, estimated thanks to a recursive filter, and

\[
w_{\text{MVDR}, q}(k) = \frac{\Gamma_d^{-1}(k) h_q(k)}{h_q^H(k) \Gamma_d^{-1}(k) h_q(k)}.
\]

IV. EXPERIMENTS

In this section, we assess the three denoising algorithms in terms of noise reduction and algorithmic complexity. In the following, the LCMV, MVDR and the proposed beamformers refer to the filters \(w_{M_1}, w_{M_2} \) and \(w_{M_3} \), respectively.

A. Evaluation methods

The algorithms are tested by processing virtual auditory scenes composed of three speech sources of 4 s duration and a cafeteria noise played over two virtual speaker rings located at elevations \(\pm 45^\circ \) mixed at various SNR ranging from 0 to 10 dB with a 2.5 dB step. The speech signals are recorded from the France Culture radio station sampled at 16 kHz and spatialized on the horizontal plane at azimuths \(\{-45^\circ, 0^\circ, 45^\circ\} \). The Behind-the-Ears HA ATF (\(M = 4 \)) is used for the virtual auditory scene generation and the beamforming algorithms come from [15]. In total, 40 audio examples\(^2\) are generated for each tested SNR. The algorithms are integrated into an overlap-add processing chain with a window size of 128 samples and an overlap of 50 %. Each frame is expressed in the frequency domain without zero padding. The MVDR and the proposed beamformers are tested using the VAD based on the ideal and the estimated SNR.

To assess the noise reduction, we consider the Signal-to-Artifact Ratio (SAR) and the improvements in terms of the Signal-to-Distortion Ratio (\(\Delta \text{SDR} \)) and Signal-to-Interferer Ratio (\(\Delta \text{SIR} \)) [22] which are defined respectively as the ratio between the power of the target signal, as defined in (6), and (i) the artifacts generated by the beamforming, (ii) the other components in the output signal, and (iii) the interfering noise component.

B. Results

First, let us compare the \(\Delta \text{SDR} \) and the computational complexity in Fig. 2. We observe that the MVDR beamformer is more than 5 times less complex than the LCMV beamformer and that it improves the \(\Delta \text{SDR} \) by about 1 dB over the latter. In the tested scenario, both algorithms have very poor distortion reduction performance. Using a VAD based on an oracle SNR, the proposed algorithm improves the performance of \(\Delta \text{SDR} \) by 6.5 dB with an optimal detection threshold setting while only slightly increasing the algorithmic complexity compared to the MVDR beamformer (+50\%). It can be noted thanks to the ellipses representing the standard deviation of the data that the \(\Delta \text{SDR} \) is negatively correlated with the computational complexity. This is because the more speech sources overlap, the greater the number of constraints in the optimization, thus increasing the computational cost and reducing the size of the subspace on which noise reduction can be performed, leading to a lower performance on average. When using the VAD based on the estimated SNR (and not oracle), the algorithmic complexity remains unchanged but the performance of the proposed method in terms of \(\Delta \text{SDR} \) decreases significantly, even though it still outperforms the two other beamformers. This shows that the VAD has a great impact on the noise reduction performance of the proposed beamforming method.

Second, let us take a closer look at the denoising performance by studying the \(\Delta \text{SIR} \) and the SAR as a function of the input SNR, as showed in Fig. 3. The MVDR beamformer is very efficient to reduce the noise (\(\Delta \text{SIR}=13 \text{ dB} \) at \(\text{SNR}=0 \text{ dB} \) with the oracle VAD) compared to the LCMV beamformer

\(^2\)Audio examples repository URL: https://a-lalive.github.io/demo_apsips2021
(ΔSIR=2.5 dB). It is expected as the first one uses only one degree of freedom of the optimization to address the preservation of speech sources. However, by preserving only one source per T-F point, this beamformer introduces more artifacts (SAR=10 dB at SNR=0 dB) compared to the LCMV beamformer (SAR=15 dB). For a high input SNR, the artifact amount introduced by the MVDR beamformer can become larger than the noise component level in the original mixture, resulting in a negative ΔSDR as can be seen in Fig. 3. The proposed method achieves SAR performance similar to that obtained with the LCMV beamformer, although slightly lower. Regarding the ΔSIR, it achieves 15 dB improvement (at SNR=0 dB) for a threshold setting maximizing the ΔSDR (τ=3 dB). However, this score decreases sharply when using the VAD based on the estimated SNR. Indeed, this VAD algorithm tends to make a lot of false positives, thus reducing the number of degrees of freedom for denoising. Nevertheless, as shown by the overall performance measure ΔSDR, the proposed method obtains similar or better results compared with the two other beamformers, while being efficient in terms of computational complexity as previously shown.

Finally, note that the proposed algorithm is more sensitive to the VAD estimation errors than the MVDR beamformer. Indeed, the latter needs to know only the most energetic source while the former needs to know precisely which source is active or not.

V. CONCLUSION

In this work, we proposed a new beamforming algorithm that exploits the sparsity of speech signals in the STFT domain, in a less restrictive manner compared with the popular W-disjoint orthogonality assumption. In a three-speaker scenario, experimental results show that the LCMV and MVDR beamformers exhibit two extreme behaviors: the first one preserves well the speech sources but does not achieve a good noise reduction, whereas the latter reduces dramatically the noise and the computational complexity but introduces a lot of artifacts. The proposed method achieves to be beneficial both in terms of noise reduction and speech distortion without increasing too much the computational cost. We limited the investigation to Q = 3 because we used an array of four microphones. Future work will have to investigate the performance of the proposed method for a larger microphone array [10] and to improve the VAD to get closer to the noise reduction performance upper bound.

REFERENCES