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Abstract

The response of a plane, air-backed plate attached to a rigid baffle when sub-

jected to an underwater plane shock wave is investigated numerically and ana-

lytically. The numerical simulation takes into account a full three-dimensional

fluid model involving water cavitation effects. Different numerical models are

employed and validated by comparing against various experimental results from

the literature. The validated numerical setup is then used to simulate the un-

derwater shock response of simply-supported, air-backed, carbon-fiber/epoxy

rectangular plates attached to a rigid baffle. Simplified analytical solution is

developed based on two-step approach. The two stages considered are early-

time phase that adapts Taylor’s fluid-structure theory to calculate an impulsive

velocity for the plate and long-time phase that involves determining its free oscil-

lation response within linear elastic domain, taking into account the water-added

mass effect. Finally, the applicability of the proposed method is investigated

by performing different numerical simulations regarding various combinations

of peak pressures and decay times, change of aspect ratios, change of materials

as well as ply orientations.
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1. Introduction10

Underwater explosions have long been the focus of naval research since World

War II. Over the past decades, several advances have been brought forth by

many researchers in the field. Consequently, a considerable body of literature

already existed. References [1, 2, 3] provide a wide overview of many of those

underwater explosion researches.15

1.1. Review of experimental work

Experimental tests in the past were done in an underwater detonics basin

using real explosives, see [4, 5, 6]. Such works are indeed very important since

they give ample understanding of the physical phenomena, accounting for three-

dimensional and other non-linear effects that could be expected in practice.20

However, the cost to conduct such experiments can be very high. Also, it is

difficult to perform experiments in non-military settings and sometimes, data

acquisition such as measuring spherical wave fronts and pressure signatures

could be quite intricate [7]. The attention has, therefore, been shifted on con-

ducting underwater explosion (UNDEX) tests in a lab-scaled environment that25

employs a shock tube, see [7, 8, 9]. The benefits are that it becomes much easier

to control the accuracy as well as the data measurement. In addition, a wide

range of studies could be performed only within a limited budget although the

size of the test apparatus might still impose limitations on the specimen sizes.

1.2. Review of theoretical and numerical work30

Among the earliest theoretical works, Taylor’s one-dimensional (1D) fluid-

structure interaction (FSI) theory [10] is a well-known and a widely adapted

approach due to its simplicity and effectiveness. The major finding is that the

momentum transferred to the plate could be substantially reduced by decreasing

the plate areal mass or its acoustic impedance due to the FSI. It can be said35

that the early-time interaction effect is properly accounted for in the method.

However, the late time response is not considered in Taylor’s theory. Thus,

Deshpande et al. [8], who had proved the FSI theory of Taylor by experiments,
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pointed out that a decoupled model based only on Taylor’s free-standing plate

theory might underestimate the structural response.40

The theoretical studies performed by Kennard [11, 12] give much insights in

regards to many physical aspects of the UNDEX problems as well as bulk cavi-

tation that may occur in the vicinity of the immersed structure. Nearly 70 years

later, Schiffer et al. [13] adapted the findings of Kennard [11] and proposed an

analytical model for a 1D spring-supported, air-backed and water-backed rigid45

plates subjected to a plane shock wave, explicitly taking into account the cavi-

tation of the fluid as well as the influence of the hydrostatic pressure. Another

mathematical model that describes both the cavitation and wave propagation

in bilinear fluid was given by Bleich and Sandler [14]. In 1984, these results

had been used by Felippa and DeRuntz [15] as a benchmark to validate their50

numerical method that could treat cavitation.

With the development of Doubly Asymptotic Approximations (DAAs) dur-

ing the 1970s by Geers [16, 17], the paradigm for treating UNDEX problems has

been shifted to a new era. DAAs have been implemented in Underwater Shock

Analysis (USA) code and then incorporated into various commercial finite el-55

ement tools such as LS-DYNA, NASTRAN, etc. [18]. These are time domain

differential equations that approach exactness at both high and low frequencies

and a smooth transition in-between. The governing equations are expressed in

terms of wet surface variables only and thus, it is not needed to explicitly model

the surrounding fluid. The disadvantage, as will be shown in this paper, is that60

DAA model alone is not able to correctly capture the initiation, development

and collapse of cavitation bubbles.

Felippa and DeRuntz [15] have proposed a more rigorous numerical method

for considering the cavitation in which the acoustic elements are coupled with

DAA non-reflecting boundaries (NRB). Acoustic cavitating fluid volume ele-65

ments, which use a cost-effective computational scheme involving displacement

potential as the only primary unknown, have first been developed by Newton

[19]. The combination of these elements with DAA solvers has certain advan-

tages. For example, cavitation can be properly accounted for with the use of a
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bilinear fluid model and by limiting the vapor tensile pressures. There would70

also be no need to wait for the shock wave propagation since arbitrary reference

time (t = 0) could be adjusted for any arbitrary location inside the fluid domain

through the use of DAA NRB solvers.

Indeed, these numerical solutions involving DAA approach are very power-

ful but, as shown by Barras [20], they can be very time-consuming and demand75

much competence from the users. As a consequence, numerical approach is not

well-suited for preliminary design stage when numerous loading scenarios as well

as different structural configurations have to be tested. In this case, simplified

analytical solutions become more relevant as they can not only provide rapid

and reasonably accurate solutions but can also be used to validate numerical80

solutions for simple cases such as a plate or a cylinder, thus giving insights to the

problems at hands. In this paper, a simplified analytical solution is developed

to predict the response of simply-supported, air-backed composite rectangular

plates subjected to a plane shock wave. Derivations are done by following the

two-step impulse-based approach analogous to the work of Brochard et al. [21].85

The first stage deals with the calculation of an impulsive velocity for the plate

using Taylor’s FSI theory and the second stage with determination of its de-

formation, taking into account the water-added mass which can be associated

with the reloading or deceleration of the immersed plate.

There have also been a few other researchers in the past who have attempted90

to use impulsive loading to idealize the underwater blast, for example [22, 23]

for the metallic sandwich panel responses. More recently, Schiffer and Tagarielli

[24] proposed an analytical model for the composite circular plates, taking into

account of the FSI before and after the cavitation and using the position of

the flexural waves to determine the zones of the cavitated fluid. However, con-95

sidering explicitly the non-linearity of cavitation and propagation of flexural

wave fronts has led to intricate non-linear differential equations. Hoo Fatt and

Sirivolu [25] have also developed an analytical model by introducing Taylor’s

FSI method into Lagrange’s equations of motions in order to analyze the air

and water blast responses of the sandwich panels. Cavitation is considered by100
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setting the total pressure to zero and by iterating in time step to find the loca-

tion and time of the first cavitation. However, water-added mass or reloading

caused by reattachment of the cavitated water is not considered, thus leading

to underestimation of the result for both air-backed and water-backed UNDEX

cases.105

1.3. Scope of the paper

The objectives of the current paper are two-fold. First of all, in order to

compare the developed analytical solutions, it is required a validated finite el-

ement setup that could consider both cavitation and the surrounding 3D ef-

fects. Two experimental data from the literature and one provided by DGA110

(Délégation Générale de l’Armement of the French Ministry of Defense) are

used to validate the numerical solutions. Three different numerical approaches

are considered in this paper to model the coupled FSI phenomena, namely, (1)

Non-linear finite element explicit code LS-DYNA involving acoustic volume el-

ements, (2) LS-DYNA/USA coupled with DAA boundary element solver, and115

(3) LS-DYNA/USA with DAA non-reflecting boundary element (NRB) solver

coupled to fluid acoustic elements. Indeed, it is the intention of the authors

to evaluate the performance and check the validity of different FE approaches

and then select the most suitable setup for later use as a reference. Only then,

the simplified analytical solutions are compared against the validated FE sim-120

ulation results. Another purpose of this paper is to investigate the limitations

of the proposed analytical approach. Finally, it is worth noting that to gain

insights about the important underlying phenomena of the air-backed linear

elastic plates, the non-linearity due to large deformation, structural damping,

failure as well as hydrostatics effects are not considered in this paper.125

2. Theoretical background

2.1. Explosive loading

Detonation of an explosive charge gives rise to not only a primary shock wave

in a spherical form propagating away from the charge but also the pulsation of
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the gas bubble that could generate a secondary pressure pulse having 10-15%

of the peak pressure. At a sufficiently far stand-off distance, these spherical

shock waves can be considered as plane and the influence of the bubble pulse

could be ignored. According to Cole [1], the plane shock pressure wave can be

approximated as:

P (t) = P0e
−t/τ , for 0 ≤ t ≤ τ (1)

where P0 is the peak pressure, t is the time variable, and τ is the decay time

defined as the time required for the peak pressure to fall to 1/e of its peak value.

According to the Principle of Similarity, these can be related to the charge mass

C and stand-off distance R as:

P0 = K1

(
C1/3

R

)A1

(2)

τ = K2C
1/3

(
C1/3

R

)A2

(3)

where K1, A1, K2, and A2 are constants that depend on the type of the explo-

sives used.

The findings of Kennard [12] has led to characterization of the different130

physical phenomena of a plate impinged by a plane shock pressure wave by four

characteristic times, namely: decay time (τ) of the incident shock wave (Eq. 3),

cavitation inception time (τc) - the time required for the shock wave to set the

plate into motion at maximum velocity, diffraction time (Td) - the time required

for the shock wave to propagate from the plate center to the edges, and swing135

time (Ts) - the time required for the plate to reach its first peak of deflection.

Using these four characteristic times, Kennard [12] was able to identify four

different sequences of phenomena that could arise in an event of a shock wave

impinging a plate or diaphragm. These cases can be summarized as follows:

(1) Case 1: Cavitation occurs in the plate vicinity and its effect prolongs until140

the plate has reached its peak deflection.

(2) Case 2: Cavitation occurs in the plate vicinity but collapses shortly after

and increases the response of the plate as a reloading effect.
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(3) Case 3: Cavitation does not occur and the plate has relatively long swing

time compared to the decay time of the loading.145

(4) Case 4: Cavitation does not occur and the plate has relatively short swing

time compared to the decay time of the loading.

These findings will be related to the different case studies investigated in this

paper.

3. Analytical model150

Consider a simply-supported rectangular composite plate having the sides a,

b and uniform thickness h is submerged in an infinite fluid domain. A standard

Cartesian coordinate (x, y, z) system is defined at the origin and mid-surface of

the plate as shown in Fig. 1. The displacements in the x, y, z directions are

denoted as u, v and w respectively. Each kth orthotropic ply is oritentated at155

an angle θ(k) with respect to the x-axis. First-order shear deformation theory

(FSDT) and Lagrangian Energy equation are considered to derive the mechan-

ical model of the plate in the absence of water. The in-air mechanical model is

then extended to include FSI effects by using two-step impulse-based approach

which comprises Taylor’s FSI theory for the early time and water-added mass160

for the late time. Hydrostatics pressure, structural damping and failure effects

are not considered in this paper.

h

x, u

z, w

𝜃𝑘

Figure 1: Panel geometry and coordinate system of the problem formulation

7



3.1. Non-immersed mechanical model

According to FSDT, the transverse displacement is independent of the thick-

ness h and the transverse normal strain εzz is zero. The transverse shear strains,165

εxz and εyz, are accounted for such that the transverse normals rotate with re-

spect to the mid-surface after deformation. The in-plane displacements |u| and

|v| are assumed negligibly small as compared with the transverse displacement

|w| so that the originally 5 Degree of Freedoms (DOFs) problem is reduced to

only 3 DOFs.170

The linear strain-displacement relations are written as follows:

εxx = z
∂ψx
∂x

, εyy = z
∂ψy
∂y

, γxy = z

(
∂ψx
∂y

+
∂ψy
∂x

)
γxz =

∂w

∂x
+ ψx, γyz =

∂w

∂y
+ ψy, γzz = 0

(4)

To satisfy the simply-supported boundary conditions for the rectangular

plate, a modal based-approach is adopted. Displacement is obtained as a su-

perposition of simply-supported normal modes with the following double sum-

mations:

w(x, y, t) =

∞∑
m=1

∞∑
n=1

Wmn sin
(mπx

a

)
sin
(nπy

b

)
ψx(x, y, t) =

∞∑
m=1

∞∑
n=1

Ψxmn cos
(mπx

a

)
sin
(nπy

b

)
ψy(x, y, t) =

∞∑
m=1

∞∑
n=1

Ψymn sin
(mπx

a

)
cos
(nπy

b

)
(5)

where Wmn, Ψxmn and Ψymn are three generalized coordinates, m and n are

mode numbers in x- and y-directions respectively.

The lamina constitutive relations are described using 2D plane stress as-

sumption. For any kth layer of the orthotropic lamina with an arbitrary orien-

tation θ(k), the stress-strain relationship can be written as:
σxx

σyy

σxy


(k)

=


Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66


(k)

εxx

εyy

γxy

 (6)
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and for transverse shear as:σyzσxz


(k)

=

Q̄44 Q̄45

Q̄45 Q̄55

(k)γyzγxz

 (7)

where Q̄
(k)
ij from Eq. 6 and 7 is the reduced transformed stiffness matrix based

on engineering constants. The detailed formulations to obtain Q̄
(k)
ij for normal

and shear components can be found in any classical composite textbooks (e.g.,175

see Reddy [26]).

By using lamina constitutive relations (Eq. 6 and 7) and then by integrat-

ing the corresponding stresses with respect to the thickness, the well-known

relationships for force and moment resultant to strains can be obtained:
{
N
}

{
M
}
 =

[A] [B]

[B] [D]


{
ε0
}

{
κ
}
 ,

QyQx
 = Ks

A44 A45

A45 A55

γyzγxz

 (8)

where {N} and {M} are column vectors of in-plane and bending moment re-

sultants respectively, {ε0} is the membrane strain matrix, {κ} is the curvature

matrix, Ks is the shear correction factor to account for the non-uniformity and

parabolic shape of the shear stress distribution throughout the thickness, [A],

[B], and [D] are extensional, bending-extensional coupling and bending stiffness

matrices and (A44, A45, A55) are shear stiffnesses respectively. These values can

be obtained using Q̄
(k)
ij and the z coordinates of the plies as:

Aij =

N∑
k=1

Q̄
(k)
ij (zk+1 − zk), Bij =

1

2

N∑
k=1

Q̄
(k)
ij

(
z2
k+1 − z2

k

)
Dij =

1

3

N∑
k=1

Q̄
(k)
ij

(
z3
k+1 − z3

k

)
, Asop =

N∑
k=1

Q̄(k)
op (zk+1 − zk)

(9)

where Asop = (A44, A45, A55) are the shear stiffnesses (op = 44, 45, 55).

By substituting Eq. 5 - 9, the following expressions for kinetic energy T and

the strain energy U can be derived:

T =
ab

8

∞∑
m=1

∞∑
n=1

[
I1Ẇ

2
mn + I2

(
Ψ̇2
xmn + Ψ̇2

ymn

)]
(10)
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U =
ab

8

∞∑
m=1

∞∑
n=1

[
D11

(mπ
a

)2

Ψ2
xmn + 2D12

(
mnπ2

ab

)
ΨxmnΨymn

+D22

(nπ
b

)2

Ψ2
ymn +D66

( π
ab

)2

(anΨxmn + bmΨymn)
2

+A44

(
bΨymn + πnWmn

b

)2

+A55

(
aΨxmn + πmWmn

a

)2
]

(11)

where I1 and I2 are mass and rotatory inertia whose corresponding expressions

can be found using:

I1 = ρ

N∑
k=1

(hk − hk−1) , I2 =
1

3
ρ

N∑
k=1

(
h3
k − h3

k−1

)
(12)

where ρ is the density of the material (be it orthotropic or isotropic), and hk is

the thickness of each lamina.

Lagrangian energy approach previously used by other researchers such as [27,

25] is employed here to derive the governing equations for the plate. According

to Lagrangian equation:

d

dt

(
∂T

∂q̇l

)
+
∂U

∂ql
= Qncl (13)

where T and U are the kinetic energy (Eq. 10) and strain energy (Eq. 11),180

Qncl is the non-conservative external force, q is the generalized coordinates, q̇

is the rate of change of generalized coordinates with respect to time and l is

the number of degrees of freedom. In the present analysis, this number is three

(w, ψx, ψy) and since only initial impulsive velocity is considered, Qncl can be

taken as zero.185

When the two energy expressions, Eq. 10 and 11, are substituted in Eq. 13,

equations of motion can be derived. Since the eigen modes involved in Eq. 5

are orthogonal, the resulting equations of motion are uncoupled to each mode.

These can be given in the matrix form as follows:
M1 0 0

0 M2 0

0 0 M3



Ẅmn

Ψ̈xmn

Ψ̈ymn

+


K11 K12 K13

K12 K22 K23

K13 K23 K33



Wmn

Ψxmn

Ψymn

 =


0

0

0

 (14)
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where the formulations to calculate M1, M2, M3, Kij (i, j = 1, 2, 3) are given

in the Appendix.

By neglecting the effect of rotatory inertia, that is I2 ≈ 0, M2 and M3

become zero. Therefore, the three sets of equations can be reduced in just one

ordinary differential equation with Wmn as the only unknown as:

M1Ẅmn(t) +KmnWmn(t) = 0 (15)

with the initial conditions: Wmn(0) = 0 and Ẇmn(0) = 2Amnvi, where Kmn is

the stiffness (see Appendix), vi is the impulsive velocity whose corresponding

formula will be provided in Eq. 19 of Subsection 3.2.1, and Amn = 8/(mnπ2)

is the term related to mode shape (m,n). Note that structural damping effect

C is assumed negligible in Eq. 15. Due to the symmetry of the loading and

boundary conditions, only odd number terms m,n = 1, 3, 5, etc. contribute to

the plate response. The Eq. 15 is a classical free-vibration equation and its

solution can simply be given as:

Wmn =
2Amnvi
ω0mn

sin (ω0mnt) (16)

where ω0mn =
√

Kmn
M1

= 2πf0mn is the angular natural frequency for each mode

shape m and n.

3.2. Analytical FSI model190

The in-air mechanical model developed in the previous section is extended

to include the FSI effect when fluid is present on one side of the plate and air

on the other side. A plane shock pressure wave is applied uniformly to the

entire plate on the fluid side. Following the approach of Brochard et al. [21],

the interaction between fluid and structure is divided into two phases. In the195

first phase, the impulsive velocity transmitted to the plate is determined by

using Taylor’s 1D FSI theory [10]. The deformation of the plate in this phase is

assumed negligibly small and cavitation is supposed to occur in the neighboring

of the plate at the end of this phase. In the second phase, the deformation is

supposed to begin and the cavitation zone to collapse with no time gap. This200
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collapse would launch an additional pressure, namely water-added inertia effect,

onto the plate. This would increase the transverse deflection of the plate as well

as reduce its natural frequencies, causing longer periods of oscillation compared

to the in-air response.

3.2.1. Early-time phase205

Following the approach of Taylor [10], total pressure applied to the plate

during the early-time phase is obtained by a linear superposition of incident,

reflected and radiated pressures as follows:

P (t) = 2P0e
−t/τ − ρwcwẆ (17)

where ρw and cw are water density and speed of sound in water respectively.

The factor ‘2’ in the former term comes from doubling of the pressure as if

the plate is rigid and perfectly reflective upon arrival of the shock wave. The

latter term −ρwcwẆ represents a rarefaction term, which would decrease or

even diminish the double pressure due to the plate movement. When the total

pressure falls below the vapor pressure, cavitation would occur either on the

surface of the plate or inside the fluid domain. In the case of Taylor’s theory,

it is assumed that cavitation always occur all over the surface of the plate. By

solving the following equation of motion:

Ẅ =
2

ρh
P0e
−t/τ − ρwcwẆ

ρh
(18)

with the initial conditions W (0) = 0 and Ẇ (0) = 0, Taylor has proposed the

following analytical solutions for the free rigid 1D plate:

vi =
2P0τ

ρh
ψ−

ψ
ψ−1 (19)

τc =
τ lnψ

ψ − 1
(20)

where vi is the maximum impulsive velocity, τc is the cavitation inception time

when P (t) becomes zero and maximum vi is reached. ψ = ρwcwτ
ρh is the FSI

coefficient relating decay time and areal mass ρh of the plate, whose significance
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will be highlighted later in Subsection 5.2 where various analytical results are

evaluated. The reduced transferred impulse due to the movement of the plate

can be calculated using:

It = 2I0ψ
− ψ
ψ−1 (21)

where I0 = P0τ is the applied impulse related to incident wave.

Note that only the maximum impulsive velocity (Eq. 19) and cavitation

inception time (Eq. 20) of the Taylor’s FSI theory [10] have been expressed in

this paper. For the rest of the formulations regarding displacement, acceleration,

pressure and so on, the reader is referred to the original paper of Taylor [10].210

When Eq. 19 is applied in Eq. 16, closed-form analytical solution entitled only

impulsive velocity for a 2D composite plate is obtained. This, however, still does

not take into account the water-added mass effect that should appear at some

time after t > τc. This is discussed in the subsequent subsection.

3.2.2. Long-time phase215

Deformation is supposed to begin only when the plate reaches its maximum

impulsive velocity. It is considered here that the kinetic energy acquired by

the plate during the first phase will be transferred to the deformation energy.

In addition, during the plate deceleration phase, additional pressure due to

water inertial effect is assumed to act onto the plate, following the collapse of220

cavitation.

For a rectangular plate vibrating in water, the water-added mass per area

can be determined by using Greenspon (1961) [28] formulation as:

Mamn =
1

2
ρwbf(a/b)A2

mn (22)

where Mamn is the added mass of water, f(a/b) = 1.5 (a/b)
3 − 3.12 (a/b)

2
+

2.6 (a/b) + 0.0098 is the correction term for different aspect ratios of the plate

(0 ≤ f(a/b) ≤ 1) for a ≤ b, and Amn = 8/(mnπ2) is a correction term

for simply-supported boundary conditions and odd number modes (m,n =

1, 3, 5, ...). This added-mass formulation of Greenspon, Eq. 22, consists of

some approximations on the mode shape term by assuming the entire plate as
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a rectangular piston with a deflection equal to the average of the mode shape.

Thus, the above formulation is accurate only for the first mode. The final (wet)

natural frequencies now become:

ωmn =

√
Kmn

M1 +Mamn

(23)

The equation of motion of the immersed air-backed plate related to the odd

number mode (m,n) is:

(M1 +Mamn) Ẅmn(t) +KmnWmn(t) = 0 (24)

The solution provided by Eq. 16 from in-air case can be used for water

blast case too except that the angular natural frequency of water (Eq. 23) and

Taylor’s impulsive velocity (Eq. 19) should be considered for FSI response. As

a consequence of having the extra mass, the natural frequencies of the plate

will decrease and the periods of oscillation will get longer compared to the

non-immersed case. The maximum swing time Ts of the plate including the

water-added mass can be approximated using fundamental mode as:

Ts ≈
π

2ω11
= T0

√
1 +

Ma11

M1
(25)

where T0 ≈ 1/(4f011) is the approximate in-air swing time when the plate

reaches its first peak of deflection.

4. Comparison of different numerical approaches

Four different numerical models, which will be presented in the following225

subsection, have been set up and confronted to the following experiments: (1)

a circular steel plate tested in a detonics basin by Goranson and reported by

Cole [1], (2) a circular glass-fiber plate tested using a shock tube in a lab-scaled

environment and reported by Schiffer and Tagarielli [9], and (3) a circular steel

plate tested by DGA in an underwater detonics basin and presented in the230

subsection 4.2.3 of the present paper. The primary goal here is to have an idea

about the dynamic behavior of both steel and composite plates while setting
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up a reliable numerical model to be used later as a reference to validate the

proposed analytical model.

4.1. Details of the FE models235

Typical finite element models related to four different numerical approaches

are illustrated in Fig. 2. In all of the FE approaches, the plate model is

constructed depending on the materials used in the experiment as follows:

• For circular steel plate model, MAT PLASTIC KINEMATIC with

Belyschko-Tsay shell element formulation, five through-thickness integra-240

tion points and a shear factor of 5/6 are applied. The plate has 35 and 24

elements in the radial and circumferential directions respectively. Strain

rate is taken into account by using Cowper Symonds formulation in which

the values C = 40 and p = 5 (for mild steel) are chosen.

• For circular composite (GRP) plate model, MAT COMPOSITE245

DAMAGE with fully-integrated shell element, one integration point per

ply are applied. Transverse shear correction is done by activating lami-

nated shell theory. The GRP plate is meshed to have 14 and 10 elements

in the radial and circumferential directions respectively.

Note that only a quarter of the model is required due to problem symmetry and250

the upward or downward direction of the loading does not matter.

4.1.1. LS-DYNA (impulsive velocity)

Fig. 2a shows a quarter plate model of LS-DYNA which is subjected to the

initial impulsive velocity calculated by Taylor’s FSI theory (Eq. 19). Thus, fluid

is not modeled in this approach. Simply-supported boundary is considered on255

the outer plate edges and the symmetric boundary conditions are applied on

the inner plate edges as shown.

4.1.2. LS-DYNA (only acoustic)

In this model shown in Fig. 2b, a pressure loading is prescribed on

one end of the acoustic fluid column while the shell plate model with a
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Initial impulsive 
velocity 𝑣𝑖

Simply-supported edges
𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0

(a) LS-DYNA (only impulsive velocity)

Lateral surface with x and y 
displacements constrained

Simply-supported plate
𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0

𝑃 = 𝑃0𝑒
−𝑡/𝜏

Symmetric boundary condition
Along x: 𝑢𝑦 = 𝑟𝑥 = 𝑟𝑧 = 0

Along y: 𝑢𝑥 = 𝑟𝑦 = 𝑟𝑧 = 0

fluid

(b) LS-DYNA (only acoustic)

Simply-supported edges
𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0

Along x: 
𝑢𝑦 = 𝑟𝑥 = 𝑟𝑧 = 0

Along y:
𝑢𝑥 = 𝑟𝑦 = 𝑟𝑧 = 0

DAA boundary

(c) LS-DYNA/USA (DAA2)

Simply-
supported 

plate

DAA as non-
reflecting 
boundary

Extra fluid region

Fixed-rigid 
baffle

Starting point for 
incident wave

Coordinates of stand-off 
point on DAA surface

DAA as non-
reflecting 
boundary

(d) LS-DYNA/USA + acoustics

Figure 2: Typical finite element models for the simulation of UNDEX using different numerical

approaches: (a) LS-DYNA with only impulsive velocity (no fluid) model, (b) LS-DYNA with

only acoustic elements model, (c) LS-DYNA/USA with DAA2 boundary elements (no fluid)

model, (d) LS-DYNA/USA acoustics coupled to DAA non-reflecting boundary model

simply-supported boundary condition is attached on the other end. BOUND-

ARY ACOUSTIC IMPEDANCE is applied on the same segment where the

loading is applied so that the returning waves propagate out of the fluid do-

main and do not come back. A water column length of 0.25 m has been used.

The author also tested a longer water-column length of 0.5 m but the results

are similar to the ones that will be shown here. Acoustic solid element formu-

lation in conjunction with MAT ACOUSTIC is employed for the fluid model.

Cavitation flag is turned on and vapor pressure is limited at zero. Applying the
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acoustic element formulation (ELFORM = 8 or 14) in LS-DYNA requires the

fluid element mesh to meet the following stability criteria [29]:

ρwD

ρh
< 2.5 (26)

where ρw and D are the density and the thickness of the acoustic elements

adjacent to the structural element whereas ρ and h are density and thickness260

of the structural shell element respectively. In accordance with this criterion,

the thickness of the fluid mesh of 1 mm is used. Numerical damping of 0.25 is

applied for stability reason too. As can be seen in Fig. 2b, the fluid meshes in

x-y plane are modeled the same as the structural meshes. At the fluid-structure

interface, the nodes of the structure and the fluid are merged so that FSI is265

automatically treated. Symmetric boundary condition is applied for the inner

fluid nodes and x-y translations are constrained on the lateral fluid nodes.

4.1.3. LS-DYNA/USA (DAA2)

A wet segment set is defined on the shell plate model to couple with second-

order Doubly Asymptotic Approximations (DAA2) boundary elements, see Fig.270

2c. A stand-off distance, desired peak pressure as well as the corresponding

decay time can be defined through USA input card. Cavitation is treated only

approximately in DAA2 model by limiting the total pressure at zero when-

ever its value becomes negative. Notice the difference in the assumption of

surrounding boundary conditions on the lateral (outer) fluid faces between LS-275

DYNA/USA (DAA2) model and LS-DYNA (only acoustic) model because LS-

DYNA (only acoustic) model employs a water domain of a finite extent whereas

LS-DYNA/USA (DAA2) model considers a plate immersed in an infinite or

semi-infinite fluid domain in its formulation.

4.1.4. LS-DYNA/USA acoustics280

As can be seen in Fig. 2d, the plate is attached to both the fixed rigid plate

(shell element model with MAT RIGID) and the acoustic fluid elements. The

mesh of the plate is the same as the previous numerical models while that of the
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rigid baffle has about twice the mesh of the plate in the x-y plane. The extra

fluid is also modeled to resemble the detonics basin employed in the experiment.285

Note that for a lab-scaled shock tube test, such extra fluid is not required to

model. The mesh of the fluid is used the same as the rigid baffle and the

plate mesh in the x-y plane. The lateral dimensions of the water column (in

x-y plane) and height (in z-direction) are given about twice the radius of the

plate. DAA non-reflecting boundary is prescribed on the lateral surfaces of290

the acoustic model as shown in Fig. 2d. Indeed, some iterations have been

performed in order to know exactly where to place the DAA boundaries or

how much water column height needs to be modeled. The nodes of the rigid

baffle are not shared neither with the plate nor the acoustic fluid so that the

simply-supported boundary condition of the plate is not affected by the fixed295

rigid baffle. The coupling between the rigid baffle and the acoustic fluid is

done by using BOUNDARY ACOUSTIC COUPLING keyword in LS-DYNA.

The starting point and the location of the source stand-off point in the fluid

mesh system are defined so that the reference time t = 0 begins only when

the shock wave arrives the structure. Since the experiments are performed in300

shallow water condition, no hydrostatic pressure is considered.

The four FE models discussed above can be summarized as in Table 1.

Table 1: Summary of four FE models simulated

FE model Fluid Cavitation Assumptions

LS-DYNA (only

impulsive velocity)
No No

No water inertia

or cavitation

LS-DYNA

(only acoustic)
Yes Yes Finite extent of water

LS-DYNA/USA (DAA2) No Yes
Infinite or semi-infinite

fluid domain

LS-DYNA/USA (acoustic) Yes Yes
Semi-infinite fluid and

rigid baffle plate

18



4.2. Comparisons and analyses

4.2.1. A circular steel plate subjected to a plane shock wave (Goranson’s test)

Experiment conducted by Goranson and reported by Cole [1] involves steel

diaphragms that have different thicknesses and strengths. These are securely

fastened to the equivalent of a heavy steel ring that has about 300 mm width

and is mounted on the front of a heavy watertight structure. According to

Kennard [12], this ring can be regarded as roughly equivalent to an infinite

baffle. Charges of 0.45 kg TNT are employed to attack the test diaphragms

from different stand-off distances. One of those tests is selected to use in our

current study since it represents the response of a relatively thin plate subjected

to a short decay loading. The parameters of explosive charge, the plate as well

as material characteristics from the test are given in Tables 2 and 3. To compare

with the experimental loading condition, a double decay formulation from [30]

is applied here. It has the same profile as Cole’s exponential formulation until

t < τ , but has a more accurate profile for the longer time upto t = 7τ written

as:

Pi(t) =


0 , t < 0

P0e
−t/τ , 0 ≤ t < τ

P0(0.8251e−1.338t/τ + 0.1749e−0.1805t/τ ) , τ ≤ t ≤ 7τ

(27)

The results of central-deflection versus time for different numerical models

are plotted in Fig. 3. First of all, it can quickly be seen that the best match to305

the experimental result is that of LS-DYNA/USA acoustic model. Increase of

the peak deflection around 1.7 ms is found to be due to the reloading associated

Table 2: Parameters of the explosive charge (Goranson’s experiment [1])

ρw (kg.m-3) cw (m.s-1) C (kg) R (m) P0 (MPa) τ (ms)

1025 1500 0.45 1.827 18.73 0.081
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Table 3: Characteristics of the plate and material used (Goranson’s experiment [1])

a (m) h (mm) ρ (kg.m-3) E (GPa) ν σY (MPa)

0.2664 2.79 7800 204 0.3 240

to the collapse of cavitation. Almost all of the FE models perform analogously

to the in-air response upto 1 ms. Significant differences are observed only after

that time. Taylor’s impulsive velocity result underestimates by about 30%,310

a relative error with respect to the experimental value, when final deflections

are compared. The final deflection obtained from LS-DYNA (only acoustic)

approach is quite similar to the impulsive loading result, however, the behavior

is totally different. Plastic straining near the central portion is found in both

models (i.e., only acoustic and impulsive velocity) but the amount of straining in315

LS-DYNA (only acoustic) is even less than that of impulsive velocity simulation.

The real reason is believed to be that when the fluid is modeled only up to a finite

extent (Fig. 2b) together with the restraints in x-y translations, the acoustic

fluid contains the pressure and then seems to hinder the rebounding of the plate,

making it unable to oscillate or causing a very slow return. The same behavior320

is observed in the composite plate model too, that will be discussed in the

next section. The plate deflection post-processed from LS-DYNA/USA (DAA2)

model is overestimated by about 40% (a relative error from the experiment) since

this model could not accurately capture the non-linear nature of the cavitation

according to [15].325

The result extracted from LS-DYNA/USA acoustic simulation can be re-

lated to the case 2 (cavitation with water reloading effect) of Kennard’s finding.

The values for cavitation inception time and the diffraction time for Goranson’s

plate model are obtained as τc = 0.03 ms and Td = 0.18 ms respectively. Cole

[1] has mentioned that the occurrence of cavitation can be quickly checked by330

comparing τc and Td. If τc < Td, this means cavitation would occur which

happens to be the present case study. To observe the occurrence of cavita-
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Figure 3: Comparison between central-deflection-time history results calculated by different

numerical codes and Goranson’s experimental result performed on steel circular plate

tion, pressure contours at various time steps are retrieved from LS-DYNA/USA

acoustic simulations, see Fig. 4. The range of the pressure values is set at 0

- 10 MPa and the region around the plate is zoomed for clear visibility. Soon335

after the arrival of the shock wave, cavitation arises quite rapidly due to the

flexibility of the plate when subjected to a plane shock wave with a relatively

short duration (Fig. 4a). It can be seen that the observation matches with the

predicted theoretical value of cavitation inception time given by Eq. 20. Ac-

cording to [11, 13], the occurrence of cavitation could give rise to two breaking340

fronts that will propagate outward from the point of first cavitation. However,

in the present case, only one breaking front can be seen since the other one

occurs very close to or directly on the fluid-structure interface. Depending on

the pressure and particle velocity in the fluid immediately around the breaking

fronts, these fronts could arrest and remain stationary or reverse their directions345

and become closing fronts. At about the diffraction time shown in Fig. 4b, the

breaking fronts propagating away from the bulk cavitation zone (blue color) can

be seen. Since the traveling of these fronts are 3D in nature, the incoming water
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Zoom

(a) At t = τc = 0.03 ms (cavitation inception time)

Cavitated zone

Propagation

of breaking

front
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of breaking
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(b) At t = Td = 0.18 ms (diffraction time)
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of closing
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(c) At t = 1.7 ms (reloading time)

Zoom

(d) At t = 2.1 ms (at the time of peak deflection)

Figure 4: Pressure contours at various time steps for LS-DYNA/USA acoustics model of

Goranson’s experiment (Plate deflection is amplified by 3 times for clear visibility)
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diffraction effect is almost blocked out and the plate oscillates analogously to

an in-air response until 1 ms. The water reloading then starts at about 1.7 ms,350

see Fig. 4c. Indeed, such phenomenon can be associated to the collapse of the

bulk cavitation due to the arrest of the breaking front and the return of closing

fronts. Water reloading effect could generate an additional pressure wave, which

further increases the final plate deflection by about 30%, see Fig. 4d. Without

this effect, the result of LS-DYNA/USA acoustics would be approximately the355

same as that of LS-DYNA (only acoustic) simulation. Thus, this case study

clearly highlights the importance of 3D surrounding conditions as well as the

possible effects of cavitation onto the structure.

Effect of the size of the rigid baffle. The authors also studied the effect of the

rigid baffle by performing LS-DYNA/USA acoustics simulations using different360

baffle sizes. It was found out that result (with no rigid baffle) is approximately

the same as that of LS-DYNA (only acoustic). Increasing the lateral dimension

of the rigid baffle increases the plate deflection but this effect is bound by the

inverse of the radius of the rigid baffle in accordance with Kirchhoff Retarded

Potential Formulation [31]. In other words, using larger and larger baffle sizes,365

the plate deflection will converge towards a certain value (30 mm in our case).

4.2.2. A circular GRP plate subjected to a plane shock wave

Schiffer and Tagarielli [9] have conducted their experiments in a laboratory

environment using quasi-isotropic glass/vinylester and a woven carbon/epoxy

plates. The test employs a transparent water-filled shock tube having a length370

of 2 m and diameter of 25 mm. The composite specimens are supported by a

clamping ring. A total of 14 test cases were reported in [9] in which different

peak pressures and decay times were investigated. The dynamic plate deflections

were recorded using a high-speed camera. In this paper, the experiment from

[9] that involves GRP plate (a = 12.5 mm, h = 0.85 mm, ρ = 1550 kg.m-3)375

with a stacking sequence of [0, 45, 90,−45] is selected for the comparison. The

authors also checked other three cases from [9] and all of them correlate quite

well to the numerical results. So, only one of these cases is evaluated in detail
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in this paper. The loading conditions as well as characteristics of the plate are

given in Tables 4 and 5 respectively. The incident loading has an exponential380

profile as in Eq. 1. The length of the water column is modeled as 2 m. Most

of the FE model setups are the same as presented in Subsection 4.1. Note that

LS-DYNA/USA acoustics model for Schiffer and Tagarielli’s experiment does

not comprise of the extra fluid so as to resemble the test tube setting of the

experiment.385

Central deflections obtained from various numerical models are plotted as

a function of time in Fig. 5a. Pressure-time history is retrieved from LS-

DYNA/USA acoustics model as shown in Fig. 5b in order to have better insights

about the results. First of all, it can be seen that the results post-processed

from LS-DYNA (only acoustic) and LS-DYNA/USA acoustic models are very390

similar and correlate quite well with the experiment with a relative discrepancy

of about 7% to the experimental maximum deflection. It should also be noticed

that acoustic volume elements contained the pressure near the plate, which non-

physically prevents the elastic return of this latter. Expectation of such behavior

(slow rebounding) in practice is a question since the trend of the experimental395

time-history result does not seem to show any of this behavior.

Similarly to the Goranson’s case study, the results of LS-DYNA/USA (DAA2)

model overestimates the plate deflection (with a relative error of about 36% from

the experiment) since such approach considers a plate immersed in an infinite

Table 4: Parameters of the loading and fluid (Experiment of Schiffer and Tagarielli [9])

ρw (kg.m-3) cw (m.s-1) P0 (MPa) τ (ms)

1000 1055 9 0.12

Table 5: Characteristics of the circular GRP plate (Experiment of Schiffer and Tagarielli [9])

E1 (GPa) E2 = E3 (GPa) ν12 = ν23 G12 = G13 (GPa) G23 (GPa)

27.8 5.0 0.3 1.86 1.92
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or semi-infinite domain and is also not able to capture correctly the phenomena400

related to cavitation such as the propagation and arrest of breaking and closing

fronts. The Taylor’s impulsive velocity result shows a significant underestima-

tion of the maximum deflection (relative error to experiment = 60%). Upon

the collapse of the cavitation, there is a second reloading effect which can be

associated to the rise of pressure, see Fig. 5b. However, unlike the previous case405

study of Goranson’s test, the collapse of cavitation (or rise of pressure) in this

case is much sooner, occurring even before the plate reaches its peak deflection.

Indeed, such rapid collapse of cavitation (i.e., a short cavitation time span)

when combined with the continuing action of FSI effect due to high frequency

of the plate suggests that the transferred impulse given by Taylor’s equation is410

not adequate anymore, leading to serious underestimation of the results.

In Fig. 5b, it can be observed that cavitation occurs at about 0.025 ms

and this cavitation time obtained from LS-DYNA/USA acoustic approach does

not agree well with the expected cavitation inception time provided by Taylor

FSI theory (Eq. 20). The initiation of the numerical cavitation process begins415

approximately 4 times later as compared to the theoretical value, τc = 0.006

ms (= 6µs). The explanation lies in the fact that the GRP plate in this case

study is relatively thick (a/h = 14.7) and so, its dynamic response must be

relatively faster compared to the duration of the loading. According to the

studies of Schiffer et al. [13] using a 1D mass-spring model, the increase of the420

plate (spring) stiffness could lead to the initiation of cavitation being located

within the fluid rather than on the fluid-structure interface, unlike the Taylor’s

free plate theory. In this case, the combined action of the plate fast dynamic

response as well as the temporal development (i.e., initiation and propagation)

of the cavitation zone may produce a continuing FSI phenomenon between the425

plate and the non-cavitated water, causing the cavitation on the fluid-structure

interface much later than the expected theoretical value.
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Figure 5: Comparison of the numerical results with the experimental result of [9] conducted on

circular GRP plate: (a) plot of central deflections obtained from different numerical approaches

and experiment is given as a function of time, (b) normalized pressure P/P0 obtained from

LS-DYNA/USA (acoustics) simulation is plotted as a function of time

4.2.3. A circular steel plate subjected to a plane shock wave (DGA test)

An in-house test data provided by DGA is used to further test the validity

of the LS-DYNA/USA acoustics approach. The test configurations are shown430

in Fig. 6 in which a steel circular plate of diameter 410 mm and thickness 4

mm is bolted to a watertight submerged frame. A TNT equivalent charge of
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55 g is then detonated at 0.9 m stand-off distance, giving P0 = 18.86 MPa and

τ = 0.04 ms with an exponential profile. The steel plate has Young modulus

(E = 210 GPa), poisson ratio (ν = 0.3), yield stress (σY = 250 MPa) and435

tangent modulus of 1680 MPa. The attached rigid plate is regarded as a semi-

infinite baffle plate. The conditions for FE models are the same as presented

in Subsection 4.1. The length and lateral dimensions of the fluid model in the

LS-DYNA/USA acoustic approach are defined as two times the radius of the

target plate.440

Time histories of the plate are shown in Fig. 6c. It can be observed that

the numerical result agrees quite favorably with the experiment. Note that

the experimental central-deflection is measured with the help of a laser before

the first pulsation of the gas bubble. Knowing that the time associated with

the bubble first contraction is at least 100 orders of magnitude greater than the445

decay time of the primary shock wave, only the time history upto 3 ms is shown.

The numerical result is oscillating between 4 mm and 4.6 mm, and compared

to the experimental value (about 4 mm), the maximum relative error is about

15% (at about 2.7 ms). Such discrepancy is probably due to the fact that the

simply-supported boundary condition used in the FE model is not the exact450

representation of the test which may be somewhere between simply-supported

and clamped conditions.

According to the studies performed in Subsections 4.2.1, 4.2.2 and 4.2.3, it

can be said that LS-DYNA/USA acoustic model has the best correlations with

the experiment. LS-DYNA with only impulsive velocity given by Taylor’s the-455

ory could lead to significant underestimations especially for thick plates, which

oscillate in high frequencies. Using LS-DYNA (DAA2) approach (without sur-

rounding fluid model) could overestimate the responses since it could not cap-

ture cavitation correctly. Using LS-DYNA/USA (only acoustics) simulations

with only finite extent of water may lead to underestimations and an unnatu-460

rally slow rebounding of the plate due to confined pressures in the neighboring

acoustic volume elements. Therefore, LS-DYNA/USA (acoustic) model setup

will be used as reference for further comparisons with the analytical results.
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Figure 6: DGA test setup performed on a circular steel plate subjected to a TNT equiva-

lent charge of 55 g and comparison of the central-deflections with LS-DYNA/USA acoustic

simulation

5. Case studies using analytical models

5.1. Materials and load cases465

Carbon-fiber/epoxy (CFRP) laminates having a uniform thickness of

5.76 (mm), density of 1548 (kg.m-3), and the stacking sequence of

[±45/0/0/0/± 45/0/0/0/90/90]S is used to demonstrate the analytical solu-

tions. The length of the edges (a = b) will be varied to have aspect ratios of

a/h = 69.4 (thin plate) and a/h = 17.4 (thick plate). The material charac-470

teristics, Table 6, are taken from quasi-static tests performed by the authors.
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Comparisons are first performed for in-air (non-immersed) plate model by ap-

plying a range of impulsive velocity loading. Then, investigations regarding FSI

will be performed as shown in Table 7 in which the cases denoted with C-1a to

C-1d represent thin CFRP plate and C-2a to C-2c for the thick CFRP plate.475

The peak pressures and decay times are selected so as to give the same trans-

ferred impulse It given by Taylor’s theory (Eq. 21). The obtained results are

then compared with the results of LS-DYNA/USA acoustic simulations includ-

ing rigid baffle plate and the extra fluid model.

5.2. Results and discussions480

5.2.1. Impulsive loading (non-immersed case)

In Fig. 7, the numerical results regarding the peak central deflections are

found within ±10% of the analytical results except for the large aspect ratio (or

large deflection). Since geometric non-linearity related to large displacement is

not considered, the analytical formula is accurate only upto about one time the485

thickness of the plate (W/h ≈ 1). Note that the obtained analytical solutions

consider the first five odd number modes (m,n = 1, 3, ..., 9) where a convergence

of the solution is found. Since the energy dissipation is more or less the same

for a given applied impulse I0, the deformation energy agrees much better than

those of the central-deflections for all aspect ratios (Fig. 7b). In other words,490

when the plate deflection exceeds its thickness, some of the kinetic energy is

absorbed by an additional stretching mode caused by moderately large rotations,

see Reddy [32] for more further details.

Table 6: Characteristics of the material (carbon-fiber/epoxy laminate)

E11 E22 = E33 ν12 = ν13 ν23 G12 = G13 G23

(GPa) (GPa) - - (GPa) (GPa)

138 8.98 0.281 0.385 3.66 3.24
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Figure 7: Comparison of in-air plate response subjected to the impulsive loading (Numerical

results are shown with •,×,� and the analytical ones are shown with lines)

Table 7: Load cases for FSI studies

Cases a h a/h f0 P0 τ I0 It

(-) (mm) (mm) (-) (Hz) (Mpa) (ms) (Nsm-2) (Nsm-2)

C-1a 400 5.76 69.4 190 0.647 0.051 33 5.66

C-1b 400 5.76 69.4 190 0.551 0.167 92 5.66

C-1c 400 5.76 69.4 190 0.524 0.335 175.5 5.66

C-1d 400 5.76 69.4 190 0.509 0.67 341 5.66

C-2a 100 5.76 17.4 2808 2.3 0.024 55.2 16.97

C-2b 100 5.76 17.4 2808 1.939 0.05 97 16.97

C-2c 100 5.76 17.4 2808 1.632 0.192 313.3 16.97

5.2.2. Underwater explosive loading

The investigations regarding the UNDEX loading including the FSI effect

are performed on the 7 load cases specified in Table 7 by using LS-DYNA/USA

acoustic approach as well as analytically. In order to generalize our study, the

following dimensionless parameters are introduced:

W̄max =
ρwcw
2P0τ

Wmax, v̄i =
ρwcw
P0

vi

ψ =
ρwcwτ

ρh
, Ī =

It
I0

= 2ψ
ψ

1−ψ

(28)
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Here, W̄max represents dimensionless maximum central-deflection, which is the495

ratio of the peak deflection obtained from the present analytical approach to

the maximum displacement obtained from Taylor’s 1D FSI theory [10] without

cavitation. The second parameter v̄i is dimensionless maximum impulsive ve-

locity at the end of the early-time phase. Then, ψ refers to the Taylor’s FSI

coefficient, that relates the effect of decay time τ and areal mass ρh, and finally,500

Ī is the dimensionless transferred impulse.

Time history of central deflection. Direct comparisons of central deflection as a

function of time are shown in Fig. 8 for thin and thick CFRP plates respectively.

For both aspect ratios, analytical results are evaluated with or without water-

added mass effect. Results without water-added mass (red curve) are shown just505

to demonstrate that considering only Taylor’s free plate theory underestimates

the central deflection in all cases regardless of the aspect ratios. Note that

analytical results for different case studies are the same for each corresponding

aspect ratio since the peak pressure and decay time are arbitrarily selected

to transmit the same transferred impulse It, see Table 7. As can be seen in510

Fig. 8a, the analytical result with water-added mass effect correlates to only

one of the results (case C-1b) of LS-DYNA/USA acoustics simulation. For the

other two cases, overestimation by analytical results compared to case C-1a and

underestimation compared to case C1-c are found. Obviously, the transferred

impulses are not the same for different cases in LS-DYNA/USA acoustic results515

due to the initiation and temporal evolution of cavitation. It can be deduced

that for relatively low decay loading as in the case of C-1a (τ = 0.051 ms), the

current analytical formulation overestimates since it supposes an abrupt transfer

of increased impulse due to water-added mass from the beginning of the analysis.

In reality, water-added inertial effect could only initiate after the reattachment520

of the water with the plate. On the other hand, when the load has relatively long

decay time, the impulse-based nature of the current analytical approach could

not capture well the continuing FSI phenomenon caused by the long loading

duration. Two peaks can be seen in LS-DYNA/USA acoustics central deflection
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Figure 8: Comparison of central-deflection time histories between analytical and numerical

methods for thin and thick rectangular CFRP plates

results for cases C-1a to C-1c. The first peak resembles an in-air like response525

since cavitation encompasses the plate until about 1.4 ms. Then, reloading,

which can be associated to the collapse of the cavitation, initiates at about 2

ms, further increasing the central deflection of the plate. Indeed, because of this

non-linear behavior of cavitation, Taylor’s FSI theory predicting the same value

of It for every case (recall Table 7) could lead to either over- or underestimation530

of the response. The correlation, however, seems to be much better in the case

of a thick plate (C-2a) in Fig. 8b when water-added mass is accounted for.

Since the thick plate oscillates in high frequency, it would cause the reloading

to appear even before the plate reaches its peak deflection. In other word, such

rapid collapse of cavitation seems to be much more relevant with the assumption535

behind the analytical formulation in which an abrupt transfer of impulse due

to water-added mass is considered. Nevertheless, if the decay time were further

increased as in the case for C-2b, any amount of water-added mass cannot

compensate the discrepancy since there is a continuing FSI phenomenon which

is not accounted for in an impulse-based model proposed in this paper.540

Sensitivity to peak pressure. Knowing that the proposed analytical formulations

work well only for a certain range of decay times, the sensitivity due to the

change in the peak pressures is investigated while keeping the same decay time.
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Figure 9: Results using same decay time τ but with different peak pressures P0 (a/h = 17.4)

Decay time from case study C-2a, τ = 0.024 ms, is selected and results for

different peak pressures are plotted in Fig. 9. As expected, the results show545

linear relationship as long as the maximum deflection remains well within the

small displacement assumption (Wmax < h), and match very well within a

relative discrepancy of ±5% to the numerical results for all cases that consider

the water-added mass.

Sensitivity to FSI parameter ψ. The peak deflections are now normalized by550

using Taylor’s maximum displacement (no cavitation), see Eq. 28, and plotted

as a function of the time ratio τ/T0 as well as the FSI parameter ψ in Fig.

10. In fact, the only parameter varied here is the decay time τ . However, it is

believed that for the same stiffness, the relationship depicted in Fig. 10 would

hold true for any combinations of peak pressures and decay times as long as555

the deformation remains in linear elastic domain. Decrease of the decay time or

increase of the areal mass would result the decrease of the FSI parameter ψ, and

vice versa. It is seen that the applicable domain is not the same between the

thin and thick CFRP plates because varying the aspect ratio not only changes

the lateral dimension (related to diffraction time, Td) but also the plate stiffness560

(related to the swing time, T0).

Relative error bar of 15% is shown in Fig. 10a and 10b to evaluate the
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applicable domain of the proposed method. It can be seen that this range is

0.09 ≤ τ/T0 ≤ 0.16 (19.8 ≤ ψ ≤ 34.5) for thin plate and 0.28 ≤ τ/T0 ≤ 0.35

(4 ≤ ψ ≤ 5.1) for the thick plate. Any increase or decrease from those limiting565

values would result underestimation or overestimation of the normalized plate

deflection compared to the results of LS-DYNA/USA acoustics simulations. The

reason for the overestimation is mainly due to a prolong cavitation caused by

the relatively low decay time of the loading or relatively large areal mass of the

plate. Since water-added mass effect (or reloading) could only start at the end570

of the cavitation process, the consideration of the water-added mass from the

beginning could yield overestimation in the proposed analytical formulations.

On the other hand, when the time ratio τ/T0 or FSI parameter ψ exceeds the

upper bound of the proposed intervals, the analytical model underestimates the

plate deflection since the impulse-based nature of the current analytical model575

is unable to capture any continuing interaction between the fluid and structure,

especially for relatively thick plates shown in Fig. 10b. In this case, cavitation

may occur but it will either collapse very rapidly or will only occur at some

point in the fluid away from the fluid-structure interface, either case suggesting

that the transferred impulse given by Taylor’s theory would be underestimated.580

Effect of water-added mass. By considering the water-added mass in our ana-

lytical model, the Taylor’s transferred impulse It given by Eq. 21 is modified

into:

Itmod = ItTaylor
+ Itwater

= 2I0ψ
− ψ
ψ−1 +Ma11vi

= 2I0ψ
− ψ
ψ−1 (1 +

Ma11

ρh
)

(29)

where the factor (1+
Ma11

ρh ) represents the increase of the response due to water-

added mass. Note that only mode [1,1] of the added mass has been considered

in the above equation since its contribution to the plate response is by far the

highest. Such effect, indeed, extends the limit of Taylor’s theory to some extent585

(recall that using only Taylor’s impulsive result would yield underestimation in
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Figure 10: Comparison of dimensionless maximum central-deflection results between analyti-

cal and numerical methods for thin and thick rectangular CFRP plates

any cases). The amount of amplification is directly proportional to the lateral

dimension of the plate, that is, the larger the plate, the more amplification of

the response due to water-added mass will be obtained. Based on the present

studies, relatively larger plates are more prone to cavitation since their swing590

times T0 as well as diffraction time Td are usually longer compared to the decay

times τ . In addition, it will take much longer for the cavitation to collapse if

τc � Td. As already discussed, the longer the cavitation phase, the more over-

estimation the current formulation will be resulted since the proposed method

does not consider a time gap between the initiation of the cavitation and the595

reattachment of the water to the plate after cavitation collapses.

In Fig. 11, dimensionless transferred impulse with or without water-added

mass as well as the dimensionless maximum impulsive velocity are plotted as a

function of Taylor’s FSI coefficients. As ψ tends to infinity, both transferred im-

pulse with or without water-added mass will approach to zero. The dimension-600

less maximum impulsive velocity will approach to 2. This is exactly analogous

to the original free-rigid plate FSI theory of Taylor [10] except that the range

of applicability is extended by increasing Īt or equivalently by decreasing ψ of
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Taylor by an amount ψwater = (τρwcw)/(ρh + Ma11). Note that the impulsive

velocity v̄i will be the same for both analytical models since the increase in605

momentum Itwater
and increase in mass Ma11 will cancel each other out. A more

versatile approach that includes not only the effect of cavitation but also the

continuing FSI effect related to relatively long decay times should be considered

in the future.
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Figure 11: Dimensionless transferred impulse and impulsive velocity as a function of Taylor’s

FSI coefficient (Calculation is done based on thick CFRP plates with h/a = 17.4)

Sensitivity to plate stiffness. Now the effect of changing the plate stiffness will610

be investigated by keeping the same areal mass and the same decay time so as

to have the same FSI parameter ψ. Comparisons will be made for long lateral

dimension (a = b = 0.4 m) and for short lateral dimension (a = b = 0.1 m). It

should be kept in mind that the lateral dimension is associated to the diffraction

time and thus, keeping the same lateral dimension will give the same diffraction615

time Td and similarly, the same FSI parameter ψ and decay time τ will yield

the same cavitation inception time τc according to Eq. 20. Therefore, the

effect of change will be solely due to the plate areal stiffness K. Peak pressures

are adjusted in order to keep the analysis well within the linear elastic, small

displacement domain, that is, Wmax < h. FSI parameter of ψ = 28.8 and620

ψ = 4.14 are selected for long plate (a = 0.4 m) and short plate (a = 0.1 m)
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respectively. The objective here is to verify whether the applicable range (within

the relative error margin of ±15%) specified in the previous discussions is still

valid for any changes in the stiffness assuming a negligible structural damping.

The following ply orientations are considered:625

• layout 1: [±45/0/0/0/± 45/0/0/0/90/90]S — with 20 plies,

• layout 2: [0/90/0/90/.../0/90/0/90] — with 20 plies.

To investigate the change of stiffness due to material, carbon-fiber/epoxy (CFRP)

and glass-fiber/epoxy (GRP) plates are employed. The corresponding proper-

ties, extracted from quasi-static tests done by the authors, are given in Table 6630

and 8 for CFRP and GRP respectively.

The results for both long and short lateral dimensions are shown in Fig. 12.

The corresponding FSI parameter ψ, aspect ratios a/h, material, ply layout and

total areal stiffness K (see Eq. 32) are also given in each figure. Note that the

thickness of the GRP plate needs to be adjusted in order to have the same areal635

mass. First of all, it can be said that the applicable domain agrees well with the

previously deduced values, 0.09 ≤ τ/T0 ≤ 0.16 (19.8 ≤ ψ ≤ 34.5) for relatively

thin plate and 0.28 ≤ τ/T0 ≤ 0.35 (4 ≤ ψ ≤ 5.1) for relatively thick plate. The

relative error range is also well within the acceptable values, 15% and 5% for

relatively long and short plates respectively. In addition to this, the pattern640

observed is also in consistence with the expected behavior, that is, when the

plate becomes more flexible (as τ/T0 gets smaller), cavitation is more likely to

occur and will last longer unlike the stiffer plates. Indeed, the rapid collapse

of cavitation for the stiffer plates (i.e., short lateral dimensions) has made the

Table 8: Characteristics of the material (glass-fiber/epoxy laminate)

E11 E22 = E33 ν12 = ν13 ν23 G12 = G13 G23

(GPa) (GPa) - - (GPa) (GPa)

34.1 10 0.279 0.402 3.03 3.58
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Figure 12: Effect of stiffness for carbon-fiber/epoxy and glass-fiber/epoxy plates with different

stacking sequences, layout 1 and 2 (denoted by ‘CFRP1’, ‘CFRP2’ and ‘GRP2’ respectively)

comparison with the analytical two-step impulse-based approach to be much645

more relevant since the proposed method considers an abrupt transfer of energy

due to water-added mass without any time gap between cavitation appearance

and water reattachment.

6. Conclusions

Several conclusions as well as important observations can be made from this650

research work. The performances of different numerical approaches to capture

the interactions between a plate subjected to the shock wave of an underwater

explosion and the surrounding medium are evaluated in details and compared

to the experimental results both from the literature and an in-house developed

experimental test data from DGA. According to the observations based on the655

case studies adapted in this paper, it was found out that LS-DYNA/USA acous-

tic model shows the best correlations with the experiment. Using only impulsive

velocity given by Taylor could lead to significant underestimations especially for

thick plates, which oscillate in high frequencies. Using only DAA approach (i.e

without modeling explicitly the surrounding acoustic fluid) could overestimate660

the responses especially for relatively large and thin plates in which cavitation

is more likely to occur and could last longer depending on the duration of the
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incident shock wave. Using LS-DYNA/USA (only acoustics) simulations with

only finite extent of water may lead to underestimations and an unnaturally slow

rebounding of the plate due to confined pressures in the neighboring acoustic665

volume elements.

Indeed, these numerical codes are very powerful and have been successively

employed over the past decades but the complexity as well as the time needed

to perform the computations should be aware. Even with the most powerful

code, LS-DYNA/USA acoustics, there can be some problems such as numer-670

ical instability and many artificial numerical terms may need to be handled

carefully. Moreover, owing to the involvement of large water domain and the

rigid baffle plate, numerical simulations can be very time-consuming especially

for relatively large composite plates studied in this paper. From the indus-

trial point of view, it is not practical to use such expensive tools to perform675

preliminary design studies that may involve a large number of configurations.

That is why simplified analytical solutions are proposed by adapting a two-

step approach based on transferred impulse provided by Taylor’s theory for the

early time and water-added mass for the long time response. The focus has

been paid for the application of this method on the UNDEX response of air-680

backed composite rectangular plates, emphasizing more on the FSI effect within

linear-small displacement domain. Different parametric studies such as varying

the peak pressures, decay times, aspect ratios, areal mass as well as stiffness

corresponding to different materials and ply orientations are performed and a

number of important phenomena are observed. Finally, the applicable limit of685

the two-step approach is exposed in terms of the time ratio between the decay

time of the loading and the plate in-air swing time as well as in terms of the

FSI parameter that relates decay time and areal mass. It was found out that

within this applicable region, varying of either the materials, stacking sequences

of the laminate or the peak pressures would still allow to estimate the response690

within a relative error of ±15% according to some of the studies performed in

this research work.

It must, however, be pointed out that the simplified two-step approach is
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valid only for the limiting ranges pointed out for corresponding aspect ratio.

Indeed, many of the other phenomena such as the non-linearity due to large de-695

formation, the propagation of breaking and closing fronts caused by cavitation,

the continuing FSI effect due to relatively long shock loading, effect of hydro-

static pressure, change in the backed condition such as water and the effect of

damage should be studied in the future.
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Appendix705

The mass terms M1, M2 and M3 are as follows:

M1 = ρc

N∑
k=1

hk − hk−1

M2 = M3 ≈ 0

(30)

The stiffness terms Kijmn (i, j = 1, 2, 3) are as follows:

K11 = A44

(nπ
b

)2

+A55

(mπ
a

)2

K12 = A55

(mπ
a

)
K13 = A44

(nπ
b

)
K22 = D11

(mπ
a

)2

+D66

(nπ
b

)2

+A55

K23 =
mnπ2

ab
(D11 +D66)

K33 = D22

(nπ
b

)2

+D66

(mπ
a

)2

+A44

(31)

The overall areal stiffness of the plate for mode (m,n) is:

Kmn = K11 +
2K12K23K13 −

(
K2

12K33 +K2
13K22

)
K22K33 −K2

23

(32)
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